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We define a Frobenius algebra over fusion categories of the form Rep(G)⊠Rep(G)
which generalizes the diagonal subgroup of G × G. This allows us to extend
field theoretical constructions which depend on the existence of a diagonal sub-
group to non-invertible symmetries. We give explicit calculations for theories with
Rep(S3)⊠Rep(S3) symmetry, applying the results to gauging topological quantum
field theories which carry this non-invertible symmetry. Along the way, we also dis-
cuss how Morita equivalence is implemented for algebras in symmetry categories.

http://arxiv.org/abs/2405.08058v1


Contents

1 Introduction 1

2 Specialization to Abelian Case 3

3 The Diagonal Algebra 6

3.1 Example: Rep(S3) ×Rep(S3) . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.1 S3 Gauging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Rep(S3) Gauging . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Rep(S3 × S3) Gauging . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.4 Consistency Check . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Application to TQFT 15

4.1 Calculation of S3 Partial Traces . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Calculation of Rep(S3) Partial Traces . . . . . . . . . . . . . . . . . . 18
4.3 Rep(S3) Gaugings from TQFT . . . . . . . . . . . . . . . . . . . . . . 20

5 Discussion 24

A Internal Homs and Folding 25

B Details of Rep(S3) Gauging 28

C Bubble Nucleation and Partial Trace Relations 32

D Morita Equivalence by Line Conjugation 37

References 39



1 Introduction

Diagonal symmetries have consistently proven useful in quantum field theory. Per-

haps the most prominent example lies in discrete torsion, which can be imple-

mented by taking the direct product of a G-symmetric theory with a symmetry-

protected topological (SPT) phase for that same G symmetry. When we gauge

their diagonal G symmetry, the topological twist in the SPT provides discrete tor-

sion in the gauged theory. The method of theta defects greatly generalizes this

construction, now allowing the auxiliary theory to be an arbitrary G-symmetric

topological quantum field theory (TQFT), not necessarily of the same dimension.

The assertion of [1,2] is that upon gauging the diagonal symmetry of this product

theory, the auxiliary TQFT becomes a topological defect in the gauged theory, and

one can achieve somewhat exotic results in this way (e.g. this creates condensation

defects in 3d theories). In the case that the two theories are of the same dimension,

one produces a ‘gauge defect’ implementing a gauging of the gauged theory [3].

While the technique described above is powerful, it hinges on the fact that the

direct product of two G-symmetric theories carries a natural G symmetry – the

diagonal subgroup of G ×G. Recent years, however, have taught us that not all

symmetries are group-like, and one might rightfully wonder whether the method

of theta defects extends to non-invertible symmetries. For concreteness, we will

specialize to two spacetime dimensions where general (not necessarily invertible)

finite symmetries are known to be described by modular fusion categories. The

most naive possibility is that, given two theories with symmetry described by a

fusion category C, their product (which has symmetry1 C ⊠ C) would always have

a diagonal C subsymmetry. Unfortunately, this is too hopeful, as we can easily

produce counterexamples.

For instance, consider the fusion category Rep(S3), the simple objects of which

are given by the three S3 irreps: the trivial irrep 1 of dimension 1, the sign irrep

X of dimension 1 and the standard irrep Y of dimension 2. The fusion rules are

1The ⊠ symbol indicates the Deligne tensor product defined on abelian categories (see, e.g. [5]).
The details of the construction are not so important here, and it should be viewed as the minimal
additional structure to ensure that the product is also a fusion category, for instance ensuring
that the Hom sets are tensor products, not just Cartesian products.
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given by the tensor product of irreps, which in this case is

⊗ 1 X Y

1 1 X Y

X X 1 Y

Y Y Y 1 +X + Y

. (1.1)

The direct product of two Rep(S3)-symmetric theories would have symmetry

Rep(S3) ⊠Rep(S3), whose fusion rules are two independent copies of (1.1). Does

such a theory have a diagonal Rep(S3) symmetry? The diagonal elements are

(1,1), (X,X) and (Y,Y ), but we can immediately see that these do not span a

Rep(S3) subcategory by calculating

(Y,Y ) ⊗ (Y,Y ) = (1,1) + (1,X) + (1, Y )

+ (X,1) + (X,X) + (X,Y ) + (Y,1) + (Y,X) + (Y,Y ) (1.2)

which contains non-diagonal elements. This will be a general problem – diagonal

elements in fusion categories will not always close under fusion. Another way to

see the general failure of the existence of a diagonal subcategory is that a simple

object (L,L) has weight ∣L∣2 rather than ∣L∣, so the diagonal elements of C ⊠C will

not have the correct weights to form a subcategory isomorphic to C.

A workaround for this problem was suggested in [4, appendix B] and [3, ap-

pendix A.3], which we will now review. Let A and B be two 2d theories with

Rep(G) symmetry, where G is a finite group (not necessarily abelian). There

should exist a special symmetric Frobenius algebra A in Rep(G) ⊠ Rep(G) such

that
A⊗B

A
=
A/Rep(G) ⊗B/Rep(G)

G
. (1.3)

Here on the right-hand side A and B each appear gauged by the regular represen-

tation of G. This produces two theories with quantum symmetry G, so we can

sensibly gauge the diagonal G subgroup of their product. The claim is that (1.3),

which makes sense whether G is abelian or non-abelian, provides an appropriate

generalization of the diagonal subgroup to Rep(G) symmetries. This algebra A

in fact appears in [5] in a slightly broader context where it is referred to as the

canonical algebra of a tensor category. The aim of this paper will be to give, in the
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specialized case of Rep(G) fusion categories, concrete partition function computa-

tions (along the lines of and using the technology developed in [6, 7]) for gauging

this symmetry. Because of its duality (1.3) to the diagonal subgroup, we will refer

to the canonical algebra A in this context as the diagonal algebra.

In section 2 we introduce the construction in the case where G is abelian, and

so Rep(G) is again group-like (and isomorphic to G). In section 3 we proceed to

the general case where G is non-abelian and hence Rep(G) includes non-invertible

symmetries. We work through the case G = S3 in some detail. Section 4 applies

this procedure to the case where one of the theories is a TQFT, and demonstrates

how all the possible gaugings of a theory with Rep(G) symmetry can be obtained

in this way. We conclude in section 5 with some conclusions and discussion of next

steps. Finally, some extra details are provided in the appendices. Appendix A

gives an alternative perspective on our construction of the diagonal algebra us-

ing the “folding trick”. Appendix B provides, for completeness, some details of

Rep(S3) gauging. Appendix C derives a relation among Rep(S3) partial traces by

nucleating a bubble and repeatedly using fusion moves. And finally, appendix D

explains how this bubble nucleation is an example of Morita equivalence between

algebras, and reviews how this construction proceeds more generally.

2 Specialization to Abelian Case

To begin with, we should check that (1.3) makes sense when G is an abelian group.

In this case the Rep(G) symmetry is group-like and non-canonically isomorphic to

G, so we write it as Ĝ to distinguish the two. Then the diagonal algebra A should

reduce to the diagonal Ĝ ∈ Ĝ × Ĝ subgroup, and (1.3) should take the form

A⊗B

Ĝ
=
A/Ĝ⊗B/Ĝ

G
. (2.1)

We will argue for (2.1) by calculations at the level of genus one partition functions,

which will be a straightforward exercise in dual (quantum) symmetries.

As a quick review, let us detail how gauging a quantum symmetry works in a

Z2 orbifold. Let A be a theory with non-anomalous Z2 symmetry, and let Ag1,g2 be

the twisted genus one partition functions of the orbifold theory (i.e. the vacuum
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correlation function for the theory on a torus with g1- and g2-twisted boundary

conditions along the homotopy cycles) – we will refer to these objects as partial

traces. The partition function obtained when gauging A’s Z2 symmetry is (writing

Z2 additively)

Z(A/Z2) =
1

2
[A0,0 +A0,1 +A1,0 +A1,1]. (2.2)

The resulting gauged theory has a natural Ẑ2 quantum/dual symmetry which acts

by a minus sign on the Z2-twisted states of the original theory (which are now

genuine local operators after gauging). Thus we can write the orbifold partition

function with an insertion of the non-trivial element of Ẑ2 as

A′0,1 =
1

2
[A0,0 +A0,1 −A1,0 −A1,1]. (2.3)

By modular transformations we can easily fill out the other two partial traces in

the orbit:

A′1,0 =
1

2
[A0,0 −A0,1 +A1,0 −A1,1] (2.4)

A′1,1 =
1

2
[A0,0 −A0,1 −A1,0 +A1,1]. (2.5)

These relations, along with A′0,0 = Z(A/Z2), give us

Z([A/Z2]/Ẑ2) = 1

2
[A′0,0 +A′0,1 +A′1,0 +A′1,1] = A0,0 = Z(A) (2.6)

and we see that gauging the dual symmetry has returned the original theory, as

claimed.

We can easily repeat this calculation for an arbitrary abelian group G. Letting

A now have symmetry G, we know that (here we will switch to multiplicative

notation)

Z(A/G) = 1

∣G∣ ∑g1,g2∈G
Ag1,g2. (2.7)

The general form of the partial traces when gauging the quantum symmetry will

be

A′ĝ1,ĝ2 =
1

∣G∣ ∑g3,g4∈G
χĝ2(g3)χĝ1(g−14 )Ag3,g4 (2.8)
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such that the full Ĝ orbifold is

Z([A/G]/Ĝ) = 1

∣G∣2 ∑
ĝ1,ĝ2∈Ĝ
g3,g4∈G

χĝ2(g3)χĝ1(g−14 )Ag3,g4

=
1

∣G∣2 ∑g3,g4∈G
Ag3,g4

⎛
⎝ ∑
ĝ1∈Ĝ

χĝ1(g−14 )χĝ1(1)⎞⎠
⎛
⎝ ∑
ĝ2∈Ĝ

χĝ2(g3)χĝ2(1)⎞⎠
=

1

∣G∣2 ∑g3,g4∈G
Ag3,g4 ⋅ ∣G∣2δg3,1δg4,1 = Z1,1 = Z(A) (2.9)

where the sums over ĝ1 and ĝ2 are evaluated by character orthogonality (and the

triviality of characters evaluated on the identity element allowed us to insert the

extra factors). Again, the Ĝ orbifold of the G orbifold returns the original theory.

