RESOLVENT ESTIMATES IN SCHATTEN SPACES FOR LAPLACE-BELTRAMI OPERATORS ON COMPACT MANIFOLDS

JEAN-CLAUDE CUENIN

ABSTRACT. We prove resolvent estimates in Schatten spaces for Laplace-Beltrami operators on compact manifolds at the critical exponent. Our proof only uses known bounds for the Hadamard parametrix.

1. INTRODUCTION AND MAIN RESULT

Let (M, g) be a compact boundaryless Riemannian manifold of dimension $n \geq 2$, with smooth metric g, and consider the negative Laplace–Beltrami operator Δ_g on M. The aim of this note is to prove a Schatten space version of the following resolvent estimate,

(1)
$$\|(-\Delta_g - z)^{-1}\|_{L^{q'}(M) \to L^q(M)} \le C_{\delta} |z|^{\sigma(q) - \frac{1}{2}},$$

where $\operatorname{Im} \sqrt{z} \geq \delta$ and

$$\sigma(q) = \max\left(n(\frac{1}{2} - \frac{1}{q}) - \frac{1}{2}, \frac{n-1}{2}(\frac{1}{2} - \frac{1}{q})\right).$$

Here, $\delta > 0$ is an arbitrary but fixed constant. For $n \ge 3$, q = 2n/(n-2), inequality (1) was proved by Dos Santos Ferreira–Kenig–Salo [6]. For the torus this result is due to Shen [15]. Bourgain–Shao–Sogge–Yao [2] obtained improved bounds on negatively curved manifolds and on the torus. Frank–Schimmer [7], and, independently, Burq–Dos Santos Ferreira– Krupchyk [3], proved (1) for $n \ge 2$ at the the critical exponent $q_n := 2(n+1)/(n-1)$. By elliptic estimates, Sobolev embedding and interpolation with the trivial $L^2 \to L^2$ bound, the estimate at the critical exponent implies that (1) holds for all other exponents $2 \le q \le$ 2n/(n-2). We will therefore only consider the critical exponent in the following.

By duality, the inequality (1) at the critical exponent is equivalent to

(2)
$$\|W_1(-\Delta_g - z)^{-1}W_2\|_{L^2(M) \to L^2(M)} \le C_{\delta}|z|^{\frac{1}{q_n} - \frac{1}{2}} \|W_1\|_{L^{n+1}(M)} \|W_2\|_{L^{n+1}(M)}$$

where we used that $\sigma(q_n) = 1/q_n$. Our main result is the following upgrade of (2) to a stronger bound that replaces the $L^2(M) \to L^2(M)$ operator norm by a Schatten norm.

Theorem 1.1. Let (M, g) be a compact boundaryless Riemannian manifold of dimension $n \ge 2$, with smooth metric g. Then for every $\delta > 0$ there exists a constant C_{δ} such that

(3)
$$\|W_1(-\Delta_g - z)^{-1}W_2\|_{\mathfrak{S}^{n+1}(L^2(M))} \le C_{\delta}|z|^{\frac{1}{q_n} - \frac{1}{2}} \|W_1\|_{L^{n+1}(M)} \|W_2\|_{L^{n+1}(M)}$$

Resolvent estimates in Schatten spaces for the Laplace–Beltrami operator on nontrapping asymptotically conic manifolds were established by Guillarmou–Hassell–Krupchyk [10]. The proof for compact manifolds presented here is much shorter.

Date: May 17, 2024.

JEAN-CLAUDE CUENIN

Our resolvent estimate is closely related to the following spectral cluster bound of Frank-Sabin [8] (this is the estimate in the form (16) there),

(4)
$$\|W\Pi_{\lambda}\overline{W}\|_{\mathfrak{S}^{n+1}(L^{2}(M))} \lesssim (1+\lambda)^{\frac{2}{q_{n}}} \|W\|_{L^{n+1}(M)}^{2}$$

Here $\Pi_{\lambda} := \mathbf{1}_{[\lambda,\lambda+1]}(\sqrt{-\Delta_g})$ is the spectral projector onto frequencies in the unit length window $[\lambda, \lambda + 1]$ for $\lambda > 0$. We recall that a compact operator K belongs to the the Schatten space \mathfrak{S}^{α} if

$$||K||_{\mathfrak{S}^{\alpha}} := \Big(\sum_{j=1}^{\infty} s_j(K)^{\alpha}\Big)^{\frac{1}{\alpha}} < \infty,$$

where $s_j(K)$ are the singular values of K (i.e. the eigenvalues of $(KK^*)^{\frac{1}{2}}$). The dual estimate to (4) takes the form

