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Breaking the error-threshold would mark a milestone in establishing quantum advantage for a
wide range of relevant problems. One possible route is to encode information redundantly in a
logical qubit by combining several noisy qubits, providing an increased robustness against external
perturbations. We propose a setup for a logical qubit built from superconducting qubits (SCQs)
coupled to a microwave cavity-mode. Our design is based on a recently discovered geometric stabiliz-
ing mechanism in the Bose-Hubbard wheel (BHW), which manifests as energetically well-separated
clusters of many-body eigenstates. We investigate the impact of experimentally relevant perturba-
tions between SCQs and the cavity on the spectral properties of the BHW. We show that even in the
presence of typical fabrication uncertainties, the occurrence and separation of clustered many-body
eigenstates is extremely robust. Introducing an additional, frequency-detuned SCQ coupled to the
cavity yields duplicates of these clusters, that can be split up by an on-site potential. We show
that this allows to (i) redundantly encode two logical qubit states that can be switched and read
out efficiently and (ii) can be separated from the remaining many-body spectrum via geometric
stabilization. We demonstrate at the example of an X-gate that the proposed logical qubit reaches
single qubit-gate fidelities > 0.999 in experimentally feasible temperature regimes ∼ 10− 20mK.

I. INTRODUCTION

Quantum algorithms obtain polynomial and super-
polynomial speed-ups compared to classical algorithms
[1, 2] on a selected set of problems [3]. During the past
decades, this promise has given rise to the development
of schemes that mitigate effects of noise and errors, which
typically set a time limit to store and process informa-
tion in a physical system [4]. Importantly, it has been
shown that qubit error rates below a certain threshold al-
low for arbitrarily accurate quantum computation [5–7].
Hence, lowering error rates below this threshold marks
the central endeavor towards the practical application of
quantum algorithms.

To account for the ubiquitous presence of error sources,
corrupting both the information represented by the qubit
as well as its readout, error correction schemes, such
as error mitigation [8–10] or error correction codes [11–
14] have been introduced. These strategies share the
underlying idea that information is represented redun-
dantly and/or non-locally, and can be recovered by re-
peated measurements or operations on an ensemble of
qubits [15, 16]. One prominent approach is quantum er-
ror mitigation, aiming for a reduction of the effect of
noisy qubit operations by analyzing the structure of the
noise. Using repeated circuit runs and measurements,
unbiased estimators [10] can be constructed, which has
been shown recently to yield promising results [17], yet
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the corresponding circuit could also be simulated classi-
cally [18]. Furthermore, error mitigation schemes share
the limitation that the amount of circuit runs grows ex-
ponentially with the error probability [10, 19] such that
increasing the noise resilience is essential.

A conceptionally different approach are error-correc-
tion codes, which distribute the quantum information
non-locally such that measurements allow for an active
correction [20–23]. However, the main obstacle is the in-
troduced overhead, shifting the problem of implementing
fault-tolerant quantum computation to that of realizing
quantum processors with a significantly larger number of
physical qubits than operational, logical qubits. Nev-
ertheless, very recently, remarkable progress has been
achieved in addressing that problem, for instance using
reconfigurable atom arrays [24].

While reconfigurable atom arrays are developing
quickly, the most prominent platform are superconduct-
ing qubits (SCQs) which have become the backbone of re-
cent advances in fabricating quantum processors [25, 26]
and brought forward new possibilities to compose logical
qubits out of several SCQ elements [27–29]. One of the
driving forces behind the enormous success of SCQ-based
architectures is the possibility to engineer properties such
as the anharmonicities via a precise operational control
of their constituting circuit elements [30]. However, given
current error-rates, the applicability of SCQ-based quan-
tum processors to practical problems that are out of reach
for classical simulations has not been proven so far. Here,
the main obstacles are the rather high error rates com-
bined with the limited connectivity that require a vast
amount of 100 − 1000 SCQs per logical qubit to reach
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the error threshold for error-correction codes, or a prac-
tically unfeasible amount of measurements to apply error
mitigation.

In this work we suggest an approach to construct a
logical qubit which could address these problems. Us-
ing established SCQ-based technologies, our construc-
tion achieves a high resilience against external perturba-
tions and is composed of only a small number of qubits
∼ O(10) coupled to a cavity mode. Our proposal is based
on the clustering and separation of many-body eigen-
states of the Bose-Hubbard wheel (BHW), illustrated
in Fig. 1a, in the limit of infinitely strong repulsive in-
teractions [31–34]. The separation of the energetically
lowest cluster of many-body eigenstates has been shown
recently to be tunable either by the coupling s between
the wheel’s ring sites and the center, or by increasing the
wheel’s coordination number L, i.e., the number of sites
coupled to the center site [34]. The resulting gap in the

many-body spectrum scales as s
√
L, which yields a ge-

ometric mechanism to separate a cluster of many-body
eigenstates.

We propose to realize the wheel-geometry by res-
onantly coupling L superconducting (SC) stabilitzer
qubits to a cavity mode, see Fig. 1b, and to identify the
emerging cluster of many-body eigenstates in the low-
energy part of the spectrum with a logical qubit state.
We investigate the impact of experimentally unavoidable
imperfections of the coupling between the SCQs and the
cavity and show that the BHW posseses a remarkable
robustness against such imperfections, rendering SCQs
coupled to a cavity a promising platform for the prac-
tical applicability of geometric stabilization. Adding an
additional SCQ, which we refer to as control qubit or
probe-site, another low-lying many-body eigenstate clus-
ter inherited from the wheel is generated, yielding in total
two distinct logical qubit states. Solving the correspond-
ing model, we show that these two clusters can be sepa-
rated energetically by detuning the qubit frequency of the
probe-site qubit with respect to all the other SCQs. The
proposed setup thus enables the construction of a logical
two-level system each of which is composed of clusters
of many-body eigenstates representing the same logical
qubit state with a redundancy that scales exponentially
with the coordination number L. Furthermore, geomet-
ric stabilization allows to control the energetic separation
of the clusters from the remaining many-body spectrum,
yielding a high tolerance of the logical qubit against ex-
ternal perturbations, such as thermal noise. Thereby, it
supresses the impact of dephasing and decoherence errors
of the individual SCQs to the logical qubit state.

We furthermore study a realization of anX-gate acting
on the logical qubit and investigate the single qubit-gate
fidelity. We find that by exploiting geometric stabiliza-
tion the readout error rate of the logical qubit can be
decreased by more than an order of magnitude when re-
alizing the wheel-geometry with L = 20 SCQs, yielding
a total single qubit-gate fidelity of F > 0.999 at a tem-
perature of 15mK.
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FIG. 1. (a) Lattice geometry of the Bose-Hubbard wheel,
see Eq. (1). The L ring sites, each of which is coupled to the
center site with an amplitude s, exhibit nearest-neighbor hop-
ping with an amplitude t. (b) Illustration of the experimental
setup based on (a). The center site couples to an additional
lattice site (control qubit) with detuned on-site potential µc

via an amplitude s′. In the experimental setup, the center
site corresponds to a cavity, the ring sites to SCQs coupled to
the cavity.

The paper is organized as follows: In Sec. II, we in-
troduce the BHW alongside it’s properties and propose
an experimental setup for a logical qubit. In Sec. III, we
examine the effect of disorder on the ring-to-center hop-
ping simulating experimental imperfections and specify
requirements. In Sec. IV, we introduce the two-level sys-
tem and characterize the X-gate application as well as a
measurement protocol.

II. THE BOSE-HUBBARD WHEEL

We consider a Bose-Hubbard model on a wheel geom-
etry in the limit of large interactions U → ∞, where the
bosons become hard-core [32–34], which will be referred
to as BHW in the following. The Hamiltonian of the
system is given by (see Fig. 1a)

Ĥwheel ≡ −t
L−1∑

j=0

(
ĥ†j ĥj+1 + h.c.

)
−

L−1∑

j=0

(
sj ĥ

†
j ĥ⊙ + h.c.

)
.

(1)

Here, t denotes the hopping on the outer ring of the
wheel, consisting of L sites, and sj = seik0j describes

a k0-modulated ring-to-center hopping. ĥ
(†)
j corresponds

to the hardcore bosons (HCB) annihilation (creation) op-
erator on the j-th site of the ring. The index ⊙ denotes
the respective operators on the center site. We consider

periodic boundary conditions ĥ
(†)
L ≡ ĥ

(†)
0 .

