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SET CONVERGENCES VIA BORNOLOGY

YOGESH AGARWAL AND VARUN JINDAL

Abstract. This paper examines the equivalence between various set con-
vergences, as studied in [7, 13, 22], induced by an arbitrary bornology S on
a metric space (X, d). Specifically, it focuses on the upper parts of the fol-
lowing set convergences: convergence deduced through uniform convergence
of distance functionals on S (τS,d-convergence); convergence with respect
to gap functionals determined by S (GS,d-convergence); and bornological
convergence (S-convergence). In particular, we give necessary and suffi-
cient conditions on the structure of the bornology S for the coincidence of
τ+
S,d-convergence with G

+

S,d-convergence, as well as τ+
S,d-convergence with

S+-convergence. A characterization for the equivalence of τ+
S,d-convergence

and S+-convergence, in terms of certain convergence of nets, has also been
given earlier by Beer, Naimpally, and Rodriguez-Lopez in [13]. To facili-
tate our study, we first devise new characterizations for τ+

S,d-convergence

and S+-convergence, which we call their miss-type characterizations.

1. Introduction

A topology on a collection of subsets of a topological space (X, τ) is called a
hyperspace topology. In the literature, a number of hyperspace topologies have
been studied on the collection P0(X) of all nonempty subsets of a topological
space (X, τ), and on CL(X), the family of all nonempty closed subsets of (X, τ)
[3, 24]. The theory of hyperspaces is fundamental to various mathematical
branches such as convex analysis, functional analysis, optimization theory,
and variational analysis [3, 14, 23, 25].

For a metric space (X, d), the two most studied hyperspace topologies on
CL(X) are the Vietoris and the Hausdorff metric topologies [20, 26, 27]. How-
ever, these topologies are too strong while dealing with unbounded sets. For
example, the sequence of lines Ln = {(x, y) : y = x

n
} appears naturally con-

verging to the horizontal axis yet does not converge with respect to either of
these two topologies. This prompted researchers to define several weaker set
convergences and hyperspace topologies. In the realm of metric spaces, the
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interplay between set convergence and geometric set functionals has proven
to be an important approach for studying various set convergences and corre-
sponding topologies on subsets of a metric space.

The distance functional is the most useful of the set functionals. For a
nonempty subset A of a metric space (X, d), the distance functional d(·, A) on
X corresponding to A is defined as

x → d(x,A) = inf{d(x, a) : a ∈ A} for x ∈ X.

So through distance functional, we can identify a closed subset A of (X, d) with
the continuous function d(·, A) ∈ C(X). Using this identification, in 2008, Beer
et al. [13] gave a unified approach to define hyperspace topologies on P0(X)
(or CL(X)). In particular, for a family S of nonempty subsets of a metric
space (X, d), they studied a hyperspace topology corresponding to which a
net (Aλ) in CL(X) converges to A ∈ CL(X) if and only if the associated
net (d(·, Aλ)) of distance functionals converges uniformly on members of S to
d(·, A). This topology on CL(X) is denoted by τS,d. When S is P0(X) and
Bd(X) (the family of all d-bounded sets in (X, d)) respectively, the topology
τS,d reduces to the classical Hausdorff metric topology (τHd

) and Attouch-Wets
topology (τAWd

) respectively. Furthermore, when S = F(X), the collection of
all nonempty finite subsets of X , we obtain the well-known Wijsman topology
(τWd

). For more on these classical topologies, see ([1, 2, 17, 19, 28]).
Two important extensions of the distance functional are the gap and excess

functionals. These extensions play a central role in providing weak formula-
tions of many hyperspace topologies (see, [3, 8, 9, 12]). For a nonempty subset
S of a metric space (X, d), the gap functional determined by S is defined as

A → Dd(S,A) = inf{d(x, a) : x ∈ S and a ∈ A} for A ∈ P0(X).

Another unified approach to hyperspace topologies on subsets of a metric space
(X, d) is through the weak topology generated by a family of gap functionals
determined by members of a family S ⊆ P0(X). Beer, Constantini, and Levi
considered this approach formally in [7]. The weak topology determined by
such gap functionals is known as the gap topology, denoted by GS,d. In particu-
lar, when S = F(X), Bd(X), and P0(X), the gap topology reduces to Wijsman
topology, bounded proximal topology, and proximal topology, respectively.

For a metric space (X, d) and a family S of nonempty subsets of X , in
2004, Lechicki et al. [22] defined a new kind of set convergence known as
the bornological convergence (denoted by S-convergence). The bornological
convergence generalizes two classical set convergences: the Hausdorff metric
convergence (when S = P0(X)), and the Attouch-Wets convergence (when
S = Bd(X)). The bornological convergence was further studied in [4, 5, 6, 9,
10, 11, 13].



3

It is to be noted that for S = P0(X) or Bd(X), τS,d-convergence and S-
convergence coincide, however in either case, the GS,d-convergence is weaker.
As customary to hyperspace convergences, if we decompose each of these con-
vergences into two halves, upper (+) and lower (−), then for S = P0(X)
or Bd(X), we have τ+S,d = G

+
S,d = S+ but G

−
S,d may be strictly weaker than

S− = τ−S,d.
In this paper, we are considering the above mentioned three types of set con-

vergences on CL(X) for an arbitrary bornology S (see, [21]) on a metric space
(X, d). There has been tremendous interest in studying the relation among
these set convergences [9, 10, 13]. Beer, Naimpally, and Rodriguez-Lopez char-
acterized the equivalence of τ+S,d-convergence and S+-convergence in [13] while

in [9] Beer and Levi characterized the equivalence of G+
S,d-convergence and S+-

convergence. However, the equivalence between τ+S,d and G+
S,d is not known.

We fill this void in the present paper. We also provide a new independent char-
acterization for the equivalence of τ+S,d and S+-convergences. To study these

equivalences, we first propose new characterizations for τ+S,d-convergence and

S+-convergence. While studying τ+S,d-convergence vis-à-vis other convergences,
we discover in this paper that we require a variational type of enlargement of
S ∈ S in which the situation demands enlargements of different sizes at each
point of S. We formulate this in terms of enlargement of S ∈ S by positive
functions. This idea is central to our investigations.

The paper is organized as follows. In section 2, we define various hyperspace
convergences and Section 3 delves into basic convergence results. Section 4 is
devoted to provide a new representation for the τ+S,d-convergence. Some clas-
sical results are obtained as corollaries to our main theorem (Theorem 4.1) of
this section. The main result (Theorem 5.5) of Section 5 unfolds the necessary
and sufficient condition for the coincidence τ+S,d = G+

S,d. This necessary and
sufficient condition turns out to be a covering condition (see, Definition 5.3)
on enlargements of members of S by positive functions. In the final section, we
present a new perspective to look at S+-convergence. Then the coincidence of
τ+S,d-convergence and S+-convergence is characterized. Several examples and
counter-examples are given throughout the paper to support the findings.

2. Preliminaries

In this section, we give definitions of various set convergences and other key
concepts. We start with the definition of a bornology which is central to our
analysis. For a metric space (X, d), a nonempty family S ⊆ P0(X) which is
hereditary, closed under finite union, and that forms a cover of X is called
a bornology on X . Some important bornologies on a metric space (X, d) are
F(X), Bd(X), and P0(X). Two other useful bornologies on a metric space
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(X, d) are K(X), the set of all nonempty relatively compact subsets of X , and
T Bd(X) the set of all nonempty d-totally bounded subsets of X .

The open (closed) ball centered at x ∈ X and radius ǫ > 0 in (X, d) is
denoted by Bd(x, ǫ) (Bd(x, ǫ)). For A ⊆ X and ǫ > 0, the ǫ-enlargement of
A, denoted by Bd(A, ǫ), is defined as Bd(A, ǫ) = {x ∈ X : d(x,A) < ǫ}. Note
that for ǫ > 0, r > 0, we have Bd(Bd(A, ǫ), r) ⊆ Bd(A, ǫ+ r).

