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The quantum prepare-and-measure scenario has been studied under various physical assumptions on the emit-
ted states. Here, we first discuss how different assumptions are conceptually and formally related. We then
identify one that can serve as a relaxation of all others, corresponding to a limitation on the one-shot accessible
information of the state ensemble. This motivates us to study the optimal state discrimination probability of a
source subject to these various physical assumptions. We derive general and tight bounds for states restricted
by their quantum dimension, their vacuum component, an arbitrary uniform overlap, the magnitude of higher-
dimensional signals and the experimenter’s trust in their device. Our results constitute a first step towards a
more unified picture of semi-device-independent quantum information processing.

Introduction.— The prepare-and-measure (PM) scenario,
Fig. 1, formalizes the simplest instance of a quantum commu-
nication experiment. A sender, Alice, encodes classical data
into quantum systems which are sent to a receiver, Bob, who
performs measurements to extract information. Protocols like
BB84 and its many descendants [1] are archetypal examples
of PM protocols, featuring fully characterized preparation and
measurement devices. The advent of quantum technologies,
and cryptographic applications in particular, has motivated the
study of PM scenarios where devices are left uncharacterized
up to some natural physical assumption on the preparation
device. This is often referred to as semi-device-independent
(SDI) quantum information.

The most common SDI assumption restricts the Hilbert
space dimension of the states. Quantum systems can create
correlations that cannot be simulated by classical systems of
the same dimension [2, 3]. This quantum-classical separa-
tion enables SDI quantum information protocols for quantum
key distribution [4, 5], quantum random number generation
[6, 7], self-testing and certification [8–11] and entanglement
detection [12–14]. Dimension-restricted communication has
also been studied when the parties can additionally share un-
bounded entanglement [15–17].

The dimension represents the number of relevant degrees
of freedom under the control of the experimenter. However,
this is neither observable nor easy to precisely characterize.
These shortcomings, which are especially salient for crypto-
graphic applications, have partly motivated alternative com-
munication assumptions. For example, the “almost dimen-
sion” approach assumes the states nearly, but not exactly,
admit a d-dimensional representation [18]. Other proposals
move away from the dimension entirely. An approach partic-
ularly well-suited to optical platforms supposes a limit on the
photon excitations of the states, measured through the magni-
tude of the non-vacuum component [19]. This has e.g. been
used for random number generation, in theory [20, 21] and
practice [22–25]. Another approach is to bound the pairwise
overlap between the states emitted by Alice [26, 27], which
also has been used in various protocols [28–32]. Yet another
communication assumption is a bound on the fidelity with
which Alice prepares the specific states that she ideally in-
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FIG. 1. Prepare-and-measure scenario. Different SDI assumptions,
γ, specify a restriction on the states that Alice can send to Bob. The
set of allowed states under a given SDI assumption is denoted Sγ .

tends to send to Bob [33]. This may be viewed as a relax-
ation of the perfect preparation assumption used in one-sided
device-independent approaches [34]. For brevity, we shall re-
fer to these different assumptions as (i) the dimension restric-
tion, (ii) entanglement-assisted dimension restriction, (iii) the
vacuum component restriction, (iv) the overlap restriction, (v)
almost dimension restriction, and (vi) the distrust restriction.
Approaches (iii)-(vi) are primarily motivated by practical con-
siderations, and (i)-(ii) partly also by the fundamental interest
in comparing classical and quantum systems.

In contrast to the above assumptions that relate directly to
the physical or quantum aspects of the preparation, a commu-
nication framework was introduced in [35, 36], in which the
only assumption has an information-theoretic interpretation.
Roughly speaking, it quantifies how much knowledge could
in principle be gained about Alice’s input by measuring her
states. This information restriction on Alice’s preparations
can, in general, neither be directly deduced from the setup
nor accurately bounded by measuring a suitable observable.
Operationally, it can be interpreted as the best quantum state
discrimination possible on Alice’s states [37]. In this way, it
provides an avenue to quantify the information cost of creat-
ing correlations between Alice and Bob.