Now we move to the actual case of interest: two G-symmetric theories A and

B. In order to test whether (2.1) holds, we would like to calculate the partition

function2

Z (A/G⊗B/G
Ĝ

) . (2.10)

Letting Ag1,g2 and Bg1,g2 be the partial traces of the G orbifolds of these two

theories, the sectors of the Ĝ × Ĝ orbifold of their product takes the form

(A′ ⊗B′)ĝ1,ĝ2,ĝ3,ĝ4 = 1

∣G∣2 [ ∑g5,g6χĝ2(g5)χĝ1(g−16 )Ag5,g6][ ∑
g7,g8

χĝ4(g7)χĝ3(g−18 )Bg7,g8] .
(2.11)

We can get the partition function for the diagonal Ĝ gauging by setting ĝ1 = ĝ3,

ĝ2 = ĝ4, dividing by ∣G∣ and summing:

Z (A/G⊗B/G
Ĝ

) = 1

∣G∣3 ∑ĝ1,ĝ2 [ ∑g3,g4χĝ2(g3)χĝ1(g−14 )Ag3,g4] [ ∑
g5,g6

χĝ2(g5)χĝ1(g−16 )Bg5,g6]
=

1

∣G∣3 [ ∑g3,g4Ag3,g4][ ∑
g5,g6

Bg5,g6]
⎡⎢⎢⎢⎣∑̂g1 χĝ1(g−14 )χĝ1(g−16 )

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣∑̂g2 χĝ2(g3)χĝ2(g5)

⎤⎥⎥⎥⎦
=

1

∣G∣3 [ ∑g3,g4Ag3,g4] [ ∑
g5,g6

Bg5,g6] ∣G∣2δg−14 ,g6δg−13 ,g5 =
1

∣G∣ ∑g3,g4Ag3,g4Bg−1
3

,g−1
4

=
1

∣G∣ ∑g3,g4Ag3,g4Bg3,g4 = Z (A⊗B

G
) (2.12)

2It’s arbitrary which of the symmetries we label G vs. Ĝ, so in keeping with the previous
calculation we will let the first orbifold be by G and the second be by Ĝ.
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which confirms (2.1), at least at the level of torus partition functions. Note that we

used the fact that Bg−1
3

,g−1
4
= Bg3,g4, which holds because we can make a coordinate

change z ↦ −z in the 2D spacetime.

3 The Diagonal Algebra

In this section we will assume that G is nonabelian, forcing us to work with Frobe-

nius algebras over the fusion categories Rep(G) and Rep(G)⊠Rep(G). First note
that for finite groups G and H , Rep(G)⊠Rep(H) is (non-canonically) isomorphic

to Rep(G×H). The irreps of G×H are in one-to-one correspondence with tensor

products of irreps of G and H .

In [7] it was shown by explicit construction that there exists a Frobenius algebra

A of Rep(G) corresponding to a subgroupH ⊂ G (with a choice of discrete torsion),

such that (T /G)/A ≅ T /H . The algebra object was simply the representation

whose basis vectors vgH were labeled by cosets gH ∈ G/H , with G action given

by ρ(k) ⋅ vgH = vkgH . The algebra multiplication was just given by µ(vgH ⊗ vkH) =
δgH,kH vgH .

So to find the “diagonal” algebra of Rep(G) ⊠ Rep(G), all we need to do is

apply this coset construction to the diagonal subgroup Gdiag ⊂ G ×G. The cosets

in (G × G)/Gdiag are easy to describe; we can choose representatives (g,1)Gdiag,

so our representation (V, ρ) will have basis vectors vg ∶= v(g,1)Gdiag
, with the G ×G

action ρ(g, h) ⋅ vk = v(gk,h)Gdiag
= v(gkh−1,1)Gdiag

= vgkh−1 . To see how this decomposes

into irreps of G ×G, we consider the character. Since ρ acts as a permutation on

the basis vectors vg, this is just a counting problem. We find

χ(g, h) = Tr(ρ(g, h)) = { 0, if h ∉ Cg,
∣G∣
∣Cg ∣ , if h ∈ Cg,

(3.1)

where Cg = {kgk−1 ∣ k ∈ G} is the conjugacy class of g. To then determine the

decomposition of (V, ρ) into irreps (Ui ⊗ Uj , ρi ⊗ ρj), where i, j label irreps of G,
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we take inner products.

(χ,χi ⊗ χj) = 1

∣G∣2 ∑g,h∈Gχ(g, h)χi(g)χj(h)
=

1

∣G∣2 ∑
Cg ,Ch⊂G

∣Cg∣∣Ch∣χ(g, h)χi(g)χj(h)
=

1

∣G∣2 ∑Cg⊂G ∣Cg∣
2 ∣G∣∣Cg∣χi(g)χj(g)

=
1

∣G∣ ∑Cg⊂G ∣Cg∣χi(g)χj(g) = δi,̄. (3.2)

That is, the representation (Ui⊗Uj , ρi⊗ρj) only appears if (Uj , ρj) is the conjugate
representation to (Ui, ρi), and in that case it occurs with multiplicity one. So,

changing notation a little, we can write

ρ ≅ ⊕
irreps i of G

ρi ⊗ ρi. (3.3)

The multiplication is given by

µ(vg ⊗ vh) = δg,h vg. (3.4)

And the unit, co-unit, and co-multiplication are

u(1) = ∑
g∈G

vg, (3.5)

c(vg) = 1, (3.6)

∆(vg) = vg ⊗ vg. (3.7)

In fact, this is isomorphic to the Frobenius algebra corresponding to the regular

representation of G, but now we are viewing it as an algebra inside the larger

fusion category Rep(G ×G) ≅ Rep(G) ⊠ Rep(G). From (3.3) we can see that its

algebra object is given by

∑
L∈Rep(G)

(L,L) (3.8)

where the sum runs over simple objects (i.e. irreps). This agrees with the descrip-

tion of the canonical algebra given in [5, Definition 7.9.12].3

3Note that the fact that the representation on the rhs of the tensor product in (3.3) appears
conjugated reflects the fact that this is an algebra on C ⊠ Cop for a fusion category C, where the
opposite category Cop is obtained by reversing the directions of the morphisms in C. This is
reflected in the group-like case in e.g. (2.8) where g3 appears alongside g−14 . Since our primary
example Rep(S3) involves only self-dual objects, we will gloss over this fact going forward.
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3.1 Example: Rep(S3) ×Rep(S3)

Applying this construction to the Rep(S3) case, our algebra object is

A = (1,1) + (X,X) + (Y,Y ). (3.9)

The quantum dimension of A is 12 + 12 + 22 = 6.

3.1.1 S3 Gauging

For later use, let’s review how the partition functions look when gauging S3×S3 or

its diagonal S3 subgroup. Suppose we start with A⊗B, where A and B are theories

that each have non-anomalous S3 symmetry. Gauging the S3×S3 symmetry group

gives us (A/S3)⊗ (B/S3), with partition function

ZS3×S3
=

1

36
∑

g,h,g′,h′∈S3

gh=hg,g′h′=h′g′

Z
(A)
g,h Z

(B)
g′,h′

=
⎛⎜⎜⎝
1

6
∑

g,h∈S3

gh=hg

Z
(A)
g,h

⎞⎟⎟⎠
⎛⎜⎜⎝
1

6
∑

g′,h′∈S3

g′h′=h′g′

Z
(B)
g′,h′

⎞⎟⎟⎠
=

1

36
(Z(A)1,1 + 3Z

(A)
1,a + 2Z

(A)
1,b + 3Z

(A)
a,1 + 3Z

(A)
a,a + 2Z

(A)
b,1 + 2Z

(A)
b,b + 2Z

(A)
b,b2
)

× (Z(B)1,1 + 3Z
(B)
1,a + 2Z

(B)
1,b + 3Z

(B)
a,1 + 3Z

(B)
a,a + 2Z

(B)
b,1 + 2Z

(B)
b,b + 2Z

(B)
b,b2
)

(3.10)

On the other hand, if we had only gauged the diagonal S3, we would get partition

function

Z(S3)diag. =
1

6
∑

g,h∈S3

gh=hg

Z
(A)
g,h Z

(B)
g,h

=
1

6
(Z(A)1,1 Z

(B)
1,1 + 3Z

(A)
1,a Z

(B)
1,a + 2Z

(A)
1,b Z

(B)
1,b + 3Z

(A)
a,1 Z

(B)
a,1 + 3Z

(A)
a,a Z

(B)
a,a

+2Z(A)b,1 Z
(B)
b,1 + 2Z

(A)
b,b Z

(B)
b,b + 2Z

(A)
b,b2

Z
(B)
b,b2
) . (3.11)

3.1.2 Rep(S3) Gauging

Let’s briefly recall how we approach a theory with Rep(S3) symmetry, following [7].

There are three irreps in Rep(S3), labeled 1, X , and Y , and they can be taken to
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act via

ρ1(a) = 1, ρ1(b) = 1, (3.12)

ρX(a) = −1, ρX(b) = 1, (3.13)

ρY (a) = (−1 0
0 1

) , ρY (b) = (−1
2
−
√
3
2√

3
2
−1

2

) . (3.14)

We will denote the basis vectors corresponding to these representations as {e} for
1, {eX} for X , and {e1, e2} for Y .

Fusion corresponds to taking tensor product representations and obeys (1.1).

To proceed we should choose a particular basis λR3

R1,R2
∈ Hom(R1 ⊗ R2,R3) for

the intertwiners implementing these fusions. When the trivial representation is

involved there is a canonical choice, and we write4

λ1
1,1(ee) = e, λX

1,X(eeX) = λX
X,1(eXe) = eX , λY

1,Y (eea) = λY
Y,1(eae) = ea, a = 1,2.

