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Abstract

This paper presents a model predictive control (MPC) for dynamic systems whose nonlinearity and uncertainty are modelled by
deep neural networks (NNs), under input and state constraints. Since the NN output contains a high-order complex nonlinearity
of the system state and control input, the MPC problem is nonlinear and challenging to solve for real-time control. This paper
proposes two types of methods for solving the MPC problem: the mixed integer programming (MIP) method which produces
an exact solution to the nonlinear MPC, and linear relaxation (LR) methods which generally give suboptimal solutions but
are much computationally cheaper. Extensive numerical simulation for an inverted pendulum system modelled by ReLU NNs
of various sizes is used to demonstrate and compare performance of the MIP and LR methods.
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1 Introduction

The advancement of deep learning techniques has stim-
ulated much interest in adopting neural networks (NNs)
to power autonomous systems such as robots and self-
driving cars (Spielberg et al., 2019; Tang et al., 2022).
In particular, NNs have been demonstrated to be pow-
erful in the modelling and control of dynamic systems
Moe et al. (2018). This paper focuses on NN-modelled
control systems, where deep NNs are used to model the
nonlinear system dynamics and/or uncertainties. Cur-
rently, the modelling is achieved by two main types of
NNs: static networks (e.g., multi-layer perception NNs)
and dynamic networks (e.g., recurrent NNs, neuro-fuzzy
NNs). The highly nonlinear nature of NNs imposes big
challenges on the control design of NN-modelled dy-
namic systems. The design becomes even more challeng-
ing when using non-differentiable NNs such as the ReLU
(Rectified Linear Unit) NNs. This calls for control de-
signs tailored to NN-modelled dynamic systems.

There are a few existing control designs for NN-modelled
dynamic systems. For dynamic systems modelled with
a single hidden layer NN, an internal model control is
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designed in Nahas et al. (1992) and state feedback con-
trollers are developed in Nikolakopoulou et al. (2022);
D’Amico et al. (2023) using the linear matrix inequality
technique. An iterative linear quadratic regulator is pro-
posed in Nagariya & Saripalli (2020) for dynamic sys-
tems modelled by a deep NN. However, all the above
designs consider only unconstrained controllers.

To provide optimal control actions under system con-
straints, model predictive control (MPC) for NN-
modelled dynamic systems has attracted much attention
(Ren et al., 2022). This line of research is of particu-
lar interest because the combination of MPC and NN
models opens the door for optimally control complex
dynamic systems, which is otherwise difficult or even
impossible by using first-principle models.

The MPC design for NN-modelled dynamic systems
is non-trivial. In general, MPC requires solving con-
strained optimisation problems, but this can be bur-
densome for NN-modelled dynamics because the NN
output normally includes high-order nonlinearity of
its input, the system state and control input. This
is particularly true for large-scale (deep) NNs with
many hidden layers and neurons. Several methods
have been adopted to solve the nonlinear MPC for
NN-modelled dynamic systems, e.g., the quasi-Newton
algorithm (Sørensen et al., 1999), sequential quadratic
programming method (Saint-Donat et al., 1991), real-
time-iteration scheme ( Lawryńczuk, 2010; Patan, 2018;
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Wysocki &  Lawryńczuk, 2015), sampling method (Spiel-
berg et al., 2021; Salzmann et al., 2023), interior point
line search filter method (Rokonuzzaman et al., 2021),
recurrent NN method (Yan & Wang, 2012), and the
state observer method (Bonassi et al., 2024). However,
these methods are designed for small-scale NNs having
only one or two hidden layers. To design MPC for dy-
namic systems modelled by deep NNs, sampling-based
methods are developed in Williams et al. (2016); Askari
et al. (2022) to obtain approximate solutions through
an interative solving procedure.

This paper presents novel efficient solving methods for
MPC tracking control of deep ReLU NN-modelled non-
linear dynamic systems. The main contributions are as
follows:

1) A dual-mode MPC is proposed to ensure output of
the deep NN-modelled dynamic systems track the
given reference. Ways of determining the steady-
state target and terminal constraint set are de-
tailed, which are lacking in the literature (Williams
et al., 2016; Askari et al., 2022; Wei & Liu, 2022).

2) Three different methods are developed to solve the
nonlinear MPC problems, including the 1) MIP
method by representing equivalently the NN acti-
vation function as a set of mixed integer linear con-
straints, 2) linear relaxation (LR) method by re-
placing the activation function by a triangle over-
approximation of each ReLU, and 3) enhanced LR
(eLR) method which refines the MPC cost function
with a penalty of the deviation between the steady-
state NN output value and the over-approximated
NN output.