In the limit s
t → 0 (ring geometry), the system exhibits

a quasi-Bose-Einstein condensate (BEC) with ground-

state occupation ∝
√
N , where N denotes the number of

HCB in the system [35–38]. In the opposite limit s
t → ∞

(star geometry)[31], the system exhibits a true BEC with
ground-state occupation ∝ N [39].
In our recent work [34], we solved the full many-body

problem of the BHW by mapping the system to a peri-
odic ladder of spinless fermions. We showed that the
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TABLE I. Occupations nk0 of the k0 mode and the corre-
sponding parities π(nk0).

nk0 0 1+ 1− 2

π(nk0) even odd odd even

many-body spectrum is characterized by an emergent
Z2-symmetry, generated by the parity of the distinct k0
mode, see table I, a feature that is inherited from the
single-particle dispersion, which we summarize in the fol-
lowing. There are two odd-parity single-particle states,
which we label by nk0

= 1±. These generate a bulk of
many-body energies hosting the BEC-phase, which sep-
arate ∝ ±s

√
L ≡ ±s̃, referred to as the re-scaled hop-

ping amplitude. This separation of many-body eigen-
states ∝

√
L gives rise to a stabilizing mechanism based

on geometric modifications. Furthermore, there are two
trivial even-parity states with nk0

= 0, 2, which give
rise to many-body eigenstates with energies of the or-
der of the band width t. From the remaining single-par-
ticle eigenstates with k ̸= k0, a basis of the many-body
Hilbert space can be constructed in terms of Slater deter-
minants, which, for the case of N particles, are denoted
by |FSN ⟩ = |{nk}k ̸=k0

⟩ with nk ∈ {0, 1}. Crucially, us-

ing density-matrix renormalization group (DMRG) the
existence of the BEC even in the presence of interactions
on the outer ring has been demonstrated [34].

Both the scaling and stability of the many-body gap
render the system a promising candidate for a logical
qubit architecture. As a brief side remark it should be
noted that this implies a possible realization of a BEC
using SCQs coupled to a cavity mode. Our subse-
quent analysis of the stability of the many-body spectrum
against experimental imperfections indeed suggests, that
for temperatures between 10 − 100mK a BEC could be
realized and studied using SCQs.

III. THE BOSE-HUBBARD WHEEL IN THE
PRESENCE OF NOISE

Implementing the BHW via SCQs that are coupled to
a cavity necessarily generates imperfections, which trans-
late into perturbations of the couplings. The robustness
of the BEC against perturbations on the outer ring has
been demonstrated previously [34] and is generated from
the non-local coupling between the k0-mode and the cen-
ter site. Nevertheless, imperfections can also affect the
ring-to-center hoppings sj , which are crucial for the for-
mation of the many-body gap separating the BEC states
from the trivial ones. To model these imperfections, we
consider the effect of perturbations δsj to the ring-to-
center hopping amplitudes

sj = seik0j → (s+ δsj)e
ik0j . (2)

The perturbations δsj are modeled by normal dis-
tributed, independent, random variables, i.e., δsj ∼

∝ s̃

∝ s̃
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FIG. 2. Established bounds for the single-particle spectrum
of the perturbed BHW. The displayed data corresponds to
N = 1 particle in a system with L = 6 ring sites, k0 = π/3 and
random coefficients δsj with standard deviation σ/t = 0.4.
The marginal single-particle energy E+ (E−) is contained in
the red (blue) shaded area, which separates ∝ s̃, where s̃ de-
notes the re-scaled hopping amplitude. All remaining energies
are confined to the grey bulk, i.e., to ]− 2t, 2t[, characterized
by the hopping on the outer ring.

N (0, σ2) with standard deviation σ. Random realiza-
tions of the couplings sj in general break the rotational
invariance of the unperturbed BHW Hamiltonian such
that a closed solution of the eigenvalue problem does not
exist. However, bounds on the induced shifts of the sin-
gle-particle spectrum can be derived. In particular, for
the marginal single-particle eigenvalues E±, which sep-
arate ∝ s̃ from the bulk spectrum in the unperturbed
case, the eigenvalue equation can be reformulated as a
self-consistent problem in terms of the perturbations δsj .
The solution to this eigenvalue problem can be bounded
and it is possible to perform the average over the normal
distributed perturbations.
We found that the marginal energies E± are only

weakly perturbed. For an example realization of
the noisy BHW, the single-particle spectrum is shown
in Fig. 2. The derived bounds on the marginal energies
E±, see [40], span the blue and red shaded regions sep-
arating from the bulk spectrum ∝ s̃ and demonstrate
the stability of the single-particle gap against perturba-
tions, here at the example of a disorder realization with
standard deviation σ/t = 0.4. Expanding the self-con-
sistency equation to first order in the perturbations δsj ,

the single-particle eigenvalues Ẽ± can be averaged over
the disorder realizations and we obtain the expectation
value of the separating energies

E
[
Ẽ±
]
= −t cos k0 ±

√
(t cos k0)2 + s̃2 +O(σ2/s) . (3)

Notably, up to second order corrections in σ this is ex-
actly the form of the unperturbed marginal energies, i.e.,
they coincide with the single-particle energies of the k0
mode [34]. Therefore, we conclude that the crucial prop-
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ery of the BHW, i.e., the separation of two single-parti-
cle eigenstates ∝ ±s̃ is also robust against small, random
perturbations of the ring-to-center hopping s.
Given the robustness of the single-particle spectrum,

it is natural to expect that the relevant features of the
many-body spectrum of the BHW are stable against ran-
dom perturbations of the ring-to-center hoppings, too. In
the limit of small imperfections δsj ≪ s̃, we can make
this statement more precise by treating δsj in perturba-
tion theory. For that purpose, we decompose the per-
turbed Hamiltonian

Ĥnoise
wheel = Ĥwheel +

1√
L
V̂ , (4)

where we collect all terms containing the perturbations
δsj in V̂ . In first order perturbation theory, the correc-
tions of the many-body energies ∆Enoise can be averaged
and we find a quick convergence towards the unperturbed
case

∆Enoise ∼ O(L−3/2) . (5)

For the many-body energies Enoise
± separating into an up-

per and lower branch and, in the unperturbed case, cor-
responding to the BEC states, we furthermore evaluated
the variance of the corrections from first order perturba-
tion theory,

Var
[
∆Enoise

±
]
= c±σ

2 +O(L−2) , (6)

where the c± are constants that do not depend on σ. A
more detailed derivation can be found in [40].

This is one key result of our work: The extensively
scaling gap in the many-body spectrum between trivial
and BEC states is robust also in the presence of random
perturbations δsj of the ring-to-center hopping, as long
as δsj ≪ s̃. We want to stress that this result is far from
being trivial, because the number of perturbations δsj
of the system’s Hamiltonian scales with the number of
lattice sites L on the outer ring. However, the robust-
ness can be understood by noting that under the Jor-
dan-Wigner transformation, many-particle eigenstates of
the BHW Eq. (1) are described by Slater determinants
|FSN⟩ = |{nk}k ̸=k0

⟩ of single-particle modes [34]. In the
presence of disorder, these Slater determinants are con-
structed from single-particle eigenstates whose energies
are shifted by random perturbations E → E + δE. In
leading order, the distribution of the δE is dominated
by the normal distributed perturbations δsj . The total
contribution of these perturbed Slater determinants to
the many-body energies is obtained by summing over all
occupied single-particle states, which effectively consti-
tutes an average over the random perturbations δE and,
thus, the perturbations average out with standard devia-
tion ∼ σ. Importantly, this conclusion can be applied to
random variations of the stabilizer qubit frequencies, too.
While the separation of the many-body clusters has been
shown to be robust under local perturbation on the sta-
bilizer qubits [34], such frequency variations would fur-
thermore detune the stabilizer qubits from the cavity and

thereby induce off-resonant couplings to the cavity. For
that case, our results can be used to estimate the accept-
able imperfections of the stabilizer qubit frequencies such
that, given an actual practical realization, the condition
δsj ≪ s̃ can be satisfied.

IV. THE BOSE-HUBBARD WHEEL WITH A
CONTROL QUBIT

A necessary requirement for an actual use case of
the BHW as logical qubit is the ability to store, read
out and switch the qubit’s state. Therefore, we modify
the setup introducing an additional control qubit that
couples to the cavity only, see Fig. 1b. The Hamiltonian
then reads

Ĥqubit = Ĥwheel + s′
(
ĥ†⊙ĥc + h.c.

