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Non-reciprocal couplings or drivings are known to induce steady-state, directional, amplification
in driven-dissipative bosonic lattices. This amplification phenomena has been recently linked to
the existence of a non-zero topological invariant defined with the system’s dynamical matrix, and
thus, it depends critically on the couplings’ structure. In this work, we demonstrate the emergence
of unconventional, non-reciprocal, long-range dissipative couplings induced by the interaction of
the bosonic chain with a chiral, multi-mode channel, and then study their impact on topological
amplification phenomena. We show that these couplings can lead to topological invariant values
greater than one which induce topological, multi-mode amplification and metastability behaviour not
predicted in other setups. Besides, we also show how these couplings can also stabilize topological
amplifying phases in the presence of local parametric drivings. Finally, we conclude by showing
how such phenomena can be naturally obtained in two-dimensional topological insulators hosting
multiple edge modes.

I. INTRODUCTION

Non-reciprocity, the property of physical processes of
depending on the direction in which they occur, is both
a topic of fundamental and applied interest. On the fun-
damental side, it is at the heart of puzzling phenomena
such as the non-Hermitian skin effect [1–3], dynamical
phase transitions in classical active matter [4, 5], anoma-
lous quantum optical responses [6, 7], or unconventional
photon-mediated interactions [6–8], among others. On
a more applied perspective, non-reciprocity can be used
to improve quantum sensing protocols [9–13] or to in-
duce chiral light-matter interactions [14] with applica-
tions in the dissipative preparation of many-body en-
tangled states [15–18], the generation of complex states
of light [19–29], or the routing [30–35] and process-
ing of quantum information [36]. For these reasons,
strong efforts are being directed towards engineering
non-reciprocal couplings with different methods [37–44],
which have resulted in already in several experimental
realizations in various platforms [45–51].

One of the most attractive applications of such non-
reciprocal couplings is the development of directional am-
plifiers [52, 53]. Such systems are capable of amplifying
an input signal in one direction while avoiding backscat-
tering in the other, with numerous applications in very
disparate fields ranging from radioastronomy [54] to mi-
crowave quantum technologies [55].

Along this direction, arrays of parametric amplifiers
[56] are one of the ways of achieving directional amplifi-
cation, with a gain that potentially increases with system
size. However, even though current devices show some
degree of directionality, backscattering into the detected
object is still significant thus posing limitations in cer-
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tain applications like measurement of qubits in quantum
computers [57].

Motivated by this challenge, several works [58–70] have
recently put forward a new concept based on a topo-
logical dissipative phase that leads to low-noise, full di-
rectional amplification with a built-in protection against
imperfections. This protection is rooted in the emer-
gence of a quantized topological invariant defined with
the dynamical matrix of the driven-dissipative-photonic
lattice [59, 60], which is directly connected to the exis-
tence of exponentially-amplified steady-states. For this
reason, such phenomena has been dubbed as topologi-
cal amplification. The proposals to obtain such robust
amplification have been mostly based on non-reciprocal
couplings of the Hatano-Nelson [71] type, such as in
Refs. [59, 60, 64–66, 70], or via parametric cross-Kerr
couplings [67, 68].

In this work, we demonstrate the existence of a novel
topological amplification regime featuring multiple am-
plification channels with no analogue in other existing
proposals. The origin of this regime lies in a different
type of non-reciprocal couplings that we also demon-
strate to appear when the photonic lattice modes in-
teract via a chiral, multi-mode waveguide [72–74]. Be-
yond this channel multiplicity, we also show that these
non-reciprocal tunnelings give rise to both a dynamical
metastability of these driven-dissipative phases and a sta-
bilization of such topological amplification using only lo-
cal parametric drives. The manuscript is structured as
follows: In Sec. II, we derive the non-reciprocal couplings
mediated by chiral, multi-mode waveguides, and empha-
size their differences with the ones appearing in the stan-
dard chiral quantum optical regime [14]. In Sec. III, we
study the driven-dissipative topological phases that these
non-reciprocal tunnelings can induce with both incoher-
ent and parametric pumping. This includes Sec. IIID,
where we study the transient behaviour before arriving
to these steady-state phases to illustrate the emergence
of metastability. Finally, in Sec. IV, we also discuss
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Figure 1. Scheme of the system. (a) The photonic lattice
is assumed to be composed by a cavity array with equal fre-
quencies ωc and described by bosonic harmonic oscillator op-

erators, b
(†)
i , depicted in red. We also assume that the cavities

only exchange excitations via a chiral, multi-mode waveguide
channel. We also assume that cavity modes are coupled to
each waveguide mode with rate Γℓ, exemplified in a two-mode
waveguide as Γ0 and Γ1 in the figure. (b) Schematic repre-
sentation of the band-structure of the multi-mode waveguide
for the two-mode scenario with energy dispersions ωℓ(k). The
energy of the cavities ωc defines the resonant momenta of each
of the channels kℓ that dominate the transfer of excitations.
(c) Adiabatically eliminating the photon field results in effec-
tive chiral tunnelings in which each of the modes features a
different propagating phase, i.e., eikℓr. Thus, compared to the
standard chiral quantum optical regime [14], here the position
between the cavities cannot be gauged away. (d) Schematic
representation of the excitation mechanisms used in this work:
the local incoherent pumping LP [ρ] in Eq. (6), the coherent
drive in Eq. (7), and the local parametric driving in Eq. (8).

how such couplings and phenomena can be experimen-
tally probed by harnessing the chiral, edge modes of
two-dimensional topological insulators, e.g., built from
microwave resonators [51].

II. NON-RECIPROCAL, MULTI-MODE
COUPLINGS

Along this work, we consider a coupled cavity array de-
scription for the photonic lattice as depicted in Fig. 1(a).
The lattice is composed by N local cavity modes, which
we assume to have the same frequency ωc, described by

bosonic operators b
(†)
i . Their free Hamiltonian is then

given by HS = ωc

∑
i b

†
i bi, where we set ℏ = 1 as we will

do for the rest of the paper.

The key difference of this work with respect to the
others in the literature is that we assume that the non-
reciprocal couplings between the different cavities do not
occur directly, but rather via the interaction of the cavi-
ties with a multi-mode waveguide as depicted in Fig. 1(a).
The Hamiltonian of multi-mode waveguide modes can be
written as:

HB =
∑
ℓ

∫
dk ωℓ(k)A

†
ℓ,kAℓ,k , (1)

where ℓ is the integer index that denotes the different
waveguide modes, which runs from ℓ = 1, 2, . . . , nmodes,
ωℓ(k) is the energy dispersion associated to the ℓ-th

mode, and A
(†)
ℓ,k are the bosonic operators describing the

waveguide modes with momenta k. On the other hand,
the cavity-waveguide coupling can be written in general
as:

Hint =
∑
i

∑
ℓ

∑
k

gk(ri) b
†
iAℓ,k +H.c. , (2)

with ri being the position where the i-th cavity mode
couples to the waveguide, and gk(ri) its coupling strength
to the waveguide photons with momentum k, described

by a bosonic operator A
(†)
ℓ,k which obeys the commutation

relations [Aℓ,k, A
†
ℓ′,k′ ] = δℓ,ℓ′δ(k − k′).