In this paper, we begin by structuring this landscape of
quantum communication assumptions and then identifying
connections between the different frameworks, but argue that
they admit no generic hierarchy of relations in terms of the
supported quantum correlations. However, we observe that
all assumptions (i)-(vi) admit a one-way connection to infor-
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mation. To make this connection explicit, we address the in-
dependently interesting question of determining the informa-
tion capacity of quantum communication subjected to any of
the restrictions (i)-(vi). This amounts to bounding the best
success probability in quantum state discrimination compati-
ble with states limited by the various communication assump-
tions. For all assumptions, this is achieved analytically, in
complete generality and, in most cases, provably tightly.

Overview of assumptions the scenario.— Consider the
prepare-and-measure scenario in Fig. 1. Alice privately se-
lects an input x and encodes it in a quantum message ρx, sent
to Bob over a noiseless channel, who performs a decoding
measurement {Mb|y}y depending on y. The resulting correla-
tions are given by Born’s rule, p(b|x, y) = tr

(
ρxMb|y

)
. Nat-

urally, if no restriction is imposed on the systems ρx, Alice
may simply send x over the channel, and Bob can simulate
any p(b|x, y). Many assumptions have been studied in the lit-
erature, most of which we summarise below.

(i) Dimension. The state ρx is assumed to live in a Hilbert
of fixed dimension d, that is, ρx ∈ L(Cd). W.l.g. one can
also limit the measurement to be d-dimensional, but one can
notably not assume them projective [38–40].

(ii) Entanglement-assisted dimension. Alice and Bob
share an entangled state ϕAB . Alice encodes x in her share
of the state using a quantum channel Λx with fixed output di-
mension d. Bob measures the total state ρx = (Λx⊗11)[ϕAB ].
One can generally not restrict the dimension of ϕAB to d [41]
and no upper bound on it is known.

(iii) Vacuum component. Define the the HamiltonianH =
11 − |0⟩⟨0| and associate the state |0⟩ to vacuum (no photon).
A restriction, ω, is assumed on photon exctitation of Alice’s
states as tr(Hρx) ≤ ω.

(iv) Overlaps. The states ρx are assumed to have pu-
rifications, |ψx⟩, whose pairwise overlaps are bounded as
|⟨ψx|ψx′⟩| ≥ axx′ for some axx′ ∈ R.

(v) Almost-dimension. Assume that there exists a d-
dimensional space, with projector Πd, in which nearly all of
the support of Alice’s states is contained,

tr(ρxΠd) ≥ 1− ε , (1)

for some small dimension-deviation parameters ε ≥ 0. The
part of the state that is not supported on Πd corresponds to a
deviation from the ideal d-dimensional system.

(vi) Distrust. Alice aims to prepare a state |ψx⟩ but her
preparation device realizes the lab state ρx. Her distrust in
the device is limited through the fidelity between the target
state and the lab state, ⟨ψx|ρx|ψx⟩ ≥ 1 − ϵ, where ϵ ≥ 0 is
the distrust parameter. The lab states need not be of the same
dimension as the target states.

(*) Information. Given the classical-quantum state
ρXB = 1

n

∑n
x=1 |x⟩⟨x| ⊗ ρx, the conditional min-entropy is

Hmin(X|B) = − log2(Pg) with

Pg ({ρx}) ≡ max
{Nx}

1

n

n∑
x=1

tr (ρxNx) , (2)

where n is the number of states and {Nx} is a measurement.
Thus, Pg is the optimal probability of correctly guessing the

classical value x given the quantum state ρx [37]. The acces-
sible information, measuring how much information the states
ρx convey about x, is then defined as the entropy difference
I ≡ Hmin(X) −Hmin(X|B) = log(n) + log(Pg), where we
assumed that X is uniform. The information restriction as-
sumption introduced in [35, 36] is then the limit I ≤ α for
some α ≥ 0, or equivalently, a limitation Pg ≤ 2α

n .
Role of shared randomness.— In general, a communication

assumption can be written as {ρx}x ∈ Sγ , for some selected
set Sγ , where γ indexes the specific assumption parameters.
For instance γ = d for (i), γ = ω for (iii), or γ = (d, ϵ) for (v).
The corresponding PM scenario can always be extended by al-
lowing for shared randomness (SR) between Alice and Bob,
leading to the correlations p(b|x, y) =

∑
λ qλ tr

(
ρλxM

λ
b|y

)
,

where λ denotes the shared randomness and q is a distribu-
tion. Now, the assumption can be formulated in two different
ways; either as peak-γ or average-γ. Average-γ means that
the parameter assumption, γ, holds when averaging out λ,

{ρλx}x ∈ Sγλ with
∑
λ

qλγλ = γ. (3)

For instance, the states can sometimes have larger or smaller
vacuum components but on average it respects the limit as-
sumed in (iii). Peak-γ means that the assumption holds also
when conditioning on λ,

{ρλx}x ∈ Sγ , ∀λ . (4)

Continuing the example, the states may be different for each
λ but their vacuum component always respects the limit as-
sumed in (iii).