(3.15)

For the other fusions, the choices are not canonical, but the ambiguity can be

parameterized by C× valued numbers β1,⋯, β6, as in [7, section 3.1].5 Also following

the conventions in that paper, our choice for the fusion intertwiner basis can be

used to determine a basis for the co-fusion intertwiners, δR2,R3

R1
∈ Hom(R1,R2⊗R3).

For completeness we list these in Appendix B. These can be used to compute the

components of the associator, but we won’t explicitly need those details.

Now to gauge the full Rep(S3), we construct a Frobenius algebra corresponding
to the regular representation 1 +X + 2Y . Taking a basis of vectors vg, g ∈ S3, and

4To save space we leave the tensor product symbol implicit, but an expression like eeX should
be understood as the vector e⊗ eX inside the representation 1⊗X .

5To match up with the choice of gauge used in e.g. [13], one would set β2 = β4 = β5 = 1 and
β1 = β3 = β6 = −1.
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the obvious left-action ρreg(g) ⋅ vh = vgh, we can decompose into irreps,

e = v1 + vb + vb2 + va + vab + vab2 , (3.16)

eX =
cX√
6
(v1 + vb + vb2 − va − vab − vab2) , (3.17)

eY11 =
c1

2
(vb − vb2 − vab + vab2) , (3.18)

eY12 =
c1

2
√
3
(−2v1 + vb + vb2 − 2va + vab + vab2) , (3.19)

eY21 =
c2

2
√
3
(−2v1 + vb + vb2 + 2va − vab − vab2) , (3.20)

eY22 =
c2

2
(−vb + vb2 − vab + vab2) . (3.21)

The multiplication is µ(vgvh) = δg,hvg (note that it is symmetric) and the co-

multiplication is ∆(vg) = vgvg. In Appendix B we write these out explicitly in

the basis of e’s to read off components µC
A,B and ∆B,A

C , where A,B,C are the

simple representations appearing in the decomposition of the algebra object 1 +

X + 2Y (i.e. one trivial representation, one X representation, and two different Y

representations). Finally, one gets the orbifold partition function from the formula

Z = ∑A,B,C µC
A,B∆

B,A
C ZC

A,B. In the current case this results in (combining Y1 and

Y2 terms together)

Z1+X+2Y =
1

6
[Z1

1,1 +Z
X
1,X + 2Z

Y
1,Y +Z

X
X,1 +Z

1
X,X −

2β1

β2β3

ZY
X,Y

+2ZY
Y,1 −

2β4

β3β6

ZY
Y,X + 2Z

1
Y,Y +

2β4

β2β6

ZX
Y,Y +

2β4

β2
5

ZY
Y,Y ] . (3.22)

3.1.3 Rep(S3 × S3) Gauging

Now let us turn to the product, Rep(S3 × S3). In this case there are nine irreps,

but we will only worry about the diagonal ones, which we will denote as 11, XX ,

and Y Y . The corresponding representations are obtained from ρ11(g, h) = 1,
ρXX(1, a) = ρXX(a,1) = −1, ρXX(1, b) = ρXX(b,1) = 1, (3.23)

and

ρY Y (1, a) =
⎛⎜⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎟⎟⎠
, ρY Y (a,1) =

⎛⎜⎜⎜⎝

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠
, (3.24)
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ρY Y (1, b) =
⎛⎜⎜⎜⎜⎜⎝

−1
2
−
√
3
2

0 0√
3
2
−1

2
0 0

0 0 −1
2
−
√
3
2

0 0
√
3
2
−1

2

⎞⎟⎟⎟⎟⎟⎠
, ρY Y (b,1) =

⎛⎜⎜⎜⎜⎜⎝

−1
2

0 −
√
3
2

0

0 −1
2

0 −
√
3
2√

3
2

0 −1
2

0

0
√
3
2

0 −1
2

⎞⎟⎟⎟⎟⎟⎠
.

(3.25)

In this case we’ll denote the bases as {e} for 11, {eXX} forXX , and {e11, e12, e21, e22}
for Y Y . For future reference, we note that these are simply the tensor products

of two copies of Rep(S3) irreps, so for example

ρY Y (eij) = ρY (ei)⊗ ρY (ej). (3.26)

We again need to pick bases for the fusion intertwiners. Restricting to only fusions

involving these diagonal representations, we have canonical fusions for 11, and for

the others (here we take Y Y indices mod 2)

λ1
XX,XX1(eXXeXX) = β1e, (3.27)

λY Y
XX,Y Y (eXXeij) = (−1)i+jβ2ei+1,j+1, (3.28)

λY Y
Y Y,XX(e11eXX) = (−1)i+jβ3ei+1,j+1, (3.29)

λ11
Y Y,Y Y (eijekℓ) = δikδjℓβ4e, (3.30)

λXX
Y Y,Y Y (eijekℓ) = (−1)i+jδi,k+1δj,ℓ+1β6eXX , (3.31)

λY Y
Y Y,Y Y (eijekℓ) = (−1)(i+1)(k+1)+(j+1)(ℓ+1)β5ei+k,j+ℓ. (3.32)

In fact, all of these cases could be obtained from a general expression (in hopefully

obvious notation)

λEF
AB,CD(vABvCD) = λE

A,C(vAvC)⊗ λF
B,D(vBvD). (3.33)

From this perspective, the βi above are the products of Rep(S3) βi, i.e.

βi = β
′
iβ
′′
i . (3.34)

We can construct a basis of co-fusion intertwiners by following our established

procedure, and it ends up working the same way, i.e.

δ
CD,AB
EF (vEF ) = δC,A

E (vE)⊗ δ
D,B
F (vF ). (3.35)

11



In particular for our case

δ
XX,XX
11 (e) = β−11 eXXeXX , (3.36)

δ
Y Y,Y Y
11 (e) = β−14 (e11e11 + e12e12 + e21e21 + e22e22) , (3.37)

δ
Y Y,Y Y
XX (eXX) = β2β

−1
4 (e11e22 − e12e21 − e21e12 + e22e11) , (3.38)

δXX,Y Y
Y Y (e11) = β6β

−1
4 eXXe22, (3.39)

δ
XX,Y Y
Y Y (e12) = − β6β

−1
4 eXXe21, (3.40)

δ
XX,Y Y
Y Y (e21) = − β6β

−1
4 eXXe12, (3.41)

δXX,Y Y
Y Y (e22) = β6β

−1
4 eXXe11, (3.42)

δ
Y Y,XX
Y Y (e11) = β3β

−1
1 e22eXX , (3.43)

δ
Y Y,XX
Y Y (e12 = − β3β

−1
1 e21eXX , (3.44)

δY Y,XX
Y Y (e21) = − β3β

−1
1 e12eXX , (3.45)

δ
Y Y,XX
Y Y (e22) = β3β

−1
1 e11eXX , (3.46)

δ
Y Y,Y Y
Y Y (e11) = β5β

−1
4 (e11e22 + e12e21 + e21e12 + e22e11) , (3.47)

δY Y,Y Y
Y Y (e12) = β5β

−1
4 (e11e21 − e12e22 + e21e11 − e22e12) , (3.48)

δ
Y Y,Y Y
Y Y (e21) = β5β

−1
4 (e11e12 + e12e11 − e21e22 − e22e21) , (3.49)

δ
Y Y,Y Y
Y Y (e22) = β5β

−1
4 (e11e11 − e12e12 − e21e21 + e22e22) . (3.50)

Now we would like to gauge 11+XX+Y Y . We can view this as again associated

to the regular representation, with identifications

e = v1 + vb + vb2 + va + vab + vab2 , (3.51)

eXX =
cXX√

6
(v1 + vb + vb2 − va − vab − vab2) , (3.52)

e11 =
cY Y

2
√
3
(−2v1 + vb + vb2 + 2va − vab − vab2) , (3.53)

e12 =
cY Y

2
(vb − vb2 − vab + vab2) , (3.54)

e21 =
cY Y

2
(−vb + vb2 − vab + vab2) , (3.55)

e22 =
cY Y

2
√
3
(−2v1 + vb + vb2 − 2va + vab + vab2) . (3.56)

These are the same vectors as in the Rep(S3) case with identifications eXX = eX ,

e11 = eY21, e12 = eY11, e21 = eY22, e22 = eY12 and cXX = cX , cY Y = c1 = c2. In particular,

12



the actions of µ and ∆ are exactly as before, and so this leads us to

µXX
11,XX = µ

Y Y
11,Y Y = µ

XX
XX,11 = µ

Y Y
Y Y,11 = 1, µ11

XX,XX =
c2XX

6β1

, µY Y
XX,Y Y =

cXX√
6β2

,

µY Y
Y Y,XX =

cXX√
6β3

, µ11
Y Y,Y Y =

c2Y Y

6β4

, µXX
Y Y,Y Y =

c2Y Y√
6cXXβ6

, µY Y
Y Y,Y Y = −

cY Y

2
√
3β5

,

(3.57)

and

∆11,11
11 =∆11,XX

XX =∆XX,11
XX =∆11,Y Y

Y Y =∆Y Y,11
Y Y =

1

6
, ∆XX,XX

11 =
β1

c2XX

,

∆Y Y,Y Y
11 =

β4

c2Y Y

, ∆Y Y,Y Y
XX =

cXXβ4√
6cY Y β2

, ∆XX,Y Y
Y Y =

β4√
6cXXβ6

,

∆Y Y,XX
Y Y =

β1√
6cXXβ3

, ∆Y Y,Y Y
Y Y = −

β4

2
√
3cY Y β5

. (3.58)

Putting it together gives the partition function

Z11+XX+Y Y =
1

6
[Z11

11,11 +Z
XX
11,XX +Z

Y Y
11,Y Y +Z

XX
XX,11 +Z

11
XX,XX +

β1

β2β3

ZY Y
XX,Y Y

+ZY Y
Y Y,11 +

β4

β3β5

ZY Y
Y Y,XX +Z

11
Y Y,Y Y +

β4

β2β6

ZXX
Y Y,Y Y +

β4

2β2
5

ZY Y
Y Y,Y Y ] .

