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Magic-Angle Twisted Bilayer Graphene shows a wide range of correlated phases which are elec-
trostatically tunable. Despite a growing knowledge of the material [1–3], there is yet no consensus
on the microscopic mechanisms driving its superconducting phase [4–6]. In particular, elucidating
the symmetry and formation mechanism of the superconducting phase may provide key insights
for the understanding of unconventional, strongly coupled and topological superconductivity. A
major obstacle to progress in this direction is that key thermodynamic properties, such as specific
heat, electron-phonon coupling and superfluid stiffness, are extremely challenging to measure due
to the 2D nature of the material and its relatively low energy scales. Here, we use a gate-defined,
radio frequency-biased, Josephson junction to probe the electronic dynamics of magic-angle twisted
bilayer graphene (MATBG). We reveal both the electronic quasiparticle dynamics, driven by their
thermalization through phonon scattering, as well as the condensate dynamics, driven by the inertia
of Cooper pairs. From these properties we recover the evolution of thermalization rates, and the
superfluid stiffness across the phase diagram. Our findings favor an anisotropic or nodal pairing
state and allow to estimate the strength of electron-phonon coupling. These results contribute to
understanding the underlying mechanisms of superconductivity in MATBG while establishing an
easy-to-implement method for characterizing thermal and superfluid properties of superconducting
2D materials.

The phase diagram of magic-angle twisted bilayer
graphene [7, 8] (MATBG) has drawn considerable atten-
tion due to the presence of correlated insulating, super-
conducting, and topological phases [2]. Despite these
remarkable discoveries, several questions remain open
about the nature of the superconducting state and even
less is understood about what is the driving mechanism
behind it. The most central and pressing issues include
whether the superconducting mechanism of MATBG is
electronic or phonon-driven [4, 5, 9, 10] and whether its
superconducting gap is nodal or not [3, 11]. Furthermore,
the electron-phonon coupling has been suggested as the
origin of the observed (putatively) universal linear-in-T
resistance [9, 12]. Characterizing the electron-phonon
coupling and the anisotropy of the superconducting gap
is the first step towards answering these questions. How-
ever, the 2D nature of MATBG, the small moiré Brillouin
zone, and the relatively low energy scales make the use
of many standard techniques for investigating bulk mate-
rials, such as calorimetry, ARPES or neutron scattering,
challenging or impossible.
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Superconducting mesoscopic devices have proven to be
a useful characterization tool of the material they are
built of [13–15]. In particular, Josephson junctions (JJs)
have been used as a probe of electronic thermalization
rates [15], and the superfluid density, through character-
izing the kinetic inductance in thin-film devices [14]. In
the case of MATBG, superconducting devices have al-
ready proven instrumental for probing the charge of the
Cooper pairs [16, 17], the long-range coherence of the su-
perconducting condensate [17] and its orbital magnetic
properties [18].

Here, we use a gate-defined Josephson junction (JJ) in
MATBG [16, 18, 19] to extract electron-phonon coupling,
thermodynamic, and superfluid properties of MATBG
across its phase diagram. Biasing the junction with a
combination of DC and AC currents we probe the dynam-
ics of both the electronic quasiparticles and the super-
fluid of MATBG. We show that the measured timescales
governing the junction’s transition between resistive and
superconducting states are directly related to the micro-
scopic properties of the material, such as electronic cool-
ing power due to phonons, specific heat, and superfluid
density. The gate-tunability of the device allows us to
probe these quantities across the density-tuned phase di-
agram of MATBG, for chemical potential both within
and outside the flat bands. These measurements imply
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FIG. 1. (a) Schematics of the device. The device is depicted by a cross section schematics. (b) Top-view simplified schematics
with the gold contacts on the side, connected by a stripe of MATBG. The central region, of length 100 nm, is highlighted. (c)
I/V characteristic of the junction at a density of −4.3× 10−12 cm−2. In blue a trace for increasing DC bias is shown, in orange
for decreasing bias. The green line is an extrapolation of the resistive part of the characteristic at 0 voltage. (d) Switching
(blue), retrapping (blue, dashed) and excess (green) currents as a function of density in the central region. The colors on
the x-axis correspond to the filling of the band structure schematics shown in the inset. The upper part indicates whether
the IV characteristic shows a junction-like or bulk superconductor-like behavior. The black star, circle and square indicate,
respectively, the densities at which is taken the data shown in (e), (c) and (f). (e) I/V traces of the junction for AC bias of
increasing frequency and fixed amplitude (red arrow) as a function of DC bias (horizontal axis). Solid lines show positive bias
directions while dashed ones show negative directions. Curves are offset vertically for readability. (f) I/V traces at bias AC
amplitude 1.4 nA and frequencies of 0.1MHz and 20MHz when the sample is tuned to all-bulk configuration see panel (d).

