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Abstract. We prove a new Minkowski type formula for capillary hypersur-
faces supported on totally geodesic hyperplanes in hyperbolic space. It leads

to a volume-preserving flow starting from a star-shaped initial hypersurface.

We prove the long-time existence of the flow and its uniform convergence to
a θ-totally umbilical cap. Additionally, we establish that a θ-totally umbilical

cap is an energy minimizer for a given enclosed volume.

1. Introduction

Mean curvature flow has a rich history, dating back to significant works such as
Huisken [13]. Huisken showed that a convex and closed hypersurface will flow to a
sphere under the properly rescaled mean curvature flow. A constrained curvature
flow is a flow which preserves some geometric quantities. In R2, Gage [5] used a
constrained curve shortening flow to prove an isoperimetric inequality. In higher
dimensions, a constrained mean curvature flow was applied to prove the isoperimet-
ric inequality by Huisken [14]. This constrained flow preserves the enclosed volume
while decreasing the area of the hypersurface.

An alternative approach to create a flow that preserves the enclosed volume is
by employing the Minkowski formula on the hypersurface. This has been explored
in [6], which investigated such flows in space forms. Furthermore, this approach
has been extended to warped product spaces in [7], where they considered the flow
x : (R×N, g) → (M̄, ḡ = dr2 + ϕ2(r)gN ) satisfying

∂x

∂t
= (nϕ′ − uH)ν.

Under appropriate assumptions on the metric ḡ, the flow is expected to converge
to a level set of ϕ. See for example [1], [2], [3], [9] and [10] for various types of fully
nonlinear curvature flow and anisotropic curvature flow in different ambient spaces.

In recent years, there has been considerable interest in geometric flows of capil-
lary hypersurfaces, for instance, inverse mean curvature flow with free boundary in
the Euclidean unit ball [15].

Diving into the main topic of this paper, constrained curvature flow on capillary
hypersurfaces has yielded significant results. These include: constrained inverse
mean curvature type [19], [23] and mean curvature type flow [12], [20] for capil-
lary hypersurfaces in the Euclidean unit ball; curvature flows [11], [16] and [21] in
capillary hypersurfaces in Euclidean half space; mean curvature type flow [17] in
geodesic ball in space forms.
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A Constrained Mean Curvature Flow 2

In this paper, we consider a new constrained mean curvature type flow for cap-
illary hypersurfaces, which are supported on totally geodesic hyperplanes in hyper-
bolic space Hn+1. We use the well-known Poincaré half space model (Hn+1, ⟨·, ·⟩) =(
Rn+1

+ , 1
x2
n+1

⟨·, ·⟩δ
)
, where xn+1 is the (n+1)-th coordinate, ⟨·, ·⟩δ is the Euclidean

metric and Rn+1
+ := {x ∈ Rn+1 : xn+1 > 0}. Let P := {x ∈ Hn+1 : x1 = 0} be a

totally geodesic hyperplane. Denote by x the position vector in Rn+1
+ and {Ei}n+1

i=1

the coordinate basis of (Rn+1, ⟨·, ·⟩δ).
Throughout the paper, we consider x0 : M → Hn+1 as an immersion of hyper-

surface in Hn+1. If Σ = x(M) satisfies that

i. intΣ = x(intM) ⊂ P+ := {x ∈ Hn+1 : x1 > 0},
ii. ∂Σ = x(∂M) ⊂ {x ∈ Hn+1 : x1 = 0} = P ,
iii. Σ and P contacts at a constant angle θ on ∂Σ = Σ ∩ P ,
we call Σ a θ-capillary hypersurface supported on P , and P the supporting hyper-
surface.

On a θ-capillary hypersurface supported on totally geodesic hyperplane P , we
introduce a novel condition called star-shapedness with respect to cEn+1.

Definition 1. Let x :M → P+ ⊂ Hn+1 be a θ-capillary hypersurface supported on
P . We say Σ is star-shaped with respect to cEn+1 if it satisfies that

⟨x− cEn+1, ν⟩ > 0.

We consider a flow, defined as a family of embeddings x : M × [0, T ) → Hn+1

with x(∂Σ, ·) ⊂ P , such that

(1)
(∂tx)

⊥ = qcν, inM × [0, T );
⟨ν, N̄ ◦ x⟩ = − cos θ, on ∂M × [0, T );

x(·, 0) = x0(·), onM,

where the normal velocity qc is given by

qc =
nc

xn+1
− nc cos θ⟨E1, ν⟩ −H⟨x− cEn+1, ν⟩.

We denote by κ the principal curvature of an umbilical hypersurface C. Umbilical
hypersurfaces in hyperbolic space can be classified into three types depending on κ
as depicted in the figure. In the case of κ = 0, it is a totally geodesic hyperplane;
in the case of κ > 1, it is a geodesic sphere, and for 0 < κ < 1, it is an equidistant
hypersurface, and if κ = 1, it is a horosphere. In the Poincaré half space model,
C can be represented as a plane or sphere with respect to the Euclidean metric.
It is easy to see that compact umbilical θ-capillary hypersurface, can be part of a
geodesic sphere, a horosphere and an equidistant hypersurface.

To state our main theorem, we need the following definition.

Definition 2. We define the θ-umbilical cap Cc,R,θ as follows

(2) Cc,R,θ(a) = {x ∈ Hn+1 : |x−R cos θE1 − a− cEn+1|δ ≤ R, x1 ≥ 0},

where a is a constant vector perpendicular to both E1 and En+1.

For a θ-umbilical cap, we define a constant K0(c,R, θ) by

K0(c,R, θ) =

{
c−R sin θ θ ≤ π/2
c−R θ > π/2

.

2



A Constrained Mean Curvature Flow 3

Figure 1. C1, equidistant hypersurface; C2, geodesic ball; C3, horosphere.

Note that K0(c,R, θ) > 0 if and only if the Cc,R,θ(a) is compact. Combining with
Remark 2, we know that its principal curvature κ = c

R > sin θ.

Now we are ready to state our main theorem.

Theorem 1. Let x0 : M → P+ ⊂ Hn+1 be an embedding of a compact capillary
hypersurface Σ0 = x0(M), supported on the totally geodesic plane P with constant
contact angle θ. Suppose there exist constants c, R such that K0(c,R, θ) > c(n −
1)/4n, and Σ0 is contained in the cap Cc,R,θ(a) and star-shaped with respect to
cEn+1. We assume that in addition, θ satisfies that

(3) | cos θ| < 4nK0(c,R, θ)− c(n− 1)

4nK0(c,R, θ) + c(n− 1)
.

Then the flow (1) exists globally with uniform C∞-estimates. Moreover, x(·, t)
uniformly converges to an umbilical cap in C∞ topology as t → ∞, with the same
volume of its enclosed domain as Σ0.

Remark 1. In [17] and [20], the angle condition | cos θ| ≤ 3n+1
5n−1 is required similar

to our angle condition (3). By rearranging the terms, we find that the condition
(3) is equivalent to

| cos θ| < 3n+ 1− 4n sin θR/c

5n− 1− 4n sin θR/c
, if θ ≤ π/2;

and

| cos θ| < 3n+ 1− 4nR/c

5n− 1− 4nR/c
, if θ > π/2.