The non-reciprocity of the couplings can appear either
because the waveguide modes are chiral themselves, that
is, there exist only left or right moving modes as it hap-
pens at the edges of two-dimensional topological insula-
tors hosting multiple, chiral edge modes [72–74]; or be-
cause, while existing both left and right moving photons,
the cavities only couple to one of them, e.g., using optical
spin-orbit coupling [14, 75]. Mathematically, the first sit-
uation implies that the k-integral in Eq. (1) only runs for
k ≶ 0, whereas the second scenario implies that gk(ri)
in Eq. (2) is different from zero only for k ≶ 0. Irre-
spective of the mechanism, adiabatically eliminating the
waveguide modes under the Born-Markov conditions, see
Appendix A for a complete derivation, one arrives to an
effective master equation for the bi-cavity modes which
reads

∂ρ

∂t
= i
[
ρ(HS +H†

eff)− (HS +Heff)ρ
]
+ J [ρ] (3)

with J [ρ] encapsulating the quantum jump terms, and
Heff the effective non-Hermitian evolution where one ex-
plicitly sees the emergence of both coherent (Jij) and
incoherent (Γij) couplings between the cavity modes,

Heff =
∑
ij

(
Jij − i

Γij

2

)
b†i bj , (4)
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with:

Jij − i
Γi,j

2

= −i
∑
ℓ

Γℓ

2
eikℓ(ri−rj)−|ri−rj |/lκ (1 + sign(ri − rj)) .

(5)

Here, Γℓ is the effective decay rate of the cavity mode
to the ℓ-th waveguide mode, kℓ is the resonant momenta
of each of the channels defined by ωℓ(kℓ) = ωc, and lκ
is a parameter that we introduce to account for the fi-
nite propagation length of the waveguide modes due to
either absorption losses or other imperfections. Such
waveguide-mediated tunnelings have several combined
features that make them qualitatively different to any
other platform that has been studied in the literature in
this context:

• First, as expected due to the chirality of the modes,
the couplings are non-reciprocal due to the sign(ri−
rj). In particular, if ri < rj they are strictly zero,
that is, the excitations only tunnel through posi-
tions ri > rj .

• They allow to hop beyond nearest-neighbouring
sites. In particular, if lk → ∞ they are infinite-
ranged, as it is typical in other waveguide QED
systems [76].

• Critically, if nmodes ̸= 1, the cavity positions, ri,
cannot be gauged away due to the different propa-
gating phases of the waveguide modes in the waveg-
uide channels, i.e., eikℓr, see Fig. 1(c). Note that
this is very different from the standard chiral quan-
tum optical regime [14] where only the ordering,
and not the position between the cavities, matters.
We recover the standard chiral quantum optical
regime in Eq. (5) for nmodes = 1 or if kℓ ≡ k0 for
all ℓ.

In Fig. 2 we plot an example of such long-range, non-
reciprocal couplings, Jij (top) and Γij (bottom) in a
two-mode scenario for an equally-spaced set of cavities
rj ≡ j · a, with j ∈ N, and a finite propagation length
lk/a = 10. We consider the dependence on both the dis-
tance between the cavities ri − rj , restricted to ri ≥ rj ,
otherwise, we have Jij = Γij = 0) and the effective
multi-mode phase difference of the two channels ∆k · a
with ∆k = k0 − k1. There, we observe more explic-
itly how the emitters position cannot be gauged away
unless ∆k · a = 0, 2π, resulting in different oscillatory
phases between the coherent and incoherent part of the
couplings. Such oscillations allow one to find regimes in
which the hoppings between longer distances are larger
than nearest-neighbouring ones, which has strong impli-
cations for the topological amplification phenomena as
we will see in the next section. A very clear example
of that occurs for the ∆k · a = π situation where the
photons from the two channels arrive in anti-phase into

Figure 2. Non-reciprocal couplings. (a) Effective coher-
ent Jij and (b) incoherent couplings Γij from Eq. (5) for a
two-mode waveguide situation with Γ0 = Γ1 = Γ/2 and a
propagation length lκ/a = 10. Both quantities are plotted as
a function of the distance between mode i and mode j (only
if ri ≥ rj , otherwise Jij = Γij = 0), and the effective multi-
mode phase difference ∆k · a.

the neighbouring sites resulting in a cancellation of both
Jij and Γij at the neighbouring sites. In fact, Jij ≡ 0,
for any i and j in that regime, resulting into a bipartite,
pure, dissipative coupling.

III. DRIVEN-DISSIPATIVE TOPOLOGICAL
PHASES AND AMPLIFICATION

In the previous section, we demonstrate the appear-
ance of the qualitatively different non-reciprocal cou-
plings written in Eq. (5). In this section, we study the
consequences of such couplings in the context of topo-
logical amplification [58–64, 66–68, 70, 77]. For that, we
need to include some type of driving or pumping into the
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system such that the steady-state in the system is not
the trivial one, that is, the vacuum state of the cavities.
Along this work, we consider three possible mechanisms
of adding excitations into the system schematically de-
picted in Fig. 1(d):

• Local incoherent pumping, with rate P , described
by an additional term into the master equation
Eq. (3):

LP [ρ] =
P

2

∑
i

(
2b†iρbi − bib

†
iρ− ρbib

†
i

)
. (6)

• Local coherent driving with amplitude Ω and fre-
quency ωL described a Hamiltonian:

HΩ = Ω
∑
i

(bie
iωLt + b†ie

−iωLt) . (7)

• Local parametric drive with amplitude gs and fre-
quency 2ωp described by a Hamiltonian:

Hg = gs
∑
i

(
b2i e

i2ωpt + (b†i )
2e−i2ωpt

)
. (8)

Thus, going to a rotating frame with the parametric
driving frequency 2ωp and assuming ωL = 2ωp, the mas-
ter equation which describes the driven-dissipative pho-
tonic lattice reads:

dρ

dt
=− i

(
H∗ρ− ρH†

∗
)
+ J (ρ) , (9)

with H∗ being the effective non-Hermtian Hamiltonian
including both the effective couplings and potential driv-
ings and pumping terms:

H∗ =∆
∑
i

b†i bi +
∑
ij

(
Jij − i

Γij

2

)
b†i bj

+i
P

2

∑
i

b†i bi +Ωi(b
†
i + bi) + gs(b

†2
i + b2i ) , (10)

where we define ∆ ≡ ωc−2ωp, and J (ρ) being the quan-
tum jump terms due to the pumping and incoherent cou-
plings:

J (ρ) =
∑
ij

Γijbiρb
†
j + P

∑
i

b†iρbi . (11)

Recent works [58–64, 66–68, 70, 77] have found that
under some conditions, such excitation mechanisms can
result into non-trivial photonic steady-states in which the
coherent input signal Ω is exponentially amplified. In the
next section, we will see how such amplification can be
connected to a topological invariant that is defined using
the dynamical matrix of the system.