that MATBG’s electron-phonon coupling is weak, e.g.
lower than that of aluminium (a conventional supercon-
ductor), and the current bias dependence of the super-
fluid density is incompatible with isotropic pairing.

Our device is a JJ electrostatically defined in MATBG,
with a twist angle of 1.06◦ ± 0.04◦, also studied in refer-
ence [16] (Fig. 1(a)). The global carrier density n, tuned
by the back gate, is set to n = −1.73 × 10−12 cm−2, at
which the bulk has its highest critical current, 250 nA
(See SI). Two layers of top gates, separated by a layer of
Al2O3 tune the local density in the central region, allow-
ing us to fine-tune the details of the junction.

For each value of electron density in the central region
(Fig. 1(b)) we analyze the current-voltage (I/V) char-
acteristic. For densities in the central region close to
ν = −2 we observe a gradual onset of resistance above
a critical current value, consistent with bulk supercon-
ductivity (see also discussion of Fig. 1(f) below). For all
other densities, we universally observe a hysteretic I/V
trace with two characteristic voltage jumps ∆V , as shown
in Fig. 1(c). The two jumps correspond to switching
from the superconducting to the resistive state (increas-
ing current bias, blue line) and retrapping back (decreas-
ing current bias, blue dashed). Together with Shapiro



3

step measurements [16] this indicates the formation of
a weak superconducting link between the left and right
parts of the device, where the weak link region can switch
between resistive and superconducting states. From the
band structure of MATBG [8] (see inset of Fig. 1(d),
for a schematic), the weak link region is expected to be
metallic except for a narrow range of voltages placing
the chemical potential into the gap between the flat and
dispersive bands. Such assessment is consistent with the
observation of a positive excess current [20, 21] in the
resistive state of a large portion of the phase diagram
(green curve in Fig. 1(d)). In analogy to conventional su-
perconductors [15], the dynamic response of such metallic
weak links should give access to the dynamics of the elec-
tronic quasiparticles and the superconducting condensate
in MATBG.

We probe the dynamics of our weak links by adding
a small AC current component to the DC current flow-
ing through the junction. Sweeping the frequency across
three orders of magnitude (0.1-100 MHz), we focus on the
changes in the I/V characteristics, as shown in Fig. 1(e).
At low frequencies, the AC drive brings the two hysteresis
branches closer together, which can be understood as fol-
lows. The abrupt character of switching and retrapping
with DC bias suggests that the junction will undergo a
change whenever the total current IDC + IRF (t) reaches
the critical value for switching (Isw) or retrapping (Ire).
Consequently, one expects the switching to occur prema-
turely at Isw − IRF , and the retrapping to occur at a
higher DC bias, Ire + IRF , reducing the size of the hys-
teresis loop.

For increasing frequency, the effect of AC bias grad-
ually disappears (Fig. 1(e)), with a different rate for
switching and retrapping. This indicates that both pro-
cesses, in fact, do not occur instantaneously and are
characterized each by a certain rate, which we denote
as Γre and Γsw with precise definitions introduced be-
low. At highest frequencies, the AC drive effect is ab-
sent (See Fig. 3(c) and Supplemental Material), indicat-
ing that neither switching nor retrapping processes are
fast enough to occur over one AC drive period. The
switching and retrapping rates that can be extracted
from Fig. 1(e) reflect the physical properties of super-
conducting MATBG. We now turn to their physical in-
terpretation.