Compared to the condition in [17] and [20], our condition is stricter due to R/c.

The following remark is crucial, which shows that some specific umbilical caps
are static along the flow (1).

3
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Remark 2. For any r > 0, qc,θ is identically zero on umbilical cap Cc,r,θ(a). It is
well-known that the mean curvature by conformality can be written as

H = e−w(Hδ + n∇̃ν̃w)

= nxn+1

(
1

r
+ ∇̃ν̃ log

1

xn+1

)
= nxn+1

(
1

r
− x−1

n+1⟨
x+ r cos θE1 − cEn+1

r
, En+1⟩δ

)
= n

c

r
,

where ν̃ = r−1(x+ r cos θE1− cEn+1) and we use the fact that the mean curvature
of Cc,r,θ(0) with respect to the metric δ is Hδ =

n
r . Hence, we get

qc =
nc

xn+1
− n⟨E1, ν⟩c cos θ −H⟨x− cEn+1, ν⟩

= nc
xn+1

− ncx−1
n+1ν̄1 cos θ − nc

r ⟨−r cos θE1 + cEn+1 + rν̄ − cEn+1, xn+1ν̄⟩

= n
xn+1

(−cν̄1 cos θ + c r cos θr ν̄1)

= 0.

Therefore umbilical caps are static along the flow (1).
Note that the principal curvature of an umbilical cap depends not only on the

radius but also on the last coordinate of its center (in the Euclidean metric sense).

The paper is organized as follows:
In Section 2, we introduce basic notations and definitions of hypersurfaces. In

Section 3, we prove a new Minkowski formula on capillary hypersurface supported
on a totally geodesic hyperplane, comparing to the one in [4]. In Sections 4, 5 and
6, we follow the method in [20] and [16] to study the scalar equation of the flow
(1), in particular, we prove the C0 and C1 estimates. In Section 7, we prove the
uniform convergence of the flow.

Acknowledgments. We would like to thank Juncheol Pyo for helpful comments and
hospitality. X. Chai has been partially supported by National Research Foundation
of Korea grant No. 2022R1C1C1013511. Y. Chen has been supported by National
Research Foundation of Korea grant No. RS-2023-00247299 and partially supported
by National Research Foundation of Korea grant No. NRF-2020R1A01005698.

2. Preliminaries

Throughout this paper, we assume that x : M → P+ ⊂ Hn+1 is an embedding
of capillary hypersurface along P . We denote the second fundamental form of the
embedding by hij . Since ν is the outer normal field on Σ, hij = ⟨∇eiν, ej⟩. Let
κ = (κ1, · · · , κn) be the eigenvalues of (hij), i.e., the principal curvatures of Σ. The
k-th mean curvature Sk is defined by

Sr =
1

r!

∑
1≤i1<···<ir≤n

κ1κ2 · · ·κir ,

and the normalized mean curvature is defined by Hr =
(
n
r

)−1
Sr.

4



A Constrained Mean Curvature Flow 5

The following so-called Newton transformation defined on the tangent bundle is
essential to our formula:

T0 = id,

Tk = SkI − Tk−1 ◦ h.
The following properties are well-known,

tr(Tr) = (n− r)Sr = (n− r)

(
n

r

)
Hr,

tr(Tr ◦ h) = (r + 1)Sr+1 = (n− k)

(
n

r

)
Hr+1.

Let N̄ denote the outer normal field of P (P+ is the interior side), ν denote
the outer normal field of the immersed hypersurface Σ, ν̄ denote the outer normal
field of ∂Σ ⊂ P and η denote the outer conormal field along ∂Σ ⊂ Σ. Without loss
of generality, assuming θ as the angle between −ν and N̄ , we have the following
relation

(4)

{
µ = sin θN + cos θν
ν = − cos θN + sin θν

.

Then the following lemma is widely recognized, and we refer to [22] for its proof.

Lemma 1. Let x : Σ → P+ ⊂ Hn+1 be an isometric immersion of a capillary
hypersurface supported on P . Then µ is a principal direction of Σ, that is,

(5) ∇̄µν = h(µ, µ)µ.

This property of capillary hypersurfaces is essential in the proof of the Minkowski
type formula in the next section.

3. Minkowski type formula

In this section, we introduce a new Minkowski type formula, which is based on
the the following properties (see [8]).

Proposition 1. It satisfies that

(6) ∇̄Zx = −⟨Z,En+1⟩x+ ⟨Z, x⟩En+1,

(7) ∇̄Z x̄ = ⟨x̄, Z⟩Ēn+1,

(8) ∇̄ZE1 = −⟨Z,En+1⟩E1 + ⟨Z,E1⟩En+1,

(9) ∇Z(−En+1) =
1

xn+1
Z,

and

(10) ∇̄Z(−En+1) = Z − ⟨En+1, Z⟩En+1.

These can be directly calculated by the relation between Levi-Civita connections
of the metrics conformal to each other, we refer the proof to [8]. From (6), (8), and
(9), we can easily see that x, E1, and En+1 are conformal Killing vector fields, that
is,

(11) (Lxḡ)(X,Y ) =
1

2
(⟨∇Y x,X⟩+ ⟨∇Xx, Y ⟩) = 0,

5



A Constrained Mean Curvature Flow 6

(12) (LE1
ḡ)(X,Y ) =

1

2
(⟨∇Y E1, X⟩+ ⟨∇XE1, Y ⟩) = 0,

and

(13)
L−En+1

⟨X,Y ⟩ = 1
2 (⟨∇Y (−En+1), X⟩+ ⟨∇X(−En+1), Y ⟩)

= 1
xn+1

⟨X,Y ⟩,

for any X,Y ∈ THn+1, where ḡ denotes the metric ⟨·, ·⟩.
Restricting the equation (13) to TΣ, we have

(14) ⟨∇Σ
eiE1, ej⟩ = −⟨ei, En+1⟩⟨E1, ej⟩+ ⟨ei, E1⟩⟨En+1, ej⟩ − hij⟨E1,ν⟩,

(15) ⟨∇Σ
eix, ej⟩ = −⟨ei, En+1⟩⟨x, ej⟩+ ⟨ei, x⟩⟨En+1, ej⟩ − hij⟨x,ν⟩,

and

(16) ⟨∇Σ
ei(−En+1), ej⟩ =

1

xn+1
⟨ei, ej⟩ − hij⟨−En+1,ν⟩.

Let x : Σ → (Hn+1, ⟨·, ·⟩) =
(
Rn+1

+ , 1
x2
n+1

⟨·, ·⟩δ
)

be an immersion of θ-capillary

hypersurface supported on the hyperplane P . By using the facts above, we can
prove the following Minkowski type formula on Σ.

Proposition 2. For k = 1, · · · , n,and c > 0, it satisfies that

(17)

∫
Σ

[
ncHk−1

(
1

xn+1
− cos θ⟨E1, ν⟩

)
−Hk⟨x− cEn+1, ν⟩

]
dA = 0,

where Hk is the k-th mean curvature of Σ.

