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ABSTRACT

In this article, we employ multiscale physics-informed neural networks (MscalePINNs) for the inverse
retrieval of the effective permittivity and homogenization of finite-size photonic media with stealthy
hyperuniform (SHU) disordered geometries. Specifically, we show that MscalePINNs are capable of
capturing the fast spatial variations of complex fields scattered by arrays of dielectric nanocylinders
arranged according to isotropic SHU point patterns, thus enabling a systematic methodology to
inverse retrieve their effective dielectric profiles. Our approach extends the recently developed high-
frequency homogenization theory of hyperuniform media and retrieves more general permittivity
profiles for applications-relevant finite-size SHU systems, unveiling unique features related to their
isotropic nature. In particular, we demonstrate the existence of a transparency region beyond the
long-wavelength approximation, enabling effective and isotropic homogenization even without
disorder-averaging, in contrast to the case of uncorrelated Poisson random patterns. We believe
that the multiscale network approach introduced here enables the efficient inverse design of general
effective media and finite-size metamaterials with isotropic electromagnetic responses beyond the
limitations of traditional homogenization theories.
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1 Introduction

Hyperuniform states of matter enable scientists to characterize naturally occurring structures such as perfect crystals
and quasicrystals, as well as tailored disordered systems. In particular, disordered hyperuniform systems were recently
discovered in a variety of contexts and phenomena, including glass formation, spin systems, photonic band structures
and radiation engineering, nanophotonics, and biological systems, to name a few [1, 2]. A hyperuniform point pattern
is characterized by the vanishing of its structure factor S(k) when the wavevector goes to zero, resulting in the
suppression of long-wavelength density fluctuations. In the context of condensed matter physics, it was shown that two-
and three-dimensional systems of particles can freeze into highly degenerate disordered hyperuniform states at zero
temperature with stealthy hyperuniform (SHU) point pattern geometry, challenging the traditional belief that liquids
freeze into highly symmetric structures [3, 4]. Among the hyperuniform states of matter, SHU systems are characterized
by a structure factor that vanishes over a compact interval of wavevectors. Therefore, stealthy hyperuniformity is a
stronger condition than standard hyperuniformity because single scattering events are prohibited for a large range of
spatial frequencies, thus suppressing the corresponding far-field radiation over sizeable angular ranges. Importantly, the
structural correlation properties of disordered SHU media can be largely controlled by the χ stealthiness parameter,
which equals the ratio of the number of constrained wave vectors in reciprocal space to the total number of degrees
of freedom, providing opportunities for tuning the structures in between traditional (uncorrelated) random media for
χ = 0% and highly-correlated (periodic) structures for χ = 100%. Moreover, it was established that the degree of
short-range order in these systems increases with χ, inducing a transition from disordered to crystalline phases when
χ > 50% in two spatial dimensions.

Recently, the interaction of hyperuniform media with electromagnetic waves attracted significant interest resulting
in novel optical phenomena, such as the discovery of amorphous materials with large, complete, photonic band gaps,
photon sub-diffusion and localization, as well as engineering applications to enhanced light absorbers, quantum cascade
lasers, directional extractors of incoherent emission from light-emitting diodes, free-form waveguides, Luneburg lenses,
and phase/amplitude masks for lensless imaging systems [5, 6, 4, 7, 8, 9]. Moreover, the effective electromagnetic
wave properties of stealthy hyperuniform systems have been studied beyond the quasistatic regime within an exact
nonlocal theory in the thermodynamic limit of infinite system size, including the prediction of perfect transparency
intervals up to finite wavenumbers [10, 11]. This characteristic "transparency regime" is identified by a zero imaginary
part of the effective dielectric constant ϵe within a prescribed range of wavelengths [10, 11]. However, the dynamic
homogenization theory cannot be applied to finite-size structures when the strength of the multiple scattering renders the
effective permittivity spatially dependent, establishing the need for a more general predictive approach for the inverse
design of the effective wave characteristics of disordered hyperuniform media with various engineering applications
from photonics and metamaterials to antenna design [12, 13, 14].