Definition 2.1. A metric space (X, d) is called an almost convex metric space
if for A ∈ P0(X) and ǫ > 0, r > 0, we have Bd(Bd(A, ǫ), r) = Bd(A, ǫ+ r).

Clearly, every normed linear space is an almost convex metric space.
An interesting representation of the Attouch-Wets convergence in terms of

enlargements of sets is as follows: a net (Aλ) in P0(X) τAWd
-converges to A

provided ∀ ǫ > 0 and B ∈ Bd(X), Aλ ∩ B ⊆ Bd(A, ǫ) and A ∩ B ⊆ Bd(Aλ, ǫ)
eventually.

Lechicki et al. [22] generalized this representation of Attouch-Wets conver-
gence by replacing Bd(X) with any nonempty family S of subsets of a metric
space (X, d). The resulting set convergence is known as bornological conver-
gence.

Definition 2.2. Suppose S is a nonempty family of subsets of a metric space
(X, d). A net (Aλ) is said to be lower bornological convergent to A in P0(X)
denoted by S−-convergence, if for each ǫ > 0 and S ∈ S, eventually A ∩ S ⊆
Bd(Aλ, ǫ).

We say (Aλ) is upper bornological convergent to A in P0(X) denoted by
S+-convergence, if for each ǫ > 0 and S ∈ S, eventually Aλ ∩ S ⊆ Bd(A, ǫ).

A net (Aλ) S-converges to A provided it is both S−-convergent and S+-
convergent to A. The S-convergence is known as the bornological convergence.

Clearly, for S = Bd(X) the S-convergence is compatible with the Attouch-
Wets topology τAWd

. However, in general, the bornological convergence corre-
sponding to a bornology S need not be topological. In the past, several authors
have shown interest in exploring the conditions under which this convergence
becomes topological [6, 10, 22].

In 2008, G. Beer et al. in [13] gave a unified approach to study hyperspace
topologies through uniform convergence of distance functionals on members of
a family S ⊆ P0(X).

Definition 2.3 ([15]). Let (X, d) be a metric space and S ⊆ P0(X). Then for
any S ∈ S and ǫ > 0 sets of the form

[S, ǫ]+ = {(A,C) ∈ P0(X)× P0(X) : d(x,A)− d(x, C) < ǫ ∀x ∈ S}

forms a base for a quasi-uniformity on P0(X). The corresponding topology is
denoted by τ+S,d.
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Similarly, τ−S,d is the topology on P0(X) generated by the quasi-uniformity
given by sets of the form

[S, ǫ]− = {(A,C) ∈ P0(X)×P0(X) : d(x, C)− d(x,A) < ǫ ∀x ∈ S}.

The topology τS,d is the supremum of τ−S,d and τ+S,d. This topology is a
uniformizable topology on P0(X) and the family {US,ǫ : S ∈ S, ǫ > 0} forms
a base for a compatible uniformity for τS,d, where

US,ǫ = {(A,B) ∈ P0(X)×P0(X) : |d(x,A)− d(x,B)| < ǫ ∀x ∈ S}.

So a net (Aλ) in P0(X) is τS,d-convergent to a nonempty set A if and only
if for any ǫ > 0 and S ∈ S, eventually, |d(x,A)− d(x,Aλ)| < ǫ for all x ∈ S,
that is, if the net (d(·, Aλ)) converges to d(·, A) uniformly on members of S.

In [7], the authors studied the weak topology generated by a family of gap
functionals with fixed left argument from an arbitrary family S of subsets of
a metric space (X, d). This topology is known as the gap topology.

Definition 2.4. For an arbitrary family S of nonempty subsets of a metric
space (X, d), the gap topology is defined as the weakest topology on P0(X) for
which all functionals of the form C → Dd(S, C) (S ∈ S) are continuous. It is
denoted by GS,d. The two halves of the gap topology GS,d are:

(i) the upper gap topology is the weakest topology on P0(X) for which each
member of the family of gap functionals {Dd(S, ·) : S ∈ S} is lower
semi-continuous. It is denoted by G

+
S,d.

(ii) the lower gap topology is the weakest topology on P0(X) for which each
member of the family of gap functionals {Dd(S, ·) : S ∈ S} is upper
semi-continuous. It is denoted by G

−
S,d.

So a subbase for a compatible uniformity for the topology GS,d consists of all
sets of the kind:

{(A,C) ∈ P0(X)× P0(X) : |Dd(S,A)−Dd(S, C)| < ǫ} (S ∈ S, ǫ > 0).

Remark 2.5. It is to be noted that whenever the family S contains all single-
tons the lower gap topology reduces to the lower Vietoris topology ([7]).

Let S ⊆ P0(X). Then for S1, . . . , Sn ∈ S and ǫ1, . . . , ǫn > 0, define,

A
+
d (S1, . . . , Sn; ǫ1, . . . , ǫn) = {C ∈ P0(X) : Dd(C, Si) > ǫi for i = 1, . . . , n}.

The collection {A+
d (S1, . . . , Sn; ǫ1, . . . , ǫn) : n ∈ N, Si ∈ S, ǫi > 0, 1 ≤ i ≤ n}

together with P0(X) forms a base for the upper gap topology on P0(X) ([7]).
In [7], the authors gave the following important characterization for the

G
+
S,d-convergence.

Theorem 2.6. Let (X, d) be a metric space, and let S ⊆ P0(X). Suppose
(Aλ) is a net in P0(X) and A ∈ P0(X). Then the following assertions are
equivalent:
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(i) (Aλ) G
+
S,d-converges to A;

(ii) for S ∈ S, and 0 < α < ǫ, whenever A ∩ Bd(S, ǫ) = ∅, then Aλ ∩
Bd(S, α) = ∅ eventually.

In this paper, we give analogous characterizations for the τ+S,d-convergence

(see, Theorem 4.1) and S+-convergence (see, Theorem 6.1). Moreover, we
study all these convergences on CL(X) and when S is a bornology of subsets
of X .

3. Basic Relations

In this section, we give relations between the hyperspace convergences de-
fined in the previous section (see, [9]). We also provide some examples showing
the non-equivalence of these convergences in general.

Proposition 3.1. Let (X, d) be a metric space and let S be a bornology on
X. Then G

+
S,d ⊆ τ+S,d on CL(X) (P0(X)).

Proof. Take A ∈ CL(X), S1, . . . , Sn ∈ S, and ǫ1, . . . , ǫn > 0 such that A ∈
A

+
d (S1, . . . , Sn; ǫ1, . . . , ǫn). Let ri = Dd(Si, A) − ǫi > 0 for 1 ≤ i ≤ n. Take

r = min{ ri
2
: i = 1, . . . , n} and S = ∪n

i=1Si ∈ S. We claim that [S, r]+(A) ⊆
A

+
d (S1, . . . , Sn; ǫ1, . . . , ǫn). To see this, consider C ∈ [S, r]+(A). Then d(x,A)−

d(x, C) < r ∀x ∈ Si and for each 1 ≤ i ≤ n. So for each i = 1, . . . , n,
Dd(Si, A) < r + d(x, C) ∀x ∈ Si, which implies, Dd(Si, A) − r ≤ Dd(Si, C).
Thus, C ∈ A

+
d (S1, . . . , Sn; ǫ1, . . . , ǫn). �

Proposition 3.2. Let (X, d) be a metric space and let S be a bornology on
X. Then S+ ≤ G

+
S,d on CL(X), that is, every G

+
S,d-convergent net is S+-

convergent.

