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We discuss the general behavior of the scattering amplitude with channel couplings near the
two-body threshold. It is known that the Flatté amplitude, which is often used in the analysis of
experimental data involving exotic hadrons, has some constraint in the near-threshold energy region.
While the M-matrix gives the general expression of the scattering amplitude, it is not smoothly
connected to the Flatté amplitude, due to the property of the determinant of the amplitude in
channel space. In this paper, based on the effective field theory, we propose new parametrization of
the scattering amplitude which gives the general expression near the threshold and has a well-defined
limit reproducing the Flatté amplitude. We show that the nonresonant background contribution
exists in the general amplitude even in the first order in the momentum. Finally, we quantitatively
evaluate the cross sections by changing the strength of the background contribution. We find that
the interference with the background term may induce a dip structure of the cross section near the
threshold, in addition to the peak and threshold cusp structures.

I. INTRODUCTION

Exotic hadrons are composed of different combinations
of quarks from mesons and baryons, and their internal
structure still remains unresolved. In recent years, ex-
perimental progress has led to the discovery of a wide
variety of the exotic hadrons, and various studies have
been conducted from both the theoretical and experi-
mental perspectives [1, 2]. Most exotic hadrons are un-
stable states with finite lifetimes and decay into multiple
hadrons, and therefore they are observed as resonance
peaks in the hadron scattering. Accumulation of the ex-
perimental data reveals that a lot of exotic hadrons ap-
pear near the threshold. Furthermore, in actual hadron
systems, the channel couplings play an important role by
inducing the inelastic scattering in addition to the elastic
scattering. As an example, f0(980) appears near the KK̄
threshold and decays into the ππ channel, so we need to
consider the coupled-channel scattering of the ππ-KK̄
system [3].

In the scattering amplitude, the eigenenergy of the res-
onance state is represented as a pole in the complex en-
ergy plane [4, 5]. To express the scattering amplitude
with a resonance pole, one utilizes the Breit-Wigner am-
plitude having a pole at the energy E = ER − iΓ/2,
where ER represents the resonance energy and Γ the de-
cay width. Because the Breit-Wigner amplitude with a
constant decay width Γ does not include the effect of the
threshold, the Breit-Wigner amplitude cannot be applied
to the analysis of the resonance state near the threshold.
To incorporate the threshold effect into the Breit-Wigner
amplitude, the Flatté amplitude [6] has been frequently
used for the actual analysis of the various hadron scat-
tering near the threshold [7–20]. In the Flatté amplitude,
the opening of the threshold is taken into account by the
energy dependence of the decay width Γ.
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To study the near-threshold exotic hadrons, it is useful
to expand the inverse of the scattering amplitude as the
power series of the momentum k of the threshold channel.
In the single-channel case, the effective range expansion
of the scattering amplitude f(k) reads

f(k) =
1

− 1
a + r

2k
2 +O(k4)− ik

, (1)

where a and r are called the scattering length and effec-
tive range, respectively. It is important to determine a
and r because the near-threshold dynamics, including the
position of the near-threshold pole, is highly constrained
by these constants. In the coupled-channel scattering, it
is known that the denominator of the Flatté amplitude
can also be written in the form of the effective range ex-
pansion [21]. This feature allows one to use the Flatté
amplitude to determine the scattering length and effec-
tive range [22, 23] (see also the discussion in Ref. [24]).
However, a problem of the Flatté amplitude has been

pointed out; the number of the independent parameters
decreases near the threshold [21]. This fact suggests that
some conditions are imposed on the Flatté amplitude
near the threshold, lacking the generality of its expres-
sion. On the other hand, the general expression of the
scattering amplitude consistent with the optical theorem
has been constructed, for instance, by using the M-matrix
approach [25]. As we will show below, however, the M-
matrix type amplitude cannot be directly reduced to the
Flatté amplitude due to the implicit assumption in its
derivation. To study how the general expression gradu-
ally approaches the Flatté amplitude, it is desirable to
construct an alternative amplitude, which keeps the gen-
erality of the expression but having the smooth connec-
tion with the Flatté amplitude.
In this study, we focus on the above-mentioned prob-

lems of the near-threshold coupled-channel scattering
amplitude and clarify the relation between the general
form of the amplitude and the Flatté amplitude. For
this purpose, we formulate both the Flatté and M-matrix
amplitudes in the framework of the effective field theory.
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Through the detailed comparison of these amplitudes, we
propose a new parametrization of the scattering ampli-
tude that does not lose generality even near the threshold
and directly reduces to the Flatté amplitude. This allows
us to study how the general behaviors of the scattering
length and near-threshold cross sections reduce to those
of the Flatté amplitude.

This paper is organized as follows. First, we derive
the M-matrix type amplitude (hereafter called the Con-
tact amplitude) and the Flatté amplitude from the effec-
tive field theory in Sec. II. We then compare the Flatté
amplitude with the Contact amplitude and clarify the
imposed conditions by exploring the compatibility be-
tween these amplitudes. Next, in Sec. III, we propose a
new parametrization of the scattering amplitude (Gen-
eral amplitude) that unifies the Contact amplitude and
the Flatté amplitude. Using the General amplitude, we
discuss in detail the nature of the scattering amplitude
near the threshold. In Sec. IV the behavior of the scat-
tering cross section near the threshold is quantitatively
investigated using the General amplitude. A summary is
given in the last section. Preliminary results of Sec. III
are partly reported in the proceedings of the confer-
ence [26].

II. COUPLED-CHANNEL SCATTERING
AMPLITUDE

In this section, based on Refs. [27–29], we review the
derivation of the Contact amplitude and Flatté ampli-
tude for two-channel scattering from the effective field
theory (EFT) in Sec. IIA and in Sec. II B, respectively.
We discuss the scattering length and effective range in
these amplitudes. In Sec. II C, we show that the Contact
amplitude does not directly reduce to the Flatté ampli-
tude focusing on the determinant of the scattering am-
plitude.

A. Contact amplitude

Here we derive the two-channel scattering amplitudes
at low energies for systems with contact four-point inter-
action from effective field theory. The Lagrangian L in
this case is given by [27–29]

LC = LC
0 + LC

int, (2)

LC
0 = ψ†

1

(
i∂0 +

∇2

2m1
− (m1 −m2)

)
ψ1

+ ϕ†1

(
i∂0 +

∇2

2M1
− (M1 −M2)

)
ϕ1

+ ψ†
2

(
i∂0 +

∇2

2m2

)
ψ2 + ϕ†2

(
i∂0 +

∇2

2M2

)
ϕ2,

(3)

LC
int = −cijψ†

iϕ
†
iϕjψj + · · · , (4)

where LC
0 is the free Lagrangian representing the rest en-

ergy and non-relativistic kinetic energy of the particles.
ψi and ϕi (i = 1, 2) are the fields corresponding to the
two particles in channel i and mi and Mi (i = 1, 2) rep-
resent the masses of the particles in channel i. Since the
energy is measured from the threshold of channel 2 in this
study, the free Lagrangian LC

0 includes the contribution
of the rest energies of ψ1 and ϕ1. LC

int is the Lagrangian of
the four-point interaction that represents the transition
between the ψiϕi and ψjϕj scattering channels, and cij
is the coupling constant. The higher order terms in the
derivative expansion in LC

int are abbreviated. We consider
the low-energy scattering, where the contact interaction
in Eq. (4) dominates and the higher-order terms are as-
sumed to be negligible.
The Feynman rules obtained from the Lagrangian LC

give the vertex VC as

VC =

(
c11 c12
c12 c22

)
, (5)

with the bare parameters c11, c12, and c22. The (i, j) com-
ponents of VC describe the direct transition process from
the scattering channel j to i. Since we are interested
in the two-body scattering, we consider the four-point
function Tij by adding up all possible diagrams for the
two-body to two-body process obtained from the Feyn-
man rules. In the present case, the four-point function is
given only by the diagrams obtained from the Lippmann-
Schwinger equation, in which VC is regarded as a poten-
tial. The resulting four-point function, the T-matrix of
this scattering, depends only on the total energy E in the
center-of-mass system:

[T (E)]−1 = [VC]
−1 −GΛ(E), (6)

where

GΛ(E) =

(
GΛ

1 (E) 0
0 GΛ

2 (E)

)
=

(
−µ1Λ

π2 − µ1

2π ip 0

0 −µ2Λ
π2 − µ2

2π ik

)
, (7)

GΛ
i (E) =

∫
dq

(2π)3
1

E +∆δi1 − q2/(2µi) + i0+
, (8)

where ∆ = (M2 +m2)− (M1 +m1) is the threshold en-
ergy difference, µi =Mimi/(Mi +mi) the reduced mass

in channel i, and p =
√
2µ1(E +∆), k =

√
2µ2E the rela-

tive momenta of channels 1 and 2, respectively. Since the
potential VC is a contact interaction, we have introduced
the cutoff Λ, the upper limit of the momentum integral
to regularize GΛ(E), by keeping the leading contribution
in the Λ→ ∞ limit in Eq. (7).
Substituting VC into Eq. (6), we obtain

[T (E)]−1

=

(
c22

c11c22−c212
+ µ1Λ

π2 + µ1

2π ip − c12
c11c22−c212

− c12
c11c22−c212

c11
c11c22−c212

+ µ2Λ
π2 + µ2

2π ik

)
.