In this article, we propose and develop an accurate deep learning methodology for predicting the effective electromag-
netic properties of finite-size hyperuniform structures in the dynamic regime based on multiscale physics-informed
neural networks (MscalePINNs). Specifically, we apply this approach to disordered SHU and Poisson arrays of
dielectric nanopillars of radius a with constant relative permittivity ϵr and demonstrate enhanced transparency enabling
the accurate inverse retrieval of the effective dielectric permittivity ϵr(x, y; k) of SHU structures with different sizes
and dielectric contrasts. Our results show the inverse retrieval of spatially uniform effective permittivity ϵr(x, y; k) for
the SHU structures without averaging over multiple disorder realizations, in contrast to the case of the uncorrelated
Poisson patterns of equivalent density. Moreover, we provide numerical evidence that SHU arrays can be effectively
homogenized at shorter wavelengths compared to Poisson arrays with identical particle volume fractions, supporting
the conjecture that SHU structures are transparent over a wider range of wavelengths even for finite-size systems.
Importantly, we also establish through numerous examples that MscalePINN is a necessary extension of traditional
single-scale PINN platforms in situations where significant multiple scattering effects contribute to the retrieval of
effective parameters. Finally, by exciting the structures with plane waves at different angles, we show that finite-size
SHU arrays feature an isotropic homogenized response, i.e. the retrieved effective parameters do not depend on the
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angle of the incoming radiation. In order to present a comprehensive analysis, we vary the size, number of scatter-
ers, stealthiness parameter, incident wavelength, and directions for each investigated structure. Our accompanying
Supplementary Material details all the relevant calculation parameters and provides additional comparisons.

Methods

Since the first system of partial differential equations (PDEs) was introduced by Leonhard Euler in the context of fluid
dynamics more than 250 years ago, the numerical approximation of partial differential equations has been driving
the progress of science and engineering. In optical science and photonics technology, it is often required to solve
differential or integro-differential models governing the scattering and transport of vector waves inside complex and
heterogeneous materials or in extended media containing resonant optical nanostructures [15, 16, 17]. While many
advanced techniques have been developed for the forward solution of such mathematical problems, the multiscale
structure of heterogeneous media generally prevents the accurate and efficient solution of inverse scattering problems of
relevance to imaging, acoustics, geophysics, remote sensing, and nondestructive testing. Specifically, in the regime of
multiple wave scattering where the transport mean free path ξt is significantly smaller than the system’s size L, the
inversion of differential models becomes a nonlinear and computationally intractable problem for traditional numerical
techniques. This prevents the accurate prediction of the desired parameters of multi-particle complex structures from
a limited set of available field data, motivating the development of alternative and more powerful computational
frameworks that leverage learning techniques and optimization methods.

In this context, deep learning inverse design has recently become prevalent in computational science and engineering [18].
When dealing with the ill-posed inverse problems of structurally complex media, it becomes necessary to utilize
numerical methods that can fully capture the multiscale nature of the solution in a reasonable amount of time using
commercially available processing technologies. Motivated by this need, recent developments in scientific machine
learning (ML) introduced physics-informed neural networks (PINNs) as a viable approach to efficiently solve forward
and inverse integro-differential problems with minimal computational overhead. Different from standard deep learning
approaches, PINNs restrict the space of admissible solutions by enforcing the validity of the PDE models governing the
actual physics of the problem. This is achieved by using relatively simple feed-forward neural network architectures as
trainable surrogate solutions of the PDEs on the interior and boundary points of their definition domains and leveraging
automatic differentiation (AD) techniques readily available in the TensorFlow learning package [19, 20, 21, 22]. Unlike
common machine learning algorithms, PINNs are trained on a set of randomly distributed collocation points in order
to minimize the PDE residues in a suitable norm [19, 20]. Therefore, PINNs use only one training dataset to obtain
the desired solutions, thus relaxing the burdens often imposed by the massive datasets utilized by alternative, i.e.
non-physics-constrained, purely data-driven deep learning approaches [23]. Furthermore, PINNs solve highly nonlinear
and dispersive inverse and forward problems on the same footing by simply adding an extra loss term to the overall loss
function and training over real or synthetic data in order to minimize the residuals for the PDEs and boundary conditions.
This feature renders PINNs uniquely effective in solving differential and integro-differential inverse problems with a
minimal overhead compared to the corresponding forward problem [24, 25, 26].

Recently, it became apparent in the ML community that deep neural networks (DNNs) learn the low-frequency content
of available training data quickly and with a good generalization error, but fail to do so when high-frequency data are
involved. This general Fourier principle creates an implicit spectral bias as DNNs preferentially fit training data using
low-frequency functions [27, 28, 29, 30, 31]. To solve this issue, the approach of multiscale PINNs (MscalePINNs)
was recently introduced to convert the learning and approximation of high-frequency data to that of low-frequency
ones, using different sub-networks that learn down-shifted frequency representations of the original datasets and
functions [32], as shown below.
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To illustrate the approach of the multiscale PINN, we consider a band-limited function f(x), x ∈ Rd, whose Fourier
transform f̂(k) has a compact support, i.e.,

Suppf̂(k) ⊂ B(Kmax) = {k ∈Rd, |k| ≤Kmax}. (1)