(3.59)

3.1.4 Consistency Check

We can quickly check that this result is consistent with (1.3). Suppose we obtained

our Rep(S3 ×S3) theory by gauging S3 ×S3 for a product theory A⊗B, with each

factor having an S3 symmetry. In this case the partial traces above all factorize,

e.g.

ZY Y
XX,Y Y = Z

(A/S3)Y
X,Y Z

(B/S3)Y
X,Y . (3.60)

Now for the A/S3 and B/S3 partial traces, we can write them in terms of A and B

partial traces by using a combination of knowing how the untwisted sector works,

modular invariance, and the knowledge that the 1+Y orbifold of say A/S3 should

13



give A/Z2. The result is

Z1
1,1 =

1

6
(Z1,1 + 2Z1,b + 3Z1,a + 2Zb,1 + 2Zb,b + 2Zb,b2 + 3Za,1 + 3Za,a) , (3.61)

ZX
1,X =

1

6
(Z1,1 + 2Z1,b + 3Z1,a + 2Zb,1 + 2Zb,b + 2Zb,b2 − 3Za,1 − 3Za,a) , (3.62)

ZY
1,Y =

1

6
(2Z1,1 + 4Z1,b + 6Z1,a − 2Zb,1 − 2Zb,b − 2Zb,b2) , (3.63)

ZX
X,1 =

1

6
(Z1,1 + 2Z1,b − 3Z1,a + 2Zb,1 + 2Zb,b + 2Zb,b2 + 3Za,1 − 3Za,a) , (3.64)

Z1
X,X =

1

6
(Z1,1 + 2Z1,b − 3Z1,a + 2Zb,1 + 2Zb,b + 2Zb,b2 − 3Za,1 + 3Za,a) , (3.65)

ZY
Y,1 =

1

6
(2Z1,1 − 2Z1,b + 4Zb,1 − 2Zb,b − 2Zb,b2 + 6Za,1) , (3.66)

Z1
Y,Y =

1

6
(2Z1,1 − 2Z1,b − 2Zb,1 − 2Zb,b + 4Zb,b2 + 6Za,a) , (3.67)

ZY
Y,Y =

2β2
5

3β4

(Z1,1 −Z1,b −Zb,1 + 2Zb,b −Zb,b2) , (3.68)

ZY
X,Y =

β2β3

3β1

(−Z1,1 − 2Z1,b + 3Z1,a +Zb,1 +Zb,b +Zb,b2) , (3.69)

ZY
Y,X =

β3β6

3β4

(−Z1,1 +Z1,b − 2Zb,1 +Zb,b +Zb,b2 + 3Za,1) , (3.70)

ZX
Y,Y =

β2β6

3β4

(Z1,1 −Z1,b −Zb,1 −Zb,b + 2Zb,b2 − 3Za,a) . (3.71)

As a check on these, we have

Z1+X =
1

2
[Z1

1,1 +Z
X
1,X +Z

X
X,1 +Z

1
X,X]

=
1

3
[Z1,1 + 2Z1,b + 2Zb,1 + 2Zb,b + 2Zb,b2] = ZZ3

, (3.72)

Z1+Y =
1

3
[Z1

1,1 +Z
Y
1,Y +Z

Y
Y,1 +Z

1
Y,Y +

β4

2β2
5

ZY
Y,Y ]

=
1

2
[Z1,1 +Z1,a +Za,1 +Za,a] = ZZ2

, (3.73)

Z1+X+2Y =
1

6
[Z1

1,1 +Z
X
1,X + 2Z

Y
1,Y +Z

X
X,1 +Z

1
X,X −

2β1

β2β3

ZY
X,Y

+2ZY
Y,1 −

2β4

β3β6

ZY
Y,X + 2Z

1
Y,Y +

2β4

β2β6

ZX
Y,Y +

2β4

β2
5

ZY
Y,Y ]

= Z1,1. (3.74)
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Now we apply these decompositions to the Rep(S3) ⊠ Rep(S3) orbifold partition

function (3.59) and we find precisely the S3 orbifold partition function (3.11), in

perfect agreement with (1.3).

4 Application to TQFT

Now we should be able to explicitly confirm some of the calculations in [3, section

A.3]. The setup here is that we would like to gauge the diagonal algebra of the

direct product of a theory carrying Rep(S3) symmetry with a Rep(S3)-symmetric

TQFT. There are four minimal unitary6 TQFTs carrying this symmetry [8], all of

which can be obtained by gauging SPT phases carrying Rep(S3) or S3 symmetry:

• SPT(Rep(S3)), the Rep(S3) symmetric SPT state. It has a single ground

state in which all of Rep(S3) acts trivially.
• SPT(S3)/Z2, a theory with two ground states which we will call the ‘X SSB’

(spontaneous symmetry breaking) phase. Here X serves to exchange the two

ground states and Y acts on either ground state to produce the sum of both.

• SPT(Rep(S3))/(1 + Y ), the ‘Y SSB’ phase which has three ground states.

X acts trivially on all three ground states and Y acts on any of the three to

produce the sum of the remaining two.

• SPT(S3)/S3, which is S3 gauge theory. Like the phase above it has three

ground states – one for each S3 irrep. The action of Rep(S3) on the three

ground states Π1, Π2, Π3 is [8, 10]

1Π1 = Π1 1Π2 = Π2 1Π3 = Π3

XΠ1 = Π2 XΠ2 = Π1 XΠ3 = Π3

Y Π1 =
1
2
Π3 YΠ2 =

1
2
Π3 YΠ3 = 2Π1 + 2Π2 +Π3.

(4.1)

6Going forward, we will not repeatedly specify that we are working with unitary TQFTs,
but it should be understood that we are imposing this restriction. Similarly, when we claim to
give an exhaustive list of TQFTs carrying a certain symmetry, we of course mean that it is an
exhaustive list of minimal theories (i.e. ones which cannot be written as a direct sum of other
minimal TQFTs). Finally, we will talk here about TQFTs rather than passing to gapped phases
(equivalence classes of TQFTs differing by Euler counterterms [8, section 3.2]) since the duality
relations we employ will (in principle, though we will not do computations at higher genus where
these terms would show up) determine the Euler terms of a TQFT from its dual.
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The main approach will be to use the duality between these Rep(S3)-symmetric

TQFTs and the four S3-symmetric ones. Specifically, by gauging the full S3 in the

four S3-symmetric TQFTs, we can produce the four Rep(S3)-symmetric TQFTs.

The S3-symmetric theories in question are:

• SPT(S3), the S3-symmetric SPT state, with a single ground state.

• SPT(Rep(S3))/(1+X), the ‘Z2 SSB’ phase with two ground states. The Z2

exchanges the ground states, while the Z3 acts trivially in both.

• SPT(S3)/Z3, the ‘Z3 SSB’ phase with three ground states. Here the Z3

exchanges the three ground states, but the Z2 does not act totally trivially

– each of the three conjugate Z2 subgroups of S3 exchanges two of the three

ground states, leaving the third fixed.

• SPT(Rep(S3))/(1 + X + 2Y ), Rep(S3) gauge theory. This phase has six

ground states which carry a free action of S3.

It is straightforward to see that one produces the former list from the latter by

gauging S3, with the only possible complication being the need to identify com-

posed gaugings such as

[SPT(S3)/Z3]/S3 = SPT(S3)/Z2 (4.2)

and

[SPT(Rep(S3))/(1 +X)]/S3 = SPT(Rep(S3))/(1 + Y ). (4.3)

4.1 Calculation of S3 Partial Traces

Using the theta/gauge defect method of [1] and [3], we expect that we should

be able to construct the genus one partition functions for all four gaugings of a

Rep(S3)-symmetric theory by taking the product of that theory with each of the

four TQFTs described above and gauging the diagonal algebra. Per the results of

section 3, in order to implement this strategy we need to know the partial traces

that one would obtain by gauging Rep(S3) in each of the four TQFTs. As men-

tioned above, it will be easier to first calculate the corresponding partial traces in

the four S3-symmetric TQFTs, then using the duality between S3 and Rep(S3) to
16



construct the Rep(S3) partial traces.
Using the notation of section 3.1.1, the four gaugings of S3 are:

• Gauging all of S3, with partition function

1

6
[Z1,1 + 3(Z1,a +Za,1 +Za,a) + 2(Z1,b +Zb,1 +Zb,b +Zb,b2)], (4.4)

corresponding to the S3 SPT phase.

• Gauging the Z3 subgroup of S3, with partition function

1

3
[Z1,1 + 2 (Z1,b +Zb,1 +Zb,b +Zb,b2)], (4.5)

corresponding to the Z2 SSB phase.

• Gauging any of the three conjugate Z2 subgroups, with partition function

1

2
[Z1,1 +Z1,a +Za,1 +Za,a], (4.6)

corresponding to the Z3 SSB phase.

• The trivial gauging, with partition function

Z1,1, (4.7)

corresponding to Rep(S3) gauge theory.

Comparing the four partition functions above with the partition function (3.11)

of a diagonal S3 gauging, we can readily identify the partial traces one would obtain

from gauging the S3 symmetry of the four TQFTs in question, collected in Table 1.

We can quickly check that this data is consistent with the description given for

each of these phases. The untwisted partition function Z1,1, in each case, simply

counts the number of ground states in the theory. The twisted partition functions

in each modular orbit then count the number of ground states invariant under
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SPT(S3) Z2 SSB Z3 SSB Rep(S3) Gauge Theory
Z1,1 1 2 3 6
Z1,a 1 0 1 0
Za,1 1 0 1 0
Za,a 1 0 1 0
Z1,b 1 2 0 0
Zb,1 1 2 0 0
Zb,b 1 2 0 0
Zb,b2 1 2 0 0

Table 1: Partial traces for gaugings of S3-symmetric TQFTs.

that symmetry.7 For instance, the SPT phase has a single ground state invariant

under the entire S3 symmetry, and its partial traces are all unity, as expected from

a (group-like) SPT. Conversely, since S3 acts freely on the six ground states of

Rep(S3) gauge theory, no ground states are invariant under any group element

insertions. We also recover the fact that both of the Z2 SSB phase’s ground states

are invariant under the order three element b and are exchanged by the order two

element a. Similarly, each order two element fixes only one of the three ground

states in the Z3 SSB phase, and as a consequence we have Z1,a = Za,1 = Za,a = 1.