(9)
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To perform the renormalization, we define the physical
quantities a11, a12, and a22 so that the T-matrix takes
the form

[T (E)]−1 =

(
µ1

2π
1

a11
+ µ1

2π ip −
√
µ1µ2

2π
1

a12

−
√
µ1µ2

2π
1

a12

µ2

2π
1

a22
+ µ2

2π ik

)
. (10)

Comparing Eq. (10) with Eq. (9), we introduce the cutoff
Λ dependence in the bare parameters c11, c12, and c22 so
that a11, a12, and a22 are cuttoff-independent:

c22(Λ)

c11(Λ)c22(Λ)− c212(Λ)
+
µ1Λ

π2
=
µ1

2π

1

a11
, (11)

c11(Λ)

c11(Λ)c22(Λ)− c212(Λ)
+
µ2Λ

π2
=
µ2

2π

1

a22
, (12)

c12(Λ)

c11(Λ)c22(Λ)− c212(Λ)
=

√
µ1µ2

2π

1

a12
. (13)

Taking the Λ → ∞ limit with the physical quantities
a11, a12, and a22 kept finite, the inverse matrix of the
scattering amplitude is given by

[fC(E)]−1 =

(
− 1

a11
− ip 1

a12
1

a12
− 1

a22
− ik

)
, (14)

where the relation between the T-matrix and scattering
amplitude fij = −√

µiµjTij/(2π) is used. From Eq. (14),
we obtain the scattering amplitude

fC(E) =
1

1
a2
12

−
(

1
a11

+ ip
)(

1
a22

+ ik
)

×
( 1

a22
+ ik 1

a12
1

a12

1
a11

+ ip

)
. (15)

Hereafter, we call this amplitude fC(E) the Contact am-
plitude.

It is instructive to discuss the relation between the
Contact amplitude and the two-channel M-matrix type
scattering amplitude derived from the optical theorem.
The general form of the inverse of the two-channel scat-
tering amplitude is given as

[f(E)]−1 =

(
M11(E)− ip M12(E)
M12(E) M22(E)− ik

)
, (16)

using the M-matrix Mij(E), which is a function of the
energy [25]. In Eq. (16), by setting Mij(E) as a constant
Mij = 1/aij , we recover the Contact amplitude (14).
In other words, it can be seen that the Contact ampli-
tude fC(E) in Eq. (15) is a special case of the M-matrix
type scattering amplitude. This ensures that fC(E) is a
general low-energy scattering amplitude consistent with
the optical theorem near the threshold where the higher-
order terms in energy E can be neglected. From Eq. (15),
we find that the general form of the two-channel scat-
tering amplitude is characterized by three parameters
a11, a12, and a22 near the threshold. In general, by im-
posing the time-reversal symmetry on the M-matrix rep-
resentation, the off-diagonal components of the M-matrix

becomes Mij = Mji, so the N channel scattering ampli-
tude has N(N + 1)/2 independent parameters near the
threshold (see Appendix A).
We now discuss the scattering length and effective

range at the threshold of channel 2 (higher energy thresh-
old) using the Constant amplitude in Eq. (15). Expand-
ing the denominator of the (2,2) component of the scat-
tering amplitude fC22(E) in terms of the momentum k, we
obtain

fC22(E) =

[
1

a212

(
1

a11
+ ip0

) − 1

a22

− i

2a212

(
1

a11
+ ip0

)2
p0

k2 − ik +O(k4)

]−1

,

(17)

where p0 =
√
2µ1∆ represents the momentum of chan-

nel 1 at the threshold of channel 2. The denominator of
fC22(E) is composed only of the even powers in k, except
for the term −ik. Therefore, fC22(E) can be written in the
form of the effective range expansion in k, the momen-
tum of channel 2. As in the case of the single channel
scattering (1), we define the scattering length aC from
the constant term and the effective range rC from the
coefficient of the k2 term in the denominator of fC22(E)
in Eq. (17). The scattering length aC is given by

aC =
a212a22 (1 + ip0a11)

a212 (1 + ip0a11)− a11a22
. (18)

For later discussion, we decompose aC into the real and
imaginary parts:

aC =
a412a22(1 + p20a

2
11)− a11a

2
12a

2
22

(a212 − a11a22)2 + p20a
2
11a

4
12

− i
p0a

2
11a

2
12a

2
22

(a212 − a11a22)2 + p20a
2
11a

4
12

. (19)

This expression confirms the relation Im(aC) < 0 re-
quired by the optical theorem. Similarly, the effective
range rC is obtained as

rC = − i

p0

{
a11

a12 (1 + ip0a11)

}2

. (20)

Note that both aC and rC are in general complex, reflect-
ing the effect of the decay into channel 1. We also expand
the denominator of the (1,1) component of the scattering
amplitude fC11(E) (lower energy channel) in terms of k

fC11(E) =
a212
a222

[
1

a22
− a212
a11a222

− i
a212
a222

p0

−
(
a22 + i

a212
2a222p0

)
k2 − ik +O(k3)

]−1

. (21)

In contrast to fC22(E), the denominator of fC11(E) contains
the terms of k3 or more odd powers. Therefore, fC11(E)
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cannot be written in the form of the effective range ex-
pansion in k, and the scattering length and effective range
should be defined not in fC11(E) but in fC22(E).

We comment on the higher order corrections to the
effective range of the Contact amplitude rC in Eq. (20),
which is written only by the parameters a11, a12, and
a22. Considering the higher order terms of the interaction
Lagrangian in the derivative expansion, one can enlarge
the applicable energy region of the EFT. The inclusion
of the next-to-leading order terms gives the scattering
amplitude

[fC(E)]−1 ≃

(
− 1

a11
+ a

(2)
11 k

2 − ip 1
a12

+ a
(2)
12 k

2

1
a12

+ a
(2)
12 k

2 − 1
a22

+ a
(2)
22 k

2 − ik

)
,

(22)

where a
(2)
11 , a

(2)
12 and a

(2)
22 are the coefficients of the k2

terms. The scattering length aC determined by fC22(E)
in Eq. (22) remains unchanged from the expression in
Eq. (18), i.e., aC does not suffer from the higher order cor-
rections. In contrast, the effective range rC contains the

higher order corrections with a
(2)
11 , a

(2)
12 and a

(2)
22 . Thus,

the expression of rC in Eq. (20) is valid only in the leading
order EFT, and the value can be modified by including
the higher order corrections.

B. Flatté amplitude

In this section, we first show the derivation of the
Flatté amplitude in the EFT. The Lagrangian that gives
the Flatté amplitude is [30]

LF = LF
0 + LF

int, (23)

LF
0 = ψ†

1

(
i∂0 +

∇2

2m1
− (m1 −m2)

)
ψ1

+ ϕ†1

(
i∂0 +

∇2

2M1
− (M1 −M2)

)
ϕ1

+ ψ†
2

(
i∂0 +

∇2

2m2

)
ψ2 + ϕ†2

(
i∂0 +

∇2

2M2

)
ϕ2

+Ψ†
(
i∂0 +

∇2

2M
− ν

)
Ψ, (24)

LF
int = ĝi

(
ψ†
iϕ

†
iΨ+Ψ†ϕiψi

)
, (25)

where LF
0 is the free Lagrangian and LF

int is the interac-
tion Lagrangian. In addition to the ψi and ϕi fields, we
introduce the bare field Ψ with mass M . The parameter
ν =M− (m2+M2) represents the bare energy measured
from the threshold of channel 2. The parameter ĝi stands
for the coupling constant between the scattering state of
channel i and the bare field.