We can partition the domain B(Kmax) as an union of M concentric annulus with uniform or non-uniform width, e.g.,
for the case of uniform width K0,

Ai = {k ∈Rd, (i− 1)K0 ≤ |k| ≤iK0},
K0 = Kmax/M, 1 ≤ i ≤ M,

(2)

so that

B(Kmax) =

M⋃
i=1

Ai. (3)

As a result, we can decompose the function f̂(k) in the Fourier domain as before

f̂(k) =

M∑
i=1

χAi
(k)f̂(k) ≜

M∑
i=1

f̂i(k), (4)

and
Suppf̂i(k) ⊂ Ai. (5)

This decomposition in the Fourier space gives a corresponding one in the physical space

f(x) =

M∑
i=1

fi(x), (6)

where
fi(x) = F−1[f̂i(k)](x). (7)

From (5), we can apply a simple downward scaling to convert the high frequency region Ai to a low-frequency one.
Namely, we define a scaled version of f̂i(k) as

f̂
(scale)
i (k) = f̂i(αik), αi > 1, (8)

and, correspondingly, in the physical space

f
(scale)
i (x) =

1

αd
i

fi(
1

αi
x), (9)

or
fi(x) = αd

i f
(scale)
i (αix). (10)

So, the spectrum of the scaled function f̂
(scale)
i (k) is of low frequency if αi is chosen large enough, i.e.,

Suppf̂ (scale)
i (k) ⊂ {k ∈Rd,

(i− 1)K0

αi
≤ |k| ≤ iK0

αi
}. (11)

Now with DNN’s preference toward to low-frequency learning, with iK0/αi being small, we can train a DNN fθni (x)

to learn f
(scale)
i (x) quickly

f
(scale)
i (x) ∼ fθni (x), (12)
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Figure 1: Schematics of the multiscale PINN employed for inverse homogenization of hyperuniform structures.

giving an approximation to fi(x) immediately

fi(x) ∼ αd
i fθni (αix), (13)

and, to f(x) as well

f(x) ∼
M∑
i=1

αd
i fθni (αix), (14)

giving the format of the MscalePINN [32, 33]. And, the scale factors αi can also be converted into trainable parameters
to best fit the target functions. In fact, the factor αd

i can be absorbed into the weights of the last layer, being linear in
most cases, of the sub-neural network fθni (αix), the factor αd

i outside the sub-neural network can be set to be one to
avoid involving large values when αi or d is large without affecting the overall effect of the MscalePINN after training.
Each sub-network with scaled inputs can be written as:

fθ(x) = W [L−1]σ ◦ (. . . (W [1]σ ◦ (W [0]x+ b[0]) + b[1]) . . . ) + b[L−1] (15)

The general network architecture employed in this article is displayed in Fig. 1. The spatial input parameters x, y are
passed through n independent sub-networks ui(αix, αiy; θ̃i) with different scaling αi and hyperparameters θ̃i. The
output of each sub-network ui is then combined into the MscalePINNs solution û(x, y; θ̃) as in Eq. 14 and, through
automatic differentiation, is then used to satisfy the PDE, boundary, and initial conditions of the differential equation.
Specifically, we consider the following PDE problem with the unknown permittivity distribution ϵ(x, y; k), generally
wavevector-dependent, for the surrogate solution û(x) with x = (x1, . . . , xd) defined on a domain Ω ⊂ Rd:

φ

(
x; û,

∂û

∂x1
, . . . ,

∂û

∂xd
;
∂2û

∂x2
1

, . . . ,
∂2û

∂x1∂xd
; . . . ; ϵ

)
= 0 (16)

The calculated values are then combined into the global loss function L(θ̃):

L(θ̃) = Lint(θ̃;Nint) + Lb(θ̃;Nb) + Linv(θ̃;Ninv) (17)
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In the loss function above, the component

Lint(θ̃;Nint) =
1

|Nint|
∑

(x,y)∈Nint

∣∣∣∣∣∣∣∣φ(
x, y; û,

∂û

∂x
,
∂û

∂y
, . . . ,

∂2û

∂y2
; ϵr

)∣∣∣∣∣∣∣∣2 (18)

represents the loss term calculated for the PDE in the interior of the domain Ω and

Lb(θ̃;Nb) =
1

|Nb|
∑

(x,y)∈Nb

||B(û, x, y)||2 (19)

is the loss term for the boundary conditions of the PDE, where (x, y) ∈ ∂Ω. Finally, in order to solve general inverse
electromagnetic problems, we introduce