Proof. Let (Aλ) be a net that G
+
S,d-converges to A in CL(X). Suppose by

contradiction, there exist S1 ∈ S and ǫ > 0 such that Aλ ∩ S1 * Bd(A, ǫ)
frequently. Then there is a cofinal set Λ1 ⊆ Λ such that S2 ∩ Bd(A, ǫ) = ∅,
where S2 = {aλ ∈ Aλ ∩ S1 : λ ∈ Λ1}. Note that S2 ∈ S and A ∈ A

+
d (S2;

ǫ
2
).

But Aλ ∩ S2 6= ∅ for all λ ∈ Λ1, which contradicts our assumption. �

Using Proposition 3.1 and Proposition 3.2, we have the following relation
between various set convergences.

Corollary 3.3. Let (X, d) be a metric space and let S be a bornology on
X. Then τ+S,d-convergence ⇒ G

+
S,d-convergence ⇒ S+-convergence on CL(X)

(P0(X)).

We now give some examples showing that the reverse implications in Corol-
lary 3.3 may not hold in general. We first present an example showing that
S+ ; G

+
S,d ; τ+S,d such an example seems not to be available in the literature.



7

Example 3.4. Let X = {(x, y) : x ≥ 0, y ≥ 0} ⊆ R2 and d = de, the
Euclidean metric. Let S = {B ⊆ S ∪ F : F ∈ F(X)}, where S = {(0, n) :
n ∈ N} ∪ {(0, 0)}. Then S is a bornology on X . Note that neither Bd(S,

1
2
) =

{x ∈ X : d(x, S) ≤ 1
2.
} /∈ S and nor Bd(S,

1
2
) = X . So by Theorem 3 of [9],

S+-convergence ; G
+
S,d-convergence on CL(X).

Next we claim that τ+S,d is strictly finer than G
+
S,d on CL(X). Take A =

{(x, 0) : x ≥ 5}. Then A ∈ CL(X). Consider [S, 1
2
]+(A), a neighborhood

of A in τ+S,d. It is enough to show that no G
+
S,d-neighborhood of A of the

form A
+
d (S1, . . . , Sn; ǫ1, . . . , ǫn) is contained in [S, 1

2
]+(A), where Si ∈ S and

ǫi > 0 for all 1 ≤ i ≤ n. Choose n0 ∈ N such that n0 > max{x : (x, y) ∈
Si, i = 1, . . . , n} + 2r, where r = max{ǫi : i = 1, . . . , n}. Let C = {(n0, y) :
y ≥ 1}. Since for any (n0, y) ∈ C and any (x′, y′) ∈ Si for 1 ≤ i ≤ n,
d((n0, y), (x

′, y′)) ≥ |n0 − x′| ≥ 2r, we have Dd(Si, C) ≥ 2r ∀i = 1, . . . , n. So
C ∈ A

+
d (S1, . . . , Sn; ǫ1, . . . , ǫn). However, C /∈ [S, 1

2
]+(A) as

d((0, 2n0), A)− d((0, 2n0), (n0, 2n0)) =
√

4n2
0 + 25− n0 > n0.

�

Example 3.5. Let (X, d) = (R, du), where du is the usual metric on R and
S = F(R). Then G

+
S,d = τ+Wd

. Suppose An = { 1
n
} for n ∈ N andA = {1}. Then

(An) is F(R)+-convergent to A. However, d(0, {1})− d(0, An) = 1− 1
n
> 1

2
for

large n. Thus, (An) is not τ
+
Wd

-convergent to A. �

4. Miss-type characterization for τ+S,d-convergence

The Theorem 2.6 characterized G
+
S,d-convergence in terms of enlargements

of members of S by positive constants. In this section, we present a parallel
criterion for the τ+S,d-convergence whenever S is a bornology. This new char-

acterization, in authors opinion, makes it easier to deal with τ+S,d-convergence.

Surprisingly, in the case of τ+S,d-convergence, enlargements of members of S by
positive constants need not be sufficient (see, Example 3.4).

We start with some preliminary notations. Define,

RX
+ = {f : X → R : f(x) > 0 for all x ∈ X}.

For simplicity, we write Z+ = RX
+ . Given any nonempty subset A of X and

f ∈ Z+, the f -enlargement of A is denoted by Bd(A, f), and is defined as

Bd(A, f) = ∪x∈ABd(x, f(x)).

Theorem 4.1. Let (X, d) be a metric space and let S be a bornology on X.
Suppose (Aλ) is a net in CL(X) and A ∈ CL(X). Then the following state-
ments are equivalent:
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(i) for S ∈ S and f, g ∈ Z+ with inf{g(x) − f(x) : x ∈ S} > 0, whenever
A misses g-enlargement of S, then (Aλ) misses the f -enlargement of S
eventually;

(ii) (Aλ) is τ+S,d-convergent to A.

Proof. (i) ⇒ (ii). Let S ∈ S and ǫ > 0. If S ⊆ Bd(A, ǫ), then we are
done. Otherwise, consider S ′ = {x ∈ S : x /∈ Bd(A, ǫ)}. Define f, g ∈
Z+ such that g(x) = d(x,A) and f(x) = d(x,A) − ǫ

2
for all x ∈ S ′. Then

infx∈S′(g(x) − f(x)) > 0 and A ∩ Bd(S
′, g) = ∅. By the hypothesis, we get

a λ0 such that Aλ ∩ Bd(S
′, f) = ∅ for all λ ≥ λ0. This would imply that

d(x,A) − d(x,Aλ) < ǫ for all x ∈ S and λ ≥ λ0. Hence the net (Aλ) is
τ+S,d-convergent to A.

(ii) ⇒ (i). Suppose (Aλ) is a net that τ+S,d-converges to A in CL(X). If

A = X , then there is nothing to prove. Otherwise, let S ∈ S and f, g ∈ Z+

with inf{g(x) − f(x) : x ∈ S} = r > 0 and A ∩ Bd(S, g) = ∅. Then by
the hypothesis, there is a λ0 such that for all x ∈ S and λ ≥ λ0, we have
d(x,A) − d(x,Aλ) < r . So whenever λ ≥ λ0 and x ∈ S, we have d(x,Aλ) >
f(x). Thus, Aλ ∩ Bd(S, f) = ∅ for all λ ≥ λ0.

�

Theorem 4.1 can be viewed as miss-type characterization of τ+S,d-convergence.
It is worth mentioning that in Theorem 2.6 the family S is not assumed to

be a bornology. However, Theorem 4.1 need not be true for an arbitrary family
S ⊆ P0(X) (see the next example). So it may be interesting to study the set
convergence given by Theorem 4.1 (i), specially in the context of normed linear
spaces where one usually encounters families of subsets which do not form a
bornology.

Example 4.2. Let (X, d) = (R2, de). Define An = {(x, 0) : x ≤ 0} ∪ {(x, y) :
y = 1 − x

n
, x > 0} for each n ∈ N, and A = {(x, 0) : x ≤ 0} ∪ {(x, y) :

x > 0, y = 1}. Then (An) is a sequence in CL(X) and A ∈ CL(X). Consider
S = {{(x, 0) : x ∈ R}}∪F(R2). Then it is not hard to verify that the sequence
(An) and A satisfy the convergence given in Theorem 4.1 (i). However, the
τ+S,d-convergence of sequence (An) to A fails. As for S = {(x, 0) : x ∈ R} and

ǫ = 1
2
, we have for any n0 ∈ N, d((n0, 0), A)− d((n0, 0), An0

) = 1 > ǫ. �

The following corollaries shows that for bornologies such as Bd(X) and
F(X), in Theorem 4.1 (i), it is enough to consider enlargements by positive
constants rather than by members of Z+, that is, for S = Bd(X) or F(X), we
have τ+S,d = G

+
S,d (thanks to Theorem 2.6). In the next section, we study the

coincidence τ+S,d = G
+
S,d for an arbitrary bornology S.