(5)
$$\left\|\sum_{j\in J}\nu_{j}|f_{j}|^{2}\right\|_{L^{q_{n}/2}(M)} \lesssim (1+\lambda)^{\frac{2}{q_{n}}} \left(\sum_{j\in J}|\nu_{j}|^{\frac{n+1}{n}}\right)^{\frac{n}{n+1}},$$

whenever $(f_j)_{j \in J} \subset \operatorname{Ran} \Pi_{\lambda}$ is an orthonormal family of functions. In the case of a single function, (5) recovers Sogge's spectral cluster bounds [16] at the critical exponent. One can interpolate (4) with the sharp counting function remainder estimate of Avakumović, Levitan and Hörmander [1, 14, 11],

$$\operatorname{Tr} W\Pi_{\lambda} \overline{W} = \int_{M} |W(x)|^2 \Pi_{\lambda}(x, x) \mathrm{d} V_g \lesssim (1+\lambda)^{n-1} \|W\|_{L^2(M)}^2,$$

and with the trivial operator norm bound

$$||W\Pi_{\lambda}\overline{W}||_{L^{2}(M)\to L^{2}(M)} \leq ||W||^{2}_{L^{\infty}(M)}$$

to obtain the full range of spectral cluster estimates

(6)
$$\left\|\sum_{j\in J}\nu_{j}|f_{j}|^{2}\right\|_{L^{q/2}(M)} \lesssim (1+\lambda)^{2\sigma(q)} \left(\sum_{j\in J}|\nu_{j}|^{\alpha(q)}\right)^{1/\alpha(q)},$$

where

$$\alpha(q) := \max\left(\frac{q(n-1)}{2n}, \frac{2q}{q+2}\right).$$

Since Im $(-\Delta_g - (\lambda + i)^2)^{-1} \gtrsim \lambda^{-1} \Pi_{\lambda}$, the resolvent bound (3) implies (4) and thus (5), (6). On the other hand, it is not difficult to see that (4) implies (3) with a logarithmic loss, i.e. an additional factor of $\log(2 + \lambda)$ on the right hand side (the proof is similar to that of [5, Prop. 3.3]). In [5], it was shown that the $L^{q'}(M) \to L^q(M)$ resolvent estimates are actually a direct consequence of Sogge's spectral cluster bounds. The idea of the proof is to apply the Christ–Kiselev lemma [4] to a microlocalized version of the spectral cluster bound. This strategy does not seem to work for Schatten norm bounds, so we give a direct proof of (3). We follow the approach of Dos Santos Ferreira–Kenig–Salo [6], which uses the Hadamard parametrix for the resolvent (see also Hörmander [12, 17.4] and Sogge [16]).

2. Hadamard parametrix

Following [6], let T(z) be the operator with kernel

$$T(x, y; z) = \chi(x, y)F(x, y; z),$$

where χ is a localization to the diagonal x = y,

$$F(x, y; z) = \sum_{\nu=0}^{N} a_{\nu}(x, y) F_{\nu}(d_g(x, y); z),$$

with N > (n-1)/2, and

$$F_{\nu}(|x|;z) = \nu! (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{\mathrm{e}^{\mathrm{i}x \cdot \xi}}{(|\xi|^2 - z)^{1+\nu}} \mathrm{d}\xi.$$

The functions a_{ν} can be recursively chosen such that

(7)
$$(-\Delta_g - z)T(z)u = \chi(x, x)u + S(z)u,$$

where the remainder $S(z) = S_1(z) + S_2(z)$ satisfies

(8)
$$S_1(x,y;z) = |z|^{\frac{n-1}{4}} e^{-\sqrt{z} d_g(x,y)} b(x,y;z), \quad S_2(x,y;z) = \mathcal{O}_{\delta}(|z|^{-1/2}),$$

where b is a smooth function, see (3.9) and the proof of Lemma 4.2 in [6].

As a technical device, we also define, for $0 \le \nu \le N$ and $1 + \nu + \operatorname{Re} s \in [0, (n+1)/2]$,

$$F_{\nu+s}(|x|;z) = \Gamma(1+\nu+s)(2\pi)^{-n} \int_{\mathbb{R}^n} \frac{\mathrm{e}^{\mathrm{i}x\cdot\xi}}{(|\xi|^2-z)^{1+\nu+s}} \mathrm{d}\xi.$$

These kernels define an analytic family of operators $s \mapsto F_{\nu+s}(z)$ which coincide with $F_{\nu}(z)$ for s = 0.