Linv(θ̃;Ninv) =
1

|Ninv|
∑

(x,y)∈Ninv

||Re[û(x, y)]− Re[uobs(x, y)]||2 + ||Im[û(x, y)]− Im[uobs(x, y)]||2 (20)

as the inverse loss term calculated on the real and imaginary parts of a complex field obtained through numerical
simulations, and Nint, Nb, Ninv are the number of residual points for each loss term. In this article, we deal with
electromagnetic homogenization problems for which we use the Helmholtz equation to constrain MscalePINNs and
retrieve effective homogenized model parameters. In particular, we use the the complex Helmholtz equation for
inhomogeneous two-dimensional effective media under TM polarization excitation:

∇2Ez(x, y) + ϵr(x, y; k)k
2
0Ez = 0 (21)

where Ez is the z-component of the electric field, k0 = 2π
λ is the wavenumber in free space, and ϵr(x, y; k) is the

relative permittivity of the non-homogeneous effective medium (spatially dependent), which is almost constant in the
case of a homogenized effective medium. Because Ez and ϵr(x, y; k) are complex variables, separating Eq. 21 into real
and imaginary parts yields:

∇2Re[Ez](x, y) = −Re[Ez]Re[ϵr(x, y; k)] + Im[Ez]Im[ϵr(x, y; k)]k
2
0

∇2Im[Ez](x, y) = −Im[Ez]Re[ϵr(x, y; k)]− Re[Ez]Im[ϵr(x, y; k)]k
2
0

(22)

The loss term in Eq. 18 includes both terms above evaluated on the interior of the domain. In order to achieve
the homogenization of the investigated scattering arrays we inversely retrieved the effective permittivity parameter
ϵr(x, y; k) of the Helmholtz equation by training the MscalePINNs over a synthetic dataset composed of complex
field values. In particular, we performed finite element method (FEM) simulations of the total complex electric field
using COMSOL MultiphysicsTM [34] and utilized the resulting data set to retrieve the effective electric permittivity
profile ϵ̂(x, y; k) represented by its own neural network following the methodology introduced in references [24, 25].
Throughout this paper, we will employ different MscalePINN architectures depending on the problem, and for this
reason, we have included Table S1 in the Supplementary Material that lists all the relevant network hyperparameters
employed in our study. All the codes were developed in-house using TensorFlow [35] and numerical simulations were
performed using, depending on the problem, different types of GPUs, i.e., we employed either an NVIDIA P100,
NVIDIA V100, or NVIDIA A40.

We begin our study by retrieving the homogenized complex permittivity of a stealthy hyperuniform array of diameter
L = 10µm composed of N = 396 dielectric nanocylinders of radius a = 125nm, displayed in Fig. 2(a). The
corresponding structure factor S(k) is shown in Figure S2. For this example, we used χ = 0.5, ϵr = 3.0, ⟨d⟩/λ = 0.15,
and ϕ = 0.2, where ϕ = ρv(a) is the particle volume fraction at number density ρ and sphere volume v(a), and
⟨d⟩ is the average first-neighbor distance of the pillars in the array. The MscalePINNs utilized to solve this inverse
homogenization problem is a 4-scale MscalePINNs with 4 layer, each with 64 neurons, and it is trained on the real and
imaginary parts of the total electric field considering the excitation wavelength λ = 3.0µm.
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(a) (b)

(d)(c)

Figure 2: (a) SHU array of 396 particles, χ = 0.5, ϵr = 3.0, ⟨d⟩/λ = 0.15 employed for the MscalePINNs
homogenization validation. (b) The real part of the FEM electric field inverse train dataset is employed to train
MscalePINNs to homogenize panel (a). The incident plane wave wavelength is λ = 3.0µm. (c) MscalePINN’s
predicted relative permittivity distribution, which is then used to perform a forward COMSOL simulation displayed in
panel (d) to compare with the “true" field used in training.

Table 1: Comparison of the real part of the homogenized effective permittivity ϵ̂(x, y; k) between the ensemble average
and single realization for SHU and Poisson structures with the same size.

Structure Calculation ⟨Re[ϵ̂(x, y; k)]⟩ σ{⟨Re[ϵ̂(x, y; k)]⟩

SHU Single realization 1.391 2.8%
Ensemble average 1.404 1.9%

Poisson Single realization 1.412 8.8%
Ensemble average 1.413 3.4%

In Fig. 2(b) we display the real part of the electric field distribution used during training. The effective permittivity
profile ϵ̂(x, y; k) retrieved by MscalePINNs for a single realization of the investigated SHU array is displayed in panel
(c). Remarkably, the effective permittivity is well-localized within the geometrical support of the array with a spatially
uniform distribution quantified by the average value of ⟨Re[ϵ̂(x, y; k)]⟩ = 1.39 ± 2.8%. To better characterize the
retrieved homogeneous permittivity profile in the static regime we also calculated the effective medium theory prediction
using the Bruggeman mixing formula valid for the bulk case [36]:∑

i

fi
ϵi − ϵe
ϵi + ϵe

= 0 (23)

where ϵe is the effective permittivity, fi is the filling fraction, and ϵi is the permittivity of the i-th component. For a
two-phase system under TM polarized incident radiation, Eq. 23 reduces to [11]:

ϵbrugg = f1ϵ1 + f2ϵ2 (24)

For the system studied in Fig. 2(c), ϵbrugg = 1.4, differing only by 0.6% from MscalePINNs and within the uncertainty
range predicted. In Fig. 2(d) we display the real part of the total electric field obtained via a forward FEM calculation
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(a) (b) (c) (d)

Figure 3: S(k) plot of four χ = 0.3 SHU structures with N = 299, 633, 1002, and 1553, respectively. This figure
shows that, even for N ≈ 300, the stealthy patterns are evident.

performed using the retrieved permittivity profile from panel (c), which is then used to calculate the L2 error including
both the real and imaginary part of the training field. The obtained complex field error in the retrieval of the permit-
tivity parameter was found to be 1.1%, demonstrating the high accuracy of the solution achieved by the developed
MscalePINNs.

To further investigate the quality of the reconstruction, we also performed an ensemble average of 10 different SHU
arrays configurations all generated with the same stealthiness parameter χ = 0.5, ϵr = 3.0, and N = 395 ± 5 and
with constant particle volume fraction ϕ = 0.2. Our results are summarized in the first row of Table 1 which displays
almost identical results to the single realization case when point-wise spatial averaging is performed over the SHU
realizations. As a comparison, we also show in Table 1 the results of the same ensemble averaging analysis performed
on 10 different realizations of Poisson uncorrelated random (UR) structures with ϵr = 3.0, N = 395± 5, and ϕ = 0.2.
We note that, compared to the SHU configuration, the single realization for the Poisson structure features a significant
inhomogeneity in the spatial distribution of ⟨Re[ϵ̂(x, y; k)]⟩ due to larger fluctuations among the different disorder
realizations. However, we note that even in this case the retrieved effective medium permittivity for the Poisson point
pattern has an L2 error lower than 5% when the forward scattered FEM field of the array was compared to the one
obtained from the inversely retrieved permittivity. This indicated that MscalePINNs retrieved an accurate spatially
dependent permittivity, i.e., an inhomogeneous effective medium, but this case cannot be homogenized using a classical
mixing approach for the bulk. Consistently, when performing the ensemble average and point-wise spatial average to
retrieve ⟨Re[ϵ̂(x, y; k)]⟩ for the Poisson structure, we notice that the obtained value of ⟨Re[ϵ̂(x, y; k)]⟩ = 1.413 is still
larger than both the single realization and ensemble average value of the SHU structure ⟨Re[ϵ̂(x, y; k)]⟩ens = 1.404,
which agrees almost perfectly with the Bruggeman prediction of 1.4. Therefore, we conclude that MscalePINNs
retrieved an accurate field distribution and ϵr(x, y) for both the SHU and Poisson arrays, but that a homogeneous
permittivity can only be achieved for the SHU structures due to their significantly larger degree of spatial uniformity.

Transparency of finite-size structures

Recent work by Torquato and Kim [10, 11] led to an exact non-local strong-contrast expansion of the effective dynamic
dielectric tensor ϵ(x, y) in the thermodynamic limit [10], and more recently they extended these results beyond the long-
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(a) (b)

(d)(c)

Figure 4: (a)-(d) Scaling analysis of the retrieved effective medium performed on four SHU arrays with 299, 633, 1002,
and 1553 particles, respectively, and ⟨d⟩/λ = 0.06. The average of MscalePINNs’s permittivity profile displayed in the
four panels all have a computed average value within the region of ⟨Re[ϵ̂(x, y; k)]⟩ = 1.70± 5.9%, independently of
the size of the hyperuniform array.

wavelength regime for layered and transversely isotropic media [11]. Their work provides an analytical prediction for
the wavelength range in which SHU structures achieve perfect transparency or, equivalently, for the wavelength regime
where the effective dielectric constant has a zero imaginary part. However, to the best of our knowledge, no previous
work has established if this transparency prediction is modified by finite-size arrays. In order to address this open
question we performed a study over several SHU arrays with different sizes and numbers of pillars N = 299, 633, 1002,

and 1553. We also computed the structure factors for the corresponding point patterns and displayed the results in
Fig. 3. Interestingly, we note that characteristic stealthy hyperuniform behavior begins to manifest itself already at
relatively small N .