Proposition 4.3. Let (X, d) be a metric space and let C be a bounded subset
of X. If f ∈ Z+, then Bd(C, f) is either bounded or X.
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Proof. If sup{f(x) : x ∈ C} = r < ∞, then Bd(C, f) ⊆ Bd(C, r). Otherwise,
we show that Bd(C, f) = X . If there is a z ∈ X \Bd(C, f), then for any x ∈ C,
d(z, x) ≥ f(x). Given C is bounded, C ⊆ Bd(x0, r) for some x0 ∈ X and
r > 0. Choose n ∈ N such that d(x0, z) < nr. Since the set {f(x) : x ∈ C}
is not bounded above, we can choose x′ ∈ C such that f(x′) > (n + 2)r.
Consequently, d(x′, z) ≤ d(x′, x0) + d(x0, z) < (n + 2)r < f(x′). We arrive at
a contradiction. �

Corollary 4.4. Let (X, d) be a metric space. Suppose (Aλ) is a net in CL(X)
and A ∈ CL(X). Then the following conditions are equivalent:

(i) for S ∈ Bd(X) and 0 < α < ǫ, whenever A ∩ Bd(S, ǫ) = ∅, then Aλ ∩
Bd(S, α) = ∅ eventually;

(ii) for S ∈ Bd(X) and f, g ∈ Z+ with inf{g(x)−f(x) : x ∈ S} > 0, whenever
A ∩ Bd(S, g) = ∅, then Aλ ∩Bd(S, f) = ∅ eventually;

(iii) (Aλ) is τ+AWd
-convergent to A.

Proof. (i) ⇒ (ii). Let S ∈ Bd(X) and f, g ∈ Z+ with inf{g(x) − f(x) : x ∈
S} = r > 0, satisfying, A ∩ Bd(S, g) = ∅. By Proposition 4.3, it follows that
S ′ = Bd(S, f) ∈ Bd(X). Since Bd(S

′, r) ⊆ Bd(S, g), we have A∩Bd(S
′, r) = ∅.

Thus, by the hypothesis for 0 < α < r there is a λ0 such that for all λ ≥ λ0,
we have Aλ ∩ Bd(S

′, α) = ∅. Hence (ii) is established.
The implication (ii) ⇒ (i) is immediate, and (ii) ⇔ (iii) follows from

Theorem 4.1. �

Remark 4.5. It is well-known that the G
+
Bd(X),d coincides with the upper

bounded proximal topology (see, p.111 of [3]). So by Corollary 4.4 and Theo-
rem 2.6, the upper bounded proximal topology and upper Attouch-Wets topol-
ogy coincides on CL(X).

Corollary 4.6. (Lemma 2.1.2, [3]) Let (X, d) be a metric space. Suppose
(Aλ) is a net in CL(X) and A ∈ CL(X). Then the following assertions are
equivalent:

(i) (Aλ) is τ+Wd
-convergent to A ∈ CL(X);

(ii) for 0 < α < ǫ, whenever A ∩ Bd(x, ǫ) = ∅, then Aλ ∩ Bd(x, α) = ∅
eventually.

5. Coincidence of τ+S,d and G
+
S,d

We have seen earlier that τ+S,d-convergence is stronger than the G+
S,d-convergence

in general (see, Proposition 3.1). In this section, we explore the situations
for the equivalence of τ+S,d-convergence and G

+
S,d-convergence on CL(X). The

following result gives a sufficient condition for the coincidence of these conver-
gences.
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Theorem 5.1. Let (X, d) be a metric space and let S be a bornology on X.

If for each S ∈ S and f ∈ Z+ either Bd(S, f) ∈ S or Bd(S, f) = X, then
τ+S,d = G

+
S,d on CL(X).

Proof. Suppose (Aλ) is a net that G+
S,d-converges to A in CL(X). Pick S ∈ S

and f, g ∈ Z+ with inf{g(x)− f(x) : x ∈ S} > 0 such that A ∩ Bd(S, g) = ∅.

Since Bd(S, f) ⊆ Bd(S, g), we have Bd(S, f) ∈ S. Set Bd(S, f) = S ′, and
r = inf{g(x) − f(x) : x ∈ S}. Then Bd(S

′, r
2
) ⊆ Bd(S, g). Consequently,

A ∩ Bd(S
′, r

2
) = ∅. So Aλ ∩ S ′ = ∅ eventually as (Aλ) is G

+
S,d-convergent to

A. Therefore, Aλ ∩ Bd(S, f) = ∅ eventually. Thus, by Theorem 4.1, (Aλ) is
τ+S,d-convergent to A. �

The converse of Theorem 5.1 need not be true in general. Consider (R, du)
and take S = F(X). Then τ+S,d = G

+
S,d = τ+Wd

while the condition given in
Theorem 5.1 fails.

In [7], the authors introduced the notion of strictly (S − d) included to
study the coincidence G

+
S,d = G

+
S,ρ for two metrics d, ρ, and the coincidence

G
+
S,d = G

+
T ,d for two families S, T of subsets of X . This notion is also helpful

in studying the coincidence τ+S,d = G
+
S,d.

Definition 5.2. Let (X, d) be a metric space and let S be an arbitrary family
of nonempty subsets of X . We say a subset A of X is strictly (S − d) included
in another nonempty subset C of X if there exists a finite subset {S1, . . . , Sn}
of S, and for every i ∈ {1, . . . , n} there are αi, ǫi with 0 < αi < ǫi, such that

A ⊆ ∪n
i=1Bd(Si, αi) ⊆ ∪n

i=1Bd(Si, ǫi) ⊆ C.

The above definition is a generalization of the notion of strictly d-included
introduced by C. Costantini et al. in [16] while studying when two equivalent
metrics on X determine the same Wijsman convergence on CL(X).

Proposition 5.3. Let (X, d) be a metric space and let S be a bornology on
X. Suppose A and B are two nonempty subsets of X. Consider the following
statements:

(i) A ∈ S and Dd(A,B) > 0 ;
(ii) A is strictly (S − d) included in X \B.

Then (i) ⇒ (ii) holds.

Proof. Let Dd(A,B) = ǫ. Since A ∈ S, A ⊆ Bd(A,
ǫ
3
) ⊆ Bd(A,

ǫ
2
) ⊆ X \B. �

To prove our main result of this section, we first fix some notations and
prove a preliminary lemma. Let S be bornology on a metric space (X, d).
Denote by F(S) the family of all nonempty finite subsets of S, and F(R+) for
the family of all nonempty finite subsets of R+ = (0,∞). For any F ∈ F(S)
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choose αF = {αS : S ∈ F} ∈ F(R+). Let (F, αF ) = {(S, αS) : S ∈ F}.
Consider the collection

N = {(F, αF ) : (F, αF ) ∈ F(S)× F(R+)}.

Define a relation6 onN by (F, αF ) 6 (F ′, αF ′) if and only if ∪S∈FBd(S, αS) ⊆
∪S′∈F ′Bd(S

′, αS′).
Set F ′′ = F ∪F ′ and αF ′′ = αF ∪αF ′ = {αS′′ : S ′′ ∈ F ′′}. Then (F ′′, αF ′′) ∈

N . Moreover, (F, αF ) 6 (F ′′, αF ′′), and (F ′, αF ′) 6 (F ′′, αF ′′). Observe that
the relation 6 is reflexive and transitive on N . Thus, (N ,6) is a directed set.

Lemma 5.4. Let C be a nonempty open subset of a metric space (X, d) and
let S be a bornology on X. Then the collection Ω ⊆ N defined as,

Ω =

{

(F, αF ) : ∃ ǫF ∈ F(R+) with αS < ǫS for S ∈ F and
⋃

S∈F

Bd(S, ǫS) ⊆ C

}

,

is a directed set under the relation 6 defined above.

