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ABSTRACT Model-Driven Engineering (MDE) is a technique that aims to boost productivity in software
development and ensure the safety of critical systems. Central to MDE is the refinement of high-level
requirement models into executable code. Given that requirement models form the foundation of the entire
development process, ensuring their correctness is crucial. RM2PT is a widely used MDE platform that
employs the REModel language for requirement modeling. REModel contains contract sections and other
sections including a UML sequence diagram. This paper contributes a coroutine-based type system that
represents pre- and post-conditions in the contract sections in a requirement model as the receiving and
yielding parts of coroutines, respectively. The type system is capable of composing coroutine types, so that
users can view functions as a whole system and check their collective behavior. By doing so, our type system
ensures that the contracts defined in it are executed as outlined in the accompanied sequence diagram. We
assessed our approach using four case studies provided by RM2PT, validating the accuracy of the models.

INDEX TERMS coroutine, model-driven engineering, static analysis, type system.

I. INTRODUCTION

IN the realm of software development, Model-Driven En-
gineering (MDE) has emerged as a popular paradigm for

safety critical systems [1], elevating models to the forefront
of the process. MDE enables developers to manage the com-
plexity of software by working at a higher level of abstrac-
tion and offers the promise of automatic code generation.
At the heart of this approach is the refinement of high-
level requirement models into design models, and eventually
down to executable code—without manual intervention [2].
Such an emphasis on requirement models underscores their
paramount importance, for a misstep at this initial model
can spell errors for the entire project. Thus, careful require-
ments modeling, paired with early validation and verification,
paves the way for clarity and confidence in the envisioned
systems [3], [4]. One form of requirements validation is to
ensure the requirements are consistent [5]. We firmly believe
that by type checking a requirement model, a high level of
consistency can be achieved.

Yang et al. [6] proposed tool RM2PT, which is a powerful
and extensible platform that can generate executable pro-
totypes in the Model-View-Controller (MVC) pattern from
requirement models automatically. The requirement code
RM2PT reads is in REModel format. RM2PT can also vi-
sualize requirement code, and the MVC program it generates
has GUI for users to view states of the program and check

correctness of the model. Fig. 1 exhibits the user interface
of the tool. Users can right-click on a .remodel file, and
choose to generate a prototype. The editor on the right panel
is displaying the file cocome.remodel.
RM2PT is a promising project that inspires a number of

research projects. For example, Gu et al. [7] transforms the
output of RM2PT into smart contracts running on Hyper-
ledger Fabric. Bao et al. [8] generates comments for REModel
files, and Yang et al. [9] generates pre- and post-conditions
in REModel files from natural languages. Reyal et al. [10]
provides guidelines of the UI of the generated prototype.
The REModel language is modified from Object Con-

straint Language (OCL) [11]. OCL is mainly used for spec-
ifying the constraints of UML models including invariants,
pre- and post-conditions. REModel extends OCL in that a
REModel file can define a collection of contracts with such
constraints. Contracts will then be transformed to methods in
Java.
REModel includes other useful functional views for soft-

ware modeling [12]. For one thing, there is an Interaction
section specifying the order in which the contracts should be
called. This section is rendered as a UML sequence diagram
by RM2PT.
Although the RM2PT platform comes with a highlighting

service for REModel, the exact syntax of the language is not
disclosed, and there is no type checking on requirement code.
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FIGURE 1. In RM2PT, Java source code can be generated from a .remodel file through its context menu

If the output of one contract does not agree with the input
type of another contract, the requirement model is wrong and
cannot be used for further development. Hence, to reduce
errors in requirement code and make editing REModel files
easier, this paper aims to add type checking to REModel
files, ensuring pre- and post-conditions match the embedded
sequence diagram, and help generate integration test cases.
The interplay of pre- and post-conditions in Java methods
mirrors the receiving and yielding action of coroutines, and
coroutine is a generalization of function, capable of receiving
and yielding data more than once.

In this paper, we contribute a type system (the gray box
in Fig. 2) for requirement models in MDE. Our type sys-
tem creatively types contracts in a requirement model as
coroutines by using the Typer component in the figure. The
second contribution is rules for coroutine type composition,
i.e., the Composer. Our rules compose a set of coroutine types
into one type to model the collaborative behavior of these
coroutines, and permit users to view a set of coroutines as
a single coroutine or function. The input to our type system
is one REModel file, and the output is a composed type and
a yielding order, detailed in Fig. 2.

We firstly formalize the syntax of contracts in REModel
with ANTLR 4 [13] lexer and parser rules. Subsequently we
put forward typing rules from the REModel language so we
can infer coroutine types from the contracts (bags of pre-
conditions and post-conditions) defined therein. Lastly, we
use the composition rules to compose the inferred coroutine
types and check whether the contracts are compatible.

The remainder of this paper is organized as follows. For
starters, Section II presents composition rules that are invoked

in the compose step in Fig. 2. Then, Section III introduces the
syntax of contracts in .remodel files and lists the typing rules,
which are the parse step and the type step in the architecture
overview. Section IV demonstrates our coroutine type system,
and makes use of the composed type and the yielding order.
Discussion and limitation is in Section V. Related work is
reviewed in Section VI. Finally we conclude.