In Fig. 4 we display the retrieved effective permittivity ϵ̂(x, y; k) for the four stealthy hyperuniform structures shown in
Fig. 3. The simulations the parameters χ = 0.3, ϵr = 4.0, and ϕ = 0.25 were kept constant for all the arrays in order to
compare with the theoretical predictions for the infinite bulk limit shown in Ref. [11]. We train a 4-scale MscalePINNs
with 2 layers and 64 neurons each using FEM computed forward fields at plane wave excitation wavelength λ = 6.28µm,
corresponding to the regime of perfect transparency predicted by Torquato et al. [11]. We display the real part of the
retrieved permittivity profiles ϵ̂(x, y; k) in order of increasing array size in Fig. 4(a)-(d), and compute the mean and
standard deviation inside of the array region. The average of the retrieved effective dielectric function for the four
structures is ⟨Re[ϵ̂(x, y; k)]⟩ = 1.7 ± 5.9% and ⟨Im[ϵ̂(x, y; k)]⟩ = 10−4, independent of the array size. This result
is extremely close to the predicted value in Ref. [11] for transversely isotropic media with χ = 0.3, ϵr = 4.0, and
ϕ = 0.25. Therefore, from this analysis, we conclude that finite-size scaling does not perturb appreciably the value
of the retrieved dielectric constant of SHU arrays. In the next section, we investigate the homogenization behavior at
shorter wavelengths for the SHU structures and the uncorrelated Poisson arrays.
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(c)

(b)

(d)

(a)

Figure 5: (a) and (b) Comparison between the retrieved permittivity profile ⟨Re[ϵ̂(x, y; k)]⟩ of a stealthy hyperuniform
array with χ = 0.3, N = 663 particles and the inhomogeneous effective medium of a Poisson array of N = 663
particles. The inverse scattered field used in training had λ = 2.09µm (⟨d⟩/λ = 0.1), or k0 = 3.0µm−1. (c) and (d)
Comparison of the same structures used in panels (a) and (b) but with lower wavelength of the incident scattering field,
λ = 1.59µm (⟨d⟩/λ = 0.14), or k0 = 4.0µm−1. Already at λ = 1.59µm, the Poisson array displays evident losses and
homogenization cannot be achieved.

Comparison with Poisson point patterns

To compare the homogenization behavior of SHU and Poisson structures we consider two arrays with N ≈ 660

dielectric nanocylinders of radius a = 67.5 nm, packing fraction ϕ = 0.16, and diameter L = 8µm. Their structure
factors S(k) plots are plotted in Figure S2. Fig. 5(a) and (c) show the MscalePINNs’s homogenized ϵr(x, y) for
λ = 2.09µm and λ = 1.57µm, respectively, for the SHU structure with χ = 0.3 and ϵr = 4.0. In this study, the choice
of wavelengths for the simulation was informed by Torquato’s calculation of the predicted region of transparency for
a SHU array. Therefore, we consider here the scattering radiation well beyond the long-wavelength approximation
regime and we refer to the criterion specified by the inequality below that characterizes the full extent of the predicted
transparency region [11]:

k0ρ
−1/2 = 2π

⟨d⟩
λ

≲ 1.5, ρ =
N

πR2
(25)

where R is the radius of the SHU array. For the structures considered in this example, the inequality 25 can be
solved for the k0 value up to which the theoretical predictions are accurate, yielding k0 ≈ 5.5µm−1. Figure 5
displays the inverse homogenization of SHU and Poisson arrays under incident radiation of k0 = 3.0µm−1, 4.0µm−1,
or λ = 2.09µm and 1.57µm, respectively. In panels (a) and (c), both solutions are properly homogenized, with
⟨Re[ϵ̂(x, y; k)]⟩ = 1.48± 4% and ⟨Im[ϵ̂(x, y; k)]⟩ = 10−3 ≈ 0 for λ = 2.09µm and ⟨Re[ϵ̂(x, y; k)]⟩ = 1.492± 4.7%

and ⟨Im[ϵ̂(x, y; k)]⟩ = 10−5 ≈ 0 for λ = 1.57µm. Therefore, the calculations performed with MscalePINNs confirmed
the theoretical prediction of transparency even for the finite-size structure.