)
+ µcn̂c , (7)

where ĥ
(†)
c denotes annihilation (creation) operator for

the additional control qubit, n̂c = ĥ†cĥc, and µc a chemi-
cal potential. It is worth mentioning that in the following
we consider the general case of a finite hopping amplitude
t, which we choose as unit of energy. Then, the width
of the clusters in the many-body spectrum is given by
2t [34]. Upon introducing the control qubit, a second
cluster of odd-parity eigenstates is generated and the
corresponding, energetically low-lying many-body eigen-
states can be separated from the remaining spectrum by
geometric stabilization, increasing s̃. Notably, the re-
sulting two clusters are composed of many-body eigen-
states that break particle-number conservation on the
outer ring of the wheel and realize BECs that can be dis-
tinguished by their constituting Slater determinants [34].
Thus, local perturbations, acting on the L stabilizer
qubits (the wheel’s outer ring) couple many-body eigen-
states within the same cluster. This gives rise to a redun-
dancy of the represented logical qubit state, which scales
exponentially in L.
For the solution of the many-body problem we intro-

duce N̂k0 = n̂c + n̂k0 , the sum of the occupation of the
k0 mode and the control qubit. From the conservation
of N̂k0 it follows that for a given, Jordan-Wiger trans-
formed, Slater determinant |FSN ⟩ of N single-particle
eigenstates, Eq. (7), decomposes into a block-diagonal

representation ⟨FSN |Ĥqubit|FSN ⟩ =
⊕

Nk0
ĥ(FSN , Nk0

).

The individual block dimensions are given by

dNk0
= dim[ĥ(FSN , Nk0

)] =

{
1, if Nk0

= 0, 3,

3, if Nk0 = 1, 2,
(8)

and the remaining eigenvalue problem of Eq. (7) can be
solved in each block, individually. To explicitly account
for the conservation of the overall particle number, N ,
we re-sort the blocks and group together those with the
same total number of occupied modes in the Slater de-
terminants and the Nk0

sector, i.e., we fix N and obtain
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FIG. 3. Many-body spectrum of the wheel-probe system Eq. (7) as a function of the re-scaled hopping amplitude s̃. (a)
Many-body spectrum for L = 6 ring sites, N = 3 particles and chemical potentials µc = 10 (bold) and µc = 0 (shaded), as well
as control-qubit-to-center hopping s′ = 0.01 and outer ring hopping t = 1. The points mark energies of many-body eigenstates
and the color coding denotes their N̂k0 sectors. For clarity, for a given value of s̃, the energies for different Nk0 sectors are
plotted next to each other, resulting in spread-out clusters along the s̃ axis. Note that only the energies corresponding to
the Nk0 = 1, 2 sectors gap out for large values of s̃. For a given s̃, different points correspond to the possible configurations
|FSN−Nk0

⟩ for fixed L,N and Nk0 . The left inset illustrates the block-diagonal matrix structure of the reduced eigenvalue
problem for a given N -particle sector. The right inset depicts the energy gap ∆E between the Nk0 = 1 and Nk0 = 2 sector
introduced by the on-site potential µc on the control qubit. This establishes the foundation of the effective two-level system,
where ∆E suffices as a lower bound for the gap. (b) shows the lower part of the many-body spectrum for µc = 10, L = 6
where Nk0 = 1 for N = 3 (left panel) and Nk0 = 2 for N = 4 (right panel). The color coding denotes the expected probe-site
occupation ⟨n̂c⟩. We compare the readout accuracy, i.e., the expected occupation of the control qubit ⟨n̂c⟩ ≈ 0(1) in the lower
(central) branch in the Nk0 = 1 sector (left panel) to the readout accuracy ⟨n̂c⟩ ≈ 1(0) in the Nk0 = 2 sector (right panel).
This defines the effective two-level system. By performing an excitation on the control qubit it is possible to switch between
states in both sectors, i.e., |E0(N,Nk0 = 1)⟩ → |E0(N + 1, Nk0 = 2)⟩. The readout accuracy can be controlled by tuning s′/s̃.

a block for each Nk0
with N−Nk0

occupied modes in the
Slater determinants, see inset of Fig. 3a. In this basis,
eigenstates can be represented by

|Eν(N,Nk0)⟩ = |νNk0
⟩ ⊗ |FSN−Nk0

⟩ , (9)

where νNk0
= 0, . . . , dNk0

− 1 labels the eigenstates in
the corresponding Nk0

-sectors sorted by their energies.
While the full solution strategy for the eigenvalue prob-
lem of Eq. (7) is given in [40], here, we will focus on the
relevant part of the many-body spectrum.

A. Logical qubit and X-gate implementation

To realize an effective two-level system, there are two
symmetry sectors of particular interest, namely N̂k0

= 1

and N̂k0
= 2 with block dimension dNk0

= 3, each. To
understand the effect of the control qubit on the unper-
turbed wheel’s eigenstates we can treat s′/s̃ as a small
perturbation. This is motivated by the fact that in prac-
tical realizations s̃ should be as large as possible to sta-
bilize the non-trivial BEC phase.
Then, the first non-vanishing corrections appear in sec-

ond order, i.e., the structure of the many-body spectrum
of the unperturbed wheel is reproduced in the two rele-
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FIG. 4. Error rate e(T ) as a function of the ring-to-center hopping amplitude s for different temperatures T = 10, 15, 20, 50mK
and µc = 12, 17 at fixed probe-to-center hopping s′ = 0.01 and outer-ring hopping t = 1. The shaded areas are spanned by the
values of e(T ) at fixed T for different numbers of stabilizer qubits L = 6, . . . , 28. The smallest (largest) L = 6(28) are denoted
by the dashed (dotted) lines and the fill color saturation indicates the intermediate values. For s < sc(T,L), where sc(T,L)
denotes a temperature-and system-size dependent critical value of s, increasing the amount of stabilizer qubits L results in a
lower error rate where the improvement becomes significant in the low-temperature regime T < 50mK. For s > sc(T ), this
behavior is reversed and adding more stabilizer qubits does not improve the error rate. The effect of geometric stabilization is
to reduce the coupling strength s between stabilizer qubits and cavity, in order to achieve a certain error rate. This is illustrated
in the inset, where we show the error rate as a function of L for a fixed value of s = 5GHz, which is at the upper limit of
practically doable couplings [41].

vant Nk0
sectors with corrections ∼ O((s

′
/s̃)2). An ex-

ample for the many-body spectrum as a function of s̃ is
shown in Fig. 3a for s′ = 1. Fig. 3b shows the control
qubit occupation indicated by the fill color in each many-
body eigenstate of the Nk0

= 1 (left) and Nk0
= 2 (right)

sector. Evaluating the occupation of the control qubit for
the eigenstates corresponding to the lower branch of the
spectrum using perturbation theory, yields

⟨n̂c⟩Nk0
=1 = O

((
s′

s̃

)2
)
, ⟨n̂c⟩Nk0

=2 = 1−O
((

s′

s̃

)2
)
.

(10)
Note that increasing s̃, the occupations quickly saturate
to either ⟨n̂c⟩ = 0 or ⟨n̂c⟩ = 1, depending on the respec-
tive symmetry sector. This defines an effective two-level
system between states in the two Nk0

clusters

|0⟩ ∼
= |νNk0

=1⟩ , |1⟩ ∼
= |νNk0

=2⟩ , (11)

for which the readout accuracy can be controlled by tun-
ing s′/s̃.
In the limit t = 0, i.e., the star geometry, the energies

corresponding to different configurations within a given
Nk0

sector reduce to a single value, which allows us to
define the energy gap of the logical qubit as

∆E = E2 − E1 ∝ µc , (12)

with

E1 = E0(N, 1) and E2 = E0(N + 1, 2) . (13)

This gap can be controlled by the chemical potential µc

on the control qubit. Importantly, µc has no effect on
the corrections of the probe-site occupations such that it
can be treated as a free parameter that can be chosen
as large as experimentally possible. For a fixed coupling
s′/t = 1, we indeed find a linear relation between dE
and the chemical potential µc, see [40]. In our specific
setup, µc can be controlled by the frequency detuning
of the control qubit compared to the stabilizer qubits.
Since the proposed logical qubit does not require gate
operations on the stabilizer qubits, the frequencies of the
stabilizer qubits may be increased beyond the adressable
regime, allowing even larger detunings between the sta-
bilizer qubits and the control qubit. For instance, typi-
cal frequencies for adressable transmon qubits range be-
tween 1GHz−10GHz, but this range can be increased to
100GHz if no gate operations are required. This should
be compared to anharmonicities in current transmons,
which are of the order of 100MHz [30, 42].
We now consider a finite-temperature representation of

the ground state |0⟩ of the logical qubit where the quality
is controlled by the interplay of the different paramters
t, s, µs and s′. The thermal density operator is given by

ρ̂0(T ) =
1

Z
e−βĤqubit , (14)
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where β = 1/kBT , kB denotes the Boltzmann constant,
and Z the partition function. We define the fidelity of
the X-gate as the probability to find the control qubit in
a |1⟩ state after performing the excitation

ρ̂0(T ) 7→ ĉ†pρ̂0(T )ĉp = ρ̂1(T ) , (15)

as function of T. This can be evaluated by performing
the partial trace over the excited state projected into the
lower branch of the Nk0

= 2 sector

F (T,N) ≡
∑

{FSN−2}
⟨E0(N + 1, 2)| ρ̂1(T ) |E0(N + 1, 2)⟩ ,

(16)

where the sum is over all Slater determinants with N −2
modes occupied. In the following, we choose a practically
relevant energy scale, i.e., typically transmon frequencies
ω = 1GHz as unit of energy.