Proof. Let Tr acts on the both side of (15)+ c(16) and integrate. Using divergence
theorem, we have

(n− r + 1)

(
n

r − 1

)∫
Σ

[
Hr−1

(
c

xn+1

)
−Hr⟨x− cEn+1, ν⟩

]
dA

=

∫
Σ

divΣ(Tr−1(x− cEn+1))dA

=

∫
∂Σ

Tr−1(x− cEn+1, µ)dA

= cos θ

∫
∂Σ

Sr−1;µ⟨x− cEn+1, ν̄⟩ds,

where in the last equality we used (5), the angle relation (4) and the fact that
N̄ = −xn+1E1.

Let Z1,n+1 = ⟨E1, ν⟩Ēn+1 − ⟨Ēn+1, ν⟩E1, applying Proposition 1, we have

⟨∇eiZ1,n+1, ej⟩ = −δij⟨E1, ν⟩+ hik[⟨E1, ek⟩⟨En+1, ej⟩
−⟨En+1, ek⟩⟨E1, ej⟩].

Let Tr−1 act on both sides, we get

divΣ(Tr−1(Z1,n+1)) = −(n− r + 1)

(
n

r − 1

)
Hr−1⟨E1, ν⟩.

6
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Considering the vector field Z1 = g(E1, ν)x̄−g(x̄, ν)E1, from Proposition 1 we have

⟨∇̄eiZ1, ej⟩ = ⟨Ēn+1, ν⟩[⟨ei, E1⟩⟨x̄, ej⟩ − ⟨ei, x̄⟩⟨E1, ej⟩]
+⟨E1, ν⟩[⟨ei, x̄⟩⟨Ēn+1, ej⟩ − ⟨ei,Ēn+1⟩⟨x̄, ej⟩]
+hik[⟨E1, ek⟩⟨x̄, ej⟩ − ⟨x̄, ek⟩⟨E1, ej⟩]
+⟨x̄, ν⟩[⟨Ēn+1, ei⟩⟨E1, ej⟩ − ⟨E1, ei⟩⟨Ēn+1, ej⟩].

Similarly, we have

divΣ(Tr−1(Z1)) = 0.

Combining all the equations above, we have

(n− k + 1)

(
n

k − 1

)∫
Σ

(
cHk−1

xn+1
−Hk⟨x− cEn+1, ν⟩

)
dA

= cos θ

∫
∂Σ

Sk−1;µ⟨x− cEn+1, ν̄⟩ds

= cos θ

∫
∂Σ

Sk−1;µ⟨Z1 − cZ1,n+1, µ⟩ds

= cos θ

∫
∂Σ

Tk−1(Z1 − cZ1,n+1, µ)ds

= cos θ

∫
Σ

divΣ(Tk−1(Z1 − cZ1,n−1))ds

= (n− k + 1)

(
n

k − 1

)
cos θ

∫
Σ

Hk−1⟨cE1, ν⟩dA.

Therefore, we obtain the Minkowski type formula (17). □

Let k = 1, the Minkowski formula (17) becomes

(18)

∫
Σ

[
nc

(
1

xn+1
− cos θ⟨E1, ν⟩

)
−H⟨x− cEn+1, ν⟩

]
dA = 0,

which holds for any capillary hypersurfaces Σ supported on totally geodesic hyper-
plane P . Here H = nH1 is the mean curvature of Σ.

Remark 3. The second author and Juncheol Pyo [4] gave another version of Minkowski
type formula on capillary hypersurfaces supported on a totally geodesic plane, which
is presented in Poincaré ball model (Hn+1, ḡ) = (Bn+1, 4

(1−|x|2)2 δ) as follows (B
n+1

is an Euclidean unit ball and δ is the Euclidean metric in Bn+1).

(19)

∫
Σ

[nV0 − n cos θḡ(Yn+1, ν)−Hḡ(x, ν)]dA = 0,

where Σ is a θ-capillary hypersurface supported on a totally geodesic hypersurface
P ′ = {x ∈ Hn+1, ḡ(x,En+1) = 0} (in Poincaré ball model), V0 = (1 + |x|2)/(1 −
|x|2), x is the position vector and Yn+1 = δ(x,En+1)x − 1

2 (1 + |x|2)En+1. But
unfortunately, we cannot find any umbilical θ-capillary hypersurfaces where the
integrand in (19) is identically zero.

Let Σ̂ denote the domain enclosed by Σ and P , and |∂̂Σ| be the domain enclosed
by ∂Σ on P . The energy functional defined by

Q(Σ) = |Σ| − cos θ|∂̂Σ|
7
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is well-known since the critical hypersurface of this functional under any volume
preserving variation is a θ-capillary hypersurface with constant mean curvature,
see [18] and [22]. Under a flow Σt = xt(M) with with the given normal velocity
f and capillary boundary condition as in (1), the following variation formula is
well-known:

d

dt
|Σ̂t| =

∫
Σt

fdAt

and
d

dt
Q(Σt) =

∫
Σt

HfdAt.

From the Minkowski formula (18), it is evident that the flow described in (1) is a
volume preserving flow.

4. Scalar equation of the flow

In this section, we express the flow (1) by a scalar equation of the radius function.
Let x be the position vector defined on M which is represented by

x = cEn+1 + ρ(z)z, z ∈ Ω ⊂ S̄n+,

where ρ defined on Sn+ is the distance between x and cEn+1 in the Euclidean metric.
Since Σ is smooth, star-shaped, the function ρ is well-defined and smooth on Ω.
Let u = log ρ, then u ∈ C2(Ω) ∩ C0(Ω̄). Define v =

√
1 + |∇u|2, where ∇u is the

gradient of u with respect to the ordinary metric on Sn+. From the basic facts for
radial function, it is well-known that

ν̃ := x−1
n+1ν =

ζ − ρ−1∇u
v

,

where ζ = ∂ρ.
Throughout the paper, we let the indices i, j, k range from 1 to n and we will

apply the Einstein convention.
We use polar coordinates (ρ, β, γ, ξ) ∈ [0,+∞)×

[
0, π2

]
× [0, 2π]× Sn−2, where ξ

is the spherical coordinate on Sn−2, and the star-shaped hypersurface Σ := x(M)
can be written as

(20) x− cEn+1 = ρ(z)z = ρ(β, γ, ξ)z, where z := (β, γ, ξ) ∈ S̄n+,

where x1 = ρ cosβ and xn+1 = ρ sinβ cos γ + c = e−w. Then the Euclidean metric
ds2 = ⟨·, ·⟩δ can be written as

ds2 = dρ2 + ρ2σSn+ = dρ2 + ρ2dβ2 + ρ2 sin2 βdγ2 + ρ2 sin2 β sin2 γσSn−2 ,

and we have

ρ2 = x21 +

n∑
i=2

x2i + (xn+1 − c)2.

Now we can represent E1, En+1 by the coordinate (20). Indeed, since

∂ρ

∂x1
=
x1
ρ

= cosβ,

and

− sinβ
∂β

∂x1
=
∂(cosβ)

∂x1
=
∂(x1/ρ)

∂x1
=

sin2 β

ρ
,

8
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we can represent E1 by the polar coordinate defined above,

(21) E1 =
∂

∂x1
=

∂ρ

∂x1
∂ρ +

∂β

∂x1
∂β = cosβ∂ρ −

sinβ

ρ
∂β .