The peak-γ assumption is natural for all cases considered
above. At the level of the correlations, it corresponds simply
to taking the convex-hull of the set of correlations without SR.
The average-γ restriction has been studied explicitly for the
assumptions (iii) [19], (v) [18] and (vi) [33]. It has also been
studied for Bell scenarios with dimension assumptions [42];
see also Appendix C in Ref. [18] .

It is also relevant to distinguish between whether the states
ρλx are assumed pure or mixed. Depending on the assumption,
this can change the set of correlations [36, 43]. While purity
can be assumed w.l.g for (i) and (ii), there is neither a proof
nor a counterexample of the same holding for (iii)-(vi).

For all assumptions (i)-(vi), the set of correlations with-
out SR under assumption γ is strictly contained in the set
with peak-γ SR, which itself is strictly contained in the set
for average-γ SR. In constrast, for the information assump-
tion, the correlations without SR, with peak-γ SR, and with
average-γ SR are all equivalent. Following eqs. (2), (3) and
(4), these three sets are defined as those corresponding to a
source sending, respectively, states ρx satisfying Pg({ρx}) ≤
γ, states ρλx satisfying Pg({ρλx}) ≤ γ for all λ, and states ρλx
satisfying

∑
λ q(λ)Pg({ρλx}) ≤ γ. But the SR can always be

incorporated in the emitted states themselves without increas-
ing their information content [36]. Indeed, simply define as
emitted states the cq-states ρ̃x =

∑
λ q(λ)|λ⟩⟨λ| ⊗ ρλx, whose

guessing probability is Pg({ρ̃x}) =
∑
λ q(λ)Pg({ρλx}) ≤ γ.

Any peak-γ or average-γ strategy can thus be recast as an
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equivalent strategy that does not feature SR and which sati-
fies the information restriction Pg ≤ γ.

Note that starting from the information restriction I =
log(n) + log(Pg({ρx})) ≤ α ≡ γ, rather than directly from
the guessing probability, there are two ways to extend it from
the no SR case to the average-γ SR. One possibility is to
assume for each λ that Iλ ≤ αλ with

∑
λ q(λ)αλ = α,

i.e., the average is taken at the level of the information quan-
tity itself. The other possibility is to take the average at the
level of the guessing probability and define the information
bound as a bound log(n) + log

(∑
λ q(λ)Pg({ρλx})

)
≤ α,

which is equivalent to the average guessing probability bound∑
λ q(λ)Pg({ρλx}) ≤ 2α/n. This corresponds to the situation

described above and to the choice made in [35, 36].
Connecting the assumptions.— In Fig. 2, we summarize the

relations between the various assumptions (i)-(vi). The di-
mension is a special case of both the entanglement-assisted
dimension and the almost dimension. In the former, we need
only to restrict to sharing separable states, while in the lat-
ter we just set the dimensional deviation in Eq. (1) to ε = 0.
However, these two are independent, and therefore incompa-
rable, generalizations of the dimension restriction.

The vacuum component restriction can be seen as a limit-
ing case of an almost dimension restriction. The latter is mo-
tivated as a correction to exact dimension restrictions, which
are meaningful only when d ≥ 2. However, an almost dimen-
sion restriction can in principle also be defined for d = 1. The
projector Πd is then a pure state, which we call the vacuum
|0⟩. This reduces Eq. (1) to the vaccum component assump-
tion. Consequently, the methodology developed in Ref. [18]
for bounding correlations under almost d-dimensional sys-
tems can also be applied to analyze correlations under a vac-
uum component restriction. This also a useful observation
because, in the absence of such methods, the SDI protocols
based on vacuum component restrictions have so far been lim-
ited to using just two states (analytically solvable) [19, 20].
Interestingly, the vacuum component restriction can equally
be viewed as a limiting case of the distrust restriction. Indeed,
the experimenter selects all target states to be vacuum, inde-
pendently of x, i.e. |ψx⟩ = |0⟩. This means that the numerical
methods for distrust restricted correlations, developed in [33],
also can be used to analyze the case of restricted vacuum com-
ponents.

