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Vector modes are well-defined field distributions with
spatially varying polarisation states, rendering them ir-
reducible to the product of a single spatial mode and
a single polarisation state. Traditionally, the spatial
degree of freedom of vector modes is constructed us-
ing two orthogonal modes from the same family. In
this letter, we introduce a novel class of vector modes
whose spatial degree of freedom is encoded by com-
bining modes from both the Hermite- and Laguerre-
Gaussian families. This particular superposition is not
arbitrary, and we provide a detailed explanation of the
methodology employed to achieve it. Notably, this new
class of vector modes, which we term Hybrid Hermite-
Laguerre-Gaussian (HHLG) vector modes, gives rise to
subsets of modes exhibiting polarisation dependence
on propagation due to the difference in mode orders be-
tween the constituent Hermite- and Laguerre-Gaussian
modes. To the best of our knowledge, this is the first
demonstration of vector modes composed of two scalar
modes originating from different families. We antic-
ipate diverse applications for HHLG vector modes in
fields such as free-space communications, information
encryption, optical metrology, and beyond. © 2024 Optica

Publishing Group

http://dx.doi.org/10.1364/ao.XX.XXXXXX

The Helmholtz paraxial wave equation, when solved in var-
ious coordinate systems, unveils shape-invariant families of
optical fields that propagate freely in space. Specifically, the
common scalar solutions with uniform polarisation—Hermite-
Gaussian (HG), Laguerre-Gaussian (LG), and Ince-Gaussian
(IG) modes—are derived in Cartesian, polar, and elliptical coor-
dinates, respectively [1, 2]. These modes collectively form com-
plete and orthonormal bases within an infinite Hilbert space [3],
enabling any paraxial optical field to be represented as a com-
plex superposition of these scalar modes.

The polarisation of light, which occupies a two-dimensional
vector space, typically involves linear and circular polarisations
as its primary bases. Unlike traditional modes, pure vector
modes of light exhibit varying polarisation states across their

transverse plane and thus cannot be simply reduced to the prod-
uct of a spatial mode and a polarisation vector. Such vector
modes are crafted through the superposition of two orthogo-
nal optical fields (scalar modes) with corresponding orthogo-
nal polarisation states [4]. Following this principle, Hermite-
and Laguerre-Gaussian vector modes [5], as well as other in-
novative structures like vector Bessel beams [6], Airy vector
beams [7], "classically entangled" Ince-Gaussian modes [8], He-
lical Mathieu-Gauss vector modes [9], Parabolic vector beams
[10], Parabolic accelerating vector waves [11], and the recent
Helico-Conical Vector Beams [12], have been developed. These
vector beams showcase distinctive properties that are leveraged
in high-speed kinematic sensing [13], holographic optical trap-
ping [14], visible light communications [15], mode division mul-
tiplexing [16], resilience against turbulence [17, 18], and quan-
tum optics communications [19, 20].

Typically, the scalar optical fields that constitute these vector
modes originate from the same family. However, this conven-
tional approach is not necessarily a strict requirement. In our
work, we introduce a novel class of optical vector modes, which
we have named Hybrid Hermite-Laguerre-Gaussian (HHLG)
vector modes, by combining two scalar modes from distinct
families. Specifically, we use HG and LG modes, though our
method can be applied to other modal bases with suitable prop-
erties. This superposition, incorporating orthogonal polarisa-
tion states from the circular polarisation basis, exploits a well-
established expression that links HG and LG modes through
their completeness property to identify compatible pairs of
scalar modes [21–23]. This technique enables the creation of
novel spatial phase, intensity, and polarisation structures with
stable propagation characteristics. Additionally, these struc-
tures can be engineered to exhibit polarisation dependence on
propagation, due to differences in mode orders between the
constituent modes, with an example shown in Fig. 1.

The general mathematical expression for a vector beam ~U(~r⊥, z)
is as follows:

~U(~r⊥, z) = cos θ u1(~r⊥, z)êR + eiα sin θ u2(~r⊥, z)êL, (1)

where u1(~r⊥, z) and u2(~r⊥, z) are two orthogonal scalar optical
fields, êR and êL are the circular right- and left-handed unitary
polarisation vectors, θ is a weighting factor, α is the inter-modal
phase, z is the propagation axis and~r⊥ = (x, y) = (ρ, φ) rep-
resents the transverse coordinate system for u1 and u2. For the
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Fig. 1. Graphic representation of a HHLG vector mode em-
ploying LG2

0 and HG2,2 modes, with θ = π/4 and α = 0.
Green ellipses illustrate right circular polarisation, orange el-
lipses depict left circular polarisation, and white lines indicate
linear polarisation states.