From the Lagrangian LF, the coupled-channel poten-
tial VF(E) for the two-body to two-body process is given

by

VF(E) =
1

E − ν

(
ĝ21 ĝ1ĝ2
ĝ1ĝ2 ĝ22

)
, (26)

using the bare parameters ν, ĝ1, and ĝ2. The potential
VF(E) describes the transition between the scattering
states through the s-channel exchange of the bare field Ψ.
It follows from the expression (26) that det[VF(E)] = 0,
and therefore VF(E) does not have the inverse matrix.
Hence, VF cannot be directly substituted into the ex-
pression (6) and we use an equivalent equation without
V −1:

T (E) = [1̂− V (E)GΛ(E)]−1V (E). (27)

Substituting VF(E) into Eq. (27), we obtain the T-matrix

T (E) =

[
E − ν + ĝ21

(
µ1Λ

π2
+
µ1

2π
ip

)
+ĝ22

(
µ2Λ

π2
+
µ2

2π
ik

)]−1(
ĝ21 ĝ1ĝ2
ĝ1ĝ2 ĝ22

)
. (28)

To perform the renormalization, we define the physical
quantities EBW, g1, and g2 so that the T-matrix takes
the form

T (E) =
1

2E − 2EBW + ig21p+ ig22k

×

(
2π
µ1
g21

2π√
µ1µ2

g1g2
2π√
µ1µ2

g1g2
2π
µ2
g22

)
. (29)

Comparing Eq. (28) with Eq. (29), we introduce the cut-
off Λ dependence in the bare parameters ν, ĝ1, and ĝ2 so
that EBW, g1, and g2 are cuttoff-independent:

ν(Λ)− g21
Λ

π
− g22

Λ

π
= EBW, (30)

ĝ1(Λ) =

√
π

µ1
g1, (31)

ĝ2(Λ) =

√
π

µ2
g2. (32)

Note that there is no Λ-dependence in the coupling con-
stants ĝ1 and ĝ2. Taking the Λ → ∞ limit with the
physical quantity EBW kept finite, the Flatté scattering
amplitude is obtained as

fF(E) =
1

2EBW − 2E − ig21p− ig22k

×
(
g21 g1g2
g1g2 g22

)
, (33)

It is clear in Eq. (33) that the energy dependence of the
Flatté amplitude is common to all the coupled-channel
components. The expansion of the denominator of each
component in powers of k is given by

fFij(E) ∝ 1
2EBW−ig2

1p0

g2
2

−
(

1
µ2g2

2
+ i

g2
1

2p0g2
2

)
k2 +O(k4)− ik

.

(34)
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In this way, all the components of the Flatté amplitude
are compatible with the effective range expansion, in con-
trast to the Contact amplitude. We thus determine the
scattering length (aF) and effective range (rF) of the
Flatté amplitude as

aF =
g22

ig21p0 − 2EBW
, (35)

rF = − 2

µ2g22
− i

g21
p0g22

. (36)

The imaginary part of the effective range in Eq. (36)
stems from the expansion of p (momentum of channel 1)
in terms of k. When the threshold energy difference ∆
is large, the momentum p can be approximated by its
threshold value p0, as was done in Ref. [21]. In this case,
the imaginary part does not appear and rF is obtained
as a negative real value.

It was pointed out that the number of parameters in
the Flatté amplitude decreases near the threshold, due
to the scaling behavior [21]. From Eq. (33), one finds
that the Flatté amplitude generally has three parameters,
EBW, g1, and g2. To consider the scattering in the low-
energy region near the threshold of channel 2, we keep
the terms up to linear order in k in the denominator, and
fF(E) takes the form

fF(E) ≃ 1
α
Rp0 − i 1Rp0 − ik

 1
R

√
1
R√

1
R 1

 , (37)

where we define the parameters R and α as

g22
g21

= R,
2EBW

g21p0
= α, (38)

This gives the approximation of the Flatté amplitude up
to the first order of k. In the following, for simplicity,
the approximated amplitude in Eq. (37) is also referred
to as the Flatté amplitude. Equation (37) shows that the
Flatté amplitude can be expressed only by two parame-
ters R and α near the threshold. In other words, three
parameters of the Flatté amplitude are reduced to two
near threshold [21]. As mentioned in Sec. II A, the near-
threshold two-channel scattering amplitude generally has
three independent parameters. This indicates that some
constraint is imposed on the Flatté amplitude near the
threshold.

C. Comparison of two amplitudes

We have seen that there is some constraint in the Flatté
amplitude which reduces the number of independent pa-
rameters. To clarify this constraint, we focus on the de-
terminant of the scattering amplitude matrix. From the
separable form of the residue in Eq. (33), one finds that
the rank of the matrix fF(E) is one, and therefore its

determinant vanishes:

det
[
fF(E)

]
= 0. (39)

This is caused by the same property of the potential
VF(E) we mentioned in Eq. (26):

det [VF(E)] = 0. (40)

As seen in Eq. (27), det [f(E)] = 0 holds for the potential
satisfying det [V (E)] = 0. Physically speaking, the van-
ishing of the determinant is due to the pole term nature
of VF(E) and fF(E). It is known that the residue matrix
of the pole term in the coupled-channel scattering should
be rank one [4], and both VF(E) and fF(E) are given
by a single pole term without any background scatter-
ing contribution. The condition (39) can be related to
the constraint imposed on the Flatté amplitude near the
threshold.
The Contact amplitude fC(E) is considered as a gen-

eral form of the two-channel scattering amplitude near
the threshold. It is therefore expected that fC(E) re-
duces to the Flatté amplitude near the threshold by im-
posing the condition det

[
fC(E)

]
= 0. From Eq. (15),

the determinant of fC(E) is given by

det
[
fC(E)

]
= − 1

1
a2
12

−
(

1
a11

+ ip
)(

1
a22

+ ik
) , (41)

which is nonzero for finite a11, a12, and a22. The condi-
tion det

[
fC(E)

]
= 0 is achieved by letting at least one of

a11, a12, and a22 be zero. When we take the limit a22 → 0
with a12 ̸= 0 and a11 ̸= 0, the Contact amplitude reduces
to

fC(E) =
1

− 1
a11

− ip(E)

(
1 0
0 0

)
, (42)

which represents the single-channel scattering in channel
1. This amplitude satisfies det[fC(E)] = 0 and does not
have an inverse matrix, but is not the Flatté amplitude.
In the same way, taking only a11 → 0 results in the elastic
scattering amplitude in channel 2. The limit a12 → 0
gives the the trivial amplitude with all components being
zero. In this way, none of these limits can reproduce the
coupled-channel Flatté amplitude. Furthermore, setting
two of the parameters zero with the remaining one being
finite also results in the trivial amplitude. Therefore, in
order to obtain a sensible coupled-channel amplitude, all
the parameters must be simultaneously taken to be zero:

a11, a12, a22 → 0. (43)

In this case, the Contact amplitude is indefinite and the
result depends on the ratios of aij .
In summary, we show that the difference between the

Flatté and Contact amplitudes can be characterized by
the determinant of the amplitude, det[fC(E)] ̸= 0 and
det[fF(E)] = 0. However, the Contact amplitude does
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not directly reduce to the Flatté amplitude by impos-
ing the condition det[fC(E)] = 0 with the parameters
a11, a12, and a22. In other words, fC(E) is not a suitable
form to study the connection with the Flatté amplitude,
although it represents the general form of the coupled-
channel scattering amplitude.

III. GENERAL AMPLITUDE

In the previous section, we observe that the Flatté am-
plitude follows the condition det

[
fF(E)

]
= 0 and the

Contact amplitude cannot directly be reduced to the
Flatté amplitude. In this section, we first discuss the
condition det [f(E)] = 0 in relation with the renormaliza-
tion procedure in the Contact amplitude, and construct
an expression of the scattering amplitude in which the
condition det [f(E)] = 0 can be imposed by smoothly
changing the parameters. We call this expression the
General amplitude fG, and show that fG reproduces
both the Contact amplitude and the Flatté amplitude in
Sec. III B. We extract the scattering length in the General
amplitude and compare with that of the Flatté amplitude
in Sec. III C. The decomposition of the General ampli-
tude into the pole and background terms is discussed in
Sec. IIID.