From the fidelity, we immediately get the error rate
for switching the state of a single qubit, which is of fun-
damental importance. It constitutes a lower bound for
the error rate of two-site gate operations and controls
the approximation quality of quantum algorithms. We
define e(T ) as the probability of finding our qubit in an
eigenstate, which is not in the targeted lower Nk0

= 2
branch: e(T ) = 1−F (T ). In Fig. 4 we show e(T ) for dif-
ferent temperatures at half filling N = L/2 as a function
of s and detunings µc = 12, 17GHz. The shaded areas
are spanned by the values of e(T ) for different numbers
of stabilizer qubits L = 6, . . . , 28, where the dashed (dot-
ted) boundaries correspond to L = 6(28) and the fill color
saturates with increasing L. For a fixed temperature and
detuning, the dominating control parameter of the er-
ror rate is s and we observe a steep decrease towards a
lower bound set by the ratio µc/T . The origin of this
sharp drop is the separation of the lower Nk0

= 1, 2 clus-
ters from the central clusters in the many-body spectrum
and signals the separation of the two logical qubit states.
The width of the shaded areas is controlled by the rela-
tion between that separation and the rescaled coupling
s̃ = s

√
L.

For sufficiently large values of s, details of the many-
body spectrum such as the number of eigenstates per Nk0

sector become relevant. The onset of this regime of the
ring-to-center hopping is indicated by the crossing points
in the shaded areas, s = sc(T ). As long as s < sc(T ),
the error rate can be reduced significantly by increas-
ing the wheel’s coordination number L, in particular at
low temperatures T < 50mK. In this case, the crossing
point sc(T ) ∼ 10GHz would be hard, if not impossi-
ble, to reach in experiment. Here, the importance of the
wheel geometry becomes apparent: In order to achieve
large fidelities (small error rates), the geometric stabiliz-
ing mechanism of the BHW with an extensively scaling
many-body gap is the key feature. Within the presented
calculations single qubit-gate fidelities of F > 0.999 can
be reached by coupling L = 20 qubits to a cavity at a
temperature of 15mK.
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FIG. 5. Comparison of theoretical and experimental prob-
ability distribution for coupling strength between stabilizer
qubits and cavity s = 4, s′ = 0.01 and t = 1. We show data
for L = 10(20) stabilizer qubits with detunings µc = 12(17)
in Fig. 5a (Fig. 5b) at half filling for T = 10, 15mK. The bar
plots show the experimental probability distribution to obtain
an occupied control qubit from the simulated measurement of
the control qubit, ne

1, in a sequence of M = 103 independent
excitation processes and averaged over an ensemble of K =
103 independent realizations. The line plots correspond to the
theoretical probability distribution nt

1(T ) = B(M,p = F (T )).
The inset shows the theoretical error rate e(T ) (yellow curve)
as well as the experimental error rate emeas(T ) (dark blue
curve) as a function of the on site potential of the control
qubit µc. The geometric mean of both curves, ereadout (light
blue curve), suffices as a calibration function. Minimizing this
curve leads to the optimal value of the detuning µc.

B. Measuring the qubit state

In the previous analysis it was assumed that the fidelity
of an excitation of the logical qubit can be identified by
determing the weight of the |1⟩ states in the post-excita-
tion density operator. However, in practise one measures
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the occupation of the control qubit after an excitation
(see Fig. 3b). We identify states in the lower branch of
the Nk0

= 2 sector via an occupied control qubit, and
thereby verify if an excitation on the control qubit has
successfully created the excited state |1⟩ of the logical
qubit. However, there can be false positives, i.e., the
control qubit can be occupied although the correspond-
ing eigenstate is not in the desired lower branch of the
Nk0 = 2 sector.

To deduce the impact of these false positives, we com-
pare the theoretically obtained probability distribution
to find a state in the desired low-lying Nk0

= 2 sec-
tor to the probability distribution to measure an occu-
pied control qubit. The theoretical distribution is given
by a binomial distribution characterized by the fidelity
nt1(T ) = B(M,p = F (T )), with F (T ) defined in Eq. (16)
and M being the number of trials. To obtain the experi-
mentally accessible probability distribution, we simulate
a sequence of M independent measurement processes on
the thermal density operator ρ̂1(T ) at different temper-
atures T , yielding N1(T ) ≤ M cases of occupied con-
trol qubits. Averaging N1(T ) over an ensemble of K
independent realizations provides access to the experi-
mentally observed distribution of the relative incidences
ne1(T ) = N1(T )/M .

Fig. 5 compares the experimental and theoretical dis-
tribution for temperatures T = 10, 15mK and L =
10(20) stabilizer qubits at detunings µc = 12(17). For
L = 10, see Fig. 5a, the impact of false positives can be
observed clearly as a shift of the mean towards higher
incidences, compared to the theoretical distribution. For
the smallest temperature considered (T = 10mK), the
experimentally observable fidelity overestimates the ac-
tual fidelity to excite into the desired Nk0

= 2 branch
by approximately 3 out of 1000 samples. Increasing L to
L = 20 allows to obtain better agreement of both dis-
tributions, see Fig. 5b. Again, this can be explained by
geometric stabilization, which allows to suppress the ef-
fect of false positives caused by states in other clusters.
To further increase the agreement, it is possible to choose
µc in an optimal way by minimizing the calibration func-
tion

ereadout(T ) =
√

|e(T )− emeas(T )| · e(T ) . (17)

Here, e(T ) = 1−F (T ) denotes the theoretical error rate
and emeas(T ) the experimental error rate, i.e., the prob-
ability of the control qubit not being occupied in a mea-
surement. We defined the calibration function as the
geometric mean of both rates. As a key result, we ob-
serve that for the optimal detuning µc ≈ 17, error rates
e < 10−3 can be obtained, which is shown in the insets of
Fig. 5. Note that in these computations we neglected the
impact of noisy wheel-to-center couplings, which is jus-
tified by the results in Sec. III, showing that for practi-
cal realizations the modifications of the many-body spec-
trum are irrelevant compared to the energy shifts intro-
duced from geometrical stabilization.

V. CONCLUSION AND OUTLOOK

We proposed a logical qubit construction scheme based
on the peculiar property of the BHW (in the infinite-
U limit) to open a gap between clusters of many-body
eigenstates with the energetically lowest states exhibiting
Bose-Einstein condensation [34]. Exploiting the fact that

this gap scales ∝
√
L where L is the number of lattice

sites on the outer ring, i.e., the coordination number, we
suggest a setup for the logical qubit in which these hard-
core-bosonic sites are realized by SC stabilizer qubits,
and the all-to-one coupling to the wheel’s center site is
implemented by resonantly coupling the qubits to a cav-
ity mode. This way, the energetically low-lying cluster
of many-body eigenstates of the BHW can be separated
from the remaining part of the spectrum by increasing
the number of stabilizer qubits. For the resulting archi-
tecture, we investigated the robusteness of the separation
of this cluster in the presence of disorder to evaluate the
effect of experimental imperfections. We derived bounds
on the induced perturbations under the assumption that
the couplings between the qubits and the cavity mode are
subject to normal distributed imperfections and showed
that corrections to the gap-opening are occurring only in
second order in the standard deviation σ. Taking into
account the robustness of the BHW against local per-
turbation on the outer ring (the stabilizer qubits), we
expect the logical qubit setup to be remarkably stable
against fabrication errors. Importantly, this also includes
imperfections of the stabilizer qubits frequencies, which
translate into random disorder potentials in Eq. (7) and
off-resonant couplings to the cavity.

Introducing an additional, frequency-detuned control
qubit, which is only coupled to the cavity, we showed
that an effective two-level system composed of clustered
many-body eigenstates emerges, which is separated form
the bulk states by the wheel’s many-body gap. The two
clusters of low-energy states can be separated by detun-
ing the frequencies of the control qubit w.r.t. stabilizer
qubits. The resulting logical qubit can be read out and
switched via local operations on the control qubit, only.
For a single-qubit X-gate acting on the logical ground
state, we computed the fidelity F (T ) and showed that
for experimentally feasible transmon frequencies, temper-
atures T ∼ 15mK are sufficient to reach theoretical error
rates e(T ) = 10−4, using L = 20 stabilizer qubits. In
these calculations, the relevant quantity is the ratio be-
tween the renormalized coupling s̃ of the stabilizer-qubits
to the cavity and the frequency detuning between stabi-
lizer qubits and control qubit µc. This can be exploited
to adopt to practical constraints, for instance a reduc-
tion of the cavity frequency when increasing its length
in order to increase the number of stabilizer qubits. We
also analyzed the occurrence of read-out errors (false pos-
itives) and introduced a calibration function, which can
be used to experimentally vary the detuning such that
the combined false-positive- and theoretical error-rate is
minimized. Given a certain number of stabilizer qubits,
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the calibration function therefore allows to tune the logi-
cal qubit such that for the discussed parameters (L = 20,
T = 15mK), it can be operated with minimal error rates
< 10−4 using a frequency detuning of the probe-site qubit
of ≈ 17GHz.