Similarly, since
∂ρ

∂xn+1
=
xn+1 − c

ρ
= sinβ cos γ,

− sinβ
∂β

∂xn+1
=
∂(cosβ)

∂xn+1
=
∂(x1/ρ)

∂xn+1
= −1

ρ
sinβ cosβ cos γ

and

− sin γ
∂γ

∂xn+1
=
∂(cos γ)

∂xn+1
=
∂((xn+1 − c)/(ρ sinβ))

∂xn+1
=

sin2 γ

ρ sinβ
,

we have

(22) En+1 =
∂

∂xn+1
= sinβ cos γ∂ρ +

1

ρ
cosβ cos γ∂β − sin γ

ρ sinβ
∂γ .

Denoting uβ = σ(∇u, ∂β) and uγ = σ(∇u, ∂γ), from (21) and (22) we have

(23) ⟨E1, ν⟩ = e2w⟨cosβ∂ρ −
sinβ

ρ
∂β , e

−w ζ − ρ−1∇u
v

⟩δ = ew
cosβ − sinβuβ

v
,

and

(24)
⟨En+1, ν̃⟩δ =⟨sinβ cos γ∂ρ +

1

ρ
cosβ cos γ∂β − sin γ

ρ sinβ
∂γ ,

ζ − ρ−1∇u
v

⟩δ

=
1

v
(sinβ cos γ − cosβ cos γuβ + sinβ sin γuγ).

By definition, we have

(25) ⟨x− cEn+1, ν⟩ = e2w⟨ρζ, e−w ζ − ρ−1∇u
v

⟩ = ρew

v
.

Moreover, by the conformality of mean curvature,

(26)

H =e−w
[
n

ρv
− 1

ρv

(
σij − uiuj

v2

)
uij

]
− nDν̃e

−w

=e−w
[
n

ρv
− 1

ρv

(
σij − uiuj

v2

)
uij

]
− n⟨En+1, ν̃⟩δ

=− 1

ρvew

(
σij − uiuj

v2

)
uij +

1

v
(cosβ cos γuβ − sinβ sin γuγ) +

nc

ρv
,

where σij corresponds to the inverse of the metric on Sn+, ui = σijuj is the i-th
component of ∇u (the gradient of u on Sn+) and uij is the (i, j)-th component of
the Hessian ∇2u on Sn+. Then by calculation,

qc = nc

(
1

xn+1
− cos θ⟨E1, ν⟩

)
−H⟨x− cEn+1, ν⟩

= ncew − nc cos θv−1ew(cos θ − sinβuβ)

−
(
− 1

ρvew

(
σij − uiuj

v2

)
uij +

1

v
(cosβ cos γuβ − sinβ sin γuγ) +

nc

ρv

)
ρew

v
.

9
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Writing the flow as a function u of t, from the flow (1), we see that

qc = ⟨∂tx, ν⟩ = ρte
−we2w⟨ζ, ζ − ρ−1∇u√

1 + |∇u|2
⟩δ =

ρte
w√

1 + |∇u|2
=
utρe

w

v
.

Therefore, we obtain the evolution equation of u as follows,

(27)

ut =
v

ρew
qc

=
ncv

ρ
− nc cos θ

ρ
(cosβ − sinβuβ) +

1

ρewv

(
σij − uiuj

v2

)
uij

+
n

v
(− cosβ cos γuβ + sinβ sin γuγ)−

nc

ρv

=
nc

ρ

|∇u|2

v
− nc cos θ

ρ
(cosβ − sinβuβ)

+
1

ρewv

(
σij − uiuj

v2

)
uij +

n

v
(− cosβ cos γuβ + sinβ sin γuγ)

=:Qc(∇2u,∇u, ρ, β, γ).

As for the boundary condition in (1),

− cos θ = ⟨ν, N̄⟩
= e2w⟨e−wν̃,−e−wE1⟩δ

= ⟨ζ − ρ−1∇u
v

,
1

ρ
∂β⟩δ

= −1

v
uβ .

Therefore we have

(28) uβ = ρv cos θ =
√

1 + |∇u|2 cos θ.

Combining (27) and (28), we know that the flow (1) can be written as the parabolic
equation of the scalar function u as follows,

(29)


ut = Qc(∇2u,∇u, ρ, β, γ), in Sn+ × [0, T );

uβ =
√
1 + |∇u|2 cos θ, on ∂Sn+ × [0, T );

u(·, 0) = u0(.), on Sn+,

where u0 = log ρ0 and ρ0 = |x0 − cEn+1|δ is the radial function with respect to
cEn+1 of the initial hypersurface Σ0 = x0(M).

The short time existence of the flow can be guaranteed by applying the standard
PDE theory to (29), due to the assumption on the star-shapedness of Σ0 = x0(M).
In the following section, we will show the uniform C0 and C1-estimates for the
equation.

Before we start, we need the following calculation.

(30) Qijc :=
∂Qc(λ, ψ, ρ, β, γ)

∂λij

∣∣∣∣
λ=∇2u,ψ=∇u

=
1

ρvew

(
σij − uiuj

v2

)
,

10
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(31)

Qc,ψi :=
∂Qc(λ, ψ, ρ, β, γ)

∂ψi

∣∣∣∣
λ=∇2u,ψ=∇u

=
nc

ρ

(
2ui
v

− |∇u|2ui
v3

)
− ui
ρewv3

aklukl −
2

ρewv3
ailukluk

+
nc cos θ sinβ

ρ
σ(∂β , ei) +

nui
v3

(− cosβ cos γuβ + sinβ sin γuγ)

− n

v
(cosβ cos γσ(∂β , ei)− sinβ sin γσ(∂γ , ei)),

(32)

Qc,ρ :=
∂Qc(λ, ψ, ρ, β, γ)

∂ρ

∣∣∣∣
λ=∇2u,ψ=∇u

=
nc

ρ2
|∇u|2

v
+
nc cos θ

ρ2
(cosβ − sinβuβ)−

1

ρ2v
aijuij ,

(33)

Qc,β :=
∂Qc(λ, ψ, ρ, β, γ)

∂β

∣∣∣∣
λ=∇2u,ψ=∇u

=
1

v
cosβ cos γaijuij + nc cos θ

(
sinβ

ρ
+

cosβ

ρ
uβ

)
+
n

v
(sinβ cos γuβ + cosβ sin γuγ),

(34)

Qc,γ :=
∂Qc(λ, ψ, ρ, β, γ)

∂γ

∣∣∣∣
λ=∇2u,ψ=∇u

= −1

v
sinβ sin γaijuij +

n

v
(cosβ sin γuβ + sinβ cos γuγ),

where aij = σij − uiuj

v2 . Now we are ready to prove the C0 and C1-estimates.

5. C0 estimate

Wang and Weng [20] proved a C0-estimate for a similar constrained mean cur-
vature type flow of capillary hypersurfaces in the Euclidean unit ball. More specifi-
cally, if the initial surface is bounded by two spherical caps that remains stationary
under a specified constrained mean curvature flow, the flow will remain bounded by
the same two spherical caps. Therefore, a certain pair of spherical caps can be used
as barriers of their designed constrained mean curvature flow. A similar property
holds in the case of geodesic ball in space forms, see [17].

According to the discussion in Remark 2, the umbilical caps defined by (2) can
be regarded as barriers of the flow (1). Then we have a similar corresponding
C0-estimate.