A. Formulation

To investigate the condition det
[
fC(E)

]
= 0 in more

detail, we focus on the renormalization condition of the
Contact amplitude. The first terms in the left hand
side of the renormalization conditions (11)-(13) contain
det [VC] = c11c22 − c212 in the denominator. In other
words, det [VC] must be nonzero to adopt the renormal-
ization condition (11)-(13) that gives a11, a12, and a22.
This explains the observation in the previous section
that Eq. (43) is required to achieve det

[
fC(E)

]
= 0.

Therefore, to construct an amplitude which is smoothly
connected to det

[
fC(E)

]
= 0, we need to modify the

renormalization condition so that it is compatible with
det [VC] = 0. For this purpose, we first consider the po-
tential with two parameters c22 and x

V
(0)
G =

(
c22x c22

√
x

c22
√
x c22

)
, (44)

which is a special case of VC with c11 = c22x and c12 =

c22
√
x, but at the same time the condition det[V

(0)
G ] =

0 is satisfied. Substituting V
(0)
G into the Lippmann-

Schwinger equation (27), we obtain the T-matrix as

TG(0)(E) =

[
1

c22
+ x

µ1Λ

π2
+
µ2Λ

π2
+ x

µ1

2π
ip+

µ2

2π
ik

]−1

×
(
x

√
x√

x 1

)
. (45)

We express the renormalized T-matrix with the physical
quantities A22, ϵ as

TG(0)(E) =
1

1
A22

+ iϵp+ ik

(
2π
µ1
ϵ 2π√

µ1µ2

√
ϵ

2π√
µ1µ2

√
ϵ 2π

µ2

)
.

(46)

This is achieved by the renormalization conditions

x(Λ) =
µ2

µ1
ϵ, (47)

1

c22(Λ)
+ x(Λ)

µ1Λ

π2
+
µ2Λ

π2
=
µ2

2π

1

A22
. (48)

Taking the Λ → ∞ limit, the renormalized scattering
amplitude is obtained as

fG(0)(E) =
1

− 1
A22

− iϵp− ik

(
ϵ

√
ϵ√

ϵ 1

)
. (49)

In this way, we obtain the coupled-channel Contact am-
plitude with det[f(E)] = 0, by imposing the condition
det[V ] = 0 and modify the renormalization condition.
On the other hand, comparing Eq. (49) and Eq. (37), we
see that fG(0)(E) is equivalent to the Flatté amplitude
up to the first order in k with the identification

ϵ =
1

R
, (50)

A22 = − R

αp0
, (51)

in Eq. (49). In this way, we show that there is a well-
defined limit of the Contact amplitude with det[f(E)] =
0, which is nothing but the Flatté amplitude. With these
relations and Eq. (38), the Flatté scattering length aF in
Eq. (35) can also be written by A22 and ϵ as

aF =
1

1
A22

+ iϵp0
. (52)

The remaining task is to construct the scattering am-
plitude which is smoothly connected to fG(0)(E). To this
end, we propose the parametrization of the potential

VG =

(
c22x c22

√
x− y

c22
√
x− y c22

)
, (53)

with real bare parameters c22, x, and y. We require x ≥ y
for the hermiticity of the Hamiltonian. The potential VG
is obtained by setting

c11 = c22x, c12 = c22
√
x− y, (54)

in VC, and because of three independent parameters. The
determinant of VG is obtained as

det[VG] = c222y. (55)

Therefore, the determinant of VG vanishes with y = 0 or
c22 = 0, but the latter is not of our interest because it
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yields the trivial scattering. With y = 0, the potential

becomes V
(0)
G in Eq. (44), which gives the Flatté ampli-

tude. Namely, the parametrization in Eq. (53) allows one

to control det[VG] by the parameter y.
Next, we derive the scattering amplitude using VG.

Substituting VG into Eq. (27), the T-matrix is obtained
as

TG(E) =
1

D(E)

x+ c22y
(

µ2Λ
π2 + µ2

2π ik
) √

x− y
√
x− y 1 + c22y

(
µ1Λ
π2 + µ1

2π ip
) , (56)

D(E) =
1

c22
+ x

µ1Λ

π2
+
µ2Λ

π2
+ c22y

µ1µ2Λ
2

π4
+

(
x
µ1

2π
+ c22y

µ1µ2Λ

2π3

)
ip+

(
µ2

2π
+ c22y

µ1µ2Λ

2π3

)
ik − c22y

µ1µ2

4π2
pk.

(57)

which recovers Eq. (45) with y = 0. By introducing the
Λ-dependence of c22(Λ), x(Λ), and y(Λ) with the physical
quantities A22, ϵ, and γ as

c22(Λ) = 2π2A22γ (πµ1 − 2µ1A22γΛ)

× [(2µ2A22γΛ− πµ2ϵ) (2µ1A22γΛ− πµ1)

−π2µ1µ2(ϵ− γ)
]−1

, (58)

x(Λ) =
2µ2A22γΛ− πµ2ϵ

2µ1A22γΛ− πµ1
, (59)

y(Λ) = [(2µ2A22γΛ− πµ2ϵ) (2µ1A22γΛ− πµ1)

−π2µ1µ2(ϵ− γ)
]
(πµ1 − 2µ1A22γΛ)

−2
, (60)

we obtain the scattering amplitude fG(E) in the Λ→ ∞
limit as

fG(E) =
1

− 1
A22

− iϵp− ik +A22γpk

×
(
ϵ+ iA22γk

√
ϵ− γ√

ϵ− γ 1 + iA22γp

)
. (61)

In the following, we call fG(E) the General amplitude.
When γ ̸= 0, fG(E) has an inverse matrix, which is given
by

[
fG(E)

]−1
=

(
− 1

A22

1
γ − ip 1

A22

√
ϵ−γ
γ

1
A22

√
ϵ−γ
γ − 1

A22

ϵ
γ − ik

)
. (62)

It is seen in this form that the physical parameters should
satisfy ϵ > γ in order to be consistent with the optical
theorem.

B. Relation with Contact and Flatté amplitudes

In this section, we compare the General amplitude
fG(E) with the Contact amplitude fC(E) and the Flatté
amplitude fF(E) in terms of the parameters. First we
show that fG(E) contains both fC(E) and fF(E) in the

γ

ϵ, A22
Flatté amplitude fF

Contact amplitude f C

Contact amplitude f C

FIG. 1. Schematic illustration of the parameter space of the
General amplitude fG in relation with the Contact amplitude
fC and Flatté amplitude fF.

parameter space. By comparing the inverse of the Con-
tact amplitude Eq. (14) with that of the General ampli-
tude (62), we find the relations

a11 = A22γ, (63)

a12 =
A22γ√
ϵ− γ

, (64)

a22 =
A22γ

ϵ
. (65)

In this case, however, the condition γ ̸= 0 is imposed
in the General amplitude, as mentioned above. On the
other hand, imposing the condition γ = 0 on fG(E) in
Eq. (61), we obtain

fG(E;A22, ϵ, γ = 0) =
1

− 1
A22

− iϵp− ik

(
ϵ

√
ϵ√

ϵ 1

)
.

(66)

Thus, we find that fG(E) reduces to Eq. (49) which is
the Flatté amplitude up to the first order in k. Therefore,
we find that the General amplitude fG(E) with γ ̸= 0 is
the Contact amplitude fC(E) and the General amplitude
reduces to the Flatté amplitude at γ = 0 (see Fig. 1).
We are now in a position to revisit the relation between

the Contact amplitude fC(E) with the Flatté amplitude
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fF(E) using the parameters of the General amplitude
A22, ϵ, and γ. In Sec. II C, we have shown that the Con-
tact amplitude cannot reduce to the Flatté amplitude
directly. First, from Eqs. (63)-(65), the condition γ = 0
indicates that all the parameters in the Contact ampli-
tude vanish:

a11 → 0 (γ → 0), (67)

a12 → 0 (γ → 0), (68)

a22 → 0 (γ → 0). (69)

This is in fact the condition discussed in the section IIC
for the determinant of the Contact amplitude to vanish
with the coupled-channel amplitude. Thanks to the re-
lations (63)-(65), we can now establish the ratios of the
aij parameters in the γ → 0 limit to obtain the Flatté
amplitude. For any value of γ, the following relations
hold:

a11

(
1

a212
− 1

a11a22

)
= − 1

A22
, (70)

a11
a22

= ϵ. (71)

In addition, Eqs. (63) and (64) shows that the relation

a11
a12

→
√
ϵ (γ → 0), (72)

holds in the limit of γ → 0. Rewriting the Contact am-
plitude in Eq. (15) as

fC(E) =
1

a11

(
1

a2
12

− 1
a11a22

)
− ik − ia11

a22
p+ a11pk

×
(a11

a22
+ ia11k

a11

a12
a11

a12
1 + ia11p

)
, (73)

and sending all aij to zero with keeping the ratios in
Eqs. (70)-(72), we find that fC(E) reduces to

lim
a11,a12,a22→0

fC(E) =
1

− 1
A22

− ik − iϵp

(
ϵ

√
ϵ√

ϵ 1

)
, (74)

which is the Flatté amplitude in the form of f
(0)
G (E) in

Eq. (49).
As mentioned in Sec. II C, the Contact amplitude

cannot reproduce the Flatté amplitude with finite pa-
rameters a11, a12, and a22. Here we show that the
parametrization of the General amplitude with A22, ϵ,
and γ is suitable to smoothly connect the Contact am-
plitude and the Flatté amplitude. This is essential to
examine the constraints in the cross sections from the
Flatté amplitude by the numerical analysis in the next
section. At the same time, the General amplitude clari-
fies the conditions (70), (70), and (72) required to obtain
the Flatté amplitude from the Contact amplitude by tak-
ing the limit aij → 0.