A. Review of topological amplification

1. With incoherent gain

Let us start considering the situation with gs = 0 and
∆ = 0. In that case, the evolution of the coherences of
the system, i.e., b ≡ (⟨b1⟩, ..., ⟨bN ⟩)T , is governed by the
following set of linear differential equations:

db

dt
= −iHb+ iΩ , (12)

with (H)ij = Jij − i
Γij

2 + iP2 δi,j . It is important to high-
light that (the inverse of) H also governs the spatial shape
of the steady-state since dbss/dt = 0 implies that:

bss = H−1Ω . (13)

which can be rewritten using the singular value decom-
position of H = USV † (where U and V are unitary ma-
trices and Snm = snδnm is a diagonal matrix containing
the singular values sn ≥ 0) as follows:

⟨bj⟩ss =
∑
i

∑
n

Vjn
1

sn
U⋆
inΩi . (14)

As first realized by Ref. [59], such singular value de-
composition can also be used to define a topological char-
acter of the steady-states by realizing that the singular
values sn are also the eigenvalues of the following Hermi-
tian matrix H:

H =

(
0 H

H† 0

)
, (15)

dubbed as the doubled Hamiltonian. In particular, it can
be proven that:

eig [H] = λn = ±sn , (16)

as we remind again in Appendix B. The key point to make
the connection with standard topological band-theory is
to realize that since H has an artificial chiral symme-
try, it typically falls into the BDI or AIII classes of the
Altland-Zirnbauer tenfold topological classification [78].
This means that, in one-dimension, such Hamiltonian can
support non-trivial topological phases characterized by
an integer topological invariant and manifested by the
presence of zero-energy edge states. The associated sin-
gular values sn → 0 will dominate the spatial dependence
of the steady-state since, as we observe in Eq. (14), their
contribution to the steady-state is weighted by s−1

n .
Let us now define more explicitly the invariant that

characterizes these phases. As it occurs in standard topo-
logical classification, such invariants are defined in the
bulk, i.e., by imposing periodic boundary conditions in
the photonic lattice. Within those conditions, one can
diagonalize the effective part of H∗ using the plane-wave
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expansion of the operators bk = (1/
√
2π)

∫
dr e−ikjbj as

follows:∑
ij

(
Jij − i

Γij

2

)
b†i bj + i

P

2

∑
i

b†i bi →
∑
k

h(k)b†kbk .

(17)

With that h(k), one can rewrite the 2×2 blocks of the
doubled Hamiltonian in momentum space as follows:

H(k) =

(
0 h(k)

h⋆(k) 0

)
. (18)

From this form, it follows that the topological invariant
can be computed as (see Refs. [59, 60] and Appendix C
for a complete explanation):

W =
1

4πi

∫
BZ

dk Tr
(
τzH(k)−1∂kH(k)

)
, (19)

with τz being a matrix representation of the artificial chi-
ral symmetry of the doubled Hamiltonian H i.e. τzHτz =
−H. Besides, in this case with no parametric driving
(gs = 0), the calculation of the winding number can be
further simplified to:

W =
1

2πi

∫
BZ

dk ∂k log h(k) , (20)

as proven in Appendix C. In this scalar form, we re-
cover the standard interpretation of the winding number
as the number of times the vector (Re [h(k)] , Im [h(k)])
winds around the origin as k sweeps the Brillouin zone.
This form of the winding number connects topological
amplification to the concept of point-gap topology in
non-Hermitian systems, see [79]. Using that formalism,
only topological amplifying phases with W = 1 have
been found for both nearest-neighbour [59, 60, 64, 67]
or infinite-range non-reciprocal hoppings [70].

2. With parametric driving

Let us now focus on the situation with gs ̸= 0 in
Eq. (10). In that case, one must upgrade the description
in Eq. (12) because the coherence dynamics couples both

⟨bi⟩ and ⟨b†j⟩. This changes the dimension of H from being
a N×N matrix to a 2N×2N one. Besides, when impos-
ing periodic boundary conditions, the parametric driving
induces an effective coupling between positive and nega-
tive momenta, see Appendix B for a complete derivation,
resulting into:

H∗ →
∑
k

(h(k) + ∆) b†kbk +
∑
k

(h(k) + ∆) b†kbk

+ gs
∑
k

(
b†kb−k − b†kb−k

)
. (21)

Thus, the doubled k-dependent Hamiltonian is defined
in 4× 4 blocks as follows:

H(k) =

 0 0 h(k) + ∆ gs
0 0 −gs −h⋆(k)−∆

h⋆(k) + ∆ gs 0 0
−gs −h(k)−∆ 0 0

 .

(22)
while the definition of the topological invariant remains
the same as in Eq. (19). Eq. (8) only includes local
parametric couplings, something that simplifies previous
schemes such as [67, 68], where non-trivial winding num-
bers where obtained in the presence of cross-Kerr cou-

plings of the form bibj + b†i b
†
j .

B. Driven-dissipative topological phase diagram
with non-reciprocal, long-range couplings

Let us now consider the impact of the non-reciprocal
couplings derived in Section II. Interestingly, the form
of h(k) using the Jij ,Γij of Eq. (5) can be analytically
obtained (see Appendix D):

h(k) = i
P − Γ

2
− i
∑
ℓ

Γℓe
i(kℓ−k)a−a/lκ

1− ei(kℓ−k)a−a/lκ
. (23)

This allows us, e.g., in the gs = 0 situation, to plot in
Fig. 3 the movement of the vector (Re [h(k)] , Im [h(k)])
as k runs over the Brillouin zone with the different key
parameters of the photonic lattice:

• Effective multi-mode phase difference. In Fig. 3(a)
we illustrate the winding dependence of a two-mode
waveguide as a function of the multi-mode phase
difference, ∆k · a, assuming both a fixed propaga-
tion length lκ/a = 3 and pumping rate P/Γ = 0.9,
being Γ the total decay rate over the channels.
There, we see how for ∆k · a = 0 (purple line),
the curve only winds once. This is expected be-
cause it recovers the single-mode scenario where it
is known that only W = 1-phases are found. For
∆k ·a = π/10 (red line), the curve starts to feature
a double loop, however, it is not big enough so that
the second loop whirls around the origin, and thus
we find still W = 1. Finally, when ∆k · a = 9π/10
(yellow line), the two loops encircle the origin, fea-
turing then a W = 2 phase. This emphasizes the
critical role of the multi-mode nature to obtain mul-
tiple amplifying channels.

• Finite propagation length. In Fig. 3(b), we ini-
tially place ourselves in a two-mode situation with
∆k · a = π/2, lκ/a = 12 and P/Γ = 0.9 featur-
ing a winding number W = 2 (yellow line), and
then study the impact of decreasing the propaga-
tion length. As we see in Fig. 3, when lκ/a = 8
(red line) the loops shrink their size, however, they
are still able to encircle the origin, thus keeping the
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Figure 3. Impact of model parameters on the move-
ment of winding loops. Real and imaginary part of h(k)
defined in Eq. (23) as k swipes the Brillouin Zone (−π, π)
for several configurations. (a) Two-mode waveguide with
lκ/a = 3, P/Γ = 0.9. We show the cases ∆k · a = 0 and
W = 1 (purple), ∆k · a = π/10 and W = 1 (red), and
∆k ·a = 9π/10 and W = 2 (yellow). (b) Two-mode waveguide
with P/Γ = 0.9, ∆k · a = π/2. Different propagation lengths
are considered: lκ/a = 3 and W = 1 (purple), lκ/a = 8
and W = 2 (red), and lκ/a = 12 and W = 2 (yellow). (c)
Three-mode waveguide with (k0a, k1a, k2a) = (0, π/2,−π/3),
lκ/a = 3, for different incoherent pump rates P/Γ = 0 and
W = 0 (purple) and P/Γ = 0.9 and W = 3 (yellow). In all
cases, the coupling to every mode is equal i.e. Γℓ = Γ/nmodes.