Our analysis of the robustness of the presented logical
qubit suggests a high degree of control to suppress the
effects of perturbations introduced by experimental im-
perfections and temperature. Nevertheless, our consider-
ations are based on two critical assumptions: (i) the con-
stituting SCQs are ideal two-level systems and (ii) there
is only one excitation in the cavity at the most. For weak
violations of the first assumption, i.e., a small subset of
the stabilizer qubits forming the wheel exhibit a loss of
coherence or excitations into energetically higher states,
we still expect our results to be valid. This is based on
the fact that the logical qubit-state is encoded with a
high redundancy in a cluster of many-body eigenstates
whose number scales exponentially with the wheel’s co-
ordination number. The second assumption could be re-
alized to a very high degree via fine-tuning the stabi-
lizer qubits to resonance with the cavity and choose a
large qubit frequency, compared to the qubit-to-cavity
coupling strength s. However, further theoretical and
numerical work is required to validate these assumptions
and to investigate the impact of violations. For instance,

for case (i) effects of the anharmonic transmon spectrum
could be studied numerically using open quantum-sys-
tem methods, while case (ii) suggests simulations with a
bosonic center site. A further practical source of imper-
fections that needs to be considered is the quality factor
of the cavity. We nevertheless expect that the presented
results will motivate experimental realizations, beginning
with the wheel geometry itself to realize Bose-Einstein
condensates at temperatures in the range of 10− 20mK,
and subsequently the implementation of the logical qubit.
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[33] M. Máté, Ö. Legeza, R. Schilling, M. Yousif, and
C. Schilling, How creating one additional well can gener-
ate bose-einstein condensation, Communications Physics
4, 29 (2021).
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FIG. S1. Blockdiagonal structure of the Hamiltonian in nk0 (left, Eq. (S1)) before and in Nk0 (right, Eq. (S19)) after adding
the control qubit to the system. The matrix on the right is spanned by all possible combinations of states with occupations
nk0 = 0, 1±, 2 and nc = 0, 1. Hence, the blocks have the size 1 − 2 − 1 and 1 − 3 − 3 − 1. To provide an example, in the
Nk0 = 0, 3 subspaces the corresponding states have the form |nc = 0⟩ |nk0 = 0⟩ , |nc = 1⟩ |nk0 = 2⟩, respectively.

Supplemental Materials

VI. SOLUTION STRATEGY OF THE BOSE-HUBBARD WHEEL

The Hamiltonian of the Bose-Hubbard wheel is given by

Ĥwheel = −t
L−1∑

j=0

(
ĥ†j ĥj+1 + h.c.

)
−

L−1∑

j=0

(
sj ĥ

†
j ĥ⊙ + h.c.

)
, (S1)

where ĥ
(†)
j denote the hardcore bosonic annihilation (creation) operators on site j on the ring of the wheel while ĥ

(†)
⊙

corresponds to the annihilation (creation) of HCB on the center site. L denotes the number of sites on the ring and
we consider periodic boundary conditions. Direct application of common solution strategies fail due to long-ranged
hopping introduced by the center cite when mapping the system to a chain. Our solution strategy is based on a
geometric ansatz that maps the Bose-Hubbard wheel to a spinless fermion ladder with periodic boundary conditions.
On this extended Hilbert space, the full many-body problem can be solved and eventually projected down to the
initial Hilbert space. Please note that a more detailed derivation of the solution strategy can be found in our recent
publication [34]. The resulting many-body eigenstates have the structure

|nk0⟩ |FSN−nk0
⟩ , (S2)

where nk0
= 0, 1±, 2 denotes the occupation of a distinct mode and the entire many-body problem reduces to the

diagonalization of a 4 × 4 matrix, see left side of Fig. S1. The occupation of the k0 mode has significant effects
on both the single-and many-particle spectrum, as it gaps out ∝ s

√
L while all remaining modes follow a common

tight-binding dispersion. Furthermore nk0
generates a Z2 symmetry in the many-body spectrum distinguishing BEC

states, which gap out ∝ s
√
L as a result of this characteristic, and non-BEC states. |FSN−nk0

⟩ denotes a Slater

determinant of N − nk0 k ̸= k0 modes with k ∈
{
kn = 2π

L n|n = 0, . . . , L− 1
}
.

The eigenstates of the projected wheel are given by

|Enk0
=0(FSN )⟩ = |0⟩ |FSN ⟩ , (S3)

|Enk0
=±(FSN−1)⟩ = |±⟩ |FSN−1⟩ , (S4)

|Enk0
=2(FSN−2)⟩ = |2⟩ |FSN−2⟩ , (S5)

where |±⟩ diagonalize the nk0
= 1 subspace. These expressions, as well as the analytically obtained many-particle

energies for the 4× 4 nk0
subspace

E0(FSN ) = E(FSN ), (S6)

E±(FSN−1, k
′) = E(FSN−1)

(
1− 1

L

)
+ 1±

√(
E(FSN−1)

L
+ 1

)2

+ s̃2, (S7)

E2(FSN−2, k
′, k′′) = (E(FSN−2) + 2)

(
1− 2

L

)
, (S8)

will be needed for the solution strategy of the wheel-probe system. Here, k′, k′′ denote the k0 modes. Note that these
energies depend on the choice of Slater determinant FSN outside of the nk0

subspace.
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FIG. S2. Graphical representation of Eq. (S14) for a system with L = 6 lattice sites on the outer ring, k0 = π/3, s/t = 1.5
and random coefficients sj with σ/t = 0.4. The solutions En are given by the intersections of the blue and green graph in the
left panel. The best bounds for E− are obtained from evaluating Eq. (S15) at k = k0 and solving for the intersections, which
are marked by E−,min and E−,max in the right panel. Similarly, the corresponding best estimations for the bounds on E+ are
marked by E+,min and E+,max.

For later convenience, we state the eigenstates |±⟩ for a given Slater determinant

|±⟩ = c±1+ |1+⟩+ c±1− |1−⟩ = d±0 |nk0,O = 1⟩ |n⊙ = 0⟩+ d±1 |nk0,O = 0⟩ |n⊙ = 1⟩ , (S9)

where d±0 = c±1+ψ+ + c±1−ψ− and d±1 = c±1+ψ+∆+ + c±1−ψ−∆−. Here, nk0,O(n⊙) denotes the occupation of the k0

mode on the outer ring (center site) of the wheel. The coefficients are given by ψ± = 1√
1+|∆±|2

, ∆± = ϵ0
2s̃ ±

√
ϵ20+4s̃2

2|s̃|
and ϵ0 = 2t cos k0. The remaining states take the form

|0⟩ = |nk0,O = 0⟩ |n⊙ = 0⟩ , |2⟩ = |nk0,O = 1⟩ |n⊙ = 1⟩ . (S10)

VII. NOISE

Here, we outline the analysis of the Bose-Hubbard wheel’s spectrum in the presence of noise in detail. Mapping the

hardcore-bosonic operators ĥ
(†)
j , ĥ

(†)
⊙ to fermionic operators ĉ

(†)
k , ĉ

(†)
⊙,k, the corresponding Hamiltonian in the periodic-

ladder representation [34] is given by Ĥnoise
wheel = Π̂⊙Ĥnoise

lad Π̂⊙ with

Ĥnoise
lad = −

∑

k∈M

[
2t cos(k)n̂k

(
1− 2

L
n̂⊙,k=0

)
+ s̃

(
fk ĉ

†
k ĉ⊙,k=0 + h.c.