C. Scattering length

In this section, we focus on the parameter γ that char-
acterizes the difference between the Contact amplitude
and the Flatté amplitude and discuss the effect of γ on
the scattering length in the General amplitude. First,
we expand the General amplitude in k (momentum of
channel 2) and derive the scattering length of the Gen-
eral amplitude. Next, we show that the constant term
in the denominator of the (1,1) component fG11 is differ-
ent from the value determined by the scattering length,
except for the special case γ = 0 corresponding to the
Flatté amplitude.

Expanding the denominator of the (2,2) component of
the General amplitude fG22(E) in Eq. (61), we obtain

fG22(E) =

[
− 1

A22

(
1

A22
+ iϵp0

1
A22

+ iγp0

)
− i (ϵ− γ)

2 (1 + iA22γp0)
2
p0
k2

− ik +O(k4)

]−1

. (75)

Because this is consistent with the effective range expan-
sion, the scattering length of the General amplitude is
defined as

aG = A22

(
1

A22
+ iγp0

1
A22

+ iϵp0

)
(76)

= A22

1
A2

22
+ ϵγp20

1
A2

22
+ ϵ2p20

− i
(ϵ− γ) p0
1

A2
22

+ ϵ2p20
. (77)

Thanks to the condition ϵ > γ, the the requirement by
the optical theorem Im(aG) < 0 is guaranteed in Eq. (77).

On the other hand, the (1,1) component fG11(E) gives

fG11(E) =
ϵ2

ϵ− γ

[
− 1

A22

ϵ

ϵ− γ
− i

ϵ2

ϵ− γ
p0

−
(
A22

γ

ϵ
+ i

1

2p0

ϵ2

ϵ− γ

)
k2 +O(k3)− ik

]−1

.

(78)

As in the case of the Contact amplitude in Eq. (21), this
expansion contains the odd power terms. In this way,
we confirm that for γ ̸= 0, only the (2,2) component
of the General amplitude can be written in the form of
the effective range expansion, while the (1,1) component
cannot. To discuss the relation between the scattering
length of the General amplitude aG and that of the Flatté
amplitude aF, we define bG from the constant term of the
denominator fG11(E) in Eq. (78):

fG11(E) ∝ 1

− 1
bG

− ik +O(k2)
, (79)
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This gives bG as

bG =
(ϵ− γ)

(
1

A22
− iϵp0

)
ϵ
(

1
A2

22
+ ϵ2p20

)
=

(ϵ− γ) 1
A22

ϵ
(

1
A2

22
+ ϵ2p20

) − i
(ϵ− γ) p0
1

A2
22

+ ϵ2p20
. (80)

Comparison with Eq. (75) shows that the imaginary part
of bG is identical with that of aG. The real parts are,
however, in general different from each other.

By setting γ = 0, the real part of bG also coincide with
that of aG. In fact, from Eqs. (75) and (80), aG and bG
with γ = 0 are given by

aG =
1

1
A22

+ iϵp0
(γ = 0), (81)

bG =
1

1
A22

+ iϵp0
(γ = 0). (82)

This is natural because the General amplitude reduces to
the Flatté amplitude at γ = 0. From Eq. (52), we find
the relation

aG = bG = aF (γ = 0), (83)

which shows that both aG and bG reduce to the scatter-
ing length of the Flatté amplitude aF. In this way, we
find that the scattering length of the Flatté amplitude aF
corresponds to the value in the special case with γ = 0.
In general, the constant term bG defined in fG11(E) is dif-
ferent from the scattering length aG given in fG11(E).

D. Pole and zero of amplitude

In the previous section, it is found that the parameter
γ in the General amplitude characterizes the difference
between the Contact amplitude and the Flatté ampli-
tude. In this section, we discuss the interpretation of
this parameter γ, by studying the pole and zero of the
amplitude. In the single-channel case, by truncating the
effective range expansion in Eq. (1) up to the first or-
der in k, the amplitude has one pole at k = kp = i/a
determined by the scattering length a. The scattering
amplitude is given only by the pole term:

f(k) =
i

k − kp
. (84)

In general, f(k) has no zero unless we include a pole
in the effective range expansion (Castillejo-Dalitz-Dyson
zero [31–33]). For the comparison with the single-channel
case, here we use the General amplitude up to the first or-
der in k, by neglecting the k dependence in the channel 1

momentum as p =
√

(µ1/µ2)k2 + 2µ1∆ ≃ p0 =
√
2µ1∆:

fG(E) =
1

− 1
A22

− iϵp0 − ik +A22γp0k

×
(
ϵ+ iA22γk

√
ϵ− γ√

ϵ− γ 1 + iA22γp0

)
. (85)

This approximation is justified when the threshold energy
difference ∆ is sufficiently large.
First, we extract the pole term contribution from

the General amplitude fG(E). The General amplitude
fG(E) in Eq. (85) has only one pole at k = kGp :

kGp =
1

A22
+ iϵp0

A22γp0 − i
=

i

aG
, (86)

which is common in all the components and determined
by the scattering length aG, as in the case of the single-
channel scattering. It can be seen that the pole appear
near the threshold when the magnitude of the scattering
length |aG| is large. Let us rewrite each component of
fG(E) in Eq. (85) with the pole momentum kGp . First,

fG22(E) and fG12(E) components are given by

fG22(E) =
i

k − kGp
, (87)

fG12(E) =

√
ϵ− γ

1 + iA22γp0

i

k − kGp
, (88)

which can be written only by the pole term proportional
to i/(k − kGp ). On the other hand, fG11(E) is written by

fG11(E) =
ϵ− γ

(1 + iA22γp0)2
i

k − kGp
+

A22γ

1 + iA22γp0
, (89)

which has a constant background term in addition to the
pole term. In summary, fG(E) can be decomposed into
the pole term fGp (E) and the background term fGp (E):

fG(E) = fGp (E) + fGbg, (90)

fGp (E) =
i

k − kGp

(
ϵ−γ

(1+iA22γp0)2

√
ϵ−γ

1+iA22γp0√
ϵ−γ

1+iA22γp0
1

)
, (91)

fGbg =

(
A22γ

1+iA22γp0
0

0 0

)
, (92)

where one confirms det[fGp (E)] = 0 because of the rank
one nature of the pole term. As mentioned above, up to
the linear order in k, the single-channel scattering am-
plitude (84) is given only by the pole term without the
background contribution. In this sense, we can say that
the appearance of the background term in the first order
in momentum reflects the effect of the channel couplings.
This is caused by the k dependence in the numerator of
the (1,1) component of fG(E) in Eq. (85). Therefore,
the existence of the background term fGbg in the General

amplitude fG(E) is a property unique to the coupled
channel scattering.
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Imposing the condition γ = 0 on Eq. (90), we obtain

fG(E;A22, γ = 0, ϵ) =
i

k − kFp

(
ϵ

√
ϵ√

ϵ 1

)
, (93)

where kFp = i/A22 − ϵp0 is the pole of the Flatté ampli-

tude. When γ = 0, the background term fGbg disappears,
because the Flatté amplitude consists of the pure pole
term. This indicates that the parameter γ should be
nonzero to have the background contribution. However,
we see from Eq. (92) that the background term fGbg de-
pends on the parameter A22 as well, so the magnitude
of the background is not exclusively determined by γ.
Furthermore, note that the pole position kGp in Eq. (86)
depends on γ and therefore γ plays an important role
also in the pole term.