4.2 Calculation of Rep(S3) Partial Traces

Now we would like to transform the data of Table 1 to equivalent data for the

four Rep(S3)-symmetric TQFTs. Since these are related to their S3 counterparts

by gauging, we will use the relations (3.61)-(3.71) to produce the Rep(S3) partial
traces from the S3 ones. Doing so results in Table 2.

Up to factors of β arising from the fact that we have left the Rep(S3) associator
7One way to see this is to recall that Z1,g corresponds to implementing g-twisted boundary

conditions on a toroidal worldsheet. When g acts to exchange one ground state with another, any
state living in a such a twisted sector would need to extend between disjoint terms in the direct
sum decomposition of the theory into its components. In such a decomposition, the identity
operator on the total space is given by the sum of identity operators on each component or
‘universe’ [9], which means that we can calculate any correlation function of local operators in
the theory as a whole as the sum of its value in each universe. Inserting this sum of local identity
operators will kill any state extending between universes, so these states cannot contribute.
Therefore the value of the partial trace must be determined purely by the universes in which g

acts trivially.
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SPT(Rep(S3)) X SSB Y SSB S3 Gauge Theory
Z1

1,1 1 2 3 3
ZX

1,X 1 0 3 1

ZX
X,1 1 0 3 1

Z1
X,X 1 0 3 1

ZY
1,Y 2 2 0 1

ZY
Y,1 2 2 0 1

Z1
Y,Y 2 2 0 1

ZY
X,Y -2β2β3

β1
0 0 β2β3

β1

ZY
Y,X -2β3β6

β4
0 0 β3β6

β4

ZX
Y,Y 2β2β6

β4
0 0 β2β6

β4

ZY
Y,Y 4

β2
5

β4
2
β2
5

β4
0 0

Table 2: Partial traces for gaugings of Rep(S3)-symmetric minimal unitary
TQFTs.

in a general gauge, the results here are once again integers. Again we have Z1
1,1

counting the number of ground states in each phase. We can immediately see an

oddity of the non-invertible symmetry: the partial traces for the SPT phase do not

all take unit value, and in fact some of them are negative, neither of which would

happen for group-like symmetries (without cocycle twists). As a cross-check, the

SPT(Rep(S3)) partial traces were calculated by a different method in [7, section

5.4.1], with identical results. Additionally, one should keep in mind that the data of

Table 2 is constrained by modular invariance, which for non-invertible symmetries

can relate linear combinations of partial traces. The full list of Rep(S3) modular

transformations are presented in [7, section 3.1.3]; here we reproduce the ones
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involving linear combinations:

Z1
Y,Y (τ + 1) = 1

2
ZY

Y,1(τ) + β4

2β3β6

ZY
Y,X(τ) + β4

2β2
5

ZY
Y,Y (τ), (4.8)

ZX
Y,Y (τ + 1) = − β2β6

2β4

ZY
Y,1(τ) − β2

2β3

ZY
Y,X(τ) + β2β6

2β2
5

ZY
Y,Y (τ), (4.9)

ZY
Y,Y (τ + 1) = β2

5

β4

ZY
Y,1(τ) − β2

5

β3β6

ZY
Y,X(τ) (4.10)

Z1
Y,Y (−1/τ) = 1

2
Z1

Y,Y (τ) − β4

2β2β6

ZX
Y,Y (τ) + β4

2β2
5

ZY
Y,Y (τ), (4.11)

ZX
Y,Y (−1/τ) = − β2β6

2β4

Z1
Y,Y (τ) + 1

2
ZX

Y,Y (τ) + β2β6

2β2
5

ZY
Y,Y (τ), (4.12)

ZY
Y,Y (−1/τ) = β2

5

β4

Z1
Y,Y (τ) + β2

5

β2β6

ZX
Y,Y (τ). (4.13)

One can check that the data given in Table 2 satisfies these relations.

4.3 Rep(S3) Gaugings from TQFT

Now we can use the above results for TQFT partition functions in conjunction with

the diagonal algebra to produce the genus one partition functions for the gaugings

of Rep(S3). For these purposes, let T be a 2d theory carrying Rep(S3) symmetry.

We would like to take the product of T with the four Rep(S3)-symmetric minimal

unitary TQFTs defined at the start of the section and gauge the diagonal algebra

in the result. Denoting this algebra as before by A, we combine the data of Table 2

with the diagonal algebra partition function (3.59) to find

Z([T ⊗ SPT(Rep(S3))]/A) = 1
6
[Z1

1,1 +Z
X
1,X +Z

X
X,1 +Z

1
X,X + 2(ZY

1,Y +Z
Y
Y,1 +Z

1
Y,Y )

+ 2(− β1

β2β3

ZY
X,Y −

β4

β3β6

ZY
Y,X +

β4

β2β6

ZX
Y,Y +

β4

β2
5

ZY
Y,Y )]. (4.14)

for the SPT phase,

Z([T ⊗ SPT(S3)/Z2]/A) = 1
3
[Z1

1,1 +Z
Y
1,Y +Z

Y
Y,1 +Z

1
Y,Y +

β4

2β2
5

ZY
Y,Y ] (4.15)

for the X SSB phase,

Z([T ⊗ SPT(Rep(S3))/(1 + Y )]/A) = 1

2
[Z1

1,1 +Z
X
1,X +Z

X
X,1 +Z

1
X,X] (4.16)
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for the Y SSB phase and

Z([T ⊗ SPT(S3)/S3]/A) = 1
6
[3Z1

1,1 +Z
X
1,X +Z

X
X,1 +Z

1
X,X +Z

Y
1,Y +Z

Y
Y,1 +Z

1
Y,Y

+
β1

β2β3

ZY
X,Y +

β4

β3β6

ZY
Y,X −

β4

β2β6

ZX
Y,Y ] (4.17)

for S3 gauge theory.

These are almost exactly the results we expect. In (4.14), (4.15) and (4.16) we

see the 1+X +2Y , 1+Y and 1+X gaugings of T , respectively [7]. The odd one out

is (4.17), which is not immediately recognizable as one of the Rep(S3) gaugings
(or a linear combination thereof).

Fortunately, with a little care we can resolve this apparent puzzle. Let us as-

sume that the right-hand side of (4.17) corresponds to a sensible gauging for a

Rep(S3)-symmetric theory. Let us further present that theory as an S3 orbifold.

We can then use the partial trace relations of section 3.1.4 to figure out what

happens when we compose the gauging given in (4.17) with the S3 orbifold. Plug-

ging in, the result is in fact Z1
1,1 – the S3 orbifold partition function. That is,

the gauging appearing on the right-hand side of (4.17) is in fact the trivial gaug-

ing, masquerading as something more complicated. This phenomenon is known

as Morita equivalence – there can (and generically do) exist distinct Frobenius

algebras over fusion categories which, when gauged, give equivalent results [5, Def-

inition 7.8.17] [11, section 4.6].8

A second way to show explicitly that the right-hand side of (4.17) is equal

to Z1
1,1 is by starting with the torus partition function and nucleating a small Y

loop, then using repeated swap moves with insertions of crossing kernels. Since

this operation should be equivalent to multiplying the partition function by the

8Note further that things more or less had to work out this way; in order to get the trivial
Rep(S3) gauging on the nose from the diagonal gauging, we would have needed a Rep(S3)-
symmetric TQFT with Z1

1,1 = 6 and all other partial traces vanishing, i.e. a theory with six
ground states admitting a ‘free’ action of Rep(S3). But this was meant to be dual under gauging
to the S3-symmetric SPT phase, and 2d gauge theory for non-abelian groups does not produce
a totally symmetry-broken phase (notably, the number of ground states matches the number of
conjugacy classes instead of the order of the group). There had to be some additional relation
to reconcile these facts, and Morita equivalence is what saves the day.
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quantum dimension of the line forming the loop, this procedure results in non-

trivial relations between the various partial traces which can be used to simplify

(4.17). The details can be found in Appendix C.

There is in fact a third, even more direct way to demonstrate this Morita

equivalence. If A is a Frobenius algebra in a fusion category C, and L is some

other object in the category whose orientation reversal is L, then one can give a

Frobenius algebra structure to (L⊗A)⊗L, and these two algebras will be Morita

equivalent. This construction is briefly reviewed in Appendix D. We claim that

(4.17) arises from taking the trivial gauging A = 1, and constructing a Morita

equivalent (so still physically trivial) gauging by conjugating with L = 1 + Y .

Indeed, let e, e1, and e2 be basis vectors for the representation L = L = 1+Y . Then

A′ = (L ⊗ A) ⊗ L is a nine-dimensional representation with basis (in hopefully

obvious notation)

{eee, eee1, eee2, e1ee, e1ee1, e1ee2, e2ee, e2ee1, e2ee2} . (4.18)

Since the multiplication in A is trivial (µ(ee) = e) and since the evaluation map is

simply ǫ1(ee) = 1, ǫY (eiej) = β4δij , the multiplication in A′, as explained in (D.3),

will be given by µ′(eee, v) = µ(v, eee) = v and

µ′(eeei, eeej) = 0, µ′(eeei, ejee) = β4δijeee, µ′(eeei, ejeek) = β4δijeeek,

µ′(eiee, eeej) = eieej , µ′(eiee, ejee) = 0, µ′(eiee, ejeek) = 0,
µ′(eieej , eeek) = 0, µ′(eieej , ekee) = β4δjkeiee, µ′(eieej , ekeeℓ) = β4δjkeieeℓ,

(4.19)

where i, j, k, ℓ can run over 1,2.