Lemma 2.1. For |z| = 1, $z \neq 1$, we have

$$\|F_{\frac{n-1}{2}+\mathrm{i}t}(z)\|_{L^{1}(\mathbb{R}^{n})\to L^{\infty}(\mathbb{R}^{n})} + \|F_{-1+\mathrm{i}t}(z)\|_{L^{2}(\mathbb{R}^{n})\to L^{2}(\mathbb{R}^{n})} \le C\mathrm{e}^{c|t|^{2}}$$

Proof. The bound for the first term can be found in [9, (50)] and is essentially contained in [13]. The bound for the second term is trivial.

3. Proof of Theorem 1.1

Proof. In the following, to shorten some of the estimates, we replace W_1 and W_2 with with W and \overline{W} , respectively. Strictly speaking, this is weaker than the bound in Theorem 1.1 since the resolvent is not positive, but the proof for the general case is identical. We will also suppress the dependence of constants on δ . By scaling, Lemma 2.1 and [9, Prop. 1] imply that (3) holds for T(z). By (8), the second term $S_2(z)$ satisfies

$$||WS_2(z)\overline{W}||_{\mathfrak{S}^2} \lesssim |z|^{-\frac{1}{2}} ||W||_{L^2}^2$$

which yields a bound that is better than (3) and hence can be ignored. By [8, Corollary 3] the first term satisfies

(9)
$$\|WS_1(z)\|_{\mathfrak{S}^{2(n+1)}} \lesssim |z|^{\frac{1}{2q_n}} \|W\|_{L^{n+1}}.$$

JEAN-CLAUDE CUENIN

After rescaling, Lemma 2.1 together with [9, Proposition 1] yields the parametrix bound

(10)
$$\|WT(z)\overline{W}\|_{\mathfrak{S}^{n+1}} \lesssim |z|^{\frac{1}{q_n} - \frac{1}{2}} \|W\|_{L^{n+1}}^2$$

After summing (7) over a partition of unity we obtain (by slight abuse of notation)

(11)
$$(-\Delta_g - z)T(z) = \mathbf{1} + S(z).$$

Note that, even though T(z) and S(z) are not symmetric, their adjoints satisfy the same bounds (9), (10). Moreover, these estimates remain true when replacing z by \overline{z} . Using these observations and assuming, without loss of generality, that $||W||^2_{L^{n+1}(M)} = 1$, we infer that

(12)
$$\|WT(z)\overline{W}\|_{\mathfrak{S}^{n+1}} + |z|^{-\frac{1}{2}} \|WS(z)^*\|_{\mathfrak{S}^{2(n+1)}}^2 \lesssim |z|^{\frac{1}{q_n} - \frac{1}{2}},$$

and we have the same bound with \overline{z} in place of z. Applying the resolvent operator $(-\Delta_g - z)^{-1}$ to (11) yields

(13)
$$\|W(-\Delta_g - z)^{-1}\overline{W}\|_{\mathfrak{S}^{n+1}} \le \|WT(z)\overline{W}\|_{\mathfrak{S}^{n+1}} + \|W(-\Delta_g - z)^{-1}S(z)\overline{W}\|_{\mathfrak{S}^{n+1}}.$$

We first use the noncommutative Hölder inequality and (12) to bound

$$\begin{split} \|W(-\Delta_g - z)^{-1}S(z)\overline{W}\|_{\mathfrak{S}^{n+1}} &\leq \|W(-\Delta_g - z)^{-1}\|_{\mathfrak{S}^{2(n+1)}}\|S(z)\overline{W}\|_{\mathfrak{S}^{2(n+1)}}\\ &\lesssim |z|^{\frac{1}{2q_n}}\|W(-\Delta_g - z)^{-1}\|_{\mathfrak{S}^{2(n+1)}}. \end{split}$$

Then we use the resolvent identity

$$(-\Delta_g - z)^{-1}(-\Delta_g - \overline{z})^{-1} = \frac{1}{2\mathrm{Im}\,z}((-\Delta_g - z)^{-1} - (-\Delta_g - \overline{z})^{-1})$$

to obtain

$$||W(-\Delta_g - z)^{-1}||_{\mathfrak{S}^{2(n+1)}} = ||W(-\Delta_g - z)^{-1}(-\Delta_g - \overline{z})^{-1}\overline{W}||_{\mathfrak{S}^{n+1}}^{1/2} \lesssim |z|^{-\frac{1}{2}} (||W(-\Delta_g - z)^{-1}\overline{W}||_{\mathfrak{S}^{n+1}} + ||W(-\Delta_g - \overline{z})^{-1}\overline{W}||_{\mathfrak{S}^{n+1}})^{1/2}.$$