3) Extensive numerical simulation and ablation study
are used to demonstrate and compare performance
of the three solving methods, in terms of output
tracking accuracy and computational efficiency.

The rest of the paper is structured as follows: Section
2 describes the problem, Section 3 presents the MPC
design with the solving methods in Section 4, Section 5
reports the simulation results and Section 6 draws the
conclusions.

2 Problem description and preliminary

Consider a discrete-time system represented by

x(t + 1) = Ax(t) + Bu(t) + Dfnn(x(t), u(t)),

y(t) = Cx(t),
(1)

where x ∈ Rn, u ∈ Rm, and y ∈ Rp are the vectors
of system state, control inputs, and measured outputs,
respectively. A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×s and
C ∈ Rp×n are known constant matrices. The pair (A,B)
is assumed to be controllable. fnn(x(t), u(t)) ∈ Rs is a

(n + m)-input s-output feedforward NN capturing the
nonlinear dynamics.

This paper considers an (L+1)-layer NN (with an input
layer, L−1 hidden layers and an output layer) defined as

z0 = [x(t)⊤, u(t)⊤]⊤,

zi = ϕ(ẑi), ẑi = Wizi−1 + bi, i ∈ [1, L− 1],

fnn(z0) = WLzL−1 + bL,

(2)

where ẑi, zi ∈ Rni×1 are the pre-activation and post-
activation vectors at the i-th hidden layer with ni neu-
rons, respectively. Wi ∈ Rni×ni−1 and bi ∈ Rni×1 are
the i-th layer weight matrix and bias vector, respec-
tively. ϕ(·) is the ReLU function, which is among the
most commonly used activation functions for NN mod-
els. The ReLU function is defined as ϕ(ẑi) = max{ẑi, 0},
where max is applied to each element ẑi,j , j ∈ [1, ni], of
ẑi. A graphic illustration of a ReLU neuron is provided
in Fig. 1(a).

This paper aims to design a controller u(t), in the form of
an MPC, such that the output y(t) track a given constant
reference yr whilst satisfying the constraints:

u ∈ U := {u ∈ Rm | u ≤ u ≤ ū}, (3a)

x ∈ X := {x ∈ Rn | x ≤ x ≤ x̄}, (3b)

with the known constant bounds u, ū, x and x̄. Since
ReLU is nonlinear (piecewise and non-differentiable),
the NN output fnn is a nonlinear function of its input,
the system state and control input, and the order of non-
linearity increases dramatically with the hidden layers.
This will impose computational challenges for solving
the MPC problem.

The proposed control design will need the layer bounds
of the NN, including the lower and upper bounds of the

pre-activation vectors (l̂i and ûi, i ∈ [1, L− 1]), and the
output (f

nn
and fnn). Given the constraints in (3), these

bounds can be computed using the interval arithmetic
method as follows:

l0 =[x⊤, u⊤]⊤, u0 = [x⊤, u⊤]⊤,

l̂i =W+
i li−1 + W−

i ui−1, ûi = W−
i li−1 + W+

i ui−1,

li =max(l̂i, 0), ui = max(ûi, 0), i ∈ [1, L− 1],

f
nn

=W+
L lL−1+W−

L uL−1, fnn = W−
L lL−1+W+

L uL−1,

(4)

where W+
i = max(Wi, 0) and W−

i = min(Wi, 0).

3 Model predictive control design

The proposed MPC takes a dual-mode form Rossiter
(2003) with a state feedback controller to pre-stablise
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(a) ReLU neuron (b) MIP encoding (c) Linear relaxation

Fig. 1. Illustration of (a) the ReLU neuron zi,j = ϕ(ẑi,j) with l̂i,j ≤ ẑi,j ≤ ûi,j and its (b) MIP encoding (the neuron is inactive
if δi,j = 0 and active if δi,j = 1) and (c) linear relaxation (the area between the blue and red lines).

the linear steady-state dyanmics of the system (1), which
has not been considered in the relevant litrature. The
overall controller is designed as

u(t) = us(t) + uc(t), (5)

where us(t) and uc(t) are the steady-state feedback con-
troller and the constraint-enforcing controller, respec-
tively.