The co-multiplication is similarly

∆′(eee) = 1

3
[eee⊗ eee + β−14

2

∑
i=1

eeei ⊗ eiee] ,
∆′(eeei) = 1

3
[eee⊗ eeei + β−14

2

∑
j=1

eeej ⊗ ejeei] ,
∆′(eiee) = 1

3
[eiee⊗ eee + β−14 2

∑
j=1

eieej ⊗ ejee] ,
∆′(eieej) = 1

3
[eiee⊗ eeej + β−14 2

∑
k=1

eieek ⊗ ekeej] . (4.20)
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In order to express the A′ orbifold partition function in terms of partial traces,

we must break it up into irreps of S3. We have A′ = 2+X +3Y , and we can define

basis vectors

E(11) = eee, (4.21)

E(12) = e1ee1 + e2ee2, (4.22)

E
(X)
X = e1ee2 − e2ee1, (4.23)

E
(Y1)
1 = eee1, (4.24)

E
(Y1)
2 = eee2, (4.25)

E
(Y2)
1 = e1ee, (4.26)

E
(Y2)
2 = e2ee, (4.27)

E
(Y3)
1 = e1ee2 + e2ee1, (4.28)

E
(Y3)
2 = e1ee1 − e2ee2. (4.29)

In terms of this basis, we can compute the multiplication and compare to our

standard fusions (B.1)-(B.17)

µ′1111,11
= 1, µ′Y1

11,Y1
= 1, µ′1212,12

= β4, µ′X12,X = β4, µ′Y2

12,Y2
= β4, µ′Y3

12,Y3
= β4,

µ′XX,12
= β4, µ′12X,X = −β4β

−1
1 , µ′Y2

X,Y2
= −β4β

−1
2 , µ′Y3

X,Y3
= β4β

−1
2 ,

µ′Y1

Y1,12
= β4, µ′Y1

Y1,X
= β4β

−1
3 , µ′11Y1,Y2

= 1, µ′Y1

Y1,Y3
= β4β

−1
5 ,

µ′Y2

Y2,11
= 1, µ′12Y2,Y1

=
1

2
β−14 , µ′XY2,Y1

=
1

2
β−16 , µ′Y3

Y2,Y1
=
1

2
β−15 ,

µ′Y3

Y3,12
= β4, µ′Y3

Y3,X
= −β4β

−1
3 , µ′Y2

Y3,Y2
= β4β

−1
5 , µ′12Y3,Y3

= 1, µ′XY3,Y3
= −β4β

−1
6 ,

(4.30)

with all other components vanishing. Similarly

∆′11,1111
=
1

3
, ∆′Y1,Y2

11
=
1

3
, ∆′12,1212

=
1

6
β−14 , ∆′X,X

12
= −

1

6
β−14 β1, ∆′Y2,Y1

12
=
1

3
β4,

∆′Y3,Y3

12
=
1

6
, ∆′12,XX =

1

6
β−14 , ∆′X,12

X =
1

6
β−14 , ∆′Y2,Y1

X = −
1

3
β−12 β4,

∆′Y3,Y3

X =
1

6
β−12 , ∆′11,Y1

Y1
=
1

3
, ∆′Y1,12

Y1
=
1

6
β−14 , ∆′Y1,X

Y1
= −

1

6
β1β

−1
3 β−14 ,

∆′Y1,Y3

Y1
=
1

6
β−15 , ∆′12,Y2

Y2
=
1

6
β−14 , ∆′X,Y2

Y2
=
1

6
β−16 , ∆′Y2,11

Y2
=
1

3
, ∆′Y3,Y2

Y2
=
1

6
β−15 ,
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∆′12,Y3

Y3
=
1

6
β−14 , ∆′X,Y3

Y3
= −

1

6
β−16 , ∆′Y2,Y1

Y3
=
1

3
β−15 β4,

∆′Y3,12
Y3

=
1

6
β−14 , ∆′Y3,X

Y3
=
1

6
β1β

−1
3 β−14 . (4.31)

Finally, the partition function is obtained by

ZL1L = ∑
A,B,C

µ′CA,B∆
′B,A
C ZC

A,B, (4.32)

and this is given by (grouping isomorphic irreps together)

ZL1L =
1

6
[3Z1

1,1 +Z
X
1,X +Z

X
X,1 +Z

1
X,X +Z

Y
1,Y +Z

Y
Y,1 +Z

1
Y,Y

+
β1

β2β3

ZY
X,Y +

β4

β3β6

ZY
Y,X −

β4

β2β6

ZX
Y,Y ] . (4.33)

This is exactly the combination that appears in (4.17).

Knowing that the gauging in question is Morita trivial, we can rewrite (4.17)

as

Z([T ⊗ SPT(S3)/S3]/A) = Z1
1,1. (4.34)

This completes the desired picture: the four Rep(S3)-symmetric TQFTs are in one-

to-one correspondence with the four gaugings of Rep(S3) symmetry. Equivalently,

we can view the addition of the TQFT as providing an insertion of a theta/gauge

defect into the resulting S3-symmetric theory, in which case the SPT phase acts

as the identity and the other three theories produce the three non-trivial gaugings

of S3.

5 Discussion

There are multiple natural directions in which we could extend these results. While

in this paper we restricted our attention to fusion categories of the form Rep(G)⊠
Rep(G), one could more generally define diagonal algebras over Rep(H)⊠Rep(H)
for any Hopf algebra H. A duality relation along the lines of (1.3) should hold in

this case, where neither side necessarily need reduce to a group-like gauging.

Another restriction we made was focusing only on theories in two spacetime

dimensions. Gauging a 0-form symmetry given by a group G in a (2+1)d theory
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produces a 1-form Rep(G) symmetry. Gauging this 1-form symmetry will function

much like gauging a (non-invertible) 0-form symmetry in 2d. In particular we could

stack this 3d theory with a 2d Rep(G)-symmetric TQFT and gauge the diagonal

algebra to obtain the gauged theory with a topological defect inserted. Thus, the

formalism developed here could be just as well used to study theta defects obtained

when condensing anyons in 3d.

Finally, the calculations we have presented form a framework with which one

can understand discrete torsion in gaugeable non-invertible symmetries. Following

the example of section 4, one could begin by listing gaugings of some symmetry G,

from which one can produce the G-symmetric TQFT data (the equivalent of Ta-

ble 1). If one can deduce relations along the lines of (3.61)-(3.71) between G and

Rep(G) partial traces, one can then produce Rep(G)-symmetric TQFT partial

traces (as in our Table 2). From there, simply knowing the form of the partition

function for gauging the diagonal algebra in Rep(G) ⊠ Rep(G) is enough to pro-

duce all gaugings of a Rep(G)-symmetric theory, including those with isomorphic

algebra objects but different Frobenius algebra structures, which one might regard

as a generalization of the phenomenon of discrete torsion to Rep(G) symmetries.

We plan to pursue this line of thought in upcoming work.

A Internal Homs and Folding

There is a technique known as the ‘internal hom’ construction for generating al-

gebras in C ⊠ Cop, given in [5] and reviewed in [12]. Here we give a simple argu-

ment, based on the ‘folding trick’ in CFT, as to why the algebra associated with

Hom(1,1) should be the diagonal one.

Recalling the correspondence between gaugings, boundary conditions and mod-

ules [11], we would like a method to produce boundary conditions for a theory with

symmetry C ⊠ Cop. The setup used in [5] is to regard C by itself as a module over

C⊠Cop – said another way, we would like to view TDLs in a theory with symmetry

C as providing boundary conditions for a theory with symmetry C ⊠ Cop. One can

easily see how this works by taking a 2d CFT with symmetry C and an insertion

of the TDL L on its worldsheet:
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L

CFT(C)

We then employ the ‘folding trick’ to crease the worldsheet along the insertion of

L – any insertions of lines in C appear on the folded side with reverse orientation,

so the resulting theory is one with symmetry C ⊠Cop, and the L line now serves as

a boundary:

L

CFT(C ⊠ Cop)

The algebra in C ⊠ Cop generated in this way by L is written as Hom(L,L),
and its algebra object will be given by summing over lines which can consistently

end on the boundary. We can find such lines by beginning with all admissible

configurations of the form

L

CFT(C)

M N

for simple linesM and N and folding to obtain

L

CFT(C ⊠ Cop)

(M,N )

Let us now set L = 1. Then clearly we must have N = M, and we obtain a

boundary with lines of the form (M,M) ending on it:
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1

CFT(C ⊠ Cop)

(M,M)

This tells us that the algebra object associated with Hom(1,1) is
A =∑

M
(M,M), (A.1)

exactly as we had found for the diagonal algebra.
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B Details of Rep(S3) Gauging

For completeness, we list the explicit bases for fusion and co-fusion intertwiners

for Rep(S3),
λ1
X,X(eXeX) = β1e, (B.1)

λY
X,Y (eXe1) = β2e2, (B.2)

λY
X,Y (eXe2) = − β2e1, (B.3)

λY
Y,X(e1eX) = β3e2, (B.4)

λY
Y,X(e2eX) = − β3e1, (B.5)

λ1
Y,Y (e1e1) = β4e, (B.6)

λ1
Y,Y (e1e2) = 0, (B.7)

λ1
Y,Y (e2e1) = 0, (B.8)

λ1
Y,Y (e2e2) = β4e, (B.9)

λX
Y,Y (e1e1) = 0, (B.10)

λX
Y,Y (e1e2) = β6eX , (B.11)

λX
Y,Y (e2e1) = − β6eX , (B.12)

λX
Y,Y (e2e2) = 0, (B.13)

λY
Y,Y (e1e1) = β5e2, (B.14)

λY
Y,Y (e1e2) = β5e1, (B.15)

λY
Y,Y (e2e1) = β5e1, (B.16)

λY
Y,Y (e2e2) = − β5e2, (B.17)
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and

δ
1,1
1 (e) = ee, (B.18)

δ
X,X
1 (e) = β−11 eXeX , (B.19)

δ
Y,Y
1 (e) = β−14 (e1e1 + e2e2) , (B.20)

δ
1,X
X (eX) = eeX , (B.21)

δ
X,1
X (eX) = eXe, (B.22)

δ
Y,Y
X (eX) = − β2β

−1
4 (e1e2 − e2e1) , (B.23)

δ
1,Y
Y (e1) = ee1, (B.24)

δ
1,Y
Y (e2) = ee2, (B.25)

δ
X,Y
Y (e1) = β6β

−1
4 eXe2, (B.26)