Proof. Note that Ω is nonempty as C is nonempty open and S is a bornology.
Since Ω ⊆ N , the relation6 is reflexive as well as transitive on Ω. It remains to
show that for any (F, αF ), (F

′, αF ′) ∈ Ω there exists (F ′′, αF ′′) ∈ Ω satisfying
(F, αF ) 6 (F ′′, αF ′′), and (F ′, αF ′) 6 (F ′′, αF ′′). Take (F ′′, αF ′′) as above. By
the above argument, we just need to show that (F ′′, αF ′′) ∈ Ω.

Choose ǫF , ǫF ′ ∈ F(R+) satisfying the definition of Ω corresponding to
(F, αF ) and (F ′, αF ′) respectively. Let ǫF ′′ = ǫF ∪ ǫF ′. Then, αS′′ < ǫS′′ for
S ′′ ∈ F ′′, and ∪S′′∈F ′′Bd(S

′′, ǫS′′) ⊆ C. Therefore, (Ω,≤) is a directed set. �

Theorem 5.5. Let (X, d) be a metric space and let S be a bornology on X.
Then the following statements are equivalent:

(i) τ+S,d = G
+
S,d on CL(X);

(ii) for each S ∈ S and f, g ∈ Z+ with inf{g(x)− f(x) : x ∈ S} > 0, either
Bd(S, f) is strictly (S − d) included in Bd(S, g) or Bd(S, g) = X.

Proof. (i) ⇒ (ii). Suppose (ii) fails. Choose an S0 ∈ S and f, g ∈ Z+ with
inf{g(x)− f(x) : x ∈ S0} > 0 such that neither Bd(S0, g) = X nor Bd(S0, f)
is strictly (S − d) included in Bd(S0, g). Consider

Ω =







(F, αF ) ∈ F(S)× F(R+) :

∃ ǫF ∈ F(R+) with αS < ǫS for S ∈ F

and
⋃

S∈F

Bd(S, ǫS) ⊆ Bd(S0, g)







.

Clearly, Ω is nonempty as ({x}, {f(x)}) ∈ Ω for any x ∈ S0. By Lemma
5.4, Ω is a directed set under the relation 6. Since Bd(S0, f) is not strictly
(S−d) included in Bd(S0, g), for each (F, αF ) ∈ Ω we have x(F,αF ) ∈ Bd(S0, f)\
(∪S∈FBd(S, αS)). Put A = X \ Bd(S0, g). Then A ∈ CL(X). Now for any
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(F, αF ) ∈ Ω define A(F,αF ) = A ∪ {x(F,αF )}. Consequently,
(

A(F,αF )

)

is a

net in CL(X). We claim that the net (A(F,αF )) G
+
S,d-converges to A while

its τ+S,d-convergence fails. Take any finite subset F ′ = {S ′
1, . . . , S

′
m} of S and

αF ′ = (α′
1, . . . , α

′
m) ∈ F(R+) such that A ∈ A

+
d (S

′
1, . . . , S

′
m;α

′
1, . . . , α

′
m). So

Dd(S
′
i, A) > α′

i for each i = 1, . . . , m. Let r′i =
Dd(S

′

i,A)+α′

i

2
for i = 1, . . . , m.

Then Dd(S
′
i, A) > r′i for i = 1, . . . , m, which gives ∪m

i=1Bd(S
′
i, r

′
i) ⊆ Bd(S0, g).

Thus, (F ′, αF ′) ∈ Ω. So there exists ǫF ′ = (ǫ′1, . . . , ǫ
′
m) ∈ F(R+) such that

α′
i < ǫ′i for 1 ≤ i ≤ m and (F ′, ǫF ′) ∈ Ω. Then for any (F, ǫF ) ∈ Ω such

that (F ′, ǫF ′) 6 (F, ǫF ) we have {x(F,ǫF )} ∈ A
+
d (S

′
1, . . . , S

′
m;α

′
1, . . . , α

′
m). Con-

sequently, A(F,ǫF ) ∈ A
+
d (S

′
1, . . . , S

′
m;α

′
1, . . . , α

′
m) whenever (F ′, ǫF ′) 6 (F, ǫF ).

So the net (A(F,αF ))(F,αF )∈Ω G
+
S,d-converges to A. Now A ∩ Bd(S0, g) = ∅ but

for every (F, αF ) ∈ Ω, we have A(F,αF )∩Bd(S0, f) 6= ∅. Thus, by Theorem 4.1,

the net
(

A(F,αF )

)

(F,αF )∈Ω
does not converge to A with respect to τ+S,d.

(ii) ⇒ (i). Suppose (Aλ) is a net in CL(X) that G
+
S,d-converges to A ∈

CL(X). If A = X , then (Aλ) is τ+S,d-convergent to A. Otherwise, consider

S ∈ S and f, g ∈ Z+ with inf{g(x)− f(x) : x ∈ S} > 0 and A∩Bd(S, g) = ∅.
Since Bd(S, f) is strictly (S − d) included in Bd(S, g), there exist S1, . . . , Sn ∈
S, and 0 < αi < ǫi for i = 1, . . . , n such that Bd(S, f) ⊆ ∪n

i=1Bd(Si, αi) ⊆
∪n
i=1Bd(Si, ǫi) ⊆ Bd(S, g). So A ∩ (∪n

i=1Bd(Si, ǫi)) = ∅. Then by Theorem
2.6, Aλ ∩ (∪n

i=1Bd(Si, αi)) = ∅ eventually. So Aλ ∩ Bd(S, f) = ∅ eventually.
Consequently, by Theorem 4.1, (Aλ) τ

+
S,d-converges to A. �

Recall that for S = Bd(X) and P0(X), the topology τ+S,d reduces to the upper
Attouch-Wets topology, and the upper Hausdorff metric topology, respectively.
So we have the following corollaries originally observed by Beer [3].

Corollary 5.6. Let (X, d) be a metric space. Then the upper Attouch-Wets
topology on CL(X) is the weakest topology such that each member of the family
of set functionals {Dd(S, .·) : S ∈ Bd(X)} is lower semi-continuous.

Proof. Let S ∈ Bd(X) and f, g ∈ Z+ with infx∈S(g(x)− f(x)) > 0. Then by
Proposition 4.3, either Bd(S, g) ∈ Bd(X) or Bd(S, g) = X . If Bd(S, g) 6= X ,
then Bd(S, f) ∈ Bd(X). Further, by the choice of f and g, Bd(S, f) is far from
X \ Bd(S, g). Consequently, by Proposition 5.3, Bd(S, f) is strictly (S − d)
included in Bd(S, g). Thus, the result follows from the Theorem 5.5. �

Corollary 5.7. Let (X, d) be a metric space. Then the upper Hausdorff metric
topology on CL(X) is the weakest topology such that each member of the family
of set functionals {Dd(S, ·) : S ∈ P0(X)} is lower semi-continuous.

Remark 5.8. Note that each of the bornology P0(X), Bd(X), and F(X) is
shielded from closed sets and in each case we have τ+S,d = G

+
S,d. However,
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τ+
T Bd(X),d = G

+
T Bd(X),d while T Bd(X) need not be shielded from closed sets in

general. For more on shields, see [6].

We now give an example of a sequence (An) of subsets of the Euclidean
space (R2, de) that appears geometrically not converging to A ⊆ R2 such that
(An) does not converge to A with respect to τ+S,d but converges to A with

respect to G
+
S,d.