W = 2. However, when the range is short enough,
i.e., lκ/a = 3 (purple line), one of the circles shrinks
to the point where it does not enclose the origin
any more, and the phase changes from W = 2 to
W = 1.

• Incoherent pumping. Finally, in Fig. 3(c) we con-
sider the effect of the incoherent pumping rate P/Γ

for a three-mode situation with (k0a, k1a, k2a) =
(0, π/2,−π/3), lκ/a = 3. We observe that if P = 0
(purple line) even though the three-mode waveg-
uide induces a three-loop structure in the curve, it
is not able encircle the origin, such that W = 0.
However, choosing P/Γ = 0.9 (yellow line) the
loops are displaced to a position where all of them
enclose the origin, and thus W = 3.

After having understood the critical role of the differ-
ent terms in the movement and generation of the winding
loops, in Fig. 4(a,b,c) we plot the complete phase dia-
gram resulting from this movement as a function of the
propagation length, lκ, in the horizontal axis, and the
incoherent pumping rate P for three different situations
with nmodes = 1, 2, 3, respectively. There, we see very
clearly how the number of modes sets an upper bound
to the potential winding number W that can be found
in the system, which we formally prove in Appendix C.
Remarkably, in all the situations we analyze, we predict
the emergence of all the different topological phases avail-
able by choosing an appropriate combination of lκ and
P . Besides, we also study the stability of the model by
analyzing when the imaginary part of the eigenvalues of
H is positive, and thus become unstable. We indicate the
unstable regions with a striped shading in the phase dia-
gram, demonstrating that one can find stable, topological
phases for all the possible winding numbers.

In Figs. 4(d-f) we do a similar analysis but now set-
ting P = 0 and studying the dependence in the vertical
axis on the parametric driving amplitude gs. Using the
general expression of the winding number W of Eq. (19)
we find that with this driving there are only non-trivial,
stable phases with W = 1 irrespective of the number of
modes. Despite the absence of multi-mode amplification
in this scenario, the generation of the stable topologi-
cal phase W = 1 with local parametric driving is also a
consequence of the non-reciprocal, long-range hoppings
Jij ,Γi,j , since similar phases have only been predicted so
far with cross-Kerr couplings [67, 68].

C. Multi-mode, topological amplification:
steady-state

After studying formally the phase diagram through the
calculation of the winding number W in the bulk and
finding phases with W > 1, now we study the physical
consequences of such phases in finite systems, i.e., with
open boundary-conditions. In particular, in this section
we focus on the steady-state features, such as its spatial
shape and momentum distribution.

Due to the bulk-boundary correspondence, when W ̸=
0 we expect two consequences:

• First, the appearance of several singular values sp of
the H matrix whose magnitude is upper bounded
by a factor, that we label ∆OBC, and which de-
creases exponentially with system size, i.e., sp <
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Figure 4. Driven-dissipative topological phase diagrams. Figures represent the winding number W characterizing steady-
state amplification for different propagation lengths lκ, by adding either an incoherent pump (a, b, c) or a local parametric drive
with detuning ∆/Γ = 1 (d, e, f). Shaded areas indicate dynamically unstable regions. Each column represent the phase diagram
with an associated number of modes nmodes of the chiral waveguide. We are considering a waveguide with (a, d) single-mode
with lκ/a = (b, e) two-mode with (k0a, k1a) = (π/2, π/3) (c, f) three-mode waveguide with (k0a, k1a, k2a) = (π/2, π/3, π/8).
In all cases, the decay rate onto each mode is equal i.e. Γℓ = Γ/nmodes, and we define Γ as the total decay rate Γ =

∑
ℓ Γℓ

∆OBC ∝ e−N . We will use the calligraphic letter
NE to denote the set of these singular values.

• Second, that such singular values sp are separated
from the bulk ones, sn /∈ NE , by a size-independent
gap, that we label as ∆PBC, i.e., sn /∈ NE ≥ ∆PBC

(see Appendix F for details).

From the combination of both features and the steady-
state decomposition that we write in Eq. (14), it is ex-
pected that the steady-state properties of the system are
dominated by the ”boundary” edge channels sp ∈ NE

since their contribution to the steady-state is weighted
by s−1

p ∝ eN :

⟨bj⟩ss ≈
∑
i

∑
sp∈NE

Vjℓ
1

sp
U⋆
iℓΩi . (24)

To check to which point these expectations are con-
firmed, we solve numerically the steady-state of the pho-
tonic lattice for a finite system and study two relevant
magnitudes that provide information about the steady
state features:

• One is the two-point Green’s function defined by:

Gij(ω) =

(
1

iω − iH

)
ij

, (25)

that, at ω = 0 is directly related with the steady-
state response of the system at a site i to a coherent
drive at site j in the absence of parametric driving
i.e. gs = 0 (see Appendix E for details).

• The other is the k-dependence structure of the
steady-state coherences, i.e., ⟨bk⟩ss, obtained by
Fourier transforming Eq. (14). When W ̸= 0, it is
expected from Eq. (24), that such magnitude fea-
tures a multi-peak structure that can be used as
the smoking gun of multi-mode amplification, see
Appendix G.

In Fig. 5, we plot these two magnitudes in the left
column, together with the eigenvalue structure λn of H,
of four illustrative situations with N = 50 sites appearing
with the non-reciprocal multi-mode couplings of Eq. (5):

• In Figs. 5(a-b), we consider a situation with non-
reciprocal couplings, but with a trivial phase W =
0. As expected, the eigenvalue structure, see panel
(b), features a gap with no zero-energy eigenvalues.
The two-point Green’s function still features non-
reciprocity, since Gij(ω = 0) ̸= 0 only for j > i.
However, the signal is not amplified and it rather
decays as |i− j| increases.

• In Figs. 5(c-d), we study a situation in which
W = 1, and thus the eigenvalue structure of H fea-
tures a pair of zero-energy states ±sp, see Fig. 5(d).
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Figure 5. Topological multi-mode amplification. Am-
plification scenarios for W = 0 (a, b), W = 1 (c, d) W = 2,
and (f, g) W = 2 in the particular case where ∆k · a = π (g,
h). (a, c, e, g) Absolute values of the spatial Green’s function
|Gij(ω = 0)| for N = 50 bosonic modes. In the topologically
non-trivial cases (c, e, g) we observe amplification, and an
inset is added showing the spatial distribution of the steady
state coherences ⟨br⟩ss when the system is coherently driven
in the rightmost site with amplitude Ωi = Γδi,N . (b, d, f,
g) Eigenvalues λn of the doubled Hamiltonian H(ω = 0).
In (f) we identify a gap in the bulk singular values ∆PBC

and see multiple eigenvalues within the gap, with maximum
value ∆OBC. We are considering a waveguide with (a, b)
a single-mode with lκ = /a = 10 and no driving, (c, d)
single-mode with lκ = /a = 103 and P/Γ = 0.2, (e, f) two
modes with (k0a, k1a) = (0, π/4), lκ/a = 103 and P/Γ = 0.2,
and (g, h) two modes with same parameters as (c, d), but
(k0a, k1a) = (0, π). The decay onto each mode is equal
Γℓ = Γ/nmodes.