Combining the last two estimates and using that $ab \lesssim \epsilon a^2 + \epsilon^{-1}b^2$ for arbitrary $\epsilon > 0$, we get

$$\begin{split} \|W(-\Delta_g - z)^{-1}S(z)\overline{W}\|_{\mathfrak{S}^{n+1}} &\lesssim \epsilon |z|^{-\frac{1}{2}} (\|W(-\Delta_g - z)^{-1}\overline{W}\|_{\mathfrak{S}^{n+1}} + \|W(-\Delta_g - \overline{z})^{-1}\overline{W}\|_{\mathfrak{S}^{n+1}}) \\ &+ \epsilon^{-1}|z|^{\frac{1}{q_n}} \end{split}$$

We choose $\epsilon = c|z|^{\frac{1}{2}}$ for some sufficiently small constant c. Then, using (12), (13) and its analogue for \overline{z} , we can absorb the $\epsilon |z|^{-\frac{1}{2}}$ term to get

$$\|W(-\Delta_g - z)^{-1}\overline{W}\|_{\mathfrak{S}^{n+1}} + \|W(-\Delta_g - \overline{z})^{-1}\overline{W}\|_{\mathfrak{S}^{n+1}} \lesssim |z|^{\frac{1}{q_n} - \frac{1}{2}}.$$

This completes the proof of Theorem 1.1.

Acknowledgements: The author thanks Rupert Frank, Mikko Salo, Jeff Galkowksi and Xiaoyan Su for useful discussions and correspondence. Support by the Engineering & Physical Sciences Research Council [grant number EP/X011488/1] is acknowledged.

References

- V. G. Avakumović. Über die Eigenfunktionen auf geschlossenen Riemannschen Mannigfaltigkeiten. Math. Z., 65:327–344, 1956.
- [2] J. Bourgain, P. Shao, C. D. Sogge, and X. Yao. On L^p-resolvent estimates and the density of eigenvalues for compact Riemannian manifolds. Comm. Math. Phys., 333(3):1483–1527, 2015.
- [3] N. Burq, D. Dos Santos Ferreira, and K. Krupchyk. From semiclassical Strichartz estimates to uniform L^p resolvent estimates on compact manifolds. Int. Math. Res. Not. IMRN, (16):5178–5218, 2018.
- M. Christ and A. Kiselev. Maximal functions associated to filtrations. J. Funct. Anal., 179(2):409–425, 2001.
- [5] J. C. Cuenin. From spectral cluster to uniform resolvent estimates on compact manifolds. Journal of Functional Analysis Volume 286, Issue 2, 15 January 2024, 110214.
- [6] D. Dos Santos Ferreira, C. E. Kenig, and M. Salo. On L^p resolvent estimates for Laplace-Beltrami operators on compact manifolds. *Forum Math.*, 26(3):815–849, 2014.
- [7] R. L. Frank and L. Schimmer. Endpoint resolvent estimates for compact Riemannian manifolds. J. Funct. Anal., 272(9):3904–3918, 2017.
- [8] R. L. Frank and J. Sabin. Spectral cluster bounds for orthonormal systems and oscillatory integral operators in Schatten spaces Adv. Math. 317 (2017), 157–192.
- [9] R. L. Frank and J. Sabin. Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates. Amer. J. Math. 139 (2017), no. 6, 1649–1691.
- [10] C. Guillarmou, A. Hassell and K. Krupchyk. Eigenvalue bounds for non-self-adjoint Schrödinger operators with nontrapping metrics. Anal. PDE 13 (2020), no. 6, 1633–1670.
- [11] L. Hörmander. The spectral function of an elliptic operator. Acta Math., 121:193–218, 1968.
- [12] L. Hörmander. The analysis of linear partial differential operators. III. Classics in Mathematics. Springer, Berlin, 2007. Pseudo-differential operators, Reprint of the 1994 edition.
- [13] C. E. Kenig, A. Ruiz and C. D. Sogge. Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators. Duke Math. J. 55 (1987), no. 2, 329–347.
- [14] B. M. Levitan. On the asymptotic behavior of the spectral function of a self-adjoint differential equation of the second order. *Izvestiya Akad. Nauk SSSR. Ser. Mat.*, 16:325–352, 1952.
- [15] Z. Shen and P. Zhao. Uniform Sobolev inequalities and absolute continuity of periodic operators. Trans. Amer. Math. Soc., 360(4):1741–1758, 2008.
- [16] C. D. Sogge. Concerning the L^p norm of spectral clusters for second-order elliptic operators on compact manifolds. J. Funct. Anal., 77(1):123–138, 1988.

DEPARTMENT OF MATHEMATICAL SCIENCES, LOUGHBOROUGH UNIVERSITY, LOUGHBOROUGH, LEICES-TERSHIRE, LE11 3TU UNITED KINGDOM

Email address: J.Cuenin@lboro.ac.uk