δ
X,Y
Y (e2) = − β6β

−1
4 eXe1, (B.27)

δ
Y,1
Y (e1) = e1e, (B.28)

δ
Y,1
Y (e2) = e2e, (B.29)

δ
Y,X
Y (e1) = β3β

−1
1 e2eX , (B.30)

δ
Y,X
Y (e2) = − β3β

−1
1 e1eX , (B.31)

δ
Y,Y
Y (e1) = β5β

−1
4 (e1e2 + e2e1) , (B.32)

δ
Y,Y
Y (e2) = β5β

−1
4 (e1e1 − e2e2) . (B.33)

Next we need to construct the Frobenius algebra corresponding to the regular

representation 1+X+2Y and expand its operations in these bases. We can arrange

the vectors in the regular representation by irreps,

e = v1 + vb + vb2 + va + vab + vab2 , (B.34)

eX =
cX√
6
(v1 + vb + vb2 − va − vab − vab2) , (B.35)

eY11 =
c1

2
(vb − vb2 − vab + vab2) , (B.36)

eY12 =
c1

2
√
3
(−2v1 + vb + vb2 − 2va + vab + vab2) , (B.37)

eY21 =
c2

2
√
3
(−2v1 + vb + vb2 + 2va − vab − vab2) , (B.38)

eY22 =
c2

2
(−vb + vb2 − vab + vab2) . (B.39)
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Then the Frobenius multiplication is µ(vgvh) = δg,hvg. Converting this to the basis

above gives µ(ev) = µ(ve) = v along with (and note that µ(uv) = µ(vu)),
µ(eXeX) = c2X

6
e, (B.40)

µ(eXeY11) = − cXc1√
6c2

eY22, (B.41)

µ(eXeY12) = cXc1√
6c2

eY21, (B.42)

µ(eXeY21) = cXc2√
6c1

eY12, (B.43)

µ(eXeY22) = − cXc2√
6c1

eY11, (B.44)

µ(eY11eY11) = c21
6
e +

c1

2
√
3
eY12, (B.45)

µ(eY11eY12) = c1

2
√
3
eY11, (B.46)

µ(eY12eY12) = c21
6
−

c1

2
√
3
eY12, (B.47)

µ(eY11eY21) = − c1

2
√
3
eY22, (B.48)

µ(eY11eY22) = − c1c2√
6cX

eX −
c1

2
√
3
eY21, (B.49)

µ(eY12eY21) = c1c2√
6cX

eX −
c1

2
√
3
eY21, (B.50)

µ(eY12eY22) = c1

2
√
3
eY22, (B.51)

µ(eY21eY21) = c22
6
e −

c22

2
√
3c1

eY12, (B.52)

µ(eY21eY22) = − c22

2
√
3c1

eY11, (B.53)

µ(eY22eY22) = c22
6
e +

c22

2
√
3c1

eY12. (B.54)

Now we can expand this in our standard fusion basis and write the multiplication

as

µ = ∑
A,B,C

µC
A,BπC ○ λ

RC

RA,RB
○ (πA ⊗ πB), (B.55)

where πA is simply projection onto the representation A and RA is the irrep asso-
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ciated to A. This defines coefficients µC
A,B. Explicitly,

µ1
1,1 = µ

X
1,X = µ

Y1

1,Y1
= µY2

1,Y2
= µX

X,1 = µ
Y1

Y1,1
= µY2

Y2,1
= 1,

µ1
X,X =

c2X
6β1

, µY2

X,Y1
= −

cXc1√
6c2β2

, µY1

X,Y2
=

cXc2√
6c1β2

, µY2

Y1,X
= −

cXc1√
6c2β3

,

µ1
Y1,Y1
=

c21
6β4

, µY1

Y1,Y1
=

c1

2
√
3β5

, µX
Y1,Y2
= −

c1c2√
6cXβ6

, µY2

Y1,Y2
= −

c1

2
√
3β5

,

µY1

Y2,X
=

cXc2√
6c1β3

, µX
Y2,Y1
=

c1c2√
6cXβ6

, µY2

Y2,Y1
= −

c1

2
√
3β5

,

µ1
Y2,Y2
=

c22
6β4

, µY1

Y2,Y2
= −

c22

2
√
3c1β5

. (B.56)

The co-multiplication is ∆(vg) = vgvg. Acting on the e vectors, this is

∆(e) = 1

6
ee +

1

c2X
eXeX +

1

c21
(eY11eY11 + eY12eY12) + 1

c22
(eY21eY21 + eY22eY22) ,

(B.57)

∆(eX) = 1

6
(eeX + eXe) + cX√

6c1c2
(−eY11eY22 + eY12eY21 + eY21eY12 − eY22eY11) ,

(B.58)

∆(eY11) = 1

6
(eeY11 + eY11e) − c1√

6cXc2
(eXeY22 + eY22eX)

+
1

2
√
3c1
(eY11eY12 + eY12eY11) − c1

2
√
3c22
(eY21eY22 + eY22eY21) , (B.59)

∆(eY12) = 1

6
(eeY12 + eY12e) + c1√

6cXc2
(eXeY21 + eY21eX)

+
1

2
√
3c1
(eY11eY11 − eY12eY12) − c1

2
√
3c22
(eY21eY21 − eY22eY22) , (B.60)

∆(eY21) = 1

6
(eeY21 + eY21e) + c2√

6cXc1
(eXeY12 + eY12eX)

−
1

2
√
3c1
(eY11eY22 + eY 12eY21 + eY21eY12 + eY22eY11) , (B.61)

∆(eY22) = 1

6
(eeY22 + eY22e) − c2√

6cXc1
(eXeY11 + eY11eX)

−
1

2
√
3c1
(eY11eY21 − eY12eY22 + eY21eY11 − eY22eY12) . (B.62)

31



Comparing these to the co-fusion basis δR2,R3

R1
, we can decompose

∆ = ∑
A,B,C

∆B,C
A (πB ⊗ πC) ○ δRB,RC

RA
○ πA, (B.63)

finding

∆1,1
1 =∆

1,X
X =∆X,1

X =∆1,Y1

Y1
= ∆Y1,1

Y1
=∆1,Y2

Y2
=∆Y2,1

Y2
=
1

6
,

∆X,X
1 =

β1

c2X
, ∆Y1,Y1

1 =
β4

c21
, ∆Y2,Y2

1 =
β4

c22
, ∆Y1,Y2

X =
cXβ4√
6c1c2β2

,

∆Y2,Y1

X = −
cXβ4√
6c1c2β2

, ∆X,Y2

Y1
= −

c1β4√
6cXc2β6

, ∆Y2,X
Y1
= −

c1β1√
6cXc2β3

,

∆Y1,Y1

Y1
=

β4

2
√
3c1β5

, ∆Y2,Y2

Y1
= −

c1β4

2
√
3c22β5

, ∆X,Y1

Y2
=

c2β4√
6cXc1β6

,

∆Y1,X
Y2
=

c2β4√
6cXc2β6

, ∆Y1,Y2

Y2
= −

β4

2
√
3c1β5

, ∆Y2,Y1

Y2
= −

β4

2
√
3c1β5

. (B.64)

C Bubble Nucleation and Partial Trace Rela-

tions

Let’s see how the nucleation of a Y line bubble allows us to derive a relation be-

tween partial traces in Rep(S3). Before we start, let’s review how we can make

moves to rearrange networks of topological defect lines within any correlation func-

tion. Our conventions follow those of [7, 13],The standard move9 is a swap which

introduces factors of the crossing kernel as in Figure 1. We can also freely attach

identity lines wherever we like, with whatever junction ordering we like. Combin-

ing this with our swap move allows us to permute the ordering at a junction, again

at the cost of introducing a crossing kernel, as in Figure 2.

In Rep(S3) we have simple lines 1, X , and Y , all self-conjugate (i.e. A = A).

The crossing kernel components are given by (using the same basis for fusion

morphisms as in section 3.1.2) [7]

K̃1C
AB(A,C) = K̃AC

1B (A,B) = K̃AC
B 1 (C,B) = 1, (C.1)

9We restrict here to the multiplicity-free case, since this is all we need for Rep(S3).
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A

B C

D

E
= ∑F K̃AD

BC (E,F ) ×

A

B C

D

F

Figure 1: The conventions for making a swap move.

A B

C

= K̃A1
BC(C,A) ×

A B

C

Figure 2: As a special case we can permute the ordering at a junction.
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and

K̃XX
XX (1,1) = 1, (C.2)

K̃X Y
X Y (1, Y ) = − β1

β2
2

, (C.3)

K̃X Y
Y X (Y,Y ) = 1, (C.4)

K̃X 1
Y Y (Y,X) = β2β4

β1β6

, (C.5)

K̃XX
Y Y (Y,1) = − β2β6

β4

, (C.6)

K̃X Y
Y Y (Y,Y ) = − 1, (C.7)

K̃Y Y
XX(Y,1) = − β2

3

β1

, (C.8)

K̃Y 1
X Y (Y,Y ) = − β3

β2

, (C.9)

K̃Y X
X Y (Y,Y ) = − β3

β2

, (C.10)

K̃Y Y
X Y (Y,Y ) = β3

β2

, (C.11)

K̃Y 1
Y X(X,Y ) = − β1β6

β3β4

, (C.12)

K̃Y X
Y X (1, Y ) = β4

β3β6

, (C.13)

K̃Y Y
Y X(Y,Y ) = − 1, (C.14)

K̃Y 1
Y Y (Y,Y ) = 1, (C.15)

K̃Y X
Y Y (Y,Y ) = − 1, (C.16)

(K̃Y Y
Y Y ) =

⎛⎜⎜⎜⎝

1
2

β4

2β3β6

β4

2β2
5

−β2β6

2β4
− β2

2β3

β2β6

2β2
5

β2
5

β4
− β2

5

β3β6
0

⎞⎟⎟⎟⎠
, (K̃Y Y

Y Y )−1 =
⎛⎜⎜⎜⎝

1
2
− β4

2β2β6

β4

2β2
5

β3β6

2β4
− β3

2β2
−β3β6

2β2
5

β2
5

β4

β2
5

β2β6
0

⎞⎟⎟⎟⎠
. (C.17)

We start with the torus partition function, which is equivalent to the partial

trace Z1
1,1, and add a bubble of Y line somewhere, as in Figure 3a (we use dotted

lines to represent the identity, thick lines are for Y , and ordinary solid lines will

have labels which may be summed over). This bubble simply introduces a factor

of the quantum dimension of Y , which is 2. Next we expand the Y loop out to

the locations of the identity line insertions (Figure 3b). We can then redistribute
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the trivial identity lines, erasing the original ones and putting new ones joining

the edges of the Y loop across each of the three straight segments (Figure 3c).