II. COROUTINE TYPE SYSTEM
This paper contributes a novel type system on the REModel
language that types contract blocks in this language as corou-
tine types, then the coroutine types are composed for veri-
fying the correctness of the requirement model. This section
here presents the rules for type composing because it is more
interesting. These rules can be hooked or listened, and one
application is to formulate a potential execution order. This
usage is to be discussed in Section IV-A. Then, Section III
formalizes the syntax of REModel and lists typing rules.
The syntax of our type expressions is defined in Fig. 3.

A type t can be a concrete type like Int or StringBuilder, a
sequence ⟨t1, t2⟩, a tuple (t1, t2), or a coroutine [t1; t2] where
t1 is named the receiving part and t2 the yielding part. The two
parts are a protocol to control when to execute a coroutine. A
coroutine type can take an optional predicate p. For instance,

l : [⟨x,BookCopy⟩; ⟨x,BookCopy,Reserve⟩] /x<:User

reads: ‘‘l is a coroutine which receives x and BookCopy, and
yields x, BookCopy, and Reserve, where x is a subclass of
User.’’
Int, String, and the like are regular types we are familiar

with, as seen in expressions like 1 : Int and foo : String. Then,
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REModel

Parser
Contract 2

Contract 1

Contract 3

...

Typer

Typer

Typer

Typer

Coroutine type 1

Coroutine type 2

Coroutine type 3

...

Composer

Composed type

Yielding order

<<subsystem>>

FIGURE 2. The architecture of the requirement model checking framework depicted in the UML component diagram

t ::= types T

| t/p constrained types

| ⟨t, t⟩ sequence types S

| (t, t) product types P

| [t; t] coroutine types R

| Int | String | · · · concrete types K

FIGURE 3. Abstract syntax for types in our coroutine type system

K along with S,P,R should be perceived as a meta-type akin
to the kind (∗) in Haskell [14], [15] or Set1 in Agda [16].

In abstract syntax, p stands for one product type, and its
(meta-)type is P, i.e., p : P. A coroutine type is presented by
θ, and its type is R, i.e., θ : R. A sequence type is presented
by Θ, and its type is S.
A sequence is flat, satisfying the associative law,

⟨⟨t1, t2⟩, t3⟩ = ⟨t1, ⟨t2, t3⟩⟩, where both sides can be simpli-
fied to ⟨t1, t2, t3⟩. A sequence of a single type t is called a list
of t , written as tn, where n is the length. A list of indefinite
length is denoted as t∗, while a list of zero length is denoted as
∅. A product functions as a tuple in programming languages.

Many languages have built-in support for product types.
Although product types can be seen as a concrete type from
the language, we baked in native support of tuples because
they can define priorities in composition. In another word,
types in a tuple are composed first. Constrained types make
the composition less sensitive to the activation order of corou-
tines. We will discuss the importance of constraints in depth
in Section IV-B.

A. COMPOSITION RULES
In this subsection, we introduce the compose function ◦ :
S → R that takes a sequence of types and returns a composed
coroutine type. The input sequence can contain coroutine

types and products of coroutines. Concrete types can only be
included in coroutine types R. The return type is R and we
do not further reduce it to K , so we know the data are com-
puted rather than from a static field. The compose function ◦
consists of rules running in a demand-driven strategy [17].
A coroutine with empty receiving part and empty yielding

part is regarded as useless and should be removed from the
argument of ◦. A sequence cannot contain ∅ either. Compo-
sition Rule CR1 lists the reduction regarding removing these
identity elements. e1 ⇒ e2 means an expression e1 evaluates
or reduces to another expression or value e2.

◦(⟨Θ1, [∅;∅] ,Θ2⟩) ⇒ ◦(⟨Θ1,Θ2⟩)
◦(⟨Θ1,∅∗,Θ2⟩) ⇒ ◦(⟨Θ1,Θ2⟩)
◦(⟨Θ1,∅,Θ2⟩) ⇒ ◦(⟨Θ1,Θ2⟩)

(CR1)

CR2 is particularly useful for establishing priorities for
coroutines, ensuring that high-priority coroutines—enclosed
in a tuple—are composed first. The reduction applies the
function s, which converts a product into a sequence.

◦⟨Θ1, p,Θ2⟩ ⇒ ◦⟨Θ1,◦(s(p)),Θ2⟩ (CR2)

In a coroutine, the receiving part must be fully satisfied be-
fore the yielding part runs. Interleaving receiving and yielding
is impossible. Hence, variables in the receiving part must be
bound for later usage in the yielding part. We require to run
the receiving part first in order to model the worst scenario
of a function which needs to receive data before starting to
yield. As a result, yielding to itself will happen no more.
The rest of composition rules need to access or manipulate

auxiliary data. Thus the symbol ⊢ is employed. Left to ⊢ is
the context containing Pending Type t and External Yields E .
Right to ⊢ is an expression which can be a type or a call to
the compose function. We sometimes use a wildcard item ·
to indicate an unreferenced item in rules. For example (·,E)
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h(k) = k (k ∈ K)

h([s; t]) = [s; t]

h(⟨s, t⟩) = h(s)

t(k) = ∅ (k ∈ K)

t([s; t]) = ∅
t(⟨s, t⟩) = ⟨t(s), t⟩

FIGURE 4. Definition of head h and tail t of a type

means at this point the pending type, which may or may not
be ∅, is not used in other parts of the rule.