Steady-state feedback controller design. When
the system output y(t) track the given output reference
yr accurately, the system (1) reaches the steady state
(x∗, u∗) that satisfies the following relation:

x∗ = Ax∗ + Bu∗ + Dfnn(x∗, u∗),

y∗ = Cx∗, x∗ ∈ X , u∗ ∈ U . (6)

In view of (6), the target steady state (x∗, u∗) can be
solved from the following optimisation problem:

(x∗, u∗) := arg min
xr,ur

∥ur∥2Rs

s.t.

[
In −A −B

C 0

][
xr

ur

]
=

[
Dfnn(xr, ur)

yr

]
, (7a)

xr ∈ X , ur ∈ U , (7b)

where Rs ≻ 0 is a given weight matrix. This prob-
lem is nonlinear because (7a) depends on the ReLU
function. It can be approximately solved by using the
fminsearchbndmethod (D’Errico, 2023), which extends
fminsearch in Matlab to incorporate constraints. This
problem can be solved exactly by using the MIP method
to be described in Section 4, but with high computa-
tional burden. Designing more efficient methods for solv-
ing this problem exactly are left for future study.

Subtracting (6) from (1) gives the tracking error system

δx(t + 1) = Aδx(t) + B(u(t) − u∗) + Dδfnn(t), (8)

where δx = x− x∗ and δfnn = fnn(x, u) − fnn(x∗, u∗).

The steady-state feedback controller us(t) is designed as

us(t) = Kδx(t) + u∗, (9)

where δx(t) = x(t) − x∗ and K ∈ Rm×n is a constant
gain. In this paper K is designed such that As = A+BK
is Schur stable by using the linear quadratic regula-
tor (LQR) method (Anderson & Moore, 2007) with the
given state and input weights Q ∈ Rn×n ⪰ 0 and R ∈
Rm×m ≻ 0.

Substituting the controller (5) into (8) yields

δx(t + 1) = Asδx(t) + Buc(t) + Dδfnn(t), (10)

where uc(t) is designed below through the MPC frame-
work.

MPC controller design. The MPC design needs the
terminal state set Xf to ensure recursive feasibility. For
the system (1), the set Xf can be constructed based on
(10) by setting uc(t) = 0, as constraints are inactive at
steady state. Since the system matrix As is Schur stable,
the terminal set is defined as a robust positively invariant
(RPI) set for (10).

Let Xδ be a RPI set for the error system (10) with
the disturbance term Dδfnn(t). Given the constraints
in (3) and the steady-state target (x∗, u∗), the intervals
of δx(t) and δfnn(t) can be derived as [x − x∗, x̄ − x∗]
and [f

nn
−fnn(x∗, u∗), fnn−fnn(x∗, u∗)], where f

nn
and

fnn are computed in (4). Based on the bounds of δx(t)
and δfnn(t), the RPI set Xδ is constructed using (Kol-
manovsky & Gilbert, 1998, Algorithm 6.1) and given as
Xδ = {δx(t) ∈ Rn | Hδx(t) ≤ h}. Hence, the terminal
set Xf for the system (1) with the proposed controller
(5) is constructed as

Xf = {x(t) ∈ Rn | Hx(t) ≤ h + Hx∗}. (11)
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The MPC policy at time t is defined as umpc(t) = c∗(1|t)
which is the first element of the optimal policy sequence
{c(k|t)}Nk=1 solved from

min
{c(k|t)}N

k=1
,{x(k|t)}N+1

k=1

Vt

s.t. x(k + 1|t) = Ax(k|t) + Bu(k|t) + Dfnn(k|t), (12a)

u(k|t) = K(x(k|t) − x∗) + u∗ + c(k|t), (12b)

u(k|t) ∈ U , x(1|t) = x(t), x(k|t) ∈ X , (12c)

x(N + 1|t) ∈ Xf , (12d)

z0(k) = [x(k|t)⊤, u(k|t)⊤]⊤, (12e)

zi(k) = ϕ(ẑi(k)), i ∈ [1, L− 1], (12f)

fnn(k|t) = ẑL−1(k), (12g)

f
nn

≤ fnn(k|t) ≤ fnn, k ∈ [1, N ], (12h)

where the cost function is designed as Vt =
∑N

k=1(∥x(k|t)−
x∗∥2Q + ∥u(k|t) − u∗∥2R) + ∥x(N + 1|t) − x∗∥2P . N is
the prediction horizon. Q and R are those weight ma-
trices used in the LQR design for K. P is the solution
to the Riccati equation A⊤PA − P − (A⊤PB)(R +
B⊤PB)−1(B⊤PA) + Q = 0. Xf is the terminal con-
straint set to ensure recursive feasibility. Φ is a user-
given weight matrix.