Proposition 3. Let x0(M) be an initial star-shaped hypersurface with respect to
cEn+1 which satisfies that

x0(M) ⊂ Cc,R1,θ\Cc,R2,θ

for some R1 > R2 > 0, where Cc,R,θ is defined in (2). Then it holds that

x(M, t) ⊂ Cc,R1,θ\Cc,R2,θ

for all t along the flow (1). In particular, if u(x, t) solves the initial boundary
value problem (29) on [0,∞), then for any T > 0,

11



A Constrained Mean Curvature Flow 12

∥u∥C0(Sn+×[0,T ]) ≤ C,

where C = C(u0,∇u0,∇2u0).

Proof. Let φ be the defining logarithmic radial function of Cc,R1,θ. Then, φ is a
static solution of the equation of (29), we have

∂t(u− φ) = Qc(∇2u,∇u, eu, β, γ)−Qc(∇2φ,∇φ, eφ, β, γ)
= Aij∇ij(u− φ) + bj · (u− φ)j +B(u− φ),

where

Aij =

∫ 1

0

Qijc (∇2(su+ (1− s)φ),∇(su+ (1− s)φ), esu+(1−s)φ, β, γ)ds,

bj =

∫ 1

0

Qc,pj (∇2(su+ (1− s)φ),∇(su+ (1− s)φ), esu+(1−s)ψ, β, γ)ds

and

B =

∫ 1

0

Qc,ρ(∇2(su+ (1− s)φ),∇(su+ (1− s)φ), esu+(1−s)ψ, β, γ)esu+(1−s)ψds.

Since Qc,ρ has no singular point if ρ ̸= 0, B is bounded and we can denote λ =
− supSn+×[0,T ] |B|. We get

∂t(e
λt(u− φ)) = eλt(Aij∇ij(u− φ) + bj · (u− φ)j + (B + λ)(u− φ)).

Let (y0, t0) be the point where eλt(u−φ) attains its nonnegative maximum value.
By maximum principle, (y0, t0) can only be located on the parabolic boundary, say
(y0, t0). That is,

eλt(u(x, t)− φ(x)) ≤ sup
∂Sn+×[0,T )∪Sn+×{0}

{0, eλt(u(x, t)− φ(x))}.

If y0 ∈ ∂Sn+, by Hopf Lemma we have

∇∂Sn+(u− φ)(y0, t0) = 0; ∇n(u− φ)(y0, t0) < 0,

where ∇∂Sn+ denotes the gradient of a function on ∂Sn+, and ∇n is the normal
derivative on ∂Sn+. Then we have

|∇∂Sn+u(y0, t0)| = |∇∂Sn+φ(y0, t0)| := k, and ∇nu(y0, t0) < ∇nφ(y0, t0).

From the boundary condition in (29),

∇nu√
1 + k2 + |∇nu|2

= − cos θ =
∇nφ√

1 + k2 + |∇nφ|2
,

which is a contradiction to ∇nu(y0, t0) < ∇nφ(y0, t0) by monotonicity of the

function g(x) = x/
√
1 + k2 + x2.

Therefore we can only have t0 = 0, that is,

eλt(u(y, t)− φ(y, t)) ≤ u0(y0)− φ(y0) ≤ 0, ∀ (y, t) ∈ Sn+ × [0, T ],

which gives u an upper bound by the umbilical cap Cc,R2,θ’s defining function φ.
Similarly, the desired lower bound can be obtained. We have finished the proof of
Proposition 3. □

12
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6. C1-estimate

In this section, we prove a C1-estimate of the flow (29). Inspired by [20], we use
the similar auxiliary function. Let d : neigh(∂Sn+) → R be a nonnegative smooth
function on neigh(∂Sn+) ⊂ Sn+ defined by

d(x) := distσ(x, ∂Sn+).

Indeed, the function is well defined on a neighborhood of ∂Sn+ but it can be extended
to the whole Sn+ and satisfies that

d ≥ 0, |∇d| ≤ 1, in S̄n+.

The following C1-estimate is essential for the flow (1).

Proposition 4. If θ satisfies that | cos θ| < 4nK0(c,R,θ)−c(n−1)
4nK0(c,R,θ)+c(n−1) , for any (x, t) ∈

Sn+ × [0, T ] (T < T ∗), we have

|∇u|(x, t) ≤ C,

for some positive constant C = C(∇2u0,∇u0, u0).

Proof. Define an auxiliary function inspired by [20],

Ψ := (1 +Kd)v + cos θσ(∇u,∇d)

where K is a constant to be determined later. Let (y0, t0) ∈ S̄n+× [0, t] be the point
where Ψ attains its maximum. We will discuss case by case to prove the theorem.

Case 1: (y0, t0) ∈ ∂Sn+ × [0, T ]. At the point x0 ∈ ∂Sn+, we choose a local

coordinate {y1, · · · , yn} near y0, such that ∂
∂y1

= −∂β is an inner normal vector

of ∂Sn+, and {yi}n+1
i=2 be the geodesic coordinate near y0 ∈ ∂Sn+ along y1 = t,

(0 < t < ε) in the neighborhood of x0. Under this coordinate, ∂
∂y1

= ∇d on ∂Sn+.
First of all, from the boundary condition of (29), we know that u1 := ∇−∂βu =

− cos θv, denote ∇′u = ∇u− u1, then from 1+ |∇′u|2 = v2 − u21 = sin θv2 we have,

Ψ|∂Sn+ = v − v cos2 θ =
√
1 + |∇′u|2 + u21 sin

2 θ = | sin θ|
√
1 + |∇′u|2.

Applying the Gauss-Weingarten equation, we have

∇1v =
∇ku∇k1u

v
=

∑n
i=2 ∇iu∇1iu

v
− cos θ∇11u

=
1

v

n∑
i=2

uiui1 + n∑
j=2

uih
∂Sn+
ij uj

− cos θ∇11u

=

n∑
i=2

uiui1
v

− cos θ∇11u,

where we have used the fact that h
∂Sn+
ij = 0 since ∂Sn+ is totally geodesic in Sn+.

Then, from Hopf Lemma we have,

(35)

0 ≥ ∇1Ψ(x0) = ∇1v +Kv∇1d+∇1(ukdk) cos θ

= ∇1v +Kv∇1d+∇k1udk cos θ + uk∇k1d cos θ

=
1

v

n∑
i=2

uiu1i +Kv + uk∇k1d cos θ,

13
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and for i ≥ 2, we have

∇′
iΨ(x0) = vi + u1i cos θ.

Differentiating the boundary condition (29), together with the fact above we have

u1i = −∇′
i(cos θv) = cos2 θu1i,

therefore we know

(36) u1i = 0, ∀1 ≤ i ≤ n− 1.

Then applying (36) to (35), we have

0 ≥ Kv + uk∇k1d cos θ ≥ Ψ

(
K

sin2 θ
− C1

)
,

where C1 is a universal constant which satisfies ||∇u| cos θ|
v| sin2 θ| ≤ C1. Then K can be

chosen large enough so that it comes to a contradiction.
Case 2: If (x0, t0) ∈ S̄n+ × {0}, then

Ψ(x, t) ≤ Ψ(x0, 0) = (1 +Kd)
√

1 + |∇u0|2 + cos θσ(∇u0,∇d) ≤ C2.