We can first rule out switching and retrapping driven
only by the dynamics of the superconducting phase dif-
ference across the junction, exemplified by, e.g.,the RCSJ
model [20]. In that case, the characteristic frequency
is fixed by the Josephson relation to 2e∆V/ℏ. For our
weak links it is of the order of 10GHz, several orders of
magnitude larger than the frequencies used in our exper-
iments. The RCSJ model also predicts the switching rate
to be smaller than the retrapping one, inconsistent with
experimental observations (see additional discussion in
Supplemental Material). We therefore conclude that our
experimental observations require a mechanism beyond
the RCSJ model to explain the switching and retrapping

charateristics.

Such an alternative mechanism, for both the retrap-
ping and the hysteresis in metallic weak links is the heat-
ing of the electrons in the junction, followed by their ther-
malization [15, 22]. In this case the retrapping branch at
I < Isw is characterized by a higher temperature than
the switching one due to the Joule heating in the resis-
tive state (Figs. 2 (a, b)). This overheating reduces the
weak link critical current for the retrapping branch, lead-
ing to a hysteresis. Most importantly, retrapping back
into the superconducting state requires the electronic
temperature to equilibrate to base temperature, a pro-
cess, depicted in Fig. 2(c), that has been directly demon-
strated in superconductor-normal metal-superconductor
junctions [15].

While there are several mechanisms for energy dissipa-
tion in graphene, at low temperatures the dominant one
is the coupling between electrons and acoustic phonons.
In particular, thermalization can occur via diffusion of
hot electrons into the leads, emission of blackbody pho-
tons or interaction of electrons with acoustic phonons (as
the optical ones are frozen out) [23]. The first mecha-
nism is suppressed by the presence of a superconducting
gap [24] in the leads in our case, while the second one
has been estimated to be negligible in MATBG [25, 26].
This suggests that the dominant heat loss mechanism is
via coupling to phonons, in agreement with conventional
SNS junctions [15, 22].

The above mechanism on its own, however, still implies
that switching occurs with the Josephson rate 2e∆V/ℏ,
which is inconsistent with our observations, as detailed
above. To understand the switching dynamics in our
devices we now turn to the case without a central gate
voltage, i.e where the sample is homogeneously supercon-
ducting at the optimal density. We observe a frequency-
dependent IV characteristic (Fig. 1(f)), despite the ab-
sence of a weak link. Note that there is no hysteresis,
ruling out overheating as its origin.

In addition to these observations, it has been shown
that a supercurrent can flow in MATBG in narrow super-
conducting paths separated by normal regions [27]. The
normal region thus forms a resistive shunt Rbulk cou-
pled in parallel to the superconducting regions (purple
shaded path in Fig. 2 (a)). At a non-zero frequency ω,
the superfluid impedance is purely inductive due to the
inertia of the Cooper pairs (blue shaded mechanism in
Fig. 2(d)) and given by Zsc = jωLkin, with the kinetic

inductance Lkin ∝ m∗

nse2
, where m∗ is the effective mass, e

the electron charge, and ns is the superfluid density. At
frequencies larger than Rbulk

Lkin
, the impedance of the su-

perconducting branch becomes higher than the resistance
of the normal bulk and the AC current flows through the
non-superconducting regions (purple shaded mechanism
in Fig. 2(d)). Intriguingly, Lkin in MATBG is expected
to be large [17] due to two unique properties: extremely
low electron densities, and high effective mass [7]. This
explains our observation of a rather low characteristic
switching rate in Fig. 1(f). The same mechanism ap-
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plies for MATBG weak links - the kinetic inductance of
bulk MATBG is then coupled in series to the junction
(Fig. 2(a)).