For the Poisson structures, however, the homogenization fails already at wavelengths away from the SHU critical value
of 5.5µm−1. Fig. 5(b) shows the inhomogeneous profile of the real part of the effective permittivity profile ϵ̂(x, y; k)

predicted by the MscalePINNs for λ = 2.09µm. For this inhomogeneous effective medium, ⟨Re[ϵ̂(x, y; k)]⟩ =

10
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1.49 ± 6.8%, but MscalePINNs failed to retrieve the imaginary component of ϵ̂(x, y; k), despite an L2 error on the
FEM validation of 4%. The inability to retrieve a homogenized effective permittivity is even more apparent at lower
wavelengths, where for λ = 1.57µm the MscalePINN correctly predicts an effective permittivity profile ϵ̂(x, y; k)

with ⟨Re[ϵ̂(x, y; k)]⟩ = 1.5 ± 12% shown in Fig. 5(d), but fails to predict the imaginary component of ϵ̂(x, y; k).
This evident failure to homogenize the random point pattern for λ = 2.09µm and 1.57µm compared to the SHU
structure is both qualitative and quantitative. In fact, the spatial non-uniformity of ⟨Re[ϵ̂(x, y; k)]⟩ for the Poisson
structure, measured by the associated standard deviation σ, is almost an order of magnitude greater than that of the
SHU structure for the same incoming wavelength. In Fig. 6 we display this situation by showing the spread of the
real part of ϵ̂(x, y; k) retrieved by MscalePINNs for the same structures from Fig. 5 with additional k-vectors values
k0 denoting simulations conducted at different wavelengths, including k0 = 1.0, 2.0µm−1 for both the Poisson and
SHU structure, and k0 = 5.0, 5.5µm−1 for only the SHU. The investigated range of wavenumber k0 corresponds to a
ratio of ⟨d⟩/λ = 0.034 for the longest wavelength and ⟨d⟩/λ = 0.19 for the shortest wavelength. All the FEM training
fields and ⟨Re[ϵ̂(x, y; k)]⟩ plots for each k-value considered here for both the SHU and Poisson structures can be found
in the Supplementary Information S3 and S4, respectively. Each simulation was performed on both structures with
identical network architectures. However, despite achieving high accuracy for both structures at k-values below and
including 4.0µm−1, the MscalePINNs failed to retrieve a localized effective medium for the Poisson structures at higher
k-vectors. In contrast, MscalePINNs retrieved a highly accurate homogenized ϵ̂(x, y; k) until the predicted threshold
for SHU structures of k0 ≈ 5.5µm−1, with an L2 error of 6%. Beyond this value, MscalePINNs could not retrieve an
effective medium anymore for the SHU arrays as well. In Fig. 6 we have included the MscalePINN’s prediction on the
single realization beyond the k0 critical value in the grey shaded region, where the L2 error was much higher with a
value of 24%. We also note that for the SHU array, the real part of ϵ̂(x, y; k) becomes less and less homogeneous as we
approach the edge of the predicted transparency region. In this case, the MscalePINN continues to accurately retrieve
an effective, albeit inhomogeneous, medium until the predicted edge of k0 = 5.5µm−1. This drastic difference in the
expressive power of identical MscalePINN architectures when dealing with the homogenization and inverse permittivity
parameter retrieval of Poisson and SHU structures fully supports the conclusion that SHU structures can be more easily
homogenized than traditional random media and their homogenization eventually fails only at higher k vectors than
their Poisson counterparts.

To conclude our analysis, we have also included in Supplementary Information S5 a comparison between the
MscalePINN and single-scale PINN homogenization profiles at high k values for the SHU structures. This com-
parison supports the conclusion that MscalePINN is necessary when solving electromagnetic transport problems for
the strength of multiple scattering considered here. The additional plots displayed in the Supplementary Information
show that the best single-scale PINN training completely fails to capture the multiscale field variations intrinsic to
the nature of this problem for k values close to the SHU k-space transparency edge, whereas MscalePINN accurately
retrieves a well-localized homogeneous medium constant. Therefore, we established through numerous examples
that MscalePINN is a powerful extension of traditional single-scale PINN architectures that becomes necessary when
dealing with significant multiple scattering contributions. In the final section below, we conclude our analysis by
additionally demonstrating that homogenized SHU structures feature isotropic homogenized responses that are highly
desired characteristics for the engineering of angle-insensitive effective media.