Consequently, the two-point Green’s function is not
only non-reciprocal, like in the previous case, but it
also tends to exponentially accumulate at the end

of lattice, a signature of the exponential amplifica-
tion. The k-dependence of the steady-state coher-
ences in this case also features a single peak, see
inset in Fig. 5(c), as we expect from Eq. (24).

• In Figs. 5(e-f), we consider a situation withW = 2.
There, we observe in the eigenvalue structure that
we obtain four different eigenvalues separated from
the bulk modes. However, not all the eigenval-
ues are exponentially suppressed with the system
size with the same scaling, and thus for a given
system size, there is an energy difference between
them bound by ∆OBC. This has important implica-
tions in the steady-state behaviour since the small-
est eigenvalue eventually dominates. This makes
that eventually the two-point Green’s function and
the steady-state behaviour, see Fig. 5(e), shows vir-
tually no difference with respect to the single-mode
scenario of Fig. 5(c) for this small size limit.

• The multi-mode behaviour only manifests clearly
in the steady-state when the zero-energy eigenval-
ues are truly degenerate. This can occur either in
the N → ∞ limit or because of some emergent
symmetry. The latter case is what we consider in
Figs. 5(g-h) for a situation with W = 2 appearing
for the special case ∆k · a = π. In that case, we in-
deed see in Fig. 5(h) that there are four eigenvalues
λp that are strictly equal, and consequently a two-
peak structure appears in the k-coherences ⟨bk⟩ss.
This is a consequence of the particular structure of
the couplings in this regime which we describe in
Section II in which Jij ≡ 0 and Γij is zero for the
nearest-neighbouring sites. This leads to the os-
cillating structure appearing in the zero-frequency
Green’s function |Gij(ω = 0)| in which only the
even sites are populated. More formally, one can
say that such coupling structure leads to an ex-
change Z2-symmetry U with the doubled Hamilto-
nian such that [U,H] = 0. Hence, for every eigen-
state |ψ⟩ of H, U |ψ⟩ is another eigenstate with the
same energy. This means that the winding num-
ber is even W ∈ 2Z, and the lowest singular values
come in pairs.

D. Multi-mode, topological amplification:
dynamics

From the previous section, we conclude that the topo-
logical, multi-mode behaviour manifests in qualitatively
different steady-state observables only under certain cir-
cumstances due to the different scaling of the zero-energy
eigenstates with system size, see Fig. 5(f). However, we
will see in this section that precisely due to these different
scalings, the transient behaviour features a non-trivial re-
sponse, phenomenon that has been recently predicted in
the general context of the theory of quadratic bosonic
Lindbladians [80].
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Figure 6. Topological dynamical metastability. (a, b,
c) Evolution of the normalized expected values ⟨bk(t)⟩ as a
function of time, for three situations with (a) W = 1, (b)
W = 2 and (c) W = 3 in the presence of a constant co-
herent drive in the rightmost local mode like in Fig. 5. The
initial state correspond is uniformly distributed in real space
⟨br(t = 0)⟩ = ⟨br′(t = 0)⟩ for all r, r′. In all cases, we ob-
serve an evolution to single-peaked distribution. However,
at short times we observe a multi-peaked distribution of ⟨bk⟩
for short times. (d, e) Dynamics of projections defined as
Eq. (28), for (d) b(t = 0) = vm ̸∈ M, i.e. sm ̸∈ NE , and (e)
b(t = 0) = (1/

√
2)vN + (1/2)vN−1 + (1/2)vN−2 ∈ M i.e. a

linear combination of the three topological singular vectors, as
NE = {sN , sN−1, sN−2}. We distinguish the evolution of the
projections onto topological singular vectors that span M (in
orange) and onto the rest (in gray). (f) Evolution of the total
number of photons in the lattice Nph(t) in a topological phase
for different system sizes N . In all cases, expected values of
the field operators are amplified during a time that scales
linearly on N , and follows stabilization at the steady state.
Insets depict the bosonic modes coherences b(t), from an ini-
tial homogeneous distribution to an exponential localization
at the amplifying edge. Simulation parameters: P/Γ = 0.7,
lκ/a = 103 and (a) single-mode and W = 1 (b) two-mode
with (k0a, k1a) = (0, π/2) and W = 2, (c-f) three-mode with
(k0a, k1a, k2a) = (0, π/2, π/3) and W = 3.

To start illustrating it, we first study the time evo-
lution of the k-dependent coherences ⟨bk(t)⟩ starting

from an initially spatially homogeneous configuration,
i.e., ⟨br(t = 0)⟩ = 1/N for all r. This can be done using
the formal solution of Eq. (12) which reads:

b(t) = e−iHt (b0 − bss) + bss . (26)

In Fig. 6(a-c), we plot the evolution of ⟨bk(t)⟩ in a fi-
nite system with N = 100 for three different parameter
regimes resulting in driven-dissipative topological phases
withW = 1, 2, and 3, respectively. In all the cases, the k-
dependent coherences end up stabilizing around a single
peak structure, as expected from the behaviour described
in Fig. 5(e). However, in the transient regime we do ob-
serve significant differences for the W = 2 and W = 3
situations with the appearance of additional peaks which
decay much slower (in a timescale inversely proportional
to ∆OBC) than bulk modes, which decay in a time scale
inversely proportional to ∆PBC. Such dynamical multi-
mode metastability is related to the appearance of addi-
tional topological amplification channels, which is why we
label this phenomenon as topological dynamical multi-
mode metastability [81].

To formalize this connection, we can notice that in
the Taylor expansion appearing in the solution of the
coherence dynamics of Eq. (26):

e−iHtb =

(
1− itUSV † − t2

2
USV †USV † + ...

)
b ,

(27)

the expansion contains the identity 1 and a series of terms
all ending in V †. Then, e−iHtb is equal to b plus a term
that is proportional to V †b. Let us define the orthonor-
mal basis spanned by the vectors vn formed by the nth

column of V , i.e. (vn)i = Vin. The vectors vn such
that sn ∈ NE will satisfy V †vn = snvn ≤ ∆OBCvn, and
therefore form a metastable subspace M, since e−iHtvn

will be equal to vn plus an exponentially suppressed
term. On the contrary, vectors vn with sn ̸∈ NE fulfill
that V †vn ≥ ∆PBCvn and they evolve on a time scale
of the order of 1/∆PBC. Since ∆PBC is size-independent
and ∆OBC is exponentially suppressed with N , it is ex-
pected that vectors in M evolve significantly slower than
the ones outside M.
A way to evidence the metastable subspace is to keep

track of the projections of the evolving vector of co-
herences b with the orthonormal basis defined by the
columns of V