Therefore v(x, t) ≤ C, for any (x, t) ∈ S̄× [0, T ].
Case 3: In the case of (x0, t0) ∈ int(Sn+), we have

(37)

0 =∇iΨ(x0, t0) = (1 +Kd)vi +Kdiv + cos θ(ukdk)i

=

(
(1 +Kd)

∇ku

v
+∇kd cos θ

)
∇iku+∇ku∇ikd cos θ +Kdiv.

Choose a geodesic coordinate, up to a rotation of the one in Case 1, such that

u1 = |∇u| > 0, and {∇αβu}2≤α,β≤n is diagonal .

Assume u1 = |∇u| is large enough such that u1, v =
√
1 + u21 and Ψ = (1+Kd)v+

u1d1 cos θ are equivalent. Otherwise, we could obtain the desire C1 estimate for u.
Here we denote d1 = σ(∇d, e1) = u−1

1 σ(∇d,∇u).
Firstly, from (37) by letting i = α, we have

(38)
[
(1 +Kd)

u1
v

+ cos θd1

]
u1α = − cos θuααdα − cos θu1d1α −Kdαv,

and letting i = 1, we have

(39)
[
(1 +Kd)

u1
v

+ cos θd1

]
u11 = − cos θuα1dα − cos θu1d11 −Kd1v,

We can see from the (38) that

(40) u1α = −S−1 cos θuααdα − S−1(cos θu1d1α +Kdαv),

where S = (1+Kd)u1

v +cos θd1, and it is clear that 2+ πK ≥ S ≥ C(δ, θ), if there
exists some positive δ > 0 such that u1(x0, t0) ≥ δ. Indeed, if not, we would have
already proved the theorem.

14
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Inserting (40) into (39),

(41)

u11 =− S−1 cos θuα1dα − S−1(cos θu1d11 +Kd1v)

=
cos2 θ

S2

n∑
α=2

d2αuαα +

[
n∑
α=2

cos θdα
S2

(cos θu1d1α +Kdαv)

− S−1(cos θu1d11 +Kd1v)

]

=
cos2 θ

S2

n∑
α=2

d2αuαα +O(v).

Applying the condition of second derivative on (x0, t0), we have

(42)

0 ≤
(
∂t −Qijc ∇ij−Qc,pi∇i

)
Φ

=
(1 +Kd)

v
uk(ukt −Qijc ukij −Qc,piuki)

+ dk cos θ(ukt −Qijc ukij −Qc,piuki)

+ (1 +Kd)

(
Qijc ululiukukj

v3
− Qijc uliulj

v

)
− (2Qijc ukidkj cos θ + 2KQijc divj)

− (Qijc ukdkij cos θ +KQijc dijv)

−Qc,ψi(Kdiv + cos θukdki)

:= L1 + L2 + L3 + L4 + L5 + L6.

Let us examine the term L1 and L2 at first. Differentiating the parabolic equation
(29) with respect to t, we have

(43) utk = Qijc uijk +Qc,piuik +Qc,ρρuk +Qc,βσ(∂β , ek) +Qc,γσ(∂γ , ek).

Ricci identity on Sn+ gives that

(44) uijk = ukij + ujσil − ulσij .

And by definition, we have

(45)

aijuij =

(
σij − uiuj

v2

)
uij = u11 +

n∑
α=2

uαα − |∇u|2

v2
u11

=
1

v2
u11 +

n∑
α=2

uαα.

15



A Constrained Mean Curvature Flow 16

Applying (43), (44) and (45) to the terms L1 and L2 gives,

(46)

L1 =
1 +Kd

v
uk(ukt −Qijukij −Qc,piuki)

=
1 +Kd

v
uk(Q

ij
c (ujσik − ukσij) +Qc,ρρuk +Qc,βσ(∂β , ek)

+Qc,γσ(∂γ , ek))

=
1 +Kd

v4

(
cosβ cos γuβ − sinβ sin γuγ − c

|∇u|2

ρ

)
u11

− c
1 +Kd

ρv2
|∇u|2

(
n∑
α=2

uαα

)

− nc
1 +Kd

v
|∇u|2

(
|∇u|2

ρv
+

cos θ sinβ

ρ
uβ

)
+ (1 +Kd){ 1

v2
(cosβ cos γuβ − sinβ sin γuγ)

n∑
α=2

uαα

+
n cos θ cosβ

vρ
|∇u|2 + n

v2
(sinβ cos γu2β + 2 cosβ sin γuγuβ

+ sinβ cos γu2γ) +
(1− n)(1 +Kd)|∇u|2

ρewv2
}

:= L11 + L12 + L13 + L14.

It is obvious that L14 = O(v−1)
∑n
α=2 uαα +O(v). And using (41) we have

(47)

L11 =
1 +Kd

v4

(
cosβ cos γuβ − sinβ sin γuγ − c

|∇u|2

ρ

)(
cos2 θ

S2

n∑
α=2

d2αuαα +O(u1)

)

= O(v−2)

n∑
α=2

|uαα|+O(v−1).

Similarly, the term L2 be written as follows,

(48)

L2 = dk cos θ(ukt −Qijc ukij −Qc,piuki)

=
cos θ

v3

(
cosβ cos γdβ − sinβ sin γdγ − c

σ(∇u,∇d)
ρ

)
u11

− c
cos θ

ρv
σ(∇u,∇d)

n∑
α=2

uαα

− ncσ(∇u,∇d)
(
|∇u|2

ρv
+

cos θ sinβ

ρ
uβ

)
+ cos θ

[
1

v
(cosβ cos γdβ − sinβ sin γdγ)

n∑
α=2

uαα

+
n cos θ cosβ

ρ
σ(∇u,∇d) + n

v
(sinβ cos γuβ + cosβ sin γuγ)dβ

+
n

v
(sinβ cos γuβ + cosβ sin γuγ)dα + (1− n)

1

ρew
(∇u,∇d)]

:= L21 + L22 + L23 + L24.
16
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And for the same reason, we have L21 = O(v−2)
∑n
α=2 |uαα| + O(v−1) and L24 =

O
(
1
v

)∑n
α=2 uαα +O(v).

For the term L3, we have

(49)

L3 = (1 +Kd)

(
Qijc ululiukukj

v3
− Qijc uliulj

v

)
=

1 +Kd

ρvew

(
σij − uiuj

v2

)(ululiukukj
v3

− uliulj
v

)
=

1 +Kd

ρvew

(
− 1

v5
u211 −

2

v3

n∑
α=2

u21α − 1

v

n∑
α=2

u2αα

)

=
1 +Kd

ρvew

(
− 1

v5
u211 −

2

v3

n∑
α=2

u21α

)
− (1− ε)

1 +Kd

ρv2ew

n∑
α=2

u2αα

− ε
1 +Kd

ρv2ew

n∑
α=2

u2αα

:= L31 + L32 + L33.