(∅,E) ⊢ ◦([s; t]) ⇒ (∅,∅) ⊢ [s; ⟨E , t⟩] (CR3)

In CR3, we start with a context that contains an empty
Pending Type. To compose a single coroutine, the yielding
part t of the coroutine is prefixed with External Yield E ,
forming a new sequence ⟨E , t⟩. The reason for this ordering is
that E represents what other coroutines have already yielded.
This rule is a terminal step because on the right-hand side of
the⇒ symbol, we don’t have another call to ◦. The end result
is a single coroutine, matching the definition ◦ : S → R.

The receiving part and the yielding part can be a sequence.
Therefore, we define a head function and a tail function to
get the first element and rest elements of a type, shown in
Fig. 4. When the yielding part is a sequence, elements are
yielded one by one, and the yielded element becomes the
pending type. When the receiving part is a sequence, the head
of the sequence is the demand, driving the composition. For
all other types, the head is themselves and the tail is nothing.
To support first-class coroutines, the head of a coroutine type
is itself because we are not willing to break the structure. If
coroutine a yields coroutine b, we want to yield b as a whole,
rather than only yielding part of b.
With the head and tail functions, we are ready to detail

the rules with respect to the yield operation and the resume
operation.

1) Yielding
We use a function first to find the first coroutine θ in
a list Θ of coroutines that matches a condition p, written
as (θ,Θ1,Θ2) = first(Θ, λθ.p(θ)), where along with the
coroutine, first also returnsΘ1 all elements before θ and Θ2

all elements after θ. If first cannot find a matching element,
θ = Θ2 = ∅.

CR4 is triggered when there is no Pending Type and the
function first is able to find the a coroutine whose yielding
part is not ∅. Then, we transfer the head of its yielding part
into the context. In case a coroutine has exhausted its action
statements, its yielding part t(s) would be ∅ and it’s subject
to deletion by CR1.

Rather than yielding a concrete type, if the yielded type is a
coroutine, CR5 requires to transfer the yielded coroutine into
Θ, after where it is from.

CR6 is used when no coroutine has empty receiving part
and Pending Type is ∅, referred as a deadlock state. In
such cases, the composition result is E followed by all the
remaining coroutines from the original list. Θ is equal to Θ1

in this case.

2) Resuming
When Pending Type t is not ∅, the resume operation, CR7,
is triggered. We find the first coroutine θ that can receive t ,
and resume it. match(·, ·), defined in Fig. 5, checks if two
types canmatch and returns conditionsD. ConditionsD are in
the form of variable bindings as θ may contain variables. For
examplematch(Int5, Intn) = {n = 5}. If in no way can two
types match, ⊥ is returned. The absorbing element ⊥ joining
with any condition is⊥.match also handles constraint types
by satisfying the constraint p.
CR8 stipulates that if none of the coroutines in Θ can

process the Pending Type t , then t gets added to the end of
E .
CR9 outlines how a coroutine receives other coroutines.

Line 2 in CR9 finds the first coroutine whose head h(s) is
a pattern of coroutine, then Line 3 aims to match this pattern
with another coroutine θ′, returning conditions D. Then we
apply the condition to [t(s); u], and also remove the received
coroutine from the result by using the minus sign. This rule,
in combination with CR5, is essential for handling first-class
coroutines.
If all coroutines inΘ cannot yield, CR10 loops the types in

E . It finds the first type t in E such that one coroutine in Θ
can receive t . This rule is critical in composing contracts in
REModel because developers may require and yield data in
mismatching order. Details are in Section III-C.

III. ANALYZING REMODEL FILES
A. SYNTAX OF THE REMODEL LANGUAGE
Although Yang claims that REModel files are written in
Object Constraint Language (OCL) v2.4 [11], there are
many keywords or elements foreign to OCL in the example
files [18], such as UseCaseModel and @Description.
The lexer rules of the REModel Language are almost iden-

tical with the standard OCL but REModel uses two successive
slashes for comment rather than two dashes [11].
For parser rules, we start with contract sections. A contract

section is similar to the Operation declaration in OCL. Its
abstract structure is crystallized in Fig. 6. In terms of the type
element, REModel has a notation to write out enumeration
types in type ::= · · · | ID [ ⟨ID, ID, · · · ⟩ ]. One enum type
can be found in Listing 1.
As Fig. 7 illustrates, in OCL, an expression ele-

ment can be either logicalExpression, conditional-
Expression, lambdaExpression, or letExpression.
Then, factor2Expression is a component of a logical-
Expression.
In REModel, letExpression is improved to bear mul-

tiple variables. OCL allows a collection operation, i.e.,
factor2Expression, to take an iterator, but REModel
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(∅, ·) ⊢ ◦(Θ) ⇒ (h(s), ·) ⊢ ◦(⟨Θ1, [∅; t(s)] ,Θ2⟩) provided

(θ,Θ1,Θ2) = first(Θ, λθ.θ = [∅; s] ∧ s ̸= ∅)
(CR4)

(∅, ·) ⊢ ◦(Θ) ⇒ (∅, ·) ⊢ ◦(⟨Θ1, [∅; t(s)] , [u; v] ,Θ2⟩) provided

(θ,Θ1,Θ2) = first(Θ, λθ.θ = [∅; s] ∧ h(s) = [u; v])
(CR5)

(∅,E) ⊢ ◦(Θ) ⇒ (∅,∅) ⊢ ⟨E ,Θ1⟩ provided (∅,Θ1,∅) = first(Θ, λθ.θ = [∅; ·]) (CR6)