By implementing the proposed controller (9), stability
of the tracking error system under the constraints can be
proved using the standard Lyapunov function methods
as in Rossiter (2003); Rawlings et al. (2017) and the
details are omitted here.

Due to the high-order nonlinear constraints in (12f), the
optimisation problem (12) is generally hard to solve. Sev-
eral methods will be proposed in the next section to effi-
ciently solve it. Due to the use of concrete bound propa-
gation, the interval arithmetic method in (4) generates a
conservative outer-approximation of fnn(x(t), u(t)), re-
sulting in a small terminal constraint set. Computing a
tighter interval for fnn(x(t), u(t)) would be useful to en-
large Xf and improve recursive feasibility of the MPC
problem. A method to achieve this will be presented later
in Section 4.

4 Methods for solving the MPC problem

This section describes methods for solving the formu-
lated nonlinear MPC problem (12), including an exact
MIP method and two linear relaxation (LR) methods.

4.1 MIP method

By definition, the (i, j)-neuron (i.e., the j-th ReLU neu-
ron at the i-th layer) can be either active (when zi,j =
ẑi,j) or inactive (when zi,j = 0). An extra binary variable
δi,j can be introduced to indicate the neuron state: When
δi,j = 1, the neuron is active; When δi,j = 0, the neuron

is inactive. Hence, each ReLU function zi,j = ϕ(ẑi,j) is
split into two cases (as illustrated in Fig. 1(b)):

δi,j = 1 =⇒ zi,j = ẑi,j , δi,j = 0 =⇒ zi,j = 0. (13)

By using (13), the nonlinear ReLU constraints in (12f)
can be represented as a set of linear constraints as fol-
lows:

zi(k) ≥ 0, zi(k) ≥ ẑi(k), zi(k) ≤ ẑi(k) − l̂i ⊙ (1 − δk,i),

zi(k) ≤ ûi ⊙ δk,i, δk,i ∈ {0, 1}ni , i ∈ [1, L− 1], (14)

where the bounds l̂i and ûi are computed in (4) and
⊙ is the element-wise product. It can be easily shown

that (14) is always equivalent to (13) providing that l̂i ≤
ẑi(k) ≤ ûi, while conservativeness of the bounds l̂i and
ûi is not a matter.

By applying (14), the MPC problem (12) is equivalently
reformulated as the following MIP problem:

min
{c(k|t)}N

k=1
,{x(k|t)}N+1

k=1
,{δk,i}N

k=1

Vt

s.t. (12a) − (12e), (12g), (12h), (14), k ∈ [1, N ]. (15a)

In the literature, a similar MIP encoding of ReLU neu-
rons is used to design a safe controller for NN-based dy-
namic systems (Wei & Liu, 2022) and analyse the stabil-
ity and feasibility of NN control systems (Karg & Lucia,
2020). The MIP reformulation does not introduce any
conservatism. But its computational complexity grows
rapidly with the number of binary variables and the pre-
diction horizon, which limits its scalability to large NNs
and its applicability in real-time control for deep NN-
modelled dynamic systems. This motivates the proposal
of more computationally efficient solving methods be-
low.

4.2 Linear relaxation (LR) method

The LR method consists in using a triangle relaxation
to over-approximate the (i, j)-neuron as follows (see an
illustrative example in Fig. 1(c)):

zi,j ≥ 0, zi,j ≥ ẑi,j , zi,j ≤ ai,j(ẑi,j− l̂i,j)+ϕ(l̂i,j), (16)

where ai,j = (ϕ(ûi,j) − ϕ(l̂i,j))/(ûi,j − l̂i,j) when

l̂i,j ̸= ûi,j and ai,j = 0 otherwise. Note that an over-
approximation is necessary to ensure that if the com-
puted MPC policy satisfies the state and input con-
straints, then it is still the case when applying the
policy to the original system model. This is, however,
not achievable by using the sampling-based methods
(Williams et al., 2016; Askari et al., 2022) or using
approximation of the ReLU such as the polynomial
approximation (Kochdumper et al., 2022).
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Replacing the ReLU constraints (12f) with (16) yields
the LR method:

min
{c(k|t)}N

k=1
,{x(k|t)}N+1

k=1

Vt

s.t. (12a) − (12e), (12g), (12h), (17a)

(16), j ∈ [1, ni], i ∈ [1, L− 1], k ∈ [1, N − 1]. (17b)

The problem (17) is relatively easier to solve than the
MIP problem (15), but there is usually a large relax-
ation gap, especially for large-scale NNs, which leads to
undesirable output tracking performance. A method is
further developed below to improve the solution quality
of the LR method.