vector modes that we propose, u1(~r⊥, z) is an optical field from
the Laguerre-Gaussian basis and u2(~r⊥, z) is from the Hermite-
Gaussian basis, or vice versa. Thus, the mathematical expres-
sion for the HHLG vector modes is given by

~H
ℓ,p
n,m(~r⊥, z) = cos θ LGℓ

p(ρ, φ, z)êR + eiα sin θ HGn,m(x, y, z)êL,
(2)

where the HGn,m and LGℓ
p are orthogonal Hermite- and

Laguerre-Gaussian modes. We will describe how to find these
combinations later. In Cartesian coordinates, (x, y, z), the HG
modes are defined as

HGn,m(x, y, z) =

√

2

π
2−(m+n)/2 1

√

n!m!w2
0

×

Hn

[√
2x/w(z)

]

Hm

[√
2y/w(z)

]

×
uG(x, y, z) exp[iΨH(z)],

(3)

where m, n are the indices of the mode, Hm(·) is the Hermite

polynomial of order m, w(z) = w0

√

1 + (z/zr)2, zr = πw2
0/λ

and w0 is the beam waist at the plane z = 0. ΨH(z) is a
propagation-dependent phase shift (described later), and

uG(x, y, z) =
1

√

1 + (z/zr)2
exp

[

ik(x2 + y2)/2R(z)
]

×

exp
[

−(x2 + y2)/w2(z)
]

(4)

represents a Gaussian term, with k = 2π/λ and R(z) = z +
z2

r /z.

Similarly, in polar cylindrical coordinates, (ρ, φ, z), the LG
mode can be expressed as

LGℓ
p(ρ, φ, z) =

√

2n!

πw2
0(n + |ℓ|)!

(√
2ρ

w(z)

)|ℓ|
×

L|ℓ|
p

(

2ρ2

w2(z)

)

uG(ρ, φ, z)×

exp(iℓφ) exp[iΨL(z)],

(5)

where L|ℓ|
p (·) is the Laguerre polynomial, p is the radial index

and ℓ is known as the topological charge. The phase term ΨL(z)
is a propagation dependent phase shift.

To create the HHLG vector modes we must select modes
from each family that are orthogonal. In order to identify or-
thogonal pairs of modes from the different families we begin
our analysis by expressing Laguerre-Gaussian (LGℓ

p) modes as

linear combinations of Hermite-Gaussian (HGn,m) modes [21–
23],

LGl
p(ρ, φ, z) =

N

∑
k=0

ikb(n, m, k)HGN−k,k(x, y, z), (6)

obeying the index relations n = (2p + |ℓ|+ ℓ)/2 and m = (2p +
|ℓ| − ℓ)/2. The coefficients b(n, m, k) of the superposition are
given by

b(n, m, k) =

√

(N∗ − k)!k!

2N∗n!m!

1

k!

[

dk(1 − t)n(1 + t)m

dtk

]

t=0

, (7)

where NL = 2p + |ℓ| and NH = n + m is the mode order (gener-
ically N∗). The beam propagation factor, which describes the
divergence of a beam, is simply M2 = N∗ + 1.

For different mode order, orthogonality is guaranteed; how-
ever, there are cases where orthogonality occurs within the
same N∗. For a given LGℓ

p mode, we first identify the equiva-
lent combination of HGn,m modes and then select the remaining
modes with the same order, i.e. where b = 0.

By way of example, we express the LG−2
1 as a linear combi-

nation of HGn,m modes by using (6) and (7) as:

LG−2
1 =

1

2
HG4,0 +

i

2
HG3,1 +

i

2
HG1,3 −

1

2
HG0,4. (8)

Thus, we can conclude that LG−2
1 is not orthogonal to HG4,0,

HG3,1, HG1,3, or HG0,4 because it is a linear combination of
these modes. However, the remaining N∗ = 4 mode, HG2,2,

must be orthogonal to LG−2
1 as it does not appear in (8).

In other words, any LGℓ
p is orthogonal to any HGn,m that

does not appear in its Hermite-Gauss linear decomposition.
Without loss of generality, we have restricted our analysis to
a subset of modes where N∗ ≤ 4, encompassing fifteen HGn,m

modes and fifteen LGℓ
p modes. This leads to 225 possible combi-

nations of modes as shown in Fig. 2. Within these combinations,
175 satisfy the orthogonality condition (beige colour), includ-
ing five pairs that share the same mode order (orange colour).
These five combinations, crucial to this new family of vector
modes, are expected to preserve their non-homogeneous polar-
isation patterns during propagation. Conversely, the polarisa-
tion structure of the remaining 170 vector modes is anticipated
to evolve predictably with propagation. The rate of this evolu-
tion will depend on the mode order difference, as is detailed
below.