(t, ·) ⊢ ◦(Θ) ⇒ (∅, ·) ⊢ ◦(⟨Θ1, [t(s); u] [D],Θ2⟩) provided

(θ,Θ1,Θ2) = first(Θ, λθ.θ = [s; u] ∧match(t,h(s)) = D)
(CR7)

(t,E) ⊢ ◦(Θ) ⇒ (∅, ⟨E , t⟩) ⊢ ◦(Θ) provided

(∅,Θ1,∅) = first(Θ, λθ.θ = [s; ·] ∧match(t, s) = ⊥)
(CR8)

(∅, ·) ⊢ ◦(Θ) ⇒ (∅, ·) ⊢ ◦(⟨Θ1, [t(s); u] [D],Θ2⟩ − θ′) provided

(θ,Θ1,Θ2) = first(Θ, λθ.θ = [s; u] ∧ h(s) = [·; ·])
and (θ′, ·, ·) = first(Θ− θ, λθ′.match(θ′,h(s)) = D)

(CR9)

(∅,E) ⊢ ◦(Θ) ⇒ (∅, ⟨E1,E2⟩) ⊢ ◦(⟨Θ1, [t(s); u] [D],Θ2⟩) provided

(∅, ·, ·) = first(Θ, λθ.θ = [∅; ·]) and
(t,E1,E2) = first

(
E , λt.(θ,Θ1,Θ2) = first(Θ, λθ.θ = [s; u] ∧match(t,h(s)) = D)

) (CR10)

match([s; t] , [u; v] /p) =

{
D if D = match(s, u) ∪match(t, v) and p(D),
⊥ otherwise.

match(s, [·; ·]) = ⊥

match(s, t/p) =

{
D if ∃D.h(t)[D] = s and p(D),
⊥ otherwise.

FIGURE 5. Definition of match for matching two types.

adopts the Church style [19] for these lambda expressions,
meaning that a type is specified for the iterator, as shown in
Fig. 8. Moreover, the else part of an if-conditional expression
can be left out in REModel.

Since REModel can compare the initial and the cur-
rent state of objects, it permits a @pre tag after an ex-
pression, which is defined as basicExpression ::= · · · |
basicExpression . ID @pre?.

B. RECOGNIZING IDENTIFIERS
Identifiers found in a contract definition can refer to pa-
rameters of this contract, fields in this class, and global
fields in the system class. Hence, our type system has to
read the service definition sections and extract fields under
[TempProperty]. A snippet of service definitions is shown
in Listing 1. The service whose name ends with the word

System is the system class, fields of which are available for
all services.

Furthermore, we have to know the type inheritance by
looking into actor sections. From Listing 2 we know that
the type Faculty is a subtype of the type User. Given the
relationship, if a coroutine type is [User;Book], a type Faculty
should be able to activate this coroutine. The subtype handling
is the last step of typing.

C. TYPING CONTRACTS AS COROUTINES
Equipped with the identifiers and type information of a RE-
Model file, we are able to parse the file and give a coroutine
type to each contract block defined therein. Basically, the pre-
condition element becomes the receiving part of a coroutine,
and the postcondition element becomes the yielding part. We
ignore the parameter list and the return type.

VOLUME 11, 2023 5
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contractDefinition ::=

Contract ID :: ID

( parameterDeclarations? )

(: type)?

{ definitions?

precondition?

postcondition? }

definitions ::=

definition: ⟨definition,definition, · · · ⟩

definition ::=

ID : type = factor2Expression

precondition ::=

precondition: expression

postcondition ::=

postcondition: expression

FIGURE 6. The abstract syntax for the contract element

exp

let explambda expconditional explogical exp

factor2 exp

FIGURE 7. Types of expressions in REModel/OCL

Listing 1. Two service blocks in REModel
Service CoCoMESystem {
[Operation]
openCashDesk(cashDeskID)
closeCashDesk(cashDeskID)
openStore(storeID)
closeStore(storeID)

[TempProperty]
CurrentCashDesk : CashDesk
CurrentStore : Store

}

Service ProcessSaleService {
[Operation]
makeNewSale()
enterItem(barcode, quantity)

[TempProperty]
CurrentSaleLine : SalesLineItem
CurrentSale : Sale
CurrentPaymentMethod : PaymentMethod[CASH|CARD]

}

letExpression ::=

let ⟨ID : type, ID : type, · · · ⟩
in expression

factor2Exp ::= · · ·
| factor2Exp ->any( identifier : type | expression )

| factor2Exp ->forAll( identifier : type | expression )

| factor2Exp ->select( identifier : type | expression )

conditionalExpression ::=

if expression

then expression

(else expression)?

endif

FIGURE 8. The syntax for expressions in REModel

Listing 2. Actor definitions in REModel
Actor User {
@Description( "The user")
searchBook
listBookHistory
makeReservation
recommendBook
cancelReservation

}

Actor Faculty extends User {
@Description( "The faculty user") }

Type mapping Γ is built according to Section III-B which
maps identifiers to their types. However, if an identifier is a
global field or a class field, we use the name of the identifier
rather than its type in order to distinguish them from data
retrieved from other places.
For the contract enterItem in Listing 3, its in-

ferred coroutine type is [CurrentSale, Item;CurrentSale,
Item,SalesLineItem,CurrentSaleLine]. This type is calcu-
lated by Typing Rule 1 to 6.