Next, on each of these three segments we perform a swap move. This results in

(Figure 3d) a sum over i, j, and k, each running over the simple lines 1, X , and Y ,

and weighted by factors K̃Y Y
Y Y (1, i)K̃Y Y

Y Y (1, j)K̃Y Y
Y Y (1, k). Note that even though

the sum runs over all possible combinations, and there are allowable topological

operators we can put at every junction, if a direct ijk junction is not allowed (i.e. if

the identity doesn’t appear in that triple fusion product), then the corresponding

diagram must in fact vanish. We can see this by an OPE type argument. If we take

a disk just large enough to contain one of the Y loops, and we use local conformal

transformations to shrink the disk to a point, we should get an equivalent diagram

with a topological ijk junction; if such a junction doesn’t exist (other than the

zero operator), then the original diagram must vanish. So for instance we won’t

get a contribution with i = j = k = X . With another pair of swap moves we

can move the bubbles off the junctions onto lines (Figure 3e). This introduces

a sum over ℓ and m weighted by K̃Y Y
i j (Y, ℓ)(K̃Y i

Y k)−1(Y,m). However another

OPE argument in which we shrink the loops tells us that the diagram will vanish

unless ℓ = k and m = j. To get to Figure 3f we use this fact and also apply two

permuation operations, introducing a factor of K̃j 1
k i
(i, j)K̃Y 1

Y j (j, Y ). Next, another
pair of swaps moves the Y bubbles off of the j and k segments (Figure 3g). This

produces a sum over ℓ and m weighted by (K̃Y j
Y j )−1(Y,m)(K̃Y k

Y k )−1(Y, ℓ). Finally,

one more loop-shrinking OPE argument tells us that the diagram vanishes unless

ℓ = m = 1, in which case we can erase the ℓ and m lines leaving two free Y loops

that each contribute a factor of 2, and a simple factor of Zk
i,j (Figure 3h).

All together, we are left with

2Z1
1,1 = ∑

i,j,k

[K̃Y Y
Y Y (1, i)K̃Y Y

Y Y (1, j)K̃Y Y
Y Y (1, k)] [K̃Y Y

i j (Y, k) (K̃Y i
Y k)−1 (Y, j)]

× [K̃j 1
k i (i, j)K̃Y 1

Y j (j, Y )] [(K̃Y Y
Y j )−1 (Y,1) (K̃Y k

Y k)−1 (Y,1)] 22Zk
i,j

=
1

2
[Z1

1,1 +Z
X
1,X +Z

Y
1,Y +Z

X
X,1 +Z

1
X,X +Z

Y
Y,1 +Z

1
Y,Y

+
β1

β2β3

ZY
X,Y +

β4

β3β6

ZY
Y,X −

β4

β2β6

ZX
Y,Y ] . (C.18)

Note that the coefficient of ZY
Y,Y comes out as zero because K̃Y Y

Y Y (Y,Y ) = 0.
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Figure 3: Steps involved in relating two partial trace expressions.
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Adding Z1
1,1 to each side and then dividing by 3 shows that the expression on

the right-hand side of (4.17) is precisely equal to Z1
1,1, as claimed. It’s clear that

similar manipulations can be used to obtain additional relations between partial

traces.

D Morita Equivalence by Line Conjugation

Suppose we have a fusion category C in which we have selected a Frobenius algebra.

That is we have an algebra object A with associated multiplication µ ∈ Hom(A⊗
A,A), co-multiplication ∆ ∈ Hom(A,A ⊗ A), unit u ∈ Hom(1,A), and co-unit

c ∈ Hom(A,1), satisfying various compatibility conditions. Now given another

object L in C, we can build a Morita equivalent algebra object A′ = (L ⊗A)⊗ L.

The multiplication µ′ ∈ Hom(A′ ⊗A′,A′) is built by combining the multiplication

and co-unit of A with the associators αA,B,C ∈ Hom((A⊗B)⊗C,A⊗(B ⊗C)) and
evaluation maps ǫA ∈ Hom(A⊗A,1) of C. Explicitly, we construct µ′ by the series

of compositions

µ′ ∶ A′⊗A′ = ((L⊗A)⊗L)⊗((L⊗A)⊗L) α
LA,L,(LA)L

Ð→ (L⊗A)⊗(L⊗((L⊗A)⊗L))
idLA ⊗α−1

L,LA,L

Ð→ (L⊗A)⊗((L⊗(L⊗A))⊗L) idLA ⊗(α−1
L,L,A

⊗id
L
)

Ð→ (L⊗A)⊗(((L⊗L)⊗A)⊗L)
idLA ⊗((ǫL⊗idA)⊗idL

)
Ð→ (L⊗A)⊗ ((1⊗A)⊗L) idLA ⊗((µ○(u⊗idA))⊗idL

Ð→ (L⊗A)⊗ (A⊗L)
α−1
LA,A,L

Ð→ ((L⊗A)⊗A)⊗L αL,A,A⊗idL
Ð→ (L⊗(A⊗A))⊗L (idL⊗µ)⊗idL

Ð→ (L⊗A)⊗L = A′.
(D.1)

Diagramatically, we can represent this (with the many, many associator maps

implicit) as in Figure 4a. Here we use a thick line to represent A and a thin line

to represent L. In similar fashion we can construct the co-multiplication, unit,

and co-unit for A′ (Figures 4b, 4c, and 4d respectively). One subtlety is that the

condition µ′ ○∆′ = idA′ requires that ∆′ contain an explicit factor of ⟨L⟩−1, where
⟨L⟩ is the expectation value of an L loop on the plane. Then this also requires

that the co-unit c′ must be given an explicit factor of ⟨L⟩.
Because of the large numbers of associator and inverse associator maps, this

might seem daunting to implement. Fortunately, however, in a representation

category like Rep(G), the associator is canonical. Indeed if vA, vB, and vC are
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µ

ǫL

(a) µ′

∆

γL

⟨L⟩−1×

(b) ∆′

u

γL

(c) u′

c

ǫL

⟨L⟩×

(d) c′

Figure 4: Morita equivalent Frobenius algebra construction. Thick lines represent
A and thin directed lines represent L. For conventions of evaluation and co-
evaluation maps, see [7].

vectors in the G-representations A, B, and C respectively, then the intertwiner

corresponding to the associator homomorphism αA,B,C simply acts as

αA,B,C((vA ⊗ vB)⊗ vC) = vA ⊗ (vB ⊗ vC). (D.2)

Because of this it is easy to characterize the action of µ′. If vi are a basis for the

representation L, vj for L, and wa for A, then we can write an arbitrary vector in

(L⊗A)⊗L as viwavj , and we have

µ′(viwavj, vkwbvℓ) = ǫL(vj, vk)viµ(wa,wb)vℓ. (D.3)

For co-multiplication, suppose we can write the co-evaluation map γL and co-

multiplication ∆ as

γL(1) =∑
i,j

gi,jvjvi, ∆(wa) =∑
b,c

db,ca wbwc. (D.4)

Then

∆′(viwauj) = 1

⟨L⟩∑k,ℓ∑b,c gk,ℓd
b,c
a (viwbvℓ)⊗ (vkwcvj) . (D.5)

Similarly,

u′(1) =∑
i,j

gi,j viu(1)vj, c′(viwavj) = ⟨L⟩ ǫL(vivj) c(wa), (D.6)

where the coefficients gi,j come from

γL(1) =∑
i,j

gi,j vivj . (D.7)
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We would also like to show that A and A′ are in fact Morita equivalent, i.e. that

their categories of left-modules are equivalent. Indeed, let M be a left-module for

A, so M is an object in C and we have an action m ∈ Hom(A⊗M,M) that satisfies
various compatibility conditions with the Frobenius algebra structure. Then we

can check that M ′ = L⊗M is a left-module for A′ with action

m′ ∶ A′ ⊗M ′ = ((L⊗A)⊗L)⊗ (L⊗M) α
LA,L,LM

Ð→ (L⊗A)⊗ (L⊗ (L⊗M))
idLA ⊗α−1

L,L,M

Ð→ (L⊗A)⊗ ((L ⊗L)⊗M) idLA ⊗(ǫL⊗idM)
Ð→ (L⊗A)⊗ (1⊗M)

idLA ⊗(m○(u⊗idM ))
Ð→ (L⊗A)⊗M αL,A,M

Ð→ L⊗ (A⊗M) idL⊗m
Ð→ L⊗M =M ′ (D.8)

It’s not hard to check that this satisfies the necessary conditions. Similarly, given

a left-module M ′ of A′ with action m′, we claim that M ′′ = L⊗M ′ is a left-module

of A with action

m′′ ∶ A⊗M ′′ = A⊗ (L⊗M ′) ((c⊗idA)○∆)⊗idLM′

Ð→ (1⊗A)⊗ (L⊗M ′)
(γL⊗idA)⊗idLM′

Ð→ ((L ⊗L)⊗A)⊗ (L⊗M ′) α
L,L,A

⊗id
LM′

Ð→ (L⊗ (L⊗A))⊗ (L⊗M ′)
α−1
L,LA,LM′

Ð→ L⊗ ((L⊗A)⊗ (L⊗M ′)) id
L
⊗α−1

LA,L,M′

Ð→ L⊗ (((L ⊗A)⊗L)⊗M ′)
= L⊗ (A′ ⊗M ′) id

L
⊗m′
Ð→ L⊗M ′ =M ′′, (D.9)

again satisfying the required conditions.
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