Then we compile the following three terms

(50)

L12 + L22 + L32 = − c

ρv

(
1 +Kd

v
|∇u|2 + cos θσ(∇u,∇d)

) n∑
α=2

uαα

− (1− ε)
1 +Kd

ρv2ew

n∑
α=2

u2αα

= − c

ρv
S|∇u|

n∑
α=2

uαα − (1− ε)
1 +Kd

ρv2ew

n∑
α=2

u2αα

≤ c2(n− 1)ewS2|∇u|2

4ρ(1− ε)(1 +Kd)

≤ c2(n− 1)(1 + | cos θ|)Sew

4ρ(1− ε)
|∇u|2.

To estimate L13 + L23, we need the following arguments. Let c0 be a constant

which satisfies c0 ∈
(
| cos θ|, 4nτK0(c,R,θ)−c(n−1)

4nτK0(c,R,θ)+c(n−1)

)
, for some 0 < τ < 1. Then we

can assume that

(51)
|∇u|2

v
+ cos θ sinβuβ ≥ (1− c0)|∇u|.

Otherwise,

1− c0 >
|∇u|
v

+ cos θ sinβ
uβ
|∇u|

≥ |∇u|
v

− | cos θ|

would give an upper bound for |∇u|, the required estimate is obtained.
17
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Considering L13 + L23 and using (51), we have

(52)

L13 + L23 = −nc1 +Kd

v
|∇u|2

(
|∇u|2

ρv
+

cos θ sinβuβ
ρ

)
− nc cos θσ(∇u,∇d)

(
|∇u|2

ρv
+

cos θ sinβuβ
ρ

)
= −nc|∇u|ρ−1

(
|∇u|2

v
+ cos θ sinβuβ

)
S

≤ −nc(1− c0)ρ
−1S|∇u|2.

Combining (50) and (52), we have

L13 + L23 + L12 + L22 + L32

≤− nc(1− c0)ρ
−1S|∇u|2 + c2(n− 1)(1 + | cos θ|)S

4(1− ε)ρ
ew|∇u|2

≤
(
−nc(1− c0)ρ

−1 +
c2(n− 1)(1 + c0)

4(1− ε)ρxn+1

)
S|∇u|2.

For the last inequality, Proposition 3 shows that Σt ⊂ Ĉc,R,θ, and hence e−w =
xn+1 > K0(c,R, θ). Therefore

− nc(1− c0) +
c2(n− 1)(1 + c0)

4(1− ε)xn+1

≤− 2c2n(n− 1)

4τcnK0(c,R, θ) + (n− 1)
+

2c2τnK0(c,R, θ)(n− 1)

xn+1(1− ε)(4τcnK0(c,R, θ) + (n− 1))

≤− 2c2n(n− 1)

4τcnK0(c,R, θ) + (n− 1)

(
1− τ

1− ε

)
.

Let ε = (1 − τ)/2 ∈ (0, 1), from the C0-estimate in Proposition 3, there is an

uniform lower bound ρ0 on ρ. Hence letting a0 = 2c2n(n−1)(1−τ)
(4τcnK0(c,R,θ)+(n−1))(1+τ)ρ0S, we

have

(53) L13 + L23 + L12 + L22 + L32 < −a0|∇u|2.

Now we consider L4 and L6. Using (41), (42) and (45), we obtain

L4 + L6

=− (2Qijc ukidkj cos θ + 2KQijc divj)−Qc,ψi(Kdiv + cos θukdki)

=O

(
1

v

) n∑
α=2

|uαα|+O(1),

and it is easy to see L5 = −(Qijc ukdkij cos θ +KQijc dijv) = O(1).
18
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Then adding all the terms back to (42), we have

0 ≤ 1 +Kd

ρewv

(
− 1

v5
u211 −

2

v3

n∑
α=2

|u1α|

)
− ε0

1 +Kd

2ρewv2

n∑
α=2

|uαα| − α0u
2
1

+O

(
1

v

) n∑
α=2

|uαα|+O(v)

≤ −ε0
1 +Kd

2ρewv2

n∑
α=2

u2αα +
C2

v

n∑
α=2

|uαα| − a0u
2
1 + C1v

≤ −a0u21 + C1v +
C2

2ρe
w

2ε0(1 +Kd)
,

This gives an upper bound for u1. □

7. Convergence of the flow

The higher order a-priori estimates of u follow from the uniform C0 and C1

estimates. The same argument as in [20] gives the following result.

Proposition 5. If u(·, t) solves the boundary value problem (29) on the interval
[0, T ∗), and the initial hypersurfaces Σ0 and the contact angle θ satisfies the same
condition in Theorem 1. Then for any 0 < T < T ∗, we have

∥u(·, t)∥Ck ≤ C, 0 < t < T,

where C = C(k, u0,∇u0,∇2u0) > 0. In addition, it follows that T ∗ = ∞.

Before we prove Theorem 1, we need the following lemma.

Lemma 2. Let Cc1,R1,θ(a1) and Cc2,R2,θ(a2) defined by (2). If their enclosed

volume are equal, that is, |Ĉc1,R1,θ(a1)| = |Ĉc2,R2,θ(a2)|, it holds that

c1
R1

=
c2
R2

,

that is, the umbilical θ-caps with the same enclosed volume have the same
principal curvature.

Proof. Let χ = χ2 ◦χ1 be an isometry composed by two isometries in Hn+1, where
χ1 is a translation along the hyperbolic geodesic γt = (0, · · · , t) ∈ Rn+1

+ , such that,

χ1(x1, · · · , xn+1) =
c2
c1

(x1, · · · , xn+1),

and χ2 is a translation defined by

χ2(x̃, xn+1) = (x̃+ a2 − a1, xn+1).

They are both isometric transformation. Hence

|Ĉc2,R2,θ(a2)| = |ĈR1,c1,θ(a1)| = |χ(ĈR1,c1,θ(a1))| = |Ĉc2,c2R1/c1,θ(a2)|.

Since |Ĉc2,R,θ(θ)| is monotonically decreasing as R decreasing, so c2R1/c1 = R2. □

Remark 4. We can see from the proof that, the umbilical caps C1 and C2 on totally
geodesic hyperplane with the same enclosed volume is equivalent to the same area
and the same wetting area, which is the area of the domain enclosed by ∂C1 and
∂C2.
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Now we are ready to prove Theorem 1.

Proof of the Theorem 1. Let r = 2 in the Minkowski type formula (17), we have∫
Σt

[
H1

(
c

xn+1
− c cos θ⟨E1, ν⟩

)
−H2⟨x− cEn+1, ν⟩

]
dA = 0.

Let ∂̂Σ be the domain enclosed by ∂Σ on P . The first variation formula of the

energy Q(Σ̂t) =
1
n [|Σt| − cos θ|∂̂Σ|] gives that

d

dt
Q(t) =

∫
Σt

H1

(
c

xn+1
− c cos θ⟨E1, ν⟩ −H1⟨x− cEn+1, ν⟩

)
dA

=

∫
Σt

H1

(
c

xn+1
− c cos θ⟨E1, ν⟩ −H1⟨x− cEn+1, ν⟩

)
dA

−
∫
Σt

[
H1

(
c

xn+1
− c cos θ⟨E1, ν⟩

)
−H2⟨x− cEn+1, ν⟩

]
dA

=

∫
Σt

(H2
1 −H2)⟨x− cEn+1, ν⟩dA

= − 1

n2(n− 1)

∑
i<j

∫
Σt

(κj − κi)
2⟨x− cEn+1, ν⟩dA

= − 1

n2(n− 1)

∑
i<j

∫
Sn+

(κi(y)− κj(y))
2dg(y),

where dg(y) = ρew

v dy and κi’s are the principle curvatures at y ∈ Sn+ identified as a
point on Σt. Therefore, the energy Q(Σ) = Area(Σ)−cos θW(∂Σ) is monotonically
decreasing from Proposition 3, we know that the energy is bounded from above and
below. Then integrating both sides of the equation above on [0,+∞), we have∑

i<j

∫ ∞

0

∫
Sn+

(κi(y, t)− κj(y, t))
2dg(y)dt ≤ C.