Γ +m(e1) ⊢ r(e2) = t1
Γ +m(e1) ⊢ a(e3) = t2
Γ +m(e1) ⊢ d(e3) = t3

Γ ⊢

Contract · · · {
definition: e1
precondition: e2
postcondition: e3}

: [t1; t1 − t3 + t2]

(TR1)

Typing Rule TR1 stipulates that in order to type a
contract block, we need to look into its definition sec-
tion, precondition and postcondition section. Function m
extracts type mapping from the definition context. For
listing 3, m(item : Item = Item.allInstance()...) =
⟨item : Item⟩. Type Set(t) in OCL is mapped to t∗.

6 VOLUME 11, 2023
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Listing 3. The prototype of the enterItem function
Contract ProcessSaleService::enterItem(barcode : Integer,

quantity : Integer) : Boolean {

definition:
item:Item = Item.allInstance()->any(i:Item | i.Barcode

= barcode)

precondition:
CurrentSale.oclIsUndefined() = false and
CurrentSale.IsComplete = false and
item.oclIsUndefined() = false and
item.StockNumber > 0

postcondition:
let sli:SalesLineItem in
sli.oclIsNew() and
self.CurrentSaleLine = sli and
sli.BelongedSale = currentSale and
CurrentSale.ContainedSalesLine->includes(sli) and
item.StockNumber = item.StockNumber@pre - quantity and
sli.Subamount = item.Price * quantity and
SalesLineItem.allInstance()->includes(sli) and
result = true

}

The receiving part is typed based on the precondition; the
yielding part is mainly based on the postcondition. What’s
more, the receiving part has to be added to the yielding part
unless the postcondition explicitly removes it. The plus (+)
operation stands for sequence joining. The minus (−) opera-
tion removes elements from the first operand. Removing an
absent element has no effect. r,a,d stand for getting required,
added, deleted types from given expression. Their definitions
can be found in TR4, TR5, TR6, respectively.

Before we proceed to precondition and postcondition sec-
tions, we have to normalize logical expressions into conjunc-
tive normal forms, and apply TR2 to individual terms. Also
let-expressions must be processed by TR3.

Γ ⊢ r(e1) = t1
Γ ⊢ r(e2) = t2

Γ ⊢ r(e1 ∧ e2) = t1 + t2

Γ ⊢ a(e1) = t1
Γ ⊢ a(e2) = t2

Γ ⊢ a(e1 ∧ e2) = t1 + t2

Γ ⊢ d(e1) = t1
Γ ⊢ d(e2) = t2

Γ ⊢ d(e1 ∧ e2) = t1 + t2

(TR2)

Γ +m⟨ID1 : t1, ID2 : t2, · · · ⟩ ⊢ r(e)

Γ ⊢ r(let⟨ID1 : t1, ID2 : t2, · · · ⟩in e)

Γ +m⟨ID1 : t1, ID2 : t2, · · · ⟩ ⊢ a(e)

Γ ⊢ a(let⟨ID1 : t1, ID2 : t2, · · · ⟩in e)

Γ +m⟨ID1 : t1, ID2 : t2, · · · ⟩ ⊢ d(e)

Γ ⊢ d(let⟨ID1 : t1, ID2 : t2, · · · ⟩in e)

(TR3)

For precondition, TR4 defines the function r, standing
for ‘‘required’’. Required types translate to the receiving
part of the coroutine type. Γ[e] looks up the value of key
e. For example, ⟨item : Item⟩[item] = Item. If operation
oclIsUndefined returns false on an identifier or something
must be included in all instances, we know the type of this
identifier is required for this contract. Property checks, such
as item.StockNumber > 0 in Listing 3, are ignored.
The conjunction and disjunction operator in Boolean alge-

bra are communicative, but our sequence is not. For instance,
the postcondition section in one contract may yield User and
Book, while the precondition section in another may require
Book andUser, the order reversed. That’s whyCR10 is crucial
for composing contracts as it can feed the second element
Book of the yielding part to the first element of the receiving
part.

Γ ⊢ r(¬e.oclIsUndefined()) = Γ[e]

Γ ⊢ r(¬e1.allInstance()->excludes(e2))
= Γ[e2]

Γ ⊢ r(¬e) = ∅
Γ ⊢ r(e1.allInstance()->includes(e2))

= Γ[e2]

(TR4)

TR5 is called by TR1 to process the added types for the
postcondition section. It checks if a contract modifies a class
property or creates an entity instance. In detail, when an
object calls oclIsNew(), this object is for sure newly created
and will be added to an entity manager, such as a database or
the block on a blockchain. oclIsNew() is an OCL opera-
tion designed specifically for the post-condition section [11].
When a class field is assigned, we return the name of the field.
The includes() and excludes() operations are handled
the same as TR4.

Γ ⊢ a(e.oclIsNew()) = Γ[e]

Γ ⊢ a((self.)?ID = e2) = Γ[ID]

Γ ⊢ a(¬e1.allInstance()->excludes(e2))
= Γ[e2]

Γ ⊢ a(¬e) = ∅
Γ ⊢ a(e1.allInstance()->includes(e2))

= Γ[e2]

(TR5)

The postcondition section can contain assertions that an
entity must be deleted. These terms in the conjunctive normal
form will be matched by TR6. As a side note, based on OCL,
the includes and excludes operation can take an expression,
butR17 andR18 in [20] put solely an identifier as the argument
of the two operations. Consequently, we assume expressions
are not allowed at this position.