In general, the interference between the background
term and the pole term can generate zeros of the scat-
tering amplitude [4]. Therefore, the (1,1) component
of the General amplitude can have a zero point where
fG11(E) = 0. From Eq. (85), the momentum kGzero where
the amplitude vanishes is given by

kGzero = i
1

A22

ϵ

γ
. (94)

Since A22, ϵ, and γ are the real parameters, we find that
kGzero is pure imaginary. Therefore, in terms of the en-
ergy variable, the zero point appears below the threshold.
Furthermore, physical scattering below the threshold of
channel 2 corresponds to the imaginary axis of the upper
half of the complex k-plane Im(k) > 0. Therefore, the
zero point of fG11(E) appears in the physical scattering re-
gion only if Im(kGzero) > 0. On the other hand, the Flatté
amplitude (General amplitude with γ = 0) has no zero
point because there is no background contribution. This
is reflected in Eq. (94) which shows that |kGzero| → ∞ and
the zero point disappears in the limit γ → 0.
We have seen that the (1,1) component of the general

amplitude has a zero point, which is absent in the Flatté
amplitude. Therefore, if the experimental data contains
a zero point in the physical energy region Im(k) > 0
near the threshold, the analysis with the Flatté ampli-
tude would fail to reproduce the data. In Sec. IV, we
quantitatively compare the Flatté amplitude with the
General amplitude in terms of the scattering cross sec-
tion when kGzero appears in the physical region near the
threshold.

IV. NUMERICAL ANALYSIS

In this section, by using the General amplitude, we
examine the behavior of the total cross sections when a
resonance pole of the scattering amplitude locates near
the threshold of channel 2. Here, we investigate the be-
havior of the scattering cross section by varying γ with
the scattering length aG fixed. In this way, it is possible
to compare the Flatté amplitude γ = 0 with the general

case γ ̸= 0, having the same amplitude at the threshold.
First, in Sec. IVA, we study the parameter regions of A22

and ϵ when γ varies for a fixed aG. Next, we summarize
the actual values of the parameters used in the numerical
calculation in Sec. IVB. Finally, in Sec. IVC, we discuss
the behavior of the scattering cross section numerically.

A. Parameter regions

The General amplitude fG(E) in Eq. (61) has three
real parameters A22, ϵ, and γ. We write the real and
imaginary parts of the scattering length aG in Eq. (77)
as

aG = α+ iβ, (95)

using the real constants α and β, with the condition
β < 0. Because α and β are given by A22, ϵ, and γ,
when we fix aG, A22 and ϵ are determined from α, β, and
γ. Since the relation between the parameters and the
scattering length is not linear, we first discuss the be-
havior of the remaining two parameters A22, ϵ when the
scattering length aG is fixed.

Substituting the expression of the scattering length
aG (76) into Eq. (95), we obtain

1 + iA22γp0 =
α

A22
− ϵβp0 + i

(
β

A22
+ ϵαp0

)
. (96)

The real and imaginary parts of Eq. (96) yields the fol-
lowing two conditions:

1 =
α

A22
− ϵβp0, (97)

A22γp0 =
β

A22
+ ϵαp0. (98)

Solving Eq. (97) for ϵ, we obtain

ϵ =
1

βp0

(
α

A22
− 1

)
. (99)

We eliminate ϵ by substituting Eq. (99) into Eq. (98).
This gives a quadratic equation of A22, whose two solu-
tions are

A±
22 =

−α
β ±

√(
α
β

)2
+ 4γp0

(
β + α2

β

)
2γp0

. (100)

This gives the expression of the parameter A22 in terms
of α, β, and γ. Corresponding ϵ is obtained from Eq. (99)
as

ϵ±(α, β, γ) =
1

βp0

(
α

A±
22(α, β, γ)

− 1

)
, (101)

In this way, there are two parameter sets (A+
22, ϵ

+, γ) and
(A−

22, ϵ
−, γ) for a given scattering length aG. To have a
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real parameter A22, the quantity in the square root in
Eq. (100) must be nonnegative, leading to the condition
among parameters(

α

β

)2

+ 4γp0

(
β +

α2

β

)
≥ 0. (102)

Furthermore, considering β < 0 required by the unitarity,
we obtain the following condition for γ:(

α
β

)2
4p0

(
|β|+ α2

|β|

) ≥ γ. (103)

This shows that the range of the parameter γ has an
upper bound

γmax =

(
α
β

)2
4p0

(
|β|+ α2

|β|

) , (104)

to reproduce the given scattering length aG. We note
that the inequality (102) is saturated at γ = γmax lead-
ing to A+

22 = A−
22 and ϵ+ = ϵ−. In other words, the two

parameter sets (A+
22, ϵ

+, γ) and (A−
22, ϵ

−, γ) are continu-
ously connected at γ = γmax.

B. Setup

To examine the behavior of A22 and ϵ numerically, we
consider the ππ-KK̄ system as an example. Since the
threshold of KK̄ (∼ 990 MeV) is far from that of ππ
(∼ 280 MeV), we use the relativistic expression of the
momentum

k =

√
(E + 2mK)2

4
−m2

K , (105)

p =

√
(E + 2mK)2

4
−m2

π. (106)

In this case, the momentum p at the threshold of channel
2 is evaluated as p0 =

√
m2

K −m2
π. The hadron masses

are taken from PDG [3].
First, we fix the scattering length as

aG = +1.0− i0.8 fm, (107)

which is a typical value found in the experimental anal-
ysis [13]. By Eq. (86), the pole of f0(980) is estimated
as

kGp = −0.095 + i0.125 GeV, (108)

EG
p =

[kGp ]
2

mK
= −0.014− i0.048 GeV. (109)

Because the imaginary part of the eigenmomentum is
positive, this pole represent the quasibound state [34].

Note however that the pole position in Eq. (86) is ob-
tained by approximating p ∼ p0, and the exact pole of
the amplitude calculated with p(k) depends not only on
aG but also γ. In the following calculations, we have
checked that the exact pole is found within a few MeV
region from the above values. Also, the upper bound
γmax in Eq. (104) is given by

γmax = 0.079. (110)

Numerical plots of A+
22 (solid line) and A−

22 (dashed line)
for −1.0 ≤ γ ≤ γmax are shown in Fig. 2(a). As expected,
two lines coincide with each other at γ = γmax. From
Fig. 2(a), we find that while A−

22 has a finite value at γ =
0, A+

22 diverges as A+
22 → ±∞ with γ → 0±. That is, for

aG = +1.0 − i0.8 [fm], the Flatté amplitude is obtained
by adopting the solution A−

22 and setting γ → 0. Next,
the plots of ϵ± as functions of γ are shown in Fig. 2(b).
The solid line represents ϵ+ and the dashed line ϵ−. From
Fig. 2(b), we can see that ϵ+ is always positive in this
range of γ, while the sign of ϵ− changes around γ ∼ −0.4.
This property will be discussed in relation with the zero
point of the scattering cross section. It can be checked
that the condition ϵ > γ is satisfied for both solutions in
this parameter region.

It is instructive to consider the case with the scatter-
ing length having the opposite sign of the real part from
Eq. (107). For this purpose, we also examine

aG = −1.0− i0.8 fm. (111)

Corresponding pole position of f0(980) in Eq. (86) is
found to be

kGp = −0.095− i0.125 GeV, (112)

EG
p = −0.014 + i0.048 GeV. (113)

Negative imaginary part of the eigenmomentum suggests
that this pole would be a virtual state in the absence of
the coupling to the ππ channel. According to Ref. [34] we
call this the quasivirtual state. Because γmax in Eq. (104)
is invariant under α → −α, the value in Eq. (110) still
holds in the present case. We plot A22 and ϵ as functions
of γ in Fig. 3. Comparing A±

22 in Fig. 2(a) with those in
Fig. 3(a) we notice that there is some symmetry. In fact,
from Eq. (100), we find the relation A±

22(−α) = −A∓
22(α)

under the sign flip of the real part of the scattering length,
which explains the behaviors in Fig. 2(a) and Fig. 3(a).
This suggests that the Flatté amplitude is obtained by
adopting A+

22 and setting γ → 0 for aG = −1.0− i0.8 fm.
The behaviors of ϵ± in Figs 2(b) and 3(b) can also be
explained by the relation ϵ±(−α) = ϵ∓(α) which follows
from Eq. (101) and the property of A±

22.