)]
, (S11)

where the sum is over all momenta k ∈ M. Here, we introduced the Fourier transformed, perturbed ring-to-center
hoppings fk = δk,k0

+ 1√
L

∑
j(δsj/s̃)e

i(k0−k)j . Considering an ensemble of wheels, one could immediately evaluate

the average of fk using the fact that
√
Var[fk] = σ/s̃ and E[fk] = δk,k0

, which implies a quick convergence to the
unperturbed system’s spectrum in the limit s̃/σ → ∞. However, in our setup a wheel is supposed to represent a single
logical qubit. As a consequence, we have to investigate the spectral properties of Eq. (S11) for individual realizations
of the imperfections δsj at finite s̃/σ.
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From the analysis of the unperturbed Bose-Hubbard wheel it is known that the single-particle gap controls the
separation of the many-particle spectrum into trivial and BEC states. Hence, we start our discussion with an analysis
of the perturbed Bose-Hubbard wheel in the single-particle subspace. In that case, exploiting n̂kn̂⊙,k=0 = 0, we can
solve Eq. (S11) for the single-particle eigenstates, which can be divided into two sets. The first set of eigenstates is
characterized by momenta q ∈ {kn ∈ M|0 < kn < π} ≡ M′:

Ψ̂†
q |∅⟩ = dq

(
f∗2π−q ĉ

†
k − f∗k ĉ

†
2π−q

)
|∅⟩ , (S12)

with single-particle eigenvalues Eq = −2t cos q ∈] − 2t, 2t[ and normalization dq. For L even (odd), these |M′| =
(L−2)/2 states (|M′| = (L−1)/2 states) represent superpositions of plane waves occurring on the outer ring exclusively
and their energies are constrained by the usual tight-binding dispersion relation. The second set of eigenstates non-
locally couples excitations on the outer ring with excitations on the inner ring and can be parametrized as

Ψ̂†
n |∅⟩ = dn

(
ĉ†⊙,k=0 +

∑

k∈M
bn,k ĉ

†
k

)
|∅⟩ . (S13)

Here, the parameters bn,k = −s̃fk/(En + 2t cos k) need to be determined from solving a self-consistent equation for
the corresponding single-particle eigenvalues

En = s̃2
∑

k∈M

|fk|2
En + 2t cos k

≡ s̃2g(En) . (S14)

Even though this equation does not allow for an analytic solution, it is possible to gain further insights by closer
analyzing the function g(E). Its domain consists of the set of disjoint intervals In =]−2t cos kn,−2t cos kn+1[ and the
two marginal intervals I− =]−∞,−2t[ and I+ =]2t,∞[. In each interval, g(E) is continuous and strictly decreasing
with poles located at the boundaries, which are given by the tight-binding eigenvalues En = −2t cos kn. To illustrate
the structure of g(E), in Fig. S2 we show a realization for a certain choice of perturbations δsj and L = 6 sites on
the outer ring. The branches of g(E) in the intervals In, I± are shown by the blue lines. The solutions to Eq. (S14)
are located at the intersections between the function y(E) = E, i.e., the main diagonal in Fig. S2 plotted as green
line, and s̃2g(E). They are marked as green dots, shown in the left panel. Since both functions, y(E) and g(E), are
strictly increasing and decreasing in every interval, respectively, there are unique solutions En ∈ In and E± ∈ I±,
i.e., for L even (odd), there are (L + 4)/2 eigenvalues ((L + 3)/2 eigenvalues) contributed from the second set of
Eigenstates, which confirms that the single-particle problem is indeed solved completely by determining the solutions
En to Eq. (S14).
The marginal energies E± are of primary interest because they determine the size of the single-particle gaps. For

that reason, we establish an upper bound for the solution En = s̃2g(En) with En < −2t by estimating g(En) <
|fk|2/(En + 2t cos k) for all k ∈ M. Similarly, a lower bound can be introduced via g(En) >

∑
k∈M |fk|2/(En + 2t),

yielding bounds for the lower marginal energy

E− < −t cos k −
√
(t cos k)2 + s̃2|fk|2 , (S15)

for all k ∈ M and

E− > −|t| −
√
t2 + s̃2

∑

k∈M
|fk|2 . (S16)

The bounds on s̃2g(E−) and E− are shown in the right panel of Fig. S2 where we evaluated the upper bound at
k = k0, yielding the best approximation. Accordingly, the marginal single-particle energy E+ can be bounded and
we show the resulting best bounds in the right panel of Fig. S2. An important result of these estimations is that the
marginal energies E± are gaped out from the bulk of the single-particle spectrum ∝ |s̃fk0

|.
The established bounds on the marginal single-particle energies explicitely depend on the realization of the perturbed
ring-to-center hoppings s + δsj via fk. Thus, controlling the width σ of the distribution of the imperfections δsj
is important. A justification for assuming σ/s ≪ 1 is provided in VIIA. We statistically analyze E± neglecting

quadratic and higher orders in δsj on the right-hand side of Eq. (S14). Thereby, we obtain two solutions Ẽ±, which
fulfill the self-consistency condition up to quadratic order in σ, yielding expectation values given in Eq. (3), which
correspond to the marginal single-particle energies of the isotropic Bose-Hubbard wheel. Furthermore, the variance can
be computed in this approximation, yielding Var[Ẽ±] ∈ O(σ2). Evaluating the boundaries’ variances from Eqs. (S15)
and (S16) directly, yields the same scaling in σ, which justifies the simplification of neglecting higher orders in the
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FIG. S3. Distributions of the marginal energies E± for 104 independent realizations {δsj} of the Bose-Hubbard wheel with
L = 6 lattice sites on the outer ring, k0 = π/3, s/t = 1.5 and random imperfections δsj with σ/t = 0.01. The sample-means for
the single-particle eigenvalues E+ (E−) are represented by the red (blue) dashed lines. The solid lines indicate the marginal
single-particle eigenvalues of the unperturbed system separating from the bulk spectrum ∝ s̃. The means of the perturbed and
the unperturbed marginal energies are nearly on top of each other (we show an enlarged excerpt in the insets), even for the
rather moderate choices of the ring-to-center hopping and the width of the distribution of the imperfections.

imperfections δsj . As a consequence, the solutions Ẽ± approximate the marginal energies E± for sufficiently large
ratios s̃/t and both approach the marginal single-particle eigenvalues of the unperturbed Bose-Hubbard wheel quickly.
This is demonstrated in Fig. S3 by incorporating the values of E± from 104 independently implemented systems.
The analysis of the stability of the single-particle spectrum against perturbations of the wheel-to-center hopping
suggests that the results for the many-body problem of the unperturbed wheel can be adopted to the perturbed Bose-
Hubbard wheel, too. Here, we employ the Fourier transformed, perturbed wheel-to-center hoppings fk again and
separate the contribution from the noise, which allows to rewrite the projected ladder representation of the perturbed
Bose-Hubbard wheel as

Π̂⊙Ĥ
noise
lad Π̂⊙ = Π̂⊙ĤladΠ̂⊙ +

1√
L
Π̂⊙V̂ Π̂⊙, with V̂ ≡ −

∑

k∈M




L−1∑

j=0

δsje
i(k0−k)j ĉ†k ĉ⊙,k=0 + h.c.


 . (S17)

We collected all contributions ∝ δsj in V̂ , which we treat as a perturbation in order to analyze the stability of the
branches in the many-body spectrum of the perturbed Bose-Hubbard wheel. We find that the expectation values of
the many-body eigenvalues Enoise approach the many-body eigenvalues E of the unperturbed system extremely fast,
Eq. (5). Moreover, the variance is in O(L−3) for perturbed many-body eigenstates corresponding to unperturbed
eigenstates in the central branch. For those states that correspond to the perturbed eigenstates in the separating
branches, we find that the variances Eq. (6) are dominated by the single-particle behaviour and the coefficients c(+/−),

fulfilling c(+/−)
s̃/t→∞−→ 1, do not depend on σ.

A. Deriving noisy couplings from experimental constraints

While there are many sources for experimental losses, in our case a relevant quantity is the noise introduced by
imperfections of the displacement of the SCQs from the cavity. In order to estimate the magnitude of the resulting
perturbations we consider a single realization of a SCQ coupled to a cavity, which can be described by a Jaynes-
Cunnings model in the regime where only the two lowest-energy qubit states are relevant [43]. Assuming a small
qubit-cavity detuning and that the effective qubit-cavity coupling is large, we can neglect states with more than one
excitation in the cavity such that for the following estimate we assume a system of two harmonic oscillators truncated
to the two lowest eigenstates as depicted in Fig. S4. For that model we can compute the hybridization between qubit
and cavity in terms of the oscillator eigenstates, as a function of the spatial distance a. At resonance where the
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level-spacing in both oscillators is identical, ωα = ωβ = ω, we can then deduce the ring-to-center hopping amplitude
from the overlap between the ground state |0α⟩ of one oscillator and the excited state |1β⟩ of the other oscillator

s(a) ≈ ℏω ⟨1α, 0β |0α, 1β⟩ = ℏω
(meω

2ℏ
a2 − 1

)
e−

meω
4ℏ a2

. (S18)

We can now introduce random variations δaj describing experimental imperfections of a so that a→ a+ δaj ≡ aj
for each qubit j coupled to the cavity. We assume the δaj to be normal distributed, independent, random variables,
δaj ∼ N (0,∆a2). Here, ∆a is fixed by the experimental precision. Evaluating the first moment of Eq. (S18) with
respect to the distribution of the aj yields an estimation for the ring-to-center hopping s(a,∆a) = ⟨⟨s⟩⟩a,∆a while the
second moment constitutes the standard deviation of the perturbations σ2(a,∆a) = ⟨⟨s2⟩⟩a,∆a − ⟨⟨s⟩⟩2a,∆a.