Γ ⊢ d(e.oclIsUndefined()) = Γ[e]

Γ ⊢ d(e1.allInstance()->excludes(e2))

= Γ[e2]

(TR6)

VOLUME 11, 2023 7



Qiqi Gu et al.: Typing Requirement Model as Coroutines

The coroutine type returned by TR1 is not final yet. If
any type in the receiving part is a super type, we replace all
occurrences of this type in the coroutine type with a variable,
and add an upper type bound constraint <: [21]. Retrieving
child-parent relationship has been covered in Section III-B.

IV. APPLICATIONS
We created the concrete syntax of REModel by ex-
tending the syntax of OCL retrieved from ANTLR’s
GitHub repository1. Our coroutine type system was de-
veloped in .NET Core 3.1 (C#). The source code, .re-
model files for testing, and test cases are all available
on GitHub2. The RequirementAnalysis folder imple-
ments the REModel parser and typing rules (typer), and the
GeneratorCalculation folder implements composition
rules (composer).

Our first experiment is to type four case studies provided
by [20] to demonstrate the validity and capability of our sys-
tem. The Composer component is indeed standalone. Hence,
the second experiment is using Composer to model other
programming languages. This shows the versatility of our
type system.

A. USING YIELDING ORDER
The RM2PT repository [18] provides a number of case stud-
ies. The case studies have been used in [20] to validate the
RM2PT platform. Since our type system is used with the plat-
form, it is natural to employ the same case studies to validate
our invention. The used case studies are Supermarket System
(CoCoME), Library Management System (LibraryMS), Au-
tomated Teller Machine (ATM), and Loan Processing System
(LoanPS); each has a .remodel file.

We type the four requirement models as coroutines and
check whether the inferred coroutine types are correct. List-
ing 4 is a portion of the typing log when we process the
CoCoME model. Line 1 to 11 show the type of each contract.
(Some trivial contracts are deleted to save space.) Line 13
is the composed type from the types above, by our compo-
sition rules. This composed type means after running these
contracts, the system will have set CurrentStore, Current-
CashDesk, Sale, and so on.

In the meantime, since the yielding order during composi-
tion tells the time when the prerequisite of a coroutine has
met and the coroutine is ready to execute, we hooked the
execution of CR1 and CR4. Line 15 to 26 are the execution
order of the aforementioned coroutines; namely we start with
createStore, then compose with openStore, and all the way to
deleteItem. Some contracts appear a couple of times because
each yielding is recorded and we usually only need to look at
the first occurrence.

The execution order is useful in that firstly, for requirement
verification, users can check it against the sequence diagram
in a requirement model. If the two orders do not match, this

1https://github.com/antlr/grammars-v4/tree/master/ocl
2https://github.com/gqqnbig/coroutine-program/

Listing 4. Partial typing log of the CoCoME requirement model
1 openStore: [Store; <Store, CurrentStore>]
2 openCashDesk: [<CashDesk, CurrentStore>; <CashDesk,

CurrentStore, CurrentCashDesk>]
3 makeNewSale: [CurrentCashDesk; <CurrentCashDesk, Sale,

CurrentSale>]
4 enterItem: [<CurrentSale, Item>; <CurrentSale, Item,

SalesLineItem, CurrentSaleLine>]
5 makeCashPayment: [CurrentSale; CashPayment]
6 createStore: [Void; Store]
7 deleteStore: [Store; Void]
8 createCashDesk: [Void; CashDesk]
9 deleteCashDesk: [CashDesk; Void]

10 createItem: [Void; Item]
11 deleteItem: [Item; Void]
12
13 [Void; <CurrentStore, CurrentCashDesk, Sale,

CashPayment, SalesLineItem, CurrentSaleLine>]
14
15 createStore -> openStore ->
16 openStore -> openStore ->
17 createCashDesk -> openCashDesk ->
18 createItem -> openCashDesk ->
19 openCashDesk -> openCashDesk ->
20 makeNewSale -> makeNewSale ->
21 makeNewSale -> makeNewSale ->
22 enterItem -> enterItem ->
23 makeCashPayment -> makeCashPayment ->
24 enterItem -> enterItem ->
25 enterItem -> deleteStore ->
26 deleteCashDesk -> deleteItem

requirement model is contradictory. Secondly, users can use
the order to develop integration tests. When we were working
on paper [7], we did not have this coroutine type system
and had to manually figured out the calling order in their
integration tests if the sequence diagram was not complete.
To provide a negative test case, suppose the model

author forgot to include CurrentSale in the enterItem

contract in Listing 3, the type of enterItem would
be [Item; ⟨Item,SalesLineItem,CurrentSaleLine⟩]. This type
would be composed before makeNewSale, creating a contrast
to the sequence diagram.

B. USING THE COMPOSER ITSELF
Our composition rules are not necessarily bundled with the
type system, but can be used by themselves. In this sub-
section we demonstrate the use of the composer to solve a
Prolog query. We borrow a family knowledge base snippet
found in [22] and list the rules in Listing 5. Given a query
parent(X,jane), male(X)., Prolog will tell X=sam. Un-
like Prolog, our composer cannot return a solution, but it is
capable to prove whether a given answer is true or false.
Apparently the REModel type system does not recognize

the Prolog syntax, so we assume there is a hypothetical type
system that gives a coroutine type for each Prolog rule, and
the typing result is given in Fig. 9.
We have ◦(Θ) = [∅; Yes]. On the other hand, if we replace

answer to [∅; Sue], CR6 triggers and ◦(Θ) deadlocks, so we
know Sue is not a solution.