As stated before, LG and HG modes have phase terms
that depend on the propagation distance z, exp[iΨL(z)] and
exp[iΨH(z)] respectively, where [24]

ΨL(z) = (2p + |ℓ|+ 1) tan−1(z/zr) ≡ (NL + 1) tan−1(z/zr),
(9)

and

ΨH(z) = (n + m + 1) tan−1(z/zr) ≡ (NH + 1) tan−1(z/zr),
(10)

Put simply, HHLG vector modes acquire a propagation-
dependent phase difference given by

∆Ψ(z/zr) = ∆N tan−1(z/zr), (11)

where ∆N = NH − NL. For reference, Fig. 3 shows the phase
difference ∆Ψ(z/zr) as a function of the normalised propaga-
tion distance for different values of ∆N.

HHLG vector modes were experimentally generated
through the coherent superposition of two orthogonal scalar
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Fig. 2. For LGl
p and HGnm modes with NL, NH ≤ 4 there are

225 possible combinations. From these, 175 pairs of modes
show orthogonality (beige) and five of them have the same
mode order (orange).

modes with orthogonal polarisation states in the circular basis,
employing the experimental setup described in [25]. This setup
utilises a phase-only Spatial Light Modulator (SLM) and a com-
mon path interferometer. Additionally, Stokes polarimetry, as
outlined in [26–28], was employed to measure the polarisation
distribution across the transverse plane of the vector modes at
various z-planes, aiming to characterise their propagation be-
haviour. To this end, we implemented the digital propagation
method described in [29], based on the angular spectrum ap-
proach [30]. This method allows for the calculation of the field
distribution of a scalar mode at any arbitrary z-plane, U(~r⊥, z),
as:

U(~r⊥, z) = F−1
⊥ {F⊥{U(~r⊥, 0)} exp(ikz(~k⊥)z)}, (12)

where F⊥{·} and F−1
⊥ {·} denote the two-dimensional Fourier

transform and its inverse, respectively; kz(~k⊥) represents the
wave vector component in the propagation direction. Experi-
mentally, the required phase adjustments were applied using
the SLM, and the inverse Fourier transform was performed us-
ing a biconvex lens with a focal length of f = 250 mm.

We generated two examples of HHLG vector modes exper-
imentally and measured their polarisation distributions at var-
ious z-planes. The first, created through the superposition of
HG2,2 and LG2

1 with equal weights (θ = π/4 and α = 0) in
Eq. 2, showed no change in polarisation distribution upon prop-
agation, as evidenced in Fig. 4. Here, numerical simulations are
presented in the left column and experimental results on the
right. The beam’s size increase due to diffraction is also visi-
ble. We computed the concurrence (sometimes called the vec-
tor quality factor) [31–33] to quantify the vector quality of the
modes, finding excellent agreement between the simulations
and experimental results.

The second example involved the superposition of HG0,7

and LG1
1 with θ = π/4 and α = 0 in Eq. 2. The chosen spa-

tial modes resulted in ∆N = 4, a scenario not depicted in Fig. 2.
We anticipated that this vector mode would acquire a phase dif-

Fig. 3. Propagation dependant phase difference ∆Ψ(z/zr) of
the Hybrid Hermite-Laguerre-Gauss (HHLG) Vector Modes
as a function of the normalized propagation distance z/zr for
different mode order differences ∆N.

ference between the constituent modes upon propagation, as
described by Eq. 11, corresponding to the red dotted curve in
Fig. 3. The overlaid polarisation distribution and transverse in-
tensity profile, shown in Fig. 5, reveal how the linear polarisa-
tion states rotate from horizontal at z = 0 to vertical at z = zr

through propagation.

Vector modes of light are becoming increasingly important
in contemporary optical laboratories due to their diverse appli-
cations and unique fundamental properties. In this study, we
aim to contribute to the ongoing research on structured light by
introducing a new type of hybrid vector mode. This mode com-
bines the spatial degrees of freedom from two different mode
families into a single vector mode. Our calculated superpo-
sition has resulted in the Hybrid Hermite-Laguerre-Gaussian
(HHLG) vector modes, which show interesting (and config-
urable) polarisation behaviours during propagation – perhaps
“knots” of polarisation? We believe these vector modes could
have practical applications in fields such as optical trapping, op-
tical and quantum communications as well as optical metrology,
offering new possibilities for exploration and development.
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