Does an almost dimension restriction admit any meaning-
ful connection to a distrust restriction? The almost dimension
too can be reformulated as a fidelity condition. The definition

of fidelity for mixed states is F (σ, τ) =
(
tr
√√

στ
√
σ
)2

.
For arbitrary positive operators A and B, it follows that
F (A,BAB) = tr(AB)

2. The almost dimension assumption
can then be interpreted as the fidelity between ρx and its nor-
malized projection onto the d-dimensional subspace Πd. That
is, F

(
ρx,

ΠdρxΠd

tr(ρxΠd)

)
= tr(ρxΠd) ≥ 1 − ε via Eq. (1). What

decisively distinguishes it from the distrust assumption is that
Πd cannot depend on x, as this would defeat the notion of the
ensemble {ρx} approximating a d-dimensional system.

Finally, the overlap restriction can be viewed as a relax-
ation of a vacuum restriction in the special case where all

Almost dimension Dimension

InformationOverlapVacuum EA dimension

Distrust

Pure

FIG. 2. Relation between various SDI assumptions. Blue (grey) ar-
rows indicate that one assumption is a special case (relaxation) of
the other. The overlap relaxation of the vacuum only holds for pure
states.

states |ψx⟩ are pure. The vacuum component restriction
tr(|ψx⟩⟨ψx| (11 − |0⟩⟨0|)) ≤ ω imposes a constraint on min-
imal overlap of the lab states, |⟨ψx|0⟩| ≥

√
1− ω. This re-

striction, on the minimal overlap between the lab states and
the fixed reference state |0⟩, in turn, implies a restriction on
the minimal pairwise overlaps between the lab states. We will
soon return to quantifying this.

While the assumptions (i)-(vi) in general are not compara-
ble, they can all be linked to the notion of restricted accessi-
ble information (see Fig. 2). This is possible because the in-
formation restriction has no priviledged state spaces but only
concerns how operationally useful the states are for carrying
the information. Specifically, there exist fundamental limits
on the amount of information an n-state quantum ensemble
can carry when restricted by any one of the assumptions (i)-
(vi) under pure states. This leads directly to a bound under
average-γ SR in all cases except (ii), for which the bound nec-
essarily diverges unless one restricts to peak-γ SR.

Information cost.— Determining the largest accessible in-
formation that can be carried by an ensemble of n pure states
limited by any one of the assumptions (i)-(vi) amounts to eval-
uating an upper limitation on the ability to use these states for
state discrimination, see Eq. (2). We express this as

P ∗
g ≡ max

{ψx}∈Sγ

Pg({ψx}), (5)

where ψx = |ψx⟩⟨ψx| is pure. We now address this problem
for all settings (i)-(vi). Then, we show how the results are
valid also under SR.

(i). For completeness, we first rederive the known fact that
any dimension-restricted ensemble, i.e. S = L(Cd), carries
at most log d bits [44]. Taking n ≥ d and using the fact
that for any measurementNx the corresponding optimal states
ψx are projectors on the eigenvector of Nx with the largest
eigenvalue, we obtain P ∗

g = max{Nx}
1
n

∑
x λmax(Nx) ≤

max{Nx}
1
n

∑
x tr(Nx) = d

n , where we have used that∑
xNx = 11d. The information cost becomes I ≤ log(d),

independently of n. This bound can be saturated trivially by d
states forming a basis of Cd.