One point of consequence is the presence of constrained
types in Fig. 9. They help the composition result independent
from the type order in Θ. Specifically, if we remove the con-
straint from childOther and it becomes [(Child, x, y); No],
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Listing 5. A family knowledge base in Prolog
child(john,sue). child(john,sam).
child(jane,sue). child(jane,sam).
child(sue,george). child(sue,gina).

male(john). male(sam). male(george).
female(sue). female(jane). female(june).

parent(Y,X) :- child(X,Y).
father(Y,X) :- child(X,Y), male(Y).

opp_sex(X,Y) :- male(X), female(Y).
opp_sex(Y,X) :- male(X), female(Y).

grand_father(X,Z) :- father(X,Y), parent(Y,Z).

Θ = ⟨child1 : [(Child, John,Sue);∅] ,

child2 : [(Child, Jane,Sue);∅] ,

child3 : [(Child,Sue,George);∅] ,

child4 : [(Child, John,Sam);∅] ,

child5 : [(Child, Jane,Sam);∅] ,

child6 : [(Child,Sue,Gina);∅] ,

childOther : [(Child, x, y); No] /(x, y) /∈{
(John,Sue), (Jane,Sue), (Sue,George),

(John,Sam), (Jane,Sam), (Sue,Gina)
}
,

male1 : [(Male, John);∅] ,

male2 : [(Male,Sam);∅] ,

male3 : [(Male,George);∅] ,

maleOther : [(Male, x); No] /x /∈ {John,Sam,George} ,
parent : [(Parent, y, x); (Child, x, y)] ,

query : [x; ⟨(Parent, x, Jane), (Male, x),Yes⟩] ,
answer : [∅; Sam]⟩

FIGURE 9. The coroutine representation of the family knowledge base in
Prolog

and it is placed before child1 , then childOther will compose
with parent right away, yielding No as a result.

V. DISCUSSION AND LIMITATION
We ran the REModel type system against four case studies of
RM2PT. The process did not throw exceptions and we man-
ually verified the typing results because there is not another
automation system as ground truth. We also added tests in
GitHub Actions to maximize the confidence of correctness.
To test the composer, we selected 6 use cases out of 4 case
studies where library.remodel and cocome.remodel

each contributed 2 cases. Totally we composed 43 out of 115
contracts defined in the 4 case studies. We did not compose
all contracts because a REModel file typically had contract
addXX, modifyXX, queryXX, deleteXX. Composing these
CRUD operations is not interesting.

Apart from the integration tests, there are 26 unit tests on
the composition engine. All these tests are verified by GitHub

Listing 6. Conditional expressions are not typed
postcondition:
if bc.oclIsUndefined() = false
then
self.CardIDValidated = true and
self.InputCard = bc and

else
self.CardIDValidated = false and

endif

and indicated by a green tick next to each commit.
There are two contracts inputCard and inputPassword

in atm.remodel that our type system does not process cor-
rectly. The post-condition in inputCard is a conditional
statement (see Listing 6) that sets CardIDValidated to true or
false based on the card validation result. However, we have no
typing rules in regard to if-conditions because our coroutine
type expressions do not express branching. Consequently, this
contract is typed [∅;∅], so it cannot compose with other
contracts. Contract inputPassword has a similar issue.
Our work has some limitation. As we mentioned, our type

system does not handle if-conditions well and we do not have
mechanism to refine the condition or add the dependency
from a precondition to a postcondition.
Second, our type system only discriminates objects

being null or non-null, and value checks such as
item.StockNumber > 0 are ignored. Since a type system
only concerns types, a different system or a dependent type
system—where type level functions are pervasive—may be
needed to understand fine-grained checks.
Last, our type system does not divide coroutine types into

groups. If a requirement model contains contracts for both
CoCoME and ATM, the type system still composes all types
together, and the result may not make sense. When we were
typing RM2PT case studies, we had tomanually find clean-up
contracts (such as closeStore and deleteItem), and set them
to be composed last by using tuples. If we should forget to
do so, the composer might compose closeStore right after
openStore, blocking makeNewSale and subsequent opera-
tions. An upper stream component will be handy to filter and
group contracts, before calling the composer.
Coroutines are ideal to present side-effects, i.e., changes

to global data or performs IO [23], [24], and do not capture
parameters of a function and the return value. Therefore we do
not have typing rules reading the parameter list of a contract.
Pure functions, such as query operations, are typed to have
the identical receiving part and yielding part because pure
functions solely require something in memory but do not
change it. To model parameters and return values, we should
use the traditional function types f : a→ b.

VI. RELATED WORK
Model-driven engineering (MDE) can improve implementa-
tion productivity. TopCased [25] is aMDEplatform providing
modeling languages and code generation. It is widely used
in Europe. RM2PT [20] implements model-to-text (M2T)
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transformation [26], and cuts coding time from hours to one
second. By using MetaCase, another piece of MDE software,
a sports watch company observed productivity increase of
750% [27].

A model in MDE simply refers to an abstraction of data or
behavior that captures knowledge, enables automation, and
facilitates communication [28]. A file can be a requirement
model; the format a requirement model must conform to is
also a model, or we say metamodel. In this sense, languages
are metamodels [29], [30]. A valid model is said to conform
to its metamodel if it has no syntax errors and fulfills other
constrains in the metamodel. For a .remodel file, it must at
least pass syntax check of the REModel language, and its pre-
and post-conditions match the specification of the Interaction
section, so on and so forth.