pn(t) = |⟨b(t)|vn⟩|2 , (28)

which, due to the non-Hermitian nature of the evolution,
are not necessarily upper bound by 1. In Fig. 6(d-e), we
plot the time evolution of the projections for a parame-
ter regime situation with W = 3 distinguishing the con-
tribution of the topological singular vectors (in orange)
and bulk ones (in gray), respectively. In particular, in
Fig. 6(d) we consider a situation where the initial state
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belongs to the metastable sector, i.e., b(t = 0) ∈ M,
showing how the metastable states projections are not al-
tered for a time scale of the order of 1/∆PBC. In Fig. 6(e)
we start with the opposite situation, that is, with an ini-
tial bulk vector state b(t = 0) = vm /∈ M, whose pro-
jection pm(t) evolves much faster, since the associated
singular value sm is larger than the topological ones in
NE .
Up to now, we have focused on the qualitative dif-

ferences of the driven-dissipative topological phases but
have not discussed the dynamical amplification be-
haviour itself. To illustrate the amplification dynamics,
we calculate the time evolution of the total number of
photons in the lattice, i.e., Nph(t) =

∑
r |⟨br(t)⟩|2, start-

ing by an initially homogeneous situation, i.e., ⟨br(t =
0)⟩ = 1/N , with N being the number of lattice sites.
In Fig. 6(f), we plot Nph(t) for different system sizes
N = 5, 10 and 20 in the different colors depicted in the
legend. All of them share a similar behaviour, that is,
the photon population increases until it stabilizes to its
steady-state value. The duration of this transient dy-
namics scales linearly on N , because it is directly related
to the time required to the initial signal to travel along
the chain and accumulate at the amplifying edge, as rep-
resented in the insets of Fig. 6(f). Another signature of
the topological amplification that is clear from Fig. 6(f) is
that the photon number in the steady-state Nph(t→ ∞)
increases exponentially with the system size (note the
logarithmic scale of the figure). Let us finally remark
that in real experimental situations there will always be
other mechanisms, e.g., interactions, that will renormal-
ize such exponential amplification. In fact, this is an
interesting research direction to consider after this work.

IV. POTENTIAL IMPLEMENTATION

The key ingredient of the phenomena that we have
explored along this manuscript is the engineering of
the non-reciprocal, multi-mode, long-range hoppings of
Eq. (5). As we explain in Section II, these couplings can
emerge by either:

• Coupling the cavity modes to a one-dimensional
channel hosting chiral, multiple waveguide modes,
i.e., propagating only into one direction.

• Assuming the one-dimensional channels host mul-
tiple bidirectional waveguide modes, but that the
cavities only couple to the ones propagating in
one direction, e.g., using optical spin-orbit cou-
pling [14, 75].

In this section, we discuss a potential physical imple-
mentation based on the first idea. The idea consists
in coupling the bi cavity modes to the boundary of a
two-dimensional Chern insulator hosting multiple-edge
modes [72–74], see Figs. 7(a-b) for an schematic represen-
tation of the setup. In particular, this can be achieved in

a two-dimensional cavity array with complex tunnelings
emulating an artificial magnetic field, i.e., the so-called
Harper-Hofstadter lattice model [82]. This model is de-
scribed by a Hamiltonian:

H = −J
∑
x,y

a†x+1,yax,y + ei2πϕxa†x,y+1ax,y +H.c. . (29)

with ax,y being the bosonic operator associated to the
cavity at the (x, y) position. As shown in Ref. [72],
if ϕ = 1/q with q ∈ N, the spectrum of the Harper-
Hofstadter Hamiltonian with open boundary conditions
in one spatial direction (X) and periodic in the other (Y)
features a series of flat bands, and n resonant propagat-
ing edge modes in the nth band-gap. We introduce a
color scale through a parameter η, bounded between −1
and 1, which defines the edge localization of the eigen-
states in the X direction. This localization is directly
connected to chirality: edge modes localized at η = −1
are right-moving, while those at η = 1 are left-moving.
We see that if we place a cavity array with frequencies
ωc within the second band-gap at η = −1 localization, as
indicated with the red line of Fig. 7(c), they will be reso-
nant to two chiral modes with energy dispersion ωℓ(k) as
depicted in Fig. 7(d). Thus, assuming that the coupling
is weak enough, the multiple edge channels will result in
the Γij , Jij derived in Section II.

There are several platforms in which such Harper-
Hofstadter bosonic lattice has been experimentally re-
alized. One of the most recent ones is coupled microwave
resonators [51], in which by coupling additional res-
onators our model can be naturally implemented. Other
potential platform are bosonic ultra-cold atoms in opti-
cal lattices, in which the Harper-Hofstadter Hamiltonian
has already been engineered [83]. By harnessing the re-
cent advances in state-dependent optical lattices [84–87],
one can simulate the coupling to additional modes and
emulate our models.

V. CONCLUSIONS & OUTLOOK

Summing up, in this work we unveil a different class
of non-reciprocal, long-range couplings emerging from
the chiral exchange of excitations via a common, multi-
mode, one dimensional bath. Despite their perfect non-
reciprocity, such couplings also depend critically of their
separation, something not possible with standard chiral
single-mode channels. By considering different excitation
mechanisms, we demonstrate that these couplings stabi-
lize different topological amplification phases with mul-
tiple channels, and characterize their steady-state and
dynamical features, finding a metastable regime linked
to existence the multiple amplifying channels. A natural
outlook of this work is to consider some type of interac-
tion in the photonic lattice and study how they affect the
steady-state and dynamical behaviour of these lattices.



11

Figure 7. Scheme of a potential experimental im-
plementation of the non-reciprocal couplings. (a)
Red parabolas with harmonic levels depict the array of res-
onators representing the local bosonic modes br. These res-
onators are coupled to the edge of a lattice of supercon-
ducting resonators, depicted as purple globes, representing
the Harper-Hofstadter lattice. The dotted circle encoloses
a lattice plaquette, coloured in yellow. A photon circulat-
ing such plaquette will catch a global Aharonov-Bohm-like
phase eiϕ. (b) After adiabatic elimination of the lattice pho-
tons, that are topological edge photons at the frequency of
the resonators, the local bosonic modes become effectively
coupled following the effective Hamiltonian in Eq. (4). (c)
Lowest part of the spectrum of a Harper-Hofstadter lattice
ϕ = 1/9 with periodic boundary conditions along Y and
open along X. Each eigenenergy is plotted with a color index
η = −1 +

∑
x(2x/L− 1)|Ψ(x)|2, denoting the localization at

each X-edge, which is directly related to the chirality of the
modes. (d) In the Markovian regime, the only relevant bath
modes are those close to resonance to ω0, which energy can
be approximated e.g. by a linearization ωℓ(k) ∼ cℓ(k − kℓ).
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Appendix A: Derivation of the chiral multi-mode
master equation

Along this work, we consider a set of local cavity modes
as an open quantum system coupled to a waveguide envi-
ronment or bath. In the conditions of the Born-Markov
approximation, the adiabatic elimination of the waveg-
uide photons yields a master equation description of the
system dynamics described by Eq. (3) of the main text,
where the effective Hamiltonian describing the coupling
between cavities reads:

Heff =
∑
ij

(
Jij − i

Γij

2

)
b†i bj . (A1)

Here, we will show that, for a chiral multi-mode
waveguide bath, the effective coherent (Jij) and incoher-
ent (Γij) couplings between the cavity modes are given
by Eq. (5) of the main text.