C. Total cross sections

In the previous section, we established the behaviors
of A22 and ϵ when the scattering length aG is fixed and
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FIG. 2. Parameters A22 (a) and ϵ (b) as functions of γ with
the scattering length aG = +1.0− i0.8 fm. The solid (dashed)
lines represent A+

22 and ϵ+ (A−
22 and ϵ−). The shaded area is

excluded by the condition ϵ > γ by the optical theorem.

γ is varied. In this section, we discuss the behavior of
the scattering cross section with representative values of
the parameters. In the near threshold region where the
s-wave contribution dominates, the total cross section
σij(E) is given by

σij(E) = 4π
pi
pj

|fij(E)|2. (114)

Because the cross section is proportional to |fji(E)|2, in
this section, we use

σN
ij(E) ≡ |fij(E)|2/|fij(0)|2, (115)

which is normalized at the threshold.
Before performing the numerical analysis, let us exam-

ine the analytic properties of σN
ij(E). From Eq. (85), the

(1,1) component of the cross section σN
11(E) is given by

σN
11(E) =

∣∣∣∣∣1 + iA22γ
ϵ k

1 + iaGk

∣∣∣∣∣
2

, (116)
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(b)

FIG. 3. Same as Fig. 2 but with aG = −1.0− i0.8 fm.

which depends on three parameters A22, ϵ, and γ. Thus,
even if we fix the scattering length aG, the cross sec-
tion still depends on the parameter γ. In contrast, the
(1,2) and (2,2) components of the normalized cross sec-
tion σN(E) are given by

σN
12(E) = σN

22(E) =

∣∣∣∣ 1

1 + iaGk

∣∣∣∣2 . (117)

which depends exclusively on the scattering length aG.
In other words, they are independent of γ when aG is
fixed. In this way, the γ dependence of the normalized
cross section exists only in the (1,1) component, because
only fG11(E) contains the background term as discussed
in Sec. IIID.
Now we calculate the normalized cross sections near

the threshold of channel 2 by varying γ with the scatter-
ing length aG being fixed. We focus on σN

11(E) that has
γ dependence for a fixed aG. First, we set

aG = +1.0− i0.8 fm

Because γ should be smaller than γmax, we choose γ =
0.07, 0.00, −0.01, −10.0 as representative values. The
corresponding parameters A±

22 and ϵ± are shown in Ta-



13

TABLE I. Parameters A±
22 and ϵ± for aG = +1.0− i0.8 fm.

γ A+
22 (fm) ϵ+ A−

22 (fm) ϵ−

+0.07 +4.95 +0.41 +2.45 +0.31

0.00 - +0.52 +1.64 +0.20

−0.01 −53.4 +0.53 +1.59 +0.19

−10.0 −0.32 +2.14 +0.27 −1.42

: 𝛾 = 0.07

: 𝛾 = −0.01

: 𝛾 = 0.00

: 𝛾 = −10.0
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FIG. 4. The (1,1) component of the normalized cross sections
σN
11(E) = |fG

11(E)|2/|fG
11(0)|2 as functions of the energy E.

The scattering length is fixed as aG = +1.0 − i1.0 fm and
the solution with A−

22 and ϵ− is chosen. The parameter is
γ = 0.07 (dashed line), γ = 0.00 (dotted line), γ = −0.01
(dash-dotted line), and γ = −10.0 (solid line).

ble I. The Flatté amplitude corresponds to the solution
with A−

22 and ϵ− at γ = 0.

Choosing A−
22 and ϵ−, we plot the (1,1) component of

the cross section σN
11(E) for four values of γ in Fig. 4.

The dotted line (γ = 0) corresponds to the cross section
by the Flatté amplitude which shows the peak structure
below the threshold. This is because in this amplitude
there is a quasibound state below the threshold, as dis-
cussed above. The peak locates around E ∼ −0.03 GeV,
which is shifted from the real part of the pole energy
∼ −0.01 GeV due to the threshold effect. When γ is
increased from zero, the peak structure remains, but the
size of the peak becomes smaller than that with γ = 0,
as seen by the dashed line (γ = 0.07). The peak position
moves toward the threshold. On the other hand, the peak
becomes larger when γ is slightly decreased from zero in
the negative direction (γ = −0.01, dash-dotted line). In
this way, the cross sections with small |γ| have a peak
structure, for which the Flatté amplitude can be used to
fit the data. However, if we fit the peaks of, for instance,
the dashed or dash-dotted lines in Fig. 4 using the Flatté
amplitude, the scattering length would be different from
the exact value +1.0− i0.8 fm. Because the value of γ is
not known in advance in the experimental data, the scat-
tering length extracted by the Flatté amplitude might be

deviated from the exact value.
When we adopt a large and negative γ = −10.0 (solid

line in Fig. 4), the cross section σN
11(E) no longer shows

the peak structure but exhibits a dip structure instead, in
sharp contrast to the other cases. In the present case, at
the bottom of this dip, the cross section σN

11(E) becomes
exactly zero, meaning that the scattering amplitude van-
ishes at that energy. This is the manifestation of the
Castillejo-Dalitz-Dyson zero [31–33], caused by the in-
terference between the pole and background, as discussed
in Sec. IIID. From Eq. (94), the zero point of the (1,1)
component fG11(E) of the General amplitude is calculated
as

kGzero = i0.10 GeV, (118)

EG
zero =

[kGzero]
2

mK
= −0.02 GeV. (119)

In fact, the zero point of the cross section indeed occurs
in Fig. 4 at the value of Eq. (119). When the cross sec-
tion shows the dip structure as the solid line (γ = −10.0)
in Fig. 4, the Flatté amplitude does not work. As shown
in Sec. IIID, there is no zero point in the Flatté ampli-
tude, and thus no zero of the cross section occurs. In
addition, the typical Flatté amplitude exhibits either the
peak structure or the threshold cusp structure [21]; the
former corresponds to the dotted line in Fig. 4 and the
latter to the cross section with aG = −1.0− i0.8 fm dis-
cussed below. These structures are clearly different from
the dip structure shown by the solid line (γ = −10.0)
in Fig. 4. In contrast to the typical cross sections, the
solid line in Fig. 4 does not show the peak nor cusp, even
though the pole is near the threshold. This result in-
dicates that the analysis of the exotic hadrons requires
a detailed study of the behavior of the scattering cross
section near the threshold, rather than focusing only on
peaks and cusp (see also Refs. [29, 35]).
In general, the zero point appears in the physical region

when ϵ/(A22γ) > 0. From Fig. 2, this corresponds to γ ≲
−0.4 (A−

22 > 0, ϵ− < 0, γ < 0) or 0 < γ < γmax (A−
22 >

0, ϵ− > 0, γ > 0). Therefore, the dashed line (γ = 0.07)
in Fig. 4 also has a zero point somewhere in the E < 0
region, but the dash-dotted line (γ = −0.01) does not. As
discussed in Eq. (94), when γ is small, the corresponding
momentum becomes large and the zero point appears far
from the threshold. In fact, the zero point energy for
γ = 0.07 is E = −0.25 GeV which locates outside of the
figure.

The results with A+
22 and ϵ+ are shown in Fig. 5. The

case with γ = 0 is not shown because A+
22 diverges. As

mentioned in Sec. IVA, A+
22 and ϵ

+ are continuously con-
nected with A−

22 and ϵ− at γ = γmax, so the dashed line
with γ ∼ γmax in Fig. 5 shows a smaller peak structure
than the dashed line in Fig. 4. In Fig. 5, when γ = −0.01
(dash-dotted line) the peak structure of the cross section
is almost invisible. When γ is further decreased down
to γ = −10.0 (solid line), the zero point appears in the
physical region below the threshold, generating a sharp
dip structure. It can be seen from Fig. 2 that the zero
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FIG. 5. Same as Fig. 2 but with A+
22 and ϵ+.
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FIG. 6. Same as Fig. 2 but the scattering length is fixed as
aG = −1.0− i0.8 fm with A+

22 and ϵ+.

point is always in the physical region irrespective to the
value of γ, since the relations ϵ+ > 0 and A+

22γ > 0 al-
ways hold. The results in Fig. 5 show that if the zero
point is far enough from the threshold with small |γ|,
the peak structure is preserved, but if the zero point ap-
pears near the threshold with large |γ|, the dip structure
is produced. Note also that the solid line in Fig. 5 shows
a cusp at the threshold, even though the amplitude has
a quasibound pole. This is again peculiar feature in the
General amplitude, which cannot be reproduced by the
Flatté amplitude.