(ii). The set of states ψx generated via entanglement-
assisted quantum communication obeys no-signaling, mean-
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ing that Bob’s local state is independent of Alice’s operation,
i.e. ψBx ≡ trA(ψx) = ϕB . We can thus restrict to bipartite
states with a constant marginal on Bob. Then, for n ≥ d2 [15],
P ∗
g ≤ max d

n

∑
x tr

(
ψBx N

B
x

)
= max d

n

∑
x tr

(
ψBN

B
x

)
=

d2

n . Here, we used that the Schmidt number of ψx is at
most d which implies tr(ψxNx) ≤ d tr

(
ψBx N

B
x

)
, where

NB
x = trA(Nx). In the last step, we used that

∑
xN

B
x =

trA
∑
xNx = trA(11d ⊗ 11) = d11. The associated infor-

mation cost is I ≤ 2 log(d). This can be saturated using a
d-dimensional dense coding protocol [45].

(iii). W.l.g we can select the amplitude associated with the
vacuum |0⟩ to be real and then use the simulation technique
of [46] to embed the non-vacuum components in a sufficiently
high-dimensional real-valued Hilbert space. The reachable
state space therefore forms a cone around the vacuum state
with radius

√
1− ω. We optimally choose all states on the

boundary of this cone, i.e.
√
1− ω = ⟨0|ψx⟩. The value of

Pg is invariant under permutations of the label x. From any
optimal solution, we can then always form a solution where all
the states have identical overlaps ⟨ψx|ψx′⟩ = a for all x ̸= x′.
Indeed, consider the direct sum states |Ψx⟩ = 1√

N
⊕k σk|ψx⟩

where the sum k runs over the N permutations σk of the in-
put labels x. Then the states |Ψx⟩ have now equal overlaps,
guessing probability Pg at least equal to the original one, and
all have an overlap

√
1− ω with the vacuum state 1√

N
⊕k |0⟩

(which can be unitarily mapped to the original vacuum state
|0⟩ ⊕ 0 . . .⊕ 0 if desired).

It is known that for ensembles that are equiprobable and
equiangular [47] the optimal measurement for state discrim-
ination is the so-called pretty good measurement [48], de-
fined as Nx = S−1/2ψxS

−1/2 where S =
∑
x ψx. Thus,

to evaluate Pg , we only need to minimize the overlap a. The
Gram matrix associated with the states {|ψ1⟩ , . . . , |ψn⟩ , |0⟩}
is G =

(
A B
BT 1

)
, where A is n× n with 1 on the diagonals

and a on the off-diagonals, and B is n × 1 with all entries√
1− ω.
It is positive semidefinite by construction. We therefore

compute a∗ = minG⪰0 a. Using Schur complements, the
eigenvalues of G can be evaluated analytically. From the
smallest one, we obtain the result a∗ = 1− n

n−1ω. Combining
this with the pretty good measurement leads to the bound

Pg ≤
1

n

(√
ω(n− 1) +

√
1− ω

)2

, (6)

valid when 0 ≤ ω ≤ n−1
n , while Pg = 1 otherwise. It can

be saturated by construction. The corresponding accessible
information increases monotonically in n. The reason is that
even if ω is very small, since there is no dimension restric-
tion, we can always choose the small non-vacuum component
of each state orthogonal to that of all the other states, thus
increasing the information.

(iv). When n = 2, the overlap of two pure states is one-to-
one with their accessible information. This follows from the
derivation of the Helstom bound for two-state discrimination
[49]. In this sense, the overlap is a special case of the infor-
mation restriction (thus the connection in Fig. 2). For n > 2

and a uniform overlap constraint ⟨ψx|ψx′⟩ ≥ a, the informa-
tion capacity can be evaluated in analogy with the above case

of (iii), leading to Pg ≤ 1
n

(
(n− 1)

√
T +

√
a+ T

)2

where

T = 1−a
n .

(v)-(vi). For bounding the information capacity associated
with almost dimension-restricted or distrust-restricted states,
we rely on a useful operator inequality. Specifically, we ob-
serve that the method in Ref. [50] for proving Lemma 1 can
be recycled to prove the following more general statement.
Let |ϕ⟩ be any state such that ⟨ϕ|Πd|ϕ⟩ ≥ 1 − ε. Then,
|ϕ⟩⟨ϕ| ⪯ (1 + µ)σ̃ + h(ε, µ)11D for every µ ≥ −1, where
σ̃ = Πd|ϕ⟩⟨ϕ|Πd

⟨ϕ|Πd|ϕ⟩ and h(ε, µ) = (
√
µ2 + 4ε(1 + µ) − µ)/2.