Using the ideas outlined above, we construct a model
to describe the non-equilibrium dynamics of the Joseph-
son junction. Importantly, this model allows us to re-
late the observed switching and retrapping rates, Γsw and
Γre, to the microscopic and thermodynamic properties of
MATBG. The dynamics of the current-biased junction is
described by:

Isc(t)− Iex = IJ(T ) sin(φ) +
ℏφ̇
2eRJ

(1)

CelṪ =
1

RJ

(
ℏφ̇
2e

)2

−GthT (2)

I(t)− Iex = Isc − Iex +
Lkinİsc +

ℏφ̇
2e

Rbulk
(3)

Equation (1) describes a Josephson junction with a
phase difference φ, a temperature-dependent critical cur-
rent IJ(T ), and a fixed excess current value Iex shunted
by resistance RJ (Fig. 2(a), dashed box). For results
in the main text we assume RJ ≪ Rbulk, the general
case is discussed in Supplementary Material. We note
that the form of IJ(T ) has not been determined ex-
perimentally; we assume that it is a decreasing func-
tion of temperature with a single characteristic scale TJ
that can be estimated to be of the order 0.1K based
on the disappearance of interference in SQUID devices
[17]. In the main text, we focus on an empirical model

IJ = IJ(0)
√
1− T/TJ·θ(1−T/TJ) that correctly captures

the high-frequency asymptotic behavior of the retrapping
current; we provide a discussion of different models and
their general properties in the Supplemental Material.

Equation (2) describes the evolution of the electronic
temperature T with respect to the base temperature.
The left-hand side represents the total power dissipated
in the link, Cel being the electronic heat capacity. On
the right-hand side, the first term corresponds to Joule
heating, while the second one is the electronic heat loss
(Gth) attributed, as discussed above, to electron-phonon
interactions. The processes relevant for the description of
the Josephson effect occur at T ≈ TJ (see Supplemental
Material), such that the value of the thermal conductiv-
ity Gth can be approximated by its value at T = TJ.
The final equation describes the shunting of the junction
by the resistive quasiparticles of bulk MATBG (Fig. 2
(a,d)). The current Isc(t) is the full external current
driven through the weak link.

Remarkably, we find that the model defined by Eq.
(1)-(3) captures all of the behaviors observed in the ex-
periment. As an example, we consider a highly nonlin-
ear regime where the RF amplitude is larger than the
hysteresis Isw − Ire. For a range of DC bias values the
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Z = jLleadsω
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FIG. 2. (a) Equivalent scheme of the MATBG junction
for densities inside the lower flat band: the weak-link region
modelled as a resistively shunted junction is coupled in se-
ries with the kinetic inductance of the leads. The supercon-
ducting regions (blue and red) are further shunted by nor-
mal regions (purple). (b) Illustration of switching and retrap-
ping mechanism and hysteresis origin in MATBG junctions.
The retrapping branch of IV characteristic (red) is character-
ized by an increased electronic temperature Tr due to Joule
heating, suppressing the critical current. Retrapping into the
superconducting state requires cooling the electrons (c) to
base temperature characterized by a rate dependent on elec-
tronic cooling power Gth. Switching rate (blue), on the other
hand, is only limited by the shunting kinetic inductance of
the bulk MATBG (a,d). (c) Electronic thermal relaxation in
MATBG occurs via coupling to acoustic phonons. Two elec-
tronic quasiparticles in the junction release their thermal en-
ergy to the phonon bath and become cold enough to mediate
Josephson coupling. (d) Due to their inertia, Cooper pairs in
a thin superconductor (blue region) prevent the transmission
of RF signals at high frequencies. Instead, the AC current
at frequencies above ωL = Rbulk

L
is rerouted through non-

superconducting regions of the sample (purple region) and
does not affect the junction.
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the data shown in (a-c). The grey dashed line in (c) is a fit to the functional forms provided in equations (1) - (3).

junction spends part of the AC period in the resistive
regime and part of it being superconducting, resulting
in a double step in voltage, as shown in Fig. 3(a) [28].
Fig. 3(d) shows a simulated trace in the same regime,
demonstrating remarkable agreement between the model
and the experiment. As we increase the frequency of the
current bias across the junction we recover the regular
hysteresis (Fig. 3(a,b), black line). The model captures
the evolution of the I/V traces as the bias frequency in-
creases, as is shown in Fig. 3(e). Even finer details of
the experimental data [29], shown in the Supplemental
Material are captured by the model. These comparisons
confirm that our model accurately describes the dynam-
ics of our junction.