Next, we discuss the cross sections with the scattering
length

aG = −1.0− i0.8 fm. (120)

The corresponding parameters A±
22 and ϵ± for γ =

0.07, 0.00, −0.01, −10.0 are shown in Table. II. Choos-
ing A+

22 and ϵ+, we plot the normalized cross sections
σN
11(E) with γ = 0.07, 0.00, −0.01, −10.0 in Fig. 6.

With γ = 0 (Flatté amplitude), the cross section shows

TABLE II. Parameters A±
22 and ϵ± for aG = −1.0− i0.8 fm.

γ A+
22 (fm) ϵ+ A−

22 (fm) ϵ−

+0.07 −2.45 +0.31 −4.95 +0.41

0.00 −1.64 +0.20 - +0.52

−0.01 −1.59 +0.19 +53.4 +0.53

−10.0 −0.27 −1.42 −0.32 +2.14
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FIG. 7. Same as Fig. 6 but with A−
22 and ϵ−.

a threshold cusp structure. Because the pole of the qua-
sivirtual state is not on the most adjacent Riemann sheet
to the physical scattering, it does not create a peak struc-
ture of the cross section. The existence of the quasivirtual
pole near the threshold is considered to strengthen the ef-
fect of the threshold cusp. When γ is increased, as shown
by the dashed line (γ = 0.07), σN

11(E) becomes slightly
enhanced, in particular in the region below the threshold.
On the other hand, when γ is slightly decreased, σN

11(E) is
suppressed, as seen in the dash-dotted line (γ = −0.01).
In both cases, the shape of σN

11(E) is modified from the
Flatté amplitude only slightly, but the cusp structure is
maintained. However, with a large negative γ = −10.0
(solid line), the cross section shows a qualitatively differ-
ent behavior. One finds that the cusp at the threshold
disappears due to the sign flip of the slope of the cross
section below the threshold. Because of this, the cross
section shows a small dip structure above the threshold.
This dip structure is not caused by the zero point of the
scattering amplitude, but it exhibits the local minimum
of σN

11(E). It is clear that that the Flatté amplitude can-
not reproduce the cross section with the dip similar to
the solid line.
The cross sections σN

11(E) with A−
22 and ϵ− are plotted

in Fig. 7 for γ = 0.07, −0.01, and −10.0. The cross
section shows the cusp structure for γ = 0.07 (dashed
line) and γ = −0.01 (dash-dotted line), with a slightly
enhanced strength. When γ is taken as large and negative
value (γ = −10.0), a dip appears above the threshold
instead of the cusp.
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With the Flatté amplitude, the cross section shows a
peak below the threshold for Re(aF) > 0 or a cusp at the
threshold for Re(aF) < 0. From the above results, we
find that the shape of the elastic scattering cross section
in channel 1 can be changed significantly from these typ-
ical behaviors by varying γ. In particular, if γ is large
and negative, the peak can be changed into a cusp even
with Re(aG) > 0, and σN

11(E) can have a dip near the
threshold. Therefore, in analyzing the scattering near the
threshold, it is important to perform analysis paying at-
tention to the peak, cusp, and dip structures, rather than
simply fitting the data by the Flatté amplitude [29, 35].

V. SUMMARY

In this paper, we discuss the behavior of the coupled-
channel scattering amplitude near the higher energy
threshold by constructing the General amplitude with
new parametrization. First, in Sec. II, we introduce the
Contact amplitude and Flatté amplitude based on the
effective field theory. Through the comparison of two
amplitudes, we show that the origin of the problem of
the number of parameters in the Flatté amplitude near
the threshold [21] can be traced back to the vanishing of
the determinant of the scattering amplitude. It is also
shown that the standard parametrization with three pa-
rameters aij in the Contact amplitude is not suitable to
smoothly connect to the Flatté amplitude.

Based on this observation, we modify the renormaliza-
tion conditions in the effective field theory and construct
the General amplitude with three alternative parameters,
A22, ϵ, and γ. With γ ̸= 0, the General amplitude has
one-to-one correspondence with the Contact amplitude,
and it directly reduces to the Flatté amplitude at γ = 0.
Namely, the General amplitude allows us to examine how
the Contact amplitude approaches the Flatté amplitude
by varying the parameter γ. It is also shown in the Gen-
eral amplitude that the scattering length is defined in the
(2,2) component (higher energy channel), which is in gen-
eral different from the constant term in the denominator
of the (1,1) component (lower energy channel), except
for the special case of γ = 0 corresponding to the Flatté
amplitude. Finally, we show that the (1,1) component
of the General amplitude contains the background term
in addition to the pole term, even in the linear order in
the momentum. Since the background term disappears
at γ = 0, the parameter γ is considered to control the
existence of the background. It is shown that the back-
ground term can cause the zero of the amplitude by the
interference with the pole term.

Finally, the behavior of the scattering cross section of
the General amplitude is numerically studied by vary-
ing γ with the scattering length being fixed. For a small
|γ|, the cross section shows either the peak structure or
the threshold cusp structure, as typically observed in the
Flatté amplitude. It is however shown that the scatter-
ing length obtained from the analysis by the Flatté am-

plitude may quantitatively deviate from the exact value,
due to the contribution from the background term. It
is also found that by enhancing the background contri-
bution with large and negative γ, a dip structure can
be caused by the zero of the scattering amplitude (see
also Refs. [29, 35]), which cannot be reproduced by the
simple Flatté amplitude. In such cases, the threshold
cusp structure may appear even when the real part of
the scattering length is positive.

The general amplitude proposed in this study should
be useful to extract the scattering length and pole po-
sition of the near-threshold exotic hadrons through the
analysis of the experimental data. Since the actual ex-
otic hadrons are often coupled to three or more channels,
the extension of the General amplitude for multi-channel
scattering serves as a future prospect. To enlarge the ap-
plicability of the framework, it is necessary to include the
higher-order terms in the effective field theory, which also
gives precise determination of the effective range. With
these extensions, we expect that the application of the
General amplitude to the actual experimental data will
help to accurately determine the properties of the exotic
hadrons near the threshold.
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Appendix A: N channel scattering

Here we compare the number of independent parame-
ters in the near-threshold Contact and Flatté amplitudes
in the two-body scattering with N channels. With a
straightforward generalization of Sec. II A, the N chan-
nel Contact amplitude reads

[fC(E)]−1 =


− 1

a11
− ip1

1
a12

· · · − 1
a1N

1
a12

− 1
a22

− ip2 · · · 1
a2N

...
...

. . .
...

− 1
a1N

1
a2N

· · · − 1
aNN

− ipN

 ,

(A1)

where pj is the momentum in channel j. The amplitude
fC(E) contains N(N+1)/2 independent parameters aij .
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TABLE III. Number of independent parameters in the Con-
tact amplitude (A1) and the Flatté amplitude (A3).

Channel 2 3 N

Contact (A1) 3 6 N(N + 1)/2

Flatté (A3) 2 3 N

Conditions 1 3 N(N − 1)/2

The Flatté amplitude with N channels can be written as

fF(E) =
1

2EBW − 2E − i
∑N

j=1 g
2
j pj

×


g21 g1g2 · · · g1gN
g1g2 g22 · · · g2gN
...

...
. . .

...

g1gN g2gN · · · g2N

 , (A2)

which contains N coupling constants gj(j = 1, · · ·N) and
one bare energy EBW, so there are N + 1 independent
parameters in total. Near the threshold of channel 1, by
neglecting the terms with p21 or higher, we obtain

fF(E) ∼ 1

α− ip1 − i
∑

j rjp
(0)
j

×


1

√
r2 · · · √

rN√
r2 r2 · · · √

r2rN
...

...
. . .

...
√
rN

√
r2rN · · · rN

 , (A3)

where we define

g2j
g21

= Rj ,
2EBW

g21
= α, (A4)

p
(0)
j = pj(p1 = 0), (A5)

In this case, the amplitude has N parameters, rj(j =
2, · · · , N) and α.

As summarized in Table III, the Contact amplitude
always has a larger number of parameters. Namely, there
should be

1

2
N(N − 1), (A6)

conditions imposed on the Flatté amplitude, as in the
case of two-channel scattering. This is achieved by de-
manding all the cofactors of the off-diagonal components
vanish.
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