From the uniform Ck estimate in Proposition 5, we have

lim
t→∞

|κi − κj |2 = 0.

Therefore any convergent subsequence of x(·, t) must converge to an umbilical cap
Cc,R∞,θ(a∞) as t → ∞. Hence from the boundary condition in (1), we know that
they are given by

Cc′,R′,θ(a∞) = {x ∈ Hn+1 : |x+R′ cos θE1 − a∞ − c′En+1| = R′},
where a∞ is a constant vector perpendicular to both E1 and En+1.

It remains to show that the limit umbilical cap is unique. We follow the proof
in [17] and [21]. Let R∞ > 0 be the unique number such that |Σ̂| = |Ĉc,R∞,θ|.

Denote by R(·, t) the radius of the unique umbilical cap

Cc,R(·,t),θ = {x ∈ Hn+1 : |x−R(·, t) cos θE1 − cEn+1| = R(·, t)},
passing through the point x(·, t). Let R∗(t) = maxx∈M R(x, t) and there exists a
point ξt attaining R

∗(t) by compactness. It then follows that R∗(t) is non-increasing
since the Cc,R∗(·,t),θ is a barrier of x(·, t) by Proposition 3. We claim that

(54) lim
t→∞

R∗(t) = R∞.
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We suppose otherwise, then there exist ε > 0 and t large enough, such that

(55) R∗(t) > R∞ + ε,

from the definition of R(·, t), we have

|x+R(·, t) cos θE1 − cEn+1|2δ = R2(·, t),

or equivalently

|x|2δ + c2 − 2c⟨x,En+1⟩δ − 2R(·, t) cos θ⟨x,E1⟩δ = R2(·, t) sin2 θ.

Taking the derivative of the equation above with respect to t, we have

(56) ⟨xt, x− cEn+1 +R(·, t) cos θE1⟩δ = Rt(·, t)(R(·, t) sin2 θ − cos θ⟨x,E1⟩δ).

Now we evaluate at the point (ξt, t), since Σt is tangential to Cc,ρ∗(·,t),θ at the point,
then the normal vector at (ξt, t) is

ν̃(ξt, t) = νCc,ρ∗(t),θ
(x(ξt, t)) =

x+R∗(t) cos θE1 − cEn+1

R∗(t)
.

Inserting the flow equation (1) to (56), we have

(57)

(R∗(t) sin2 θ − cos θ⟨x,E1⟩δ)∂tR∗(t)

=xn+1
|x+R∗(t) cos θE1 − cEn+1|2δ

R∗(t)
qc

=xn+1R
∗(t)

(
nc

xn+1
− nc cos θ⟨E1, ν⟩ −H(ξt, t)⟨x− cEn+1, ν⟩

)
.

From the calculation in Remark 2, we have

(58) HCc,ρ∗(t),θ
=

nc

R∗(t)
,

then

(59)

nc
xn+1

− nc cos θ⟨E1, ν⟩
⟨x− cEn+1, ν⟩

∣∣∣∣∣
(ξt,t)

=

nc
xn+1

− nc cos θ⟨E1, ν⟩
⟨x− cEn+1, ν⟩

∣∣∣∣∣
Cc,ρ∗(t),θ

=
nc

R∗(t)
.

From (25), (58) and (59), we can see that for ε > 0 small enough, there exist a
T > 0 such that for any t > T , the following

(60)
xn+1R

∗(t)

(
nc

xn+1
− nc cos θ⟨E1, ν⟩ −H(ξt, t)⟨x− cEn+1, ν⟩

)
=xn+1(nc−H(ξt, t)R

∗(t))⟨x− cEn+1, ν⟩

holds at (ξt, t).
On the other hand, since x(·, t) converge to Cc,ρ∞,θ(a∞) and ρ∞ is uniquely

determined, we get

lim
t→∞

H(ξt, t) =
nc′

R′ .

Therefore, for ε0 = nc′

2R′ , there exists a T > 0, such that for any t > T ,

(61) H(ξt, t) >
nc′

R′ − ε0 > 0.
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Then from (55), (60) and (61), we get

(62)

xn+1R
∗(t)

(
nc

xn+1
− nc cos θ⟨E1, ν⟩ −H(ξt, t)⟨x− cEn+1, ν⟩

)
≤ 1

2
xn+1

(
nc−

(
nc′

R′ − ε0

)
(R∞ + ε)

)
⟨x− cEn+1, ν⟩

≤ 1

2
xn+1

(
−ε0R∞ − ε

(
nc′

R′ − ε0

))
⟨x− cEn+1, ν⟩

< 0

In the second inequality we have used Proposition 5. On the other hand, since
0 ≤ ⟨x,E1⟩δ ≤ 1− ρ∗(t) cos θ, we have

(63) R∗(t) sin2 θ − cos θ⟨x,E1⟩ ≥ R∗(t)(1− cos θ) > 0,

then combining (57), (62) and (63), we have

∂tR
∗(t) < 0.

This leads to a contradiction to that limt→0
d
dtR

∗(t) = 0. Hence (54) holds. Simi-
larly, we can show

lim
t→∞

R∗(t) = R∞,

where R∗(t) is defined by R∗(t) = minx∈M R(x, t) = R(χt, t) and χt is the point
achieving R∗(t). Therefore Cc′,R′,θ(a∞) = Cc,R∞,θ, and we obtain the uniqueness of
the limit. □

Remark 5. In Poincaré half space model of hyperbolic space, the volume of an
umbilical cap is determined not only by its Euclidean radius but also by the location
of its center, particularly the (n+1)-th coordinate. As indicated by Remark 2, the
location of its center also influences the principal curvatures of the cap. Therefore,
we cannot identity the radius by the volume of the domain bounded by initial
hypersurfaces Σ0.

Note that all the isometries appearing in the proof of Lemma 2 on Poincaré
half-space model will keep the ratio c/R of an umbilical cap Cc,R,θ.

From the monotonicity of the energy Q, we have the following corollary.

Corollary 1. Let x :M → Hn+1 be a θ-capillary hypersurface supported on the
totally geodesic hyperplane P . If

(1) Σ = x(M) is contained in an umbilical cap Cc,R,θ(a) which satisfies that
K(c,R, θ) > c(n− 1)/4n.

(2) the contacting angle θ satisfies

| cos θ| < 4nK0(c,R, θ)− c(n− 1)

4nK0(c,R, θ) + c(n− 1)
,

then θ-umbilical caps with the same enclosed volume with Σ = x(M) are the only
minimizers of the energy Q.
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