Example 5.9. Let (X, d) = (R2, de) and B = {S ⊆ S0 ∪ F : F ∈ F(X)},
where S0 = {(x, y) : x ≥ 1, y = 1}. It is easy to verify that B is a bornol-
ogy on X . Define An = {(x, y) : x ≥ 0, y = n} for each n ∈ N and
A = {(x, y) : x = 0, y ≥ 0}. Then (An) is a sequence of closed sets. We
claim that (An) converges to A in G

+
B,d. Let S1, . . . , Sk ∈ B and ǫ1, . . . , ǫk >

0 such that A ∈ A
+
d (S1, . . . , Sk; ǫ1, . . . , ǫk). Take n0 = max{y : (x, y) ∈

Si, i = 1, . . . , k} + 2max{ǫi : i = 1, . . . , k}. Observe that, for n ≥ n0,
An ∈ A

+
d (S1, . . . , Sk; ǫ1, . . . , ǫk). Thus, we have established G

+
B,d convergence.

To see (An) does not converge to A in τ+B,d. Take S = N×{1} and let f, g ∈
Z+ defined by f((m, 1)) = m

8
and g((m, 1)) = m

4
for each m ∈ N. Observe

that inf{g((m, 1)) − f((m, 1)) : m ∈ N} = 1
8
. Also A ∩ Bd(S, g) = ∅.Since

for any n ∈ N, (16n, n) ∈ An ∩ Bd((16n, 1),
16n
8
), An ∩ Bd(S, f) 6= ∅ for every

n ∈ N. Thus, (An) does not converge to A in τ+B,d. �

6. Bornological Convergence

In [13], the authors characterized the coincidence of S+-convergence and
τ+S,d-convergence for an arbitrary bornology S. They used the notion of S-
convergent to infinity to characterize the aforesaid coincidence. In this sec-
tion, we first provide a new approach to determine S+-convergence which is
similar to the one given for the τ+S,d-convergence in Theorem 4.1. Then we give
necessary and sufficient conditions on the structure of the bornology S for the
coincidence of S+-convergence and τ+S,d-convergence on CL(X).

Theorem 6.1 (Miss type characterization for bornological convergence). Let
(X, d) be a metric space and let S be a bornology on X. Suppose (Aλ) is a
net in P0(X) (CL(X)) and A is a nonempty (closed) subset of X. Then the
following statements are equivalent.

(i) (Aλ) S+-converges to A;
(ii) for S ∈ S and ǫ > 0, whenever A misses ǫ-enlargement of S, then (Aλ)

misses S eventually.

Proof. (i) ⇒ (ii). Let S ∈ S and ǫ > 0 such that A ∩ Bd(S, ǫ) = ∅. By the
hypothesis, there is a λ0 ∈ Λ such that for all λ ≥ λ0, we have Aλ ∩ S ⊆
Bd(A, ǫ). Consequently, by the choice of S and ǫ, Aλ ∩ S = ∅ for all λ ≥ λ0.
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(ii) ⇒ (i). Let S ∈ S and ǫ > 0. If A ∩ Bd(S, ǫ) = ∅, then there is a
λ1 ∈ Λ such that Aλ ∩ S = ∅ for all λ ≥ λ1. Consequently, Aλ ∩ S ⊆ Bd(A, ǫ)
for all λ ≥ λ1. Otherwise, let B = {x ∈ S : x ∈ Bd(A, ǫ)} and S ′ = S \ B.
When B = S, then Aλ ∩ S ⊆ Bd(A, ǫ) for all λ. If B 6= S, then S ′ 6= ∅.
Moreover, A ∩ Bd(S

′, ǫ) = ∅. Thus, by the hypothesis there is a λ2 ∈ Λ such
that Aλ ∩ S ′ = ∅ for all λ ≥ λ2. Also for each λ ∈ Λ, Aλ ∩ B ⊆ Bd(A, ǫ).
Consequently, Aλ ∩ S ⊆ Bd(A, ǫ) for all λ ≥ λ2. Hence (Aλ)λ∈Λ S+-converges
to A. �

We would like to mention that the equivalence of Theorem 6.1 may not hold
if we do not assume S to be a bornology on X . This is shown by the following
example.

Example 6.2. Suppose X = R2 and d = de, the Euclidean metric. Let
S = {Bd((0, 0), 2m) : m ∈ N}. Then S is a cover of X . Observe that ↓ S =
{B ⊆ S : S ∈ S} = Bd(X). So by Corollary 3.3 of [22], we have S+ = τ+AWd

.

Let A = {(x, y) : y = 1
x
, x > 0}, and An = {(x, y) : y = 1

x
+ 1

n
, x < 0} for each

n ∈ N. Note that A ∩ Bd((0, 0), 2m) 6= ∅ for any m ≥ 1. Thus, the sequence
(An) and A satisfy (ii) of Theorem 6.1. On the other hand, for any 0 < ǫ < 1
and n ∈ N, ∅ 6= An∩Bd((0, 0), 2) * Bd(A, ǫ). Therefore, the τ

+
AWd

-convergence
of sequence (An) to A fails. �

Recall that for a bornology S on a metric space (X, d), the upper S-proximal
topology µ++

S on P0(X) is generated by all sets of the form: (Sc)++ = {A ∈
P0(X) : S ∩ Bd(A, ǫ) = ∅ for some ǫ > 0}, where S ∈ S ([22, 18]). The
relation between S+-convergence and µ++

S -convergence is given in Proposition
15 of [13]. We reproduce its proof using Theorem 6.1.

Proposition 6.3. Let (X, d) be a metric space and let S be a bornology on
X. Then the following statements are equivalent:

(i) for each S ∈ S there is an ǫ > 0 such that Bd(S, ǫ) ∈ S, that is, S is
stable under small enlargements;

(ii) S+-convergence is compatible with µ++
S -convergence on P0(X);

(iii) S+-convergence is topological on P0(X).

Proof. (i) ⇒ (ii). Suppose (Aλ) is a net in P0(X) that S+-converges to a
nonempty set A. If A = X , then there is nothing to show. Otherwise, let
S ∈ S be such that S ∩ Bd(A, ǫ) = ∅, equivalently A ∩ Bd(S, ǫ) = ∅ for some
ǫ > 0. By assumption, we can find 0 < δ < ǫ

2
such that Bd(S, δ) ∈ S. Then,

A ∩ Bd(Bd(S, δ),
ǫ
2
) = ∅. Applying Proposition 6.1, it can be concluded that,

Aλ ∩Bd(S, δ) = ∅ eventually. Thus, the net (Aλ)λ∈Λ µ++
S -converges to A.

Conversely, suppose (Aλ) µ++
S -converges to A. Let S ∈ S and ǫ > 0 be

such that A ∩ Bd(S, ǫ) = ∅. Then Aλ ∈ (Sc)++ eventually. Thus, Aλ ∩ S = ∅
eventually. Hence by Theorem 6.1, (Aλ) S

+-converges to A.
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The implications (ii) ⇒ (iii) is immediate and for (iii) ⇒ (i) see Theorem
3.7 of [22]. �

In [13], the authors gave an example (Example 20) showing the condition
that a family S being stable under enlargements by positive constants may not
be sufficient to enforce the equivalence of τ+S,d and S+-convergences. So we may
need a stronger stability condition on S to achieve the required equivalence.
We now give the main result of this section that divulges this stronger stability
condition on S.

Theorem 6.4. Let (X, d) be a metric space and let S be a bornology on X.
Then the following statements are equivalent:

(i) τ+S,d-convergence = S+-convergence on CL(X);

(ii) for each S ∈ S and f, g ∈ Z+ with inf{g(x)− f(x) : x ∈ S} > 0, either
Bd(S, f) ∈ S or Bd(S, g) = X.