We apply this independently to each pure ψx in Eq. (2) and
optimally choose each associated µ to be identical. Us-
ing that n states span an n-dimensional subspace, we can
restrict to n-dimensional POVMs and obtain P ∗

g ≤ (1 +

µ)
[
max{Nx}

1
n

∑
x tr

(
ψ̃xNx

)]
+ h(µ, ε). In the case of

the almost dimension assumption, ψ̃x are d-dimensional and
hence the maximization is bounded by d/n. In the case of
distrust assumption, Πd is simply replaced by |ψx⟩⟨ψx| and
we have ψ̃x = |ψx⟩⟨ψx|. Therefore, the maximisation be-
comes just Pg({ψx}) for the target ensemble. Let P 0

g denote
the value of the maximization for either the almost dimension
case or the distrust case. Minimising the RHS over µ, we find

P εg ≤ P 0
g + (1− 2P 0

g )ε+ 2
√
P 0
g (1− P 0

g )
√
ε(1− ε). (7)

Note that in the special case of d = 1, for the almost dimen-
sion, for which P 0

g = 1
n , this bound reduces to that obtained

for vacuum component restrictions in Eq. (6). We have not
been able to prove that the bound is tight in general, but for
every numerical case study conducted, we find that the bound
is indeed tight for the almost dimension assumption. For the
distrust assumption, the bound is generally not tight unless the
target states are optimal for state discrimination 1.

It can be straightforwardly shown that the above informa-
tion capacity bounds hold also when SR is included. First,
from the linearity of Pg , our results also hold for the peak-γ
SR assumption. Second, we note that the bound on Pg for ev-
ery assumption except (ii) is concave in each of the respective
assumption parameters (the dimension d, the energy ω, the
overlap a, distrust parameter ϵ, almost qudits (ϵ, d)2). This
implies that our results also hold for the average-γ assump-
tion, for all but assumption (ii)3.

An independently interesting consequence of this result is
to bound the information capacity of n optical coherent states

1 The MATLAB script that was used to verify this can be found on https:
//github.com/jefpauwels/SDISeesaw.

2 It is straightforward to verify the concavity of the bivariate function (7)
from the negativity of the Hessian.

3 For example, setting N = 30, with an entanglement-assisted qutrit, a
dense coding strategy achieves Pg = 9/30. However, one can send an
average qutrit by mixing a qubit with probability 2/3 and a 5-dimensional
system with probability 1/3. Using dense coding strategies, one can
achieve a guessing probability of Pg = 11/30.

https://github.com/jefpauwels/SDISeesaw.
https://github.com/jefpauwels/SDISeesaw.
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with a limited average photon number but arbitrary phase. Re-
call the coherent state |α⟩ = e−

|α|
2

∑∞
k=0

|α|keiθk√
k!

|k⟩. For
small average photon numbers, N = |α|2, this can be seen as
an almost qubit with ε = 1−e−|α|(1+|α|2) ≈

√
N . Inserting

this in (7) and then computing I yields the desired bound.
Final remarks.— Quantum communication assumptions in

the prepare-and-measure scenario can be divided into two
classes. The first class limits the weight of the state on var-
ious subspaces. These can correspond to the available degrees
of freedom (i, ii, v), the vacuum subspace (iii), the subspace
spanned by each of the other states of Alice (iv), the subspace
corresponding to her target states (vi) etc. The second class
does not favor any particular subspaces but is instead con-
cerned with limiting the capacity of the states w.r.t. a specific
operational task. This task can for instance be state discrim-
ination, as in the considered information restriction setting,
but can in principle be arbitrary. Developing a formalism and
methodology for correlations obtained under assumptions on
bounded subspace weights and capacity restrictions are nat-
ural next steps towards a unified picture of SDI. This is im-
portant because although we have established several tight
information capacity relations, this does not imply that the
set of correlations under a given communication assumption
can w.l.g. be substituted with that obtained from the associ-
ated informationally restricted communication. In this con-
text, we also note that while the set of correlations without
SR, with average-γ SR, and with peak-γ SR can be distinct
depending on the assumption, they all relax to the same set
of information-constrained correlations if in the latter the SR

is taken at the level of Pg . This would not be the case for an
alternative definition, where the information itself is averaged
over the SR.
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