The previous considerations enable us to numerically compute the optimal displacement aopt of the SCQs from
the cavity. We determined aopt such that the ratio r(aopt,∆a) = s(aopt,∆a)/σ(aopt,∆a) is maximized, assuming
precisions for positioning the qubits of ∆a ∈ [0.5 nm, 20nm]. In Fig. S5 aopt is shown as a function of the precisions
∆a by the green curve, which is strictly increasing. The corresponding optimal ratio, shown by the purple curve,
demonstrates that for practically feasible precisions ∆a ∼ O(1 nm) large ratios r(aopt,∆a) ∼ O(104) are in reach. We
conclude that within the discussed approximations, the effect of model-imperfections in the ring-to-center hopping
can be suppressed efficiently, if the SCQs are placed in the optimal distance aopt from the cavity. In fact, for the
optimal distance, the broadening of the characteristic clusters in the many-body spectrum of the unperturbed BHW,
caused by experimental imperfections, is of the order s× 10−4.
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FIG. S6. Energy differences between specific points in the two lowest clusters (i.e., ν = 0 and ν = 1) of the many-body spectrum
for different s and s′ for L = 6, N = 3. In (a) we plot ∆E = min

µ
E0µ(N+1, Nk0 = 2)−max

µ
E0µ(N,Nk0 = 1), i.e., the separation

between the lower edge of the Nk0 = 2 and the upper edge of the Nk0 = 1 cluster. This energy differences characterizes the gap

in the effective, logical two-level system. (b) shows ∆EAH = min

(
min

µ,Nk0
=0,3

E0µ(N + 1, Nk0), min
µ,Nk0

=1,2
E1µ(N + 1, Nk0)

)
−

maxµ,Nk0
=1,2 E0µ(N,Nk0), i.e., the separation between the lower edge of the central many-body eigenstate cluster and the upper

edge of the lower many-body eigenstate cluster. This energy differences characterizes the separation of the effective, logical two-
level system from the remaining many-body eigenstates, which can be compared to the anharmonicity of the constituting SCQ.

VIII. SOLUTION STRATEGY OF THE BOSE-HUBBARD WHEEL WITH CONTROL QUBIT

Let us now derive the matrix representation of the extended system, in which a newly introduced control qubit,
denoted by c, couples to the center site of the wheel with amplitude s′. The Hamiltonian of interest is given by

Ĥqubit = Ĥwheel + Ĥc = −t
L−1∑

j=0

(
ĥ†j ĥj+1 + h.c.

)
−

L−1∑

j=0

(
sj ĥ

†
j ĥ⊙ + h.c.

)
+ s′(ĥ†⊙ĥc + h.c.) + µcn̂c . (S19)

Here, ĥ
(†)
c denotes the annihilation (creation) of a HCB on the control qubit. We introduce N̂k0

= n̂c + n̂k0
, the

combined occupation of the k0 mode, introduced in the section above, and the occupation of the control qubit.

Since
[
Ĥ, N̂k0

]
= 0, the Hamiltonian can be block-diagonalized in Nk0 , ⟨FSN |Ĥqubit|FSN ⟩ =

⊕
Nk0

ĥ(FSN , Nk0
).

After re-sorting the blocks and grouping together those with the same total number of occupied modes in the Slater
determinants and the Nk0

sector, we obtain a 8×8 matrix for a given N made up of blocks for each Nk0
with N−Nk0

occupied modes in the Slater determinants, see Fig. S1 (right). Hence, we work in the basis

|nc⟩ |nk0⟩ |FSN−Nk0
⟩ , (S20)

with possible values nc = 0, 1 and nk0 = 0,± (denoting the nk0 = 1 eigenstates), 2, where the remaining eigenvalue
problem of Eq. (S19) can be solved in each block, individually. The matrix elements of each block are obtained in the
following by letting Eq. (S19) act on the states Eq. (S20). For the Nk0

= 0, 3 sectors, the matrix elements are given
by E0(FSN ) and E0(FSN−3) respectively. For the Nk0

= 1 sectors we have

Ĥc |nc = 0⟩ |±⟩ |FSN−1⟩
= s′

(
ĥ†cĥ⊙ + ĥ†⊙ĥc

)
|nc = 0⟩

(
d±0 |nk0,O = 1⟩ |n⊙ = 0⟩+ d±1 |nk0,O = 0⟩ |n⊙ = 1⟩

)
|FSN−1⟩

= s′d±1 |nc = 1⟩ |nk0,O = 0⟩ |n⊙ = 0⟩ |FSN−1⟩ = s′d±1 |nc = 1⟩ |0⟩ |FSN−1⟩ .

It follows that

⟨FSN−1| ⟨0| ⟨nc = 1| Ĥc |nc = 0⟩ |±⟩ |FSN−1⟩ = s′d±1 . (S21)
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All other matrix elements can be computed in a similar manner. Note that Ĥwheel only has diagonal terms. Due to
the orthogonality of the projected wheel eigenstates all other matrix elements vanish. Ĥc does not contribute diagonal
terms as it changes the particle number on the control qubit and hence only connects states with different nc. The
entire Nk0

= 1 subspace in matrix representation is given by

ĥ(FSN−1, Nk0
= 1) =



E0(kN−1) + µc s′(d+1 ) s′(d−1 )

s′(d+1 )
∗ E1+(kN−1) 0

s′(d−1 )
∗ 0 E1−(kN−1)


 . (S22)

For the Nk0
= 2 sectors we have

Ĥc |nc = 1⟩ |±⟩ |FSN−2⟩
= s′

(
ĥ†cĥ⊙ + ĥ†⊙ĥc

)
|nc = 1⟩

(
d±0 |nk0,O = 1⟩ |n⊙ = 0⟩+ d±1 |nk0,O = 0⟩ |n⊙ = 1⟩

)
|FSN−2⟩

= s′d±0 |nc = 0⟩ |nk0,O = 1⟩ |n⊙ = 1⟩ |FSN−2⟩ = s′d±0 |nc = 0⟩ |2⟩ |FSN−2⟩ ,

from which follows

⟨FSN−2| ⟨2| ⟨nc = 0| Ĥc |nc = 1⟩ |±⟩ |FSN−2⟩ = s′d±0 . (S23)

The entire Nk0
= 2 subspace in matrix representation is given by

ĥ(FSN−2, Nk0 = 2) =



E1−(kN−2) + µc 0 s′(d−0 )

∗

0 E1+(kN−2) + µc s′(d+0 )
∗

s′d−0 s′d+0 E2(kN−2)


 . (S24)

These results are then used for numerical diagonalization. Arbitrary states from the respective sectors Nk0
in a system

of N particles are denoted as follows

|Eµ(N,Nk0
= 0)⟩ = |∅⟩ |FSN ⟩µ (S25)

|Eνµ(N,Nk0 = 1)⟩ =
[
vνµ0 |1, 0⟩+ vνµ+ |0,+⟩+ vνµ− |0,−⟩

]
|FSN−1⟩µ (S26)

|Eνµ(N,Nk0 = 2)⟩ =
[
wνµ

− |1,−⟩+ wνµ
+ |1,+⟩+ wνµ

2 |0, 2⟩
]
|FSN−2⟩µ (S27)

|Eµ(N,Nk0
= 3)⟩ = |1, 2⟩ |FSN−3⟩µ (S28)

where µ ∈
(

L−1
N−Nk0

)
enumerates the Slater determinant outside of the Nk0 subspace (for simplicity, this index has been

dropped in the main text and the states are written as |Eν(N,Nk0
)⟩ = |νNk0

⟩⊗|FSN−Nk0
⟩ with νNk0

= 0, . . . , dNk0
−1

where dNk0
denotes the dimension of each Nk0

block) and we use the abbreviation |nc, nk0
⟩. For the non-trivial

Nk0
= 1, 2 sectors, there is an additional index ν denoting all three eigenstates for a given µ. Note that each of the

corresponding energies can be directly identified with one of the three branches in the spectrum and ν = 0 corresponds
to the low-lying BEC sector which is of particular interest.