4.3 Enhanced linear relaxation (eLR) method

Due to the use of over-approximation of ReLU in the LR
method, the computed MPC cannot ensure the system
reach the target steady state, leading to inaccurate out-
put tracking. To improve the tracking accuracy, the cost
function is redesigned as

Jt =

N∑
k=1

(∥x(k|t) − x∗∥2Q + ∥u(k|t) − u∗∥2R

+ ∥fnn(k|t) − fnn(x∗, u∗)∥2Φ) + ∥x(N + 1|t) − x∗∥2P ,
(18)

where the term ∥fnn(k|t) − fnn(x∗, u∗)∥2Φ with a user-
given weight matrix Φ is introduced to minimise the
deviation of the over-approximated NN output fnn(k|t)
from its steady-state value fnn(x∗, u∗). By minimising
this new cost function, the obtained MPC policy can
minimise the total deviation of the system from its
steady-state dynamics in (6). Due to introduction of the
new term, it holds that Jt ≥ Vt.

Applying the new cost function in (18) to (17) results in
the enhanced LR (eLR) method:

min
{c(k|t)}N

k=1
,{x(k|t)}N+1

k=1

Jt

s.t. (12a) − (12e), (12g), (12h), (19a)

(16), j ∈ [1, ni], i ∈ [1, L− 1], k ∈ [1, N − 1]. (19b)

Note that when the optimal solution to (19) satisfies
J∗
t = 0, the obtained MPC ensures that the system

reaches the target steady-state and accurate output
tracking.

4.4 Discussions

Proposition 4.1 provides a comparison of the solution
quality (optimality or tracking accuracy) Smethod of the
MIP, LR, and eLR methods against the original MPC
(12).

Proposition 4.1 The solution quality of the proposed
methods satisfy: SLR ≤ SeLR ≤ SMIP = Sorigin.

The LR and enhanced LR methods are of the same size
and will have roughly the same computational complex-
ity, while the MIP method is generally much more com-
putationally expensive. A further demonstration of this
is to be through simulation in Section 5.

Computational complexity of the proposed solving
methods can be reduced via directly encoding the sta-
ble (either inactive or active) neurons using equality
constraints. For each (i, j)-neuron, the pre-activation

bounds l̂i,j and ûi,j can be used to identity its status as
follows: 1) If ûi,j ≤ 0, the neuron is known to be strictly

inactive and thus zi,j = 0, and 2) If l̂i,j ≥ 0, the neu-
ron is known to be strictly active and thus zi,j = ẑi,j .
Applying these to the proposed methods can reduce
the required numbers of binary variables or triangle
relaxation. This can then improve the computational
efficiency without compromising the solution quality. It
is also worth noting that more stable neurons can be
identified if less conservative pre-activation bounds are
used. The symbolic bound propagation method (Hen-
riksen & Lomuscio, 2020) can be an efficient way to
achieve this and it will be explored in the future work.

This paper focuses on developing efficient algorithm for
solving the MPC problem, so the NN fnn is assumed to
capture the system nonlinear dynamics and uncertainty.
If a separate term is used to lump the total effects of
uncertainty and diturbance, the proposed MPC can be
extended as robust MPC based on the concept of tube-
MPC (Langson et al., 2004), in which the proposed solv-
ing algorithms will still be applicable.

5 Numerical example

Consider an inverted pendulum system

x1(t + 1) = x1(t) + tsx2(t),

x2(t + 1) = x2(t) +
tsg sin(x1(t))

l
− tscx2(t)

ml2
+

tsu(t)

ml2
,

y(t) = x1(t),

where x1(t) is the angular displacement, x2(t) is the an-
gular velocity, ts is the sampling time, m is the mass
of pendulum, l is the distance from pivot to centre of
mass of the pendulum, c is the rotational friction coeffi-
cient, and g is the gravitational constant. The parame-
ters used in the simulation are ts = 0.1 s, m = 1, l = 1,
g = 9.8 and c = 0.01. The input and state constraints
are: |u(t)| ≤ 3, |x(t)| ≤ [π/2, 5]⊤.