Proof. (i) ⇒ (ii). Suppose there exist S0 ∈ S and f, g ∈ Z+ with infx∈S0
(g(x)−

f(x)) > 0 for which Bd(S0, g) 6= X as well as Bd(S0, f) /∈ S. Define

Ω = {S ∈ S : there is an ǫ > 0 such that Bd(S, ǫ) ⊆ Bd(S0, g)}.

Note that Ω is nonempty as S0 ∈ Ω. By assumption, for each S ∈ Ω there
is an xS ∈ Bd(S0, f) \ S. Put A = X \ Bd(S0, g) and for S ∈ Ω, let AS =
A ∪ {xS}. Direct Ω by set inclusion. Then (AS)S∈Ω is a net in CL(X). Since
AS ∩Bd(S0, f) 6= ∅ for each S ∈ S and A∩Bd(S0, g) = ∅, by Theorem 4.1, the
τ+S,d-convergence of (AS) to A fails. To see (AS) S+-converges to A, let S1 ∈ S
and ǫ1 > 0 such that A ∩ Bd(S1, ǫ1) = ∅. So S1 ∈ Ω. Then for any S ∈ Ω
with S ⊇ S1, we have AS ∩ S1 = ∅. Therefore, by Theorem 6.1, the net (AS)
is S+-convergent to A ∈ CL(X). This is a contradiction.

(ii) ⇒ (i). Suppose (Aλ) is a net S+-converging to A in CL(X). If A = X ,
then there is nothing to show. Otherwise, let S ∈ S, and f, g ∈ Z+ with
infx∈S(g(x) − f(x)) = r > 0 such that A ∩ Bd(S, g) = ∅. By the hypothesis,
we get S ′ = Bd(S, f) ∈ S. Since A ∩ Bd(S

′, r) = ∅ and the net (AS) is S+-
convergent to A, by Theorem 6.1, we obtain Aλ ∩ S ′ = ∅ eventually. Thus, by
Theorem 4.1, the net (Aλ) is τ

+
S,d-convergent to A. �

Corollary 6.5. Let (X, d) be a metric space and let S be a bornology on X.
If Bd(S, f) ∈ S for each S ∈ S and f ∈ Z+, then τ+S,d-convergence = S+-
convergence on CL(X).

If d is an unbounded metric on X and τ+S,d = S+, then by Theorem 6.4,

each ball in (X, d) is in S. So whenever τ+S,d = S+ for an unbounded metric
space (X, d), then Bd(X) ⊆ S. Moreover, in Proposition 19 of [13], it has
been shown that whenever (X, d) is unbounded and τ+S,d = S+, then S is
stable under enlargements. The proof of this proposition uses the notion of
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S-convergence to infinity. We next give a new proof of Proposition 19 of [13]
in the vein of Theorem 6.4.

Corollary 6.6. Let (X, d) be an unbounded metric space and let S be a bornol-
ogy on X. If τ+S,d = S+ on CL(X), then S is stable under enlargements.

Proof. Let S0 ∈ S and r > 0. If Bd(S0, r + ǫ) 6= X for some ǫ > 0, then by
Theorem 6.4, Bd(S0, r) ∈ S. Otherwise, Bd(S0, r + ǫ) = X for each ǫ > 0.
Let x0 ∈ S0, and S ′ = S0 \ Bd(x0, 3r). Since (X, d) is unbounded, S ′ 6=
∅. Further, note that Bd(S

′, 5r
2
) 6= X as d(x0, S

′) ≥ 3r. Consequently, by
Theorem 6.4, we have Bd(S

′, 2r) ∈ S. Also Bd(x0, 5r) ∈ S. Then Bd(S0, 2r) ∈
S as Bd(S0, 2r) ⊆ Bd(S

′, 2r) ∪ Bd(x0, 5r). And, by our assumption, X =
Bd(S0, 2r). Hence S = P0(X). �

Proposition 6.7. Let (X, d) be a metric space and let S be bornology on X.

Suppose for any S ∈ S and f ∈ Z+ either Bd(S, f) ∈ S or Bd(S, f) = X.
Then τ+S,d = S+ on CL(X).

Proof. Suppose (Aλ) is a net which S+-converges to A in CL(X). If A = X ,
then there is nothing to show. Otherwise, let S ∈ S and f, g ∈ Z+ with
infx∈S(g(x)−f(x)) > 0 such that A∩Bd(S, g) = ∅. Then by the hypothesis, we
get Bd(S, f) ∈ S. Therefore, applying Theorem 6.1, we get Aλ ∩Bd(S, f) = ∅
eventually. Thus, the coincidence τ+S,d = S+ follows from Theorem 4.1. �

The following example shows that the condition in Proposition 6.7 need not
be necessary for the coincidence of the convergences τ+S,d and S+.

Example 6.8. Let X = [0, 1] ∪ E where E = ∪p∈PEp, Ep = {pn : n ∈ N},
and P = {p : p is prime}. Suppose d : X ×X → R is defined as

d(x, y) =











2 if x, y ∈ [0, 1] or x ∈ [0, 1], y ∈ E, x 6= y

1 +
∑q

r=1
1
2r

if x ∈ Ep, y ∈ Eq, p ≤ q, x 6= y

0 if x = y

where x, y ∈ X . It is routine to verify that d forms a metric on X . Define the
collection A = {Ep ∪ F : p ∈ P, F ∈ F(X)}. Then A forms a cover of X . By
Proposition 11.2 of [5], A generates a bornology, say B(A) on X .

First, we show that for S ∈ B(A) and f, g ∈ Z+ with infx∈S(g(x)−f(x)) > 0,
either Bd(S, f) ∈ B(A) or Bd(S, g) = X . Observe that any S ∈ B(A) is
a subset of ∪n

i=1Epi ∪ F for pi ∈ P , 1 ≤ i ≤ n and F ∈ F([0, 1]). For
f ∈ Z+ there are two possibilities: supx∈S f(x) < 2 or supx∈S f(x) ≥ 2. When
supx∈S f(x) < 2, then we can find p0 ∈ P such that p0 > max1≤i≤n pi and
supx∈S f(x) < 1 +

∑p
r=1

1
2r

∀ p ≥ p0. Therefore, Bd(S, f) ⊆ ∪p≤p0Ep ∪ F ∈
B(A). When supx∈S f(x) ≥ 2, then g(x) > 2 for some x ∈ S. So Bd(S, g) = X .
Hence τ+

B(A),d = B(A)+ follows by Theorem 6.4.
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Next, we show that the necessary condition in Proposition 6.7 fails. Consider
E2 and f ∈ Z+ defined by f(x = 2n) = 2 − 1

n
for n ∈ N. We claim that

E ⊆ Bd(E2, f) and Bd(E2, f) 6= X . Let y ∈ Eq for some q ∈ P . Then
there exists n0 ∈ N such that 1 +

∑q
r=1

1
2r

< 2 − 1
n0

. Consequently, y ∈

Bd(2
n0, 2− 1

n0

) ⊆ Bd(E2, f). So E ⊆ Bd(E2, f). Therefore Bd(E2, f) /∈ B(A).

Finally, note that for any z ∈ [0, 1], we have Bd(z, 1) ∩ Bd(E2, f) = ∅. Hence

Bd(E2, f) 6= X . �

Theorem 6.9. Let (X, d) be an almost convex metric space and let S be a
bornology on X. Then the following statements are equivalent:

(i) for S ∈ S and f ∈ Z+ either Bd(S, f) ∈ S or Bd(S, f) = X;
(ii) τ+S,d = S+ on CL(X).

Proof. It is enough to prove (ii) ⇒ (i). Suppose (i) fails. So there exist

S ∈ S and f ∈ Z+ such that neither Bd(S, f) ∈ S nor Bd(S, f) = X .