To show this, we will compute the collective self-energy
Σij(z) of the cavity modes, a complex function that ac-
counts for the interaction with its environment [88]. The
couplings Jij and Γij are determined by the real and
imaginary parts of this function evaluated at the fre-
quency of the cavity modes ωc:

Jij − i
Γij

2
= Σij(ωc + i0+) , (A2)

where the i0+ sets an integration prescription to ensure
convergence. We can write the interaction Hamiltonian
between the cavity modes and the multi-mode waveguide
as Hint =

∑
i biB

†
ri + H.c., where Bri is an collective

waveguide operator defined as:

B†
ri =

1

2π

∑
ℓ

∫
dk gke

ikriA†
ℓ,k , (A3)

Using these definitions, the self-energy of the bosonic
modes can be shown to be given by [89]:

Σij(ωc+i0
+) =

∫ ∞

0

dτ⟨B†
ri(τ)Brj (0)⟩ei(ωc+i0+)τ . (A4)

Assuming: (i) the bath eigenvalues are of the form

ψℓ
k(r) = (1/

√
N)eikr, labeled by a mode index ℓ and a

momentum k; (ii) HBψ
ℓ
k(r) = ωℓ(k)ψk(r); (iii) and that

the waveguide modes are in the vacuum state, one arrives
to

Σij(ωc + i0+) =
1

2π

∑
ℓ

∫
dk

|gk|2 eik(ri−rj)

ωc + i0+ − ωℓ(k)
. (A5)

To continue with the calculation, we need to impose
the chirality of the transfer, that can either occur either
because ωℓ(k) only exists for k ≶ 0, or because only right-
or left-moving photons are coupled to the cavity modes
i.e. |gk|2 ∝ θ(±k), where θ is the Heaviside step function.
In either case, one can account for both behaviours by
restricting the k-integral to either positive or negative
momenta. For concreteness, we will do it for positive
one:

Σij(ωc+i0
+) =

1

2π

∑
ℓ

∫ ∞

0

dk
|gk|2 eik(ri−rj)

ωc + i0+ − ωℓ(k)
. (A6)

where we have also extended the range of integration to
infinity. The latter is a good approximation in the Marko-
vian regime where the shape of the integral will be dom-
inated by the momenta resonant to ωc, that we denote
by kℓ, i.e., ωℓ(kℓ) = ωc. Now, using that assumption and
applying Sokhotski-Plemelj theorem, we arrive to

Σij(ωc + i0+) =
∑
ℓ

1

2π

∫ ∞

0

dk |gk|2 eik(ri−rj)

(
−iπδ(ωc − ωℓ(k)) + P

1

ωc − ωℓ(k)

)
= (A7)

≈
∑
ℓ

−i |gkℓ
|2

2vℓ

(
eikℓ(ri−rj) +

1

2π
P

∫ ∞

0

dk
eik(ri−rj)

k − kℓ

)
. (A8)

where we introduce the notation vℓ(k) ≡ ∂kωℓ(k), for the
group velocity, P for the Cauchy principal value, and the
only implicit assumption is that ωc ∈ ωℓ(k). To continue
with the calculation, we change the variables k − kℓ = q
and use the identity:

P

∫ ∞

−∞
dx

eiax

x
= iπsign(a) , (A9)

to arrive to:

Σij(ωc+i0
+) =

∑
ℓ

−i
g2kℓ

2vℓ
eikℓ(ri−rj)) (1 + sign(ri − rj)) .

(A10)
Now, by introducing the Markovian decay rate into the
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ℓth waveguide mode Γℓ ≡ g2kℓ
/vℓ, we finally get

Σij(ωc + i0+) =
∑
ℓ

−iΓℓ

2
eikℓ(ri−rj)) (1 + sign(ri − rj)) .

(A11)
The structure of the self-energy offers a clear intuition

on the chiral character of the modes: being proportional
to 1 + sign(ri − rj). Thus, it vanishes if ri < rj but does
not if ri ≥ rj . This expression holds in the ideal situation
where photon losses are negligible.

To generalize this self-energy to the lossy case, we in-
troduce the propagation length lκ, an average distance
photons travel before being dissipated to the environ-
ment, that provides an overall exponential decay as

Σij(ωc + i0+) =
∑
ℓ

−iΓℓ

2
eikℓ(ri−rj))−|ri−rj |/lκ

× (1 + sign(ri − rj)) . (A12)

Appendix B: On the connection between eigenvalues
of H and singular values of H

As shown in Ref. [59, 64], the eigenvalues of the dou-
bled Hamiltonian H defined in Eq. (15) come in pairs
of positive and negative singular values of the dynami-
cal matrix H i.e. λn = ±sn. Due to the importance of
this result in our work, we revisit here its proof. Let us
start by noticing that the doubled Hamiltonian H can
be written in terms of the singular value decomposition
H = USV as:

H =

(
0 H

H† 0

)
=

(
0 USV †

V SU† 0

)
. (B1)

Using that U and V are unitary matrices i.e. V †V =
U†U = 1, it is straight-forward to verify that H can be

diagonalized as

H = A†
(
S 0
0 −S

)
A (B2)

where the diagonal basis transformation A is given by

A =

(
U U
V −V

)
. (B3)

From the diagonal matrix in Eq. (B2), it follows that the
eigenvalues of H come in pairs consisting in the singular
values of H with the positive and negative sign.

Appendix C: On the winding number of the doubled
Hamiltonian

The driven-dissipative topological phases we explore in
this work are characterized by the winding number of the
doubled Hamiltonian defined by:

W =
1

4πi

∫
BZ

dk Tr
(
τzH(k)−1∂kH(k)

)
, (C1)

where τz is a matrix representation of the chiral symme-
try and assumed a doubling of the degrees of freedom. In
this section, we derive a simplified expression for W in
the absence of parametric driving gs = 0. In that case,
the doubled Hamiltonian can be simply written as

H(k) =

(
0 h(k)

h⋆(k) 0

)
(C2)

If we now plug the doubled Hamiltonian in Eq. (19), we
get

W =
1

4πi

∫
BZ

dk Tr

[
τz

(
0 h⋆(k)−1

h(k)−1 0

)(
0 ∂kh(k)

∂kh
⋆(k) 0

)]
=

1

4πi

∫
BZ

dk Tr

[
τz

(
∂k log h

⋆(k) 0
0 ∂k log h(k)

)]
. (C3)

The τz term is a matrix representation of the chiral sym-
metry of the doubled Hamiltonian i.e. τzHτz = −H. We

will take τz =

(
−1 0
0 1

)
= −σz. Noting that only the

imaginary part of the integral is non-zero, and having

that Im(log x⋆) = −Im(log x), we find that

W =
1

4πi

∫
BZ

dk 2∂k log h(k)

=
1

2πi

∫
BZ

dk ∂k log h(k) , (C4)

which is the simplified expression in Eq. (20).