To extract the retrapping and switching rates, Γre and
Γsw, for a given density from the experimental data, we
fit the evolution of the retrapping and switching cur-
rents as a function of bias frequency. An analysis of the
data, discussed in the Supplemental Material, demon-
strates that both currents asymptotically approach a
constant high-frequency value as 1/ω. To fit the re-
sults at all frequencies, we use the following functions:
Isw(ω) = Isw,∞ − IRFΓsw/

√
Γ2
sw + ω2 and Ire(ω) =

Ire,∞ + IRFΓre/
√
Γ2
re + ω2. That allows to characterize

the corresponding rates (see Fig. 3(c), gray lines). The
model described in Eqs. (1,2,3), reproduces correctly the
asymptotic behavior of the switching current, while for
the retrapping current the result depends on the partic-

ular form of IJ(T ) (see SM). For a fixed density in the
junction, we extract the switching and retrapping cur-
rents for all frequencies and fit the results. In the example
shown in Fig. 3(c), for a density of −4.5× 1012 cm−2, we
extract Γre = 0.52MHz and Γsw = 2.75MHz. Therefore,
the weak-link dynamics of our junction gives us access to
the quasiparticle thermalization rate and kinetic induc-
tance of MATBG (Fig. 2 (c,d)).

We now provide a physical interpretation of these
rates that allows us to connect them to the proper-
ties of MATBG. We begin with the switching rate Γsw.
From Eq. (3) we identify the switching rate as Γsw =
Rbulk/Lkin ∝ ns (see additional discussion in Supple-
mental Material). Assuming that the resistance of nor-
mal regions Rbulk does not strongly depend on T or bias
strength, Γ−1

sw ∝ Lkin, which allows to probe the super-
fluid stiffness of MATBG.

Before discussing the thermalization rate of the weak
link, we note that for ω ≫ Γsw the AC part of the cur-
rent does not reach the junction at all: Isc ≈ IDC . Thus,
for Γre > Γsw, the kinetic inductance would set the rate
for both switching and retrapping. However, as shown in
Fig. 4, we have Γre strictly smaller than Γsw for all densi-
ties (note the different y-axis in Figs. 4(a,c)), confirming
that we can interpret the former as a thermalization rate.

The equation governing thermalization in the device in
Eq. (2) contains two implicit frequency scales: γ ≡ Gth

Cel
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and k ≡ I2
JRJ

CelTJ
. Importantly, the hysteresis size for DC

driving depends on their ratio γ/k, while the retrapping
rate Γre depends on both, allowing in principle, to deter-
mine both scales, and, as a result Cel and Gth. While
the quantitative nature of Γre depends on the particu-
lar form of IJ(T ), for the square-root model introduced
above and γ/k < 1/2 we obtain an analytical result for

the retrapping rate: Γre =
k sin 2πγ

k

2π . Furthermore, the
ratio between DC retrapping current and switching is
Ir/Is =

√
γk (see Supplemental Material). We stress

that the observed Ir and Is are rather close to one an-
other, which results in γ and k being effectively of the
same order of magnitude. For larger values of γ the model
predicts an 1/ω2 dependence of the retrapping current
under AC bias; therefore the model should not be ap-
plicable for Ire/Isw > 1/

√
2. However, in the absence of

direct measurements of IJ(T ), we will use this model to
estimate Cel and Gth.

We observe, across the whole density range, three sets
of values of Γre: 0.5MHz, 1MHz and 1.5MHz, corre-
sponding to the chemical potential of the link tuned
to the dispersive band, lower flat band and upper flat
band, respectively. The change in the hysteresis width,

Fig. 4(b) is relatively smaller. Using the analytical for-
mula given above, we can estimate for ∆I/Isw ≈ 0.5 that
γ ≈ 0.8− 2.3 MHz.