Let p ∈ X \ Bd(S, f). Put 2r = d(p, Bd(S, f)). Consider g ∈ Z+ with
g(x) = f(x) + r ∀ x ∈ X . Since (X, d) is an almost convex metric space,
Bd(Bd(x, f(x)), r) = Bd(x, f(x) + r) for x ∈ S. Therefore, Bd(Bd(S, f), r) =
Bd(S, g). Consequently, p /∈ Bd(S, g). Thus Bd(S, g) 6= X . Which contradicts
Theorem 6.4. �

If τ+S,d = S+, then we also have S+ = G
+
S,d. However, in general (S+ =

G
+
S,d) ; (τ+S,d = S+). This can be seen by the following example.

Example 6.10. Let X = R2 and d = de. Let S be the bornology defined
as S = {S ⊆ R × [−n, n] : n ∈ N}. It follows from Example 20 of [13] that
τ+S,d 6= S+ on CL(X). Since for any S ∈ S and r > 0, Bd(S, r) = {x ∈ X :

d(x, S) ≤ r} ∈ S, by Theorem 3 of [9], G+
S,d = S+ on CL(X).

Now as applications of Theorem 6.4, we deduce the coincidence τ+S,d = S+

for some special bornologies. In particular, we consider the relation of S+-
convergence with τ+S,d-convergence for S = F(X), K(X), T Bd(X), Bd(X),

and P0(X). Note that in each of these special cases, we get different S+-
convergences. However, when S = F(X), K(X), and T Bd(X), we have τ+S,d =

τ+Wd
. So in these three cases, we actually deduce the equivalence τ+Wd

= S+

using Theorem 6.4. We would like to mention here that in Theorem 1 of
[9], Beer and Levi have proved a much more general result where they have
compared the τ+Wd

-convergence to S+-convergence for an arbitrary bornology
S.

Corollary 6.11. ([3]) Let (X, d) be a metric space. Then the following state-
ments hold.

(i) τ+AWd
-convergence = B+

d (X)-convergence on CL(X);
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(ii) τ+Hd
-convergence = P+

0 (X)-convergence on CL(X).

Proof. (i). Let B ∈ Bd(X), and f ∈ Z+. Then by Proposition 4.3, either
Bd(B, f) ∈ Bd(X) or Bd(B, f) = X . Therefore the result follows from Theo-
rem 6.4.

(ii). It is immediate from Theorem 6.4. �

In order to examine other cases, we first prove a following general result
which can be inferred from Theorem 8 of [13]. For the readers convenience
and sake of completeness we record its proof below.

Lemma 6.12. Let (X, d) be a metric space and let S be a bornology on X. If
S ⊆ T Bd(X), then τ+S,d = τ+Wd

on CL(X).

Proof. Suppose (Aλ) is a net in CL(X) that τ+Wd
-converges to A ∈ CL(X).

We show that the net (Aλ) is τ+S,d-convergent to A. Take S ∈ S and ǫ > 0.
Choose F ∈ F(X) such that S ⊆ Bd(F,

ǫ
4
). By assumption, there is a λ0 such

that for all λ ≥ λ0 and y ∈ F , we have d(y, A)− d(y, Aλ) <
ǫ
4
. Then for any

x ∈ S and λ ≥ λ0 we have d(x,A) < d(x,Aλ) + ǫ. �

Proposition 6.13. Let (X, d) be a metric space and let S be a bornology on
X such that S ⊆ T Bd(X). Then the following statements are equivalent:

(i) each proper closed ball is in S;
(ii) for S ∈ S and f, g ∈ Z+ with infx∈S(g(x)−f(x)) > 0 whenever Bd(S, g) 6=

X, we have Bd(S, f) ∈ S.

Proof. (i) ⇒ (ii). Let S ∈ S and f, g ∈ Z+ with infx∈S(g(x)− f(x)) > 0 such
that Bd(S, g) 6= X . By Lemma 6.12, we have τ+S,d = τ+Wd

⊆ G
+
S,d. So τ

+
S,d = G

+
S,d.

Then by Theorem 5.5, we have Bd(S, f) is strictly (S−d) included in Bd(S, g).
Let S1, . . . , Sn ∈ S and 0 < αi < ǫi for 1 ≤ i ≤ n such that

Bd(S, f) ⊆ ∪n
i=1Bd(Si, αi) ⊆ ∪n

i=1Bd(Si, ǫi) ⊆ Bd(S, g).

Choose 0 < ri < ǫi − αi for 1 ≤ i ≤ n. Since each Si is totally bounded, there
exist xi1 , .., xik ∈ Si such that Si ⊆ ∪k

j=1Bd(xij , ri). Consequently,

Bd(Si, αi) ⊆ ∪k
j=1Bd(xij , αi + ri) ⊆ Bd(Si, ǫi).

By the hypothesis, ∪k
j=1Bd(xij , αi + ri) ∈ S. Thus, Bd(Si, αi) ∈ S for each

i = 1, . . . , n. Hence Bd(S, f) ∈ S.
(ii) ⇒ (i). Let x ∈ X and ǫ > 0 be such that Bd(x, ǫ) 6= X . Then there

exists a y ∈ X such that d(x, y) > ǫ. Put d(x, y)−ǫ = 3r. So Bd(x, ǫ+3r) 6= X .
By the hypothesis, we have Bd(x, ǫ+ 2r) ∈ S. Hence Bd(x, ǫ) ∈ S. �

Corollary 6.14. ([3]) Let (X, d) be a metric space. Then τ+Wd
-convergence =

K(X)+-convergence if and only if (X, d) have nice closed balls (that is, each
proper closed ball is compact).
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Proof. Since K(X) ⊆ T Bd(X), the result follows from Lemma 6.12, Proposi-
tion 6.13 and Theorem 6.4. �

By Corollary 3.3 of [22], we have s(X)+ = F(X)+, where s(X) = collection
of all singletons in X .

Corollary 6.15. (Proposition 22, [13]) Let (X, d) be a metric space. The
following statements are equivalent:

(i) F(X)+-convergence ensures τ+Wd
-convergence on CL(X);

(ii) either each closed ball in (X, d) is finite or (X, d) is bounded.

Our next corollary also follows from Lemma 6.12, Proposition 6.13 and
Theorem 6.4. However, we give a direct proof without using Proposition 6.13.
The proof of (ii) ⇒ (i) in the following corollary can be imitated to give an
alternative proof of (1) ⇒ (2) in Theorem 1 of [9].

Corollary 6.16. Let (X, d) be a metric space. Then the following statements
are equivalent:

(i) T Bd(X)+-convergence ensures τ+Wd
-convergence on CL(X);

(ii) each proper closed ball in (X, d) is totally bounded.

Proof. (i) ⇒ (ii). Let x ∈ X and ǫ > 0 be such that Bd(x, ǫ) 6= X . Then there
exists a y ∈ X such that d(x, y) > ǫ. Put d(x, y)− ǫ = 3r. So Bd(x, ǫ+ 3r) 6=
X . Therefore by Theorem 6.4, we have, Bd(x, ǫ + 2r) ∈ T Bd(X). Hence
Bd(x, ǫ) ∈ T Bd(X).

(ii) ⇒ (i). Let (Aλ) be a net that T Bd(X)+-converges to A in CL(X).
Suppose x ∈ X and 0 < α < ǫ such that A ∩ Bd(x, ǫ) = ∅. Set Bd(x, α) = S.
Then by the hypothesis, S ∈ T Bd(X). Clearly, A ∩ Bd(S,

ǫ−α
2
) = ∅. So by

T Bd(X)+-convergence of net (Aλ) to A and using Theorem 6.1, there exists
λ0 such that Aλ ∩ S = ∅ ∀λ ≥ λ0, that is, Aλ ∩ Bd(x, α) = ∅ ∀λ ≥ λ0. Thus,
the net (Aλ) is τ

+
Wd

-convergent to A in CL(X). �
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