Angular independence

To demonstrate numerically that homogenized stealthy hyperuniform arrays are isotropic with respect to the incoming
scattering electric field, we perform angle-dependent simulations on a stealthy hyperuniform array N = 236 with
χ = 0.5, ϵr = 3.0, and ϕ = 0.20. In Fig. 7(a) we display the SHU array with the angles employed to generate the
forward FEM numerical simulations utilized to train the 4-scale MscalePINNs with 4 layers by 64 neurons each. As in
the previous studies, we have included the corresponding structure factor S(k) in the Supporting Information Figure
S6, together with the inverse training FEM fields displayed in Figure S7. The predicted homogenized permittivity
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Figure 6: Comparison of the measure of inhomogeneity ϵr(x, y) retrieved by MscalePINNs for the Poisson and stealthy
hyperuniform structure displayed in Fig. 5. σ{⟨Re[ϵ̂(x, y; k)]⟩} for the SHU is constant and lower than that of the
Poisson structure for the same wavelength range, and it only begins to increase when the incoming field k0 vector
approaches the threshold value of k0 ≈ 5.5µm−1. MscalePINNs cannot retrieve an effective ϵr(x, y) for k0 greater
than 4.0µm−1. Meanwhile, for all the k-values below the threshold value, ⟨Im[ϵ̂(x, y; k)]⟩ ≈ 0 for the SHU array, as
theoretically predicted.

profiles ϵr(x, y) are shown in Fig. 7(b)-(d), displaying the MscalePINNs precision in capturing contour features on
the boundary of the hyperuniform array. All three permittivity profiles present an accurate agreement in the real and
imaginary part of ϵr(x, y), with ⟨Re[ϵ̂(x, y; k)]⟩ = 1.28± 3% and ⟨Im[ϵ̂(x, y; k)]⟩ = 10−4 ≈ 0. To confirm that the
three homogenized effective media have indeed the same electromagnetic response, we selected the homogenized
permittivity profile ϵr(x, y) trained with the incoming radiation at θ = 0◦ and performed two forward FEM simulations
at θ = 45◦ and −30◦. We then computed an L2 error between the forward field used in training on the SHU array
at θ = 45◦ and −30◦ and the one just recomputed by utilizing the homogenized structure trained with the incoming
radiation at θ = 0◦. The two L2 errors were 1.2% and 2.4%, respectively, showing that the effective medium retrieved
by MscalePINNs when trained with incoming radiation at θ = 0◦ reproduced the same training FEM field when the
incoming angle was set to θ = 45◦ and −30◦. In conclusion, we showed numerically that single-realization finite-size
SHU arrays feature an isotropic homogenized response to the incoming radiation.

Conclusions

In this article, we developed and applied the novel framework of multiscale physics-informed neural networks to
inversely retrieve the effective dielectric permittivity of finite-size arrays of scattering nanocylinders with stealthy
hyperuniform and uncorrelated Poisson geometries. Our results demonstrate that multiscale physics-informed neural
networks are capable of accurately capturing the fast-varying spatial variations of complex fields scattered by the
investigated arrays, thus enabling a systematic methodology to retrieve their effective dielectric behavior. We demon-
strate the existence of a transparency region in finite-size SHU structures beyond the long-wavelength approximation,
enabling effective and isotropic homogenization even without disorder-averaging, in contrast to the case of uncorrelated
Poisson random patterns. Specifically, we found that the retrieved permittivity distribution ϵ̂(x, y; k) obtained for a
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(a)

(c) (d)

(b)

-30º

45º

0º

Figure 7: (a) Schematics of the angles employed to study the angular independence in the homogenization of a SHU
array of N = 236 particles, χ = 0.5, ϵr = 3.0, ⟨d⟩/λ = 0.09, and packing fraction ϕ = 0.20. (b)-(d) MscalePINNs’s
reconstruction of the homogenized permittivity profile ϵr(x, y) retrieved by training on incident light with wavelength
λ = 6.28µm at three different angles: θ = 0◦, 45◦,−30◦. The averages of ⟨Re[ϵ̂(x, y; k)]⟩ in the homogenized regions
agree and show that the homogenization is independent of the angle of incidence.

single-realization of stealthy hyperuniform disorder agrees with the ensemble average calculations with an error close to
1%, whereas a large standard deviation of ϵ̂(x, y; k) is obtained for Poisson arrays of comparable sizes. Importantly, we
showed that homogenized SHU structures feature isotropic responses to an incoming plane wave excitation that are not
appreciably modified by their finite size, which is a highly desired characteristic for the engineering of angle-insensitive
photonic media and metamaterials. Moreover, we established through numerous examples that MscalePINN is a
necessary powerful extension of traditional single-scale PINN architectures when dealing with multiple scattering
contributions in the retrieval of effective medium parameters of complex media. Future work can naturally generalize
the multiscale PINN framework introduced here in order to inversely retrieve both the dielectric and the magnetic
effective parameters of scattering structures in arbitrary three-dimensional geometries, enabling the inverse design of
finite-size resonant nanophotonic devices and metamaterials with desired electromagnetic responses. Lastly, our work
provides an efficient route towards the discovery of novel structures with effective medium properties arising from
the interaction of disordered scattering geometries and vector or scalar waves of arbitrary nature, including acoustic,
mechanical, and quantum wave phenomena.
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