REModel is basically a variation of OCL. OCL is typed,
with basic types such as Integer, Boolean, and String, and
parameterized sets such as Set(T) and Sequence(T), as well as
tuples [11]. The concrete types in our coroutine type system
map to the basic types in OCL. Distefano et al. [31] gives a
formal semantics to OCL invariants and pre-, post-conditions,
and run model checking of object-oriented programs. Nev-
ertheless, their approach does not support type inheritance.
Reference [32] allows to write temporal properties in OCL,
for instance work 2 will start only when work 1 is finished.
These properties can be checked by Tina model checker [33].
Reference [4] verifies behavioral properties of a model with
Petri Nets and can give a counterexample if a property (asser-
tion) fails. A formal approach is proposed by [34] to define
and analyze domain-specific modeling languages (DSML).
It represents DSML metamodels and their conforming mod-
els as a Maude specification [35]. Fiacre [36] is a formal
specification language that targets both the behavioral and
timing aspects of real-time systems. Its authors transform
UML and OCL to Fiacre, and then perform Tina verification.
Overall, prior workmainly studies constraints in a single OCL
context. In contrast, our work focuses on the interplay of a
set of OCL contexts (named contract in REModel), and can
work out temporal properties from pre- and post-conditions
by modeling contract blocks as coroutines.

Coroutines are included in assorted modern programming
languages. In particular, coroutines in Kotlin can dispatch
user actions faster comparing to Java threads [37]. Vector [38]
is one of the Model-View-Intent libraries that utilize the
coroutine backend. Our coroutine type composition rules are
to some extend similar to Vector and other coroutine dispatch-
ers and reducers, but we reduce types rather than values, and
have limited capability in arithmetic and logical calculations.
We do not concern performance either.

A coroutine system can be categorized into three aspects,
namely control-transfer mechanisms, whether coroutines are
first-class objects, and whether the control can be suspended
within nested calls [39]. In REModel, when a contract calls a
built-in function, the function cannot stop the whole contract;
hence REModel is a stackless coroutine language. Overall,
our type composition rules support asymmetric, first-class,

stackless coroutines. Kotlin Coroutines are stackless as well
because not every function has access to the CoroutineScope
of the parent coroutine. Ikebuchi et al. [40] proposes a high-
level language for defining coroutines and the language can
be compiled to low-level C code. This approach is useful
for implementing security-critical network protocols. Nev-
ertheless, this paper concentrates on the execution logic of
a coroutine rather than an overall type of a coroutine, not
mention composing. The coroutine type in [41] has three
elements, parameters P, return type R, and yielded values Y .
It does not include received values because the resume site
creates a new instance every time and pass the received values
as parameters.
Our type system can be perceived as an integration plat-

form and Górski [42] proposed 6 views for such system,
including Integrated Services view, and Contracts view. Our
Fig. 2 is indeed the Integrated services view, where each
rectangle box is Górski’s contract. His Contracts view il-
lustrates the cooperation of components, and each contract
has a provided interface (a ball) and a required interface (a
socket). Górski’s contract is dissimilar to the contract key-
word in REModel. In REModel, a contract keyword denotes
a function, of which the function body is fully specified by
pre-conditions and post-conditions. A coroutine with void
receiving part means it does not receive data; a coroutine with
void yielding part means it does not yield data. Therefore we
adopt ∅, the void type in type theory, in our type system to
present a type with no inhabitants [43] [44]. Besides validat-
ing requirement models, a type system can check correctness
of format string [45], regular expressions [46], and so on.

VII. CONCLUSION
In software engineering, requirements validation is the pro-
cess of checking whether requirements meet the customers’
real needs. It is critically important because requirements
errors will lead to extensive rework if those problems are
discovered during the later phases of the software develop-
ment. To verify a requirement file, RM2PT implements a
transformation from requirement files to executable proto-
types so that developers can verify the requirement by running
the prototype. However, it does not have powerful verifi-
cation tools for models themselves. To compensate for the
shortcoming, this paper takes another approach. Rather than
transforming a requirement file, we directly verify the file by
a formal method to ensure consistency. The file is written in
the REModel language, which is a variation of OCL.
We contribute a new type representation and computation

method for combining asymmetrical, first-class, stackless
coroutines. By formally defining the syntax of REModel, our
type system checks each contract section in REModel and
infers a coroutine type based on pre- and post-conditions.
Then a selection of coroutine types can be combined into a
single coroutine type to model the final result of a sequence of
operations. The composition operation is expected to produce
the same sequence diagram embedded in the requirement
model. If not, discrepancies have been spotted.
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We evaluated our approach on the four official case stud-
ies of RM2PT, namely ATM, CoCoME, LibraryMS, and
LoanPS, and confirmed that the coroutine composition results
are correct. Moreover, with constrained types and the compo-
sition rules, coroutine types can model other programming
languages, such as Prolog. The types are composed in a way
independent from the activation order. As a result, no matter
the clause order of a logical expression in pre-condition or
post-condition, contracts are composed to the same type.
Subtypes are supported as well.

There are some future work. Firstly, we plan to revise the
system to handle fine-grained checks, such as conditional ex-
pressions. Secondly, an extra upper stream component can do
its part to divide coroutines into groups, or assign priorities to
coroutines or contract. Finally, we hope to adapt our coroutine
type system for a wider range of requirement models, not only
for RM2PT.
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