Given the many-body energies, we can characterize the typical energy scales relevant for the logical qubit setup.
First, there is the energy gap between the two logical qubit states

∆E = min
µ
E0µ(N + 1, Nk0

= 2)−max
µ

E0µ(N,Nk0
= 1) , (S29)

which we show exemplary in Fig. S6a for a fixed system size and particle number, varying the couplings s, s′. The
second relevant energy scale is the separation of the two logical qubit states from the remaining part of the many-body
spectrum

∆EAH = min

(
min

µ,Nk0
=0,3

E0µ(N + 1, Nk0
), min

µ,Nk0
=1,2

E1µ(N + 1, Nk0
)

)
− max

µ,Nk0
=1,2

E0µ(N,Nk0
) . (S30)

This quantity is shown in Fig. S6b using the same parameters as before.

The structure of the eigenstates of the reduced Hamiltonians ĥ(FSN−Nk0
, Nk0

), as well as the occupation of the con-

trol qubit can also be understood by considering the control qubit as perturbation in s′/s̃. Expanding ĥ(FSN−Nk0
, Nk0

)

in the tensor product basis of eigenstates of the reduced wheel |Enk0
(FSN−nk0

)⟩ and the control qubit |nc⟩, one readily
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finds that the first non-trivial correction appears in second order s′/s̃. In the following we will temporarily drop the
Slater determinants µ. The correction to the odd parity Nk0

= 1 eigenstate is given by

|E1(N,Nk0 = 1)⟩ = |1, 0⟩+O
(
s′

s̃

) ∑

nk0
=±

|0, nk0⟩ . (S31)

For the even parity eigenstates with ν = 0, 2 one equivalently finds

|Eν(N,Nk0 = 1)⟩ = |0,±⟩+O
(
s′

s̃

)
|0, 0⟩ . (S32)

Therefore, the probe-site occupations in the eigenstates of the Nk0 = 1 sector exhibit second-order corrections in s′/s̃:

⟨E1(N,Nk0
= 1)| n̂c |E1(N,Nk0

= 1)⟩ = 1−O
((

s′

s̃

)2
)
, (S33)

⟨Eν(N,Nk0
= 1)| n̂c |Eν(N,Nk0

= 1)⟩ = O
((

s′

s̃

)2
)
, (S34)

Similarly, for the Nk0 = 2 sector the probe-site occupations evaluate to

⟨E1(N,Nk0
= 2)| n̂c |E1(N,Nk0

= 2)⟩ = O
((

s′

s̃

)2
)
, (S35)

⟨Eν(N,Nk0
= 2)| n̂c |Eν(N,Nk0

= 2)⟩ = 1−O
((

s′

s̃

)2
)
, (S36)

IX. FIDELITY OF X-GATE APPLICATION

In the following, we will consider systems at half filling N = L/2. For later convenience and using Eq. (S28) we
compute

ĉ†c |Eµ(N,Nk0
= 0)⟩ = |nc = 1⟩ |FSN ⟩µ

ĉ†c |EνµN,Nk0
= 1⟩ =

[
vνµ+ |nc = 1,+⟩+ vνµ− |nc = 1,−⟩

]
|FSN−1⟩µ

ĉ†c |Eνµ(N,Nk0 = 2)⟩ = wνµ
2 |nc = 1, 2⟩ |FSN−2⟩µ

ĉ†c |Eµ(N,Nk0
= 3)⟩ = 0

We define the X-gate fidelity at zero temperature as the probability to create a state in the lower branch of the
Nk0

= 2 sector of a system realization with N + 1 particles by exciting a state in the lower branch of the Nk0
= 1

sector of a system with N particles,

F ≡
∣∣⟨E0µ(N + 1, Nk0 = 2)| ĉ†c |E0µ(N,Nk0 = 1)⟩

∣∣2 =
∣∣∣(w̃0µ

+ )∗v0µ+ + (w̃0µ
− )∗v0µ−

∣∣∣
2

. (S37)

The tilde highlights the fact that we are looking at two different initializations of the wheel-probe system with N and
(N + 1) particles denoted by coefficients without and with tilde. For the finite temperature treatment we introduce
the thermal density operator of the system

ρ̂(T,N) =
1

Z

∑

i

e−βEN
i |Ψi(N)⟩ ⟨Ψi(N)| = 1

Z

3∑

Nk0
=0

( L−1
N−Nk0

)∑

µ

dNk0∑

ν

e−βEN
ν,µ(Nk0

) |Eνµ(N,Nk0
)⟩ ⟨Eνµ(N,Nk0

)| (S38)

with β = 1/kBT , d(Nk0) denotes the dimension of the Nk0 subspace (we will drop the index ν in the case d(Nk0) = 1)
and the partition function

Z =

3∑

Nk0
=0

( L−1
N−Nk0

)∑

µ

dNk0∑

ν

e−βEN
νµ(Nk0

) . (S39)
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The energies are normalized to the ground state energy. To examine the effect of an excitation on the control qubit
we consider the density operator

ρ̂1(T ) = ĉ†cρ̂(T )ĉc =
1

Z

(L−1
N )∑

µ

e−βEN
µ (0) |nc = 1⟩ |FSN ⟩µ ⟨nc = 1| ⟨FSN |µ

+

(L−1
N−1)∑

µ

d1∑

ν

e−βEN
νµ(1)

[
vνµ+ |nc = 1,+⟩+ vνµ− |nc = 1,−⟩

]
|FSN−1⟩µ

[
(vνµ+ )∗ ⟨nc = 1,+|+ (vνµ− )∗ ⟨nc = 1,−|

]
⟨FSN−1|µ

+

(L−1
N−2)∑

µ

d2∑

ν

e−βEN
νµ(2)|wνµ

2 |2 |nc = 1, 2⟩ |FSN−2⟩µ ⟨nc = 1, 2| ⟨FSN−2|µ] . (S40)

The fidelity F (T ) is then computed as the probability to find any state |E0µ(N + 1, Nk0 = 2)⟩ in the low-lying BEC
sector of the wheel-control qubit system filled with N + 1 particles after the excitation. After some algebra using the
orthogonality of Slater determinants we arrive at

F (T ) ≡
(L−1
N−1)∑

µ

⟨E0µ(N + 1, Nk0
= 2)| ĉ†cρ̂(T )ĉc |E0µ(N + 1, Nk0

= 2)⟩

=
1

Z

(L−1
N−1)∑

µ

d1∑

ν

e−βEN
νµ(1)

∣∣∣
[
(w̃0µ

− )∗ ⟨nc = 1,−|+ (w̃0µ
+ )∗ ⟨nc = 1,+|+ (w0µ

2 )∗ ⟨nc = 0, 2|
] [
vνµ+ |nc = 1,+⟩+ vνµ− |nc = 1,−⟩

]∣∣∣
2

=
1

Z

(L−1
N−1)∑

µ

d1∑

ν

e−βEN
νµ(1)

∣∣∣(w̃0µ
+ )∗vνµ+ + (w̃0µ

− )∗vνµ−

∣∣∣
2

. (S41)

Only the contributions from the Nk0 = 1 sector are relevant since the Slater determinants have to coincide with those
of |E0µ(N + 1, Nk0 = 2)⟩, which cannot happen in any other sector, because they have a different number of modes
in their Slater determinants.

X. SAMPLING SCHEME

The system is prepared in a state described by Eq. (S38) and a measurement of the control qubit occupation
is performed after exciting the control qubit, i.e. we compute the probability to find the system in the states
|nc = 1⟩ |FSN ⟩µ , |nc = 1,+⟩ |FSN−1⟩µ , |nc = 1,−⟩ |FSN−1⟩µ , |nc = 1, 2⟩ |FSN−2⟩µ after the excitation.

⟨nc = 1| ρ̂1(T ) |nc = 1⟩
=
∑

µ

⟨nc = 1| ⟨FSN |µ ρ̂1(T ) |nc = 1⟩ |FSN ⟩µ +
∑

µ

⟨nc = 1,+| ⟨FSN−1|µ ρ̂1(T ) |nc = 1,+⟩ |FSN−1⟩µ +
∑

µ

⟨nc = 1,−| ⟨FSN−1|µ ρ̂1(T ) |nc = 1,−⟩ |FSN−1⟩µ +
∑

µ

⟨nc = 1, 2| ⟨FSN−2|µ ρ̂1(T ) |nc = 1, 2⟩ |FSN−2⟩µ

=
1

Z



(L−1

N )∑

µ

e−βEN
µ (0) +

(L−1
N−1)∑

µ

d1∑

ν

e−βEN
νµ(1)

[∣∣vνµ+
∣∣2 +

∣∣vνµ−
∣∣2
]
+

(L−1
N−2)∑

µ

d2∑

ν

e−βEN
νµ(2)|wνµ

2 |2

 (S42)
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