Suppose the value of the rotational friction coefficient c
is unknown for the control design. The pendulum system
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Fig. 2. Tracking performance and runtime for 3-layer NNs
with different number of neurons at the hidden layer.

is reformulated as

x(t + 1) = Ax(t) + Bu(t) + Df(x(t)),

y(t) = Cx(t),
(20)

where A =

[
1 ts

0 1

]
, B =

[
0
ts
ml2

]
, D =

[
0
ts
l

]
, C = [1 0]

and f(x(t)) = g sin(x1(t)) − (cx2(t))/(ml).

A three-input one-output NN fnn(x(t), u(t)) is trained
to model the unknown nonlinear dynamics f(x(t)). Then
the pendulum system can be represented in the form
of (1). The simulations are conducted in Matlab on a
Linux machine with an AMD Ryzen Threadripper PRO
5955WX 16-cores CPU and 128 GB RAM. The optimi-
sation problems are modelled using YALMIP (Löfberg,
2004) and solved by Gurobi (Gurobi Optimization, LLC,
2023). The weight matrices used in the control design
are: Rs = 1, Q = [1.0e5, 0; 0, 1.0e2], R = 1, and Φ = 100.
The initial state is x(0) = [0; 0] and the output reference
is yr = π/5.

Comparison is made for the MIP method in (15), the LR
method in (17), and the eLR method in (19). The per-
formance metrics to compare are the steady-state rela-
tive tracking error |y − yr|/yr × 100 and the maximum
runtime for solving the MPC problems at each sampling
step. Three simulation cases are used to make a compre-
hensive comparison:

• Case 1: Network width test. This case simulates
3-layer NNs where the number of neurons at the only
hidden layer is 10, 20, 50, 100, or 200, repectively. The
prediction horizon is N = 1. The results are depicted
in Fig. 2 and an example of the outputs and control
inputs for the 50 neurons NN is provided in Fig. 3.

• Case 2: Network depth test. This case uses NNs
having 1, 2, 4 or 5 hidden layers with 10 neurons at
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Fig. 3. Example output tracking and control input for the
3-layer NN with 50 neurons in Case 1.
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Fig. 4. Tracking performance and runtime for NNs with dif-
ferent number of hidden layers each having 10 neurons.

each hidden layer. The prediction horizon is N = 1.
The results are reported in Fig. 4.

• Case 3: Prediction horizon test. This case con-
siders a 3-layer NN with 50 neurons. The prediction
horizon is N = 2, 3, 4, 5, respectively. The results are
reported in Fig. 5.

In all the three cases, the tracking accuracy from the
best to the worst are: MIP, eLR, and LR. Moreover, the
relative tracking errors of the LR method grow rapidly
with increase in the network width (i.e., the number of
neurons) and depth (i.e., the number of hidden layers).
But the tracking errors of the MIP and eLR methods
are almost zero in all simulations.

As expected, the relaxation methods, LR and eLR meth-
ods, need around the same runtime in all the simula-
tions, while the MIP method is much more computa-
tionally expensive. Moreover, the runtime of MIP grows
much faster than the other methods when the NNs be-
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Fig. 5. Tracking performance and runtime for 3-layer NNs
with 50 neurons under different prediction horizons.

come larger (with more neurons or hidden layers) or the
prediction horizon becomes longer. The runtime of MIP
method exceeds the sampling time 0.1 s when the 3-layer
NNs have more than 50 neurons per layer (as shown in
Fig. 2), when the NNs have more than 2 hidden layers
(as shown in Fig. 4), or when the prediction horizon is
longer than 2 (as shown in Fig. 5). However, the run-
time for the relaxation methods remains lower than the
sampling time across all the NNs and simulations.

6 Conclusion

A dual-mode MPC is designed to ensure output set point
tracking of NN-modelled dynamic systems in the pres-
ence of state and input constraints. Both exact MIP
method and linear relaxation (LR) methods are pro-
posed to solve the formulated nonlinear MPC problem.
Theoretic analysis and simulation evaluation show that
the enhanced LR can enjoy both the benefits of low com-
putational burden from the LR method and accurate
output tracking from the MIP method. This suggests
the enhanced LR method is more suitable for real-time
control of deep NN-modelled dynamic systems. Future
work will be extending the proposed control design for
NNs with other types of activation functions.
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