This result already provides an important insight into
the low-temperature behavior of electron-phonon cou-
pling in MATBG when contrasted with those at higher
temperatures. In particular, the cooling rate has been
found to be of the order of hundreds of GHz above
5K with a very weak temperature dependence [30], at-
tributed to effective moiré Umklapp scattering [31] ex-
plaining the linear-in-temperature resistivity [9, 12, 31].
The strong difference with our result at T ∼ TJ ≈
100mK suggests a suppression of the cooling rate much
stronger than linear-in-temperature. This result is con-
sistent with electron-phonon scattering at 100 mK being
in the Bloch-Gruneisen regime where Umklapp scattering
is suppressed [31] and resistivity from electron-phonon
scattering should follow a stronger power-law dependence
on temperature [32]. This excludes electron-phonon scat-
tering as the origin of linear-in-temperature resistance at
low temperatures [33].

In the case of superconductivity, the most relevant
quantity when discussing electron-phonon coupling is the
dimensionless coupling constant, which we note here λ.
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The temperature relaxation rate at low temperatures
is related to the strength of the coupling to acoustic
phonons [34–36]. While this coupling does not take the
contribution of optical phonons into account, it is ex-
pected to be of the same order of magnitude as the full
coupling constant [34]. To obtain an estimate we use a
Dirac electron model [9, 35, 36]: one finds that γ = Gth

Cel
=

λ 16π2

5
(kBTel)

2

ℏ2skF
, where s is the acoustic phonon velocity.

Using Tel ∼ TJ ∼ 0.1K from the extinction temperature
of SQUID oscillations [17], s ≈ 20 km/sec (the value for
single-layer graphene [37] is expected to be close to that
in MATBG [38]), kF =

√
πn for n ∼ 1× 10−12 cm−2 and

γ ∼ 1 MHz we obtain λ ∼ 10−3. The resulting estimate
for the dimensionless coupling constant is more than an
order of magnitude lower than in conventional supercon-
ductors [39] and theoretical estimates for MATBG [9],
which should be considered when discussing the mecha-
nism behind superconductivity in MATBG.

We can further estimate Gth and Cel taking IJ −
Iexc ∼ 5 nA, ∆V ∼ 20µV from Fig. 3. The result
is Gth ∼ 250 fW/K and Cel ∼ 5 × 10−19 J/K. From
the junction area and n ∼ 1 × 10−12 cm−2 one expects
above 103 electrons, with the usual Sommerfeld expres-

sion Cel = π2

2 kN
kBT
EF

∼ 10−19 kBT
EF

J/K. In usual met-

als, kBT
EF

≪ 1, while in our case this implies kBT
EF

∼ 1,
that may be related to large residual entropy of interact-
ing states of MATBG [40]. Both Gth and Cel are much
higher than those expected in monolayer graphene [36],
consistent with strongly suppressed bandwidth and elec-

tron velocities of MATBG G ∝ v−2
F , C ∝ vF . However,

the γ = Gth

Cel
we find in MATBG at T ≈ TJ are of the

same order as those predicted for monolayer graphene
[36]. Using the Dirac electron prediction γ ∝ D2/vF ,
where D is the deformation potential, this suggests that
the deformation coupling to acoustic modes is reduced
in MATBG compared to monolayer graphene. This ex-
plains the weak value of λ estimated above, despite the
strong increase in density of states expected in MATBG.

We now discuss the switching rate Γsw (Fig. 4(c)),
related to the superfluid stiffness in the bulk of our
MATBG device. Importantly, the AC measurements are
still performed at a finite DC bias, thus, our measure-
ments reveal the superfluid density at a finite current
bias, ns(IDC) ≈ ns(Isw). Since ns(Isw) is a decreasing
function of current, the steep increase in Γsw at the edges
of the lower flat band is explained by the decreasing crit-
ical current of the junction (Fig. 1 (d)). On the contrary,
the decrease of Γsw for densities in the top flat and dis-
persive bands, is unexpected - at such low critical cur-