Further, we can show that, still in the gs = 0 regime,
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the winding number is upper bounded by the number
of waveguide modes. To prove this, let us perform the

change of variable y = eik in the expression for the wind-
ing number, replacing h(k) by the non-Hermitian spec-
trum of our chiral multi-mode waveguide (see Eq. (23)):

W =
1

2πi

∫
BZ

dk ∂k log

(
i
P

2
− i
∑
ℓ

[
Γℓ

2
+

Γℓe
i(k+kℓ)−1/lκ

1− ei(k+kℓ)−1/lκ

])

=− 1

2π

∫
S1

dy

y
∂y log

(
i
P

2
− i
∑
ℓ

[
Γℓ

2
+

Γℓye
ikℓ−1/lκ

1− yeikℓ−1/lκ

])
. (C5)

Now, let F (y) be the argument of the logarithm. The
winding number will be equal to the number of solutions
of F (y) = 0 that lie within the unit circle of the complex
plane, S1. It can be directly shown than the equation can
be recast into a polynomial equation of degree equal to
nmodes, and therefore the number of its solution within S1

is upper bounded by the total number of solutions in the
complex plane, which is nmodes. Therefore, we conclude
that W ≤ nmodes.

Appendix D: Diagonalization of the non-Hermitian
Hamiltonian

Here, we present the diagonalization of the dynamical
matrix H, presented in Eq. (23) of the main text. Let
us start by considering a general traslationally invariant
Hamiltonian in a one-dimensional lattice, which can be
written as follows

H =
∑
r

∑
n∈Λ

Cn b
†
rbr+n . (D1)

Here, r is a coordinate summed over the whole lattice,
while the sum in n is performed over a set neighbouring
sites Λ of r that are coupled to br. This Hamiltonian
is manifestly invariant under translations, since the cou-
pling Cn depends only in n and not in r, and can be
readily diagonalized as

h(k) =
∑
n∈Λ

Cne
−ikna , (D2)

where a ≡ |rj+1− rj |. Introducing the expression for the
couplings Cn corresponding to our effective Hamiltonian
in Eq. (4) of the main text, we get

h(k) =
P

2
− i
∑
n

∑
ℓ

Γℓ

2
e−iknaeikℓne−|n|a/lκ (1 + sign(n))

(D3)
Now, due to the 1 + sign(n) factor, only terms with

n ≥ 0 will be different from zero, which is directly linked
to the fact that Λ = N in our problem. Then, we can

rewrite h(k) as

h(k) =
P − Γ

2
− i

∞∑
n=1

∑
ℓ

Γℓe
−iknaeikℓnae−na/lκ , (D4)

where Γ ≡
∑

ℓ Γℓ. Now, we notice that the sum in n is
a geometric series, that is convergent as long as lκ > 0
i.e. if the couplings are finite-range. Performing the sum
yields

h(k) = i
P − Γ

2
− i
∑
ℓ

Γℓe
i(kℓ−k)a−a/lκ

1− ei(kℓ−k)a−a/lκ
, (D5)

which is the Eq. (23) of the main text.

Appendix E: On the Green’s function

In the main text, we claim that the Green’s function
defined in Eq. (25) is connected to the linear response
of the system at a site i to a coherent driving in site
j. Here, we will justify this affirmation in the absence
of parametric driving i.e. gs = 0. Let us consider the
equation of motion for the local cavity modes coherences
in this regime:

db(t)

dt
= −iHb(t) + iΩ(t) . (E1)

This is a linear first-order differential equation, and as
such can be solved by Fourier transform. In terms of the
Fourier transform variables, defined as

b(ω) =
1

2π

∫ ∞

−∞
dt e−iωtb(t) (E2)

Ω(ω) =
1

2π

∫ ∞

−∞
dt e−iωtΩ(t) , (E3)

the equation of motion can be rewritten as

−iωb(ω) = −iHb(ω) + iΩ(ω) . (E4)

We then conclude that its solution is given by

b(ω) = −
(

1

iω − iH

)
Ω(ω) ≡ −G(ω)Ω(ω) . (E5)
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Therefore, the response at a site i of the system to a
driving at a site j will be determined by Gij(ω), as
claimed. In the steady-state, this response will be given
by Gij(ω = 0), as stated in Eq. (13) of the main text.

Appendix F: Scaling of ∆PBC and ∆OBC with the
system size

In the main text, we claimed that ∆PBC is a size-
independent magnitude, while ∆OBC decreases exponen-
tially as the system size N increases. This behaviour is
expected from the equivalence between the eigenvalues
of the doubled Hamiltonian H and the singular values of
the dynamical matrix H stated in Eq. (16): since ∆OBC

can be seen as the energy of a topological edge state, it
is expected to decay exponentially with the system size
N [90], while ∆PBC determines the band-gap of the dou-
bled Hamiltonian H, that is size-independent. In this
Appendix, we present numerical simulations that justify
this claim. In Fig. 8 we show the values of these mag-
nitudes for three values of N , and observe the decay of
∆OBC as N increases, while the value of ∆PBC remains
unaltered.

Figure 8. Scaling of the energy scales ∆PBC (in blue)
and ∆OBC (in orange), plotted in units of Γ. Simulation
parameters:(k0a, k1a, k2a) = (0, π/2, π/3), P/Γ = 0.7 and
lκ/a = 103, with no parametric driving i.e. gs = 0.

Appendix G: On the Fourier transform of a
multi-exponential function

In Sec. III C of the main text, we claim that ⟨bk⟩,
the discrete Fourier transform of the vector of cavity

mode coherences, is an insightful probe of the multi-mode
structure of the steady state. Here, we will show why. As
we discussed in the main text, the spatial distribution of
the steady-state coherences are domintated by topologi-
cal zero singular values NE :

⟨bj⟩ss ≈
∑
i

∑
sp∈NE

Vjℓ
1

sp
U⋆
iℓΩi . (G1)

Following the notation we use in Sec. IIID, letting vn

the vector obtained by taking the nth column of V , this
equation tells us that bss is a linear combination of the
vectors vp associated to sp ∈ NE . These vectors are
exponentially localized at the amplifying edge. There-
fore, bss is a sum of exponential contributions, each of
them coming from a waveguide mode. Let us now show
that the discrete Fourier transform of a multi-exponential
function is an useful way of retrieving the number of con-
tributing terms. Let f : {0, 1, ..., N − 1} → C be a com-
plex function depending on a non-negative integer index
j. We say that f(j) is multi-exponential if it is of the
form

f(j) =
∑
ℓ

cℓe
(iφℓ−1/λℓ)j (G2)

The discrete Fourier transform of f reads

f(k) =
1√
N

∑
r

e−ikrf(r) ≈ 1√
N

∑
ℓ

cℓ
1− ei(φℓ−k)−1/λℓ

,

(G3)
where we assumed that Na ≫ λℓ. The function |f(k)|
consists of a series of peaks, indexed by ℓ, that reach their
respective maximum at k = φℓ and a width given by λℓ.

Appendix H: Code

The code we developed for the numerical simulations
and figures presented in this work can be found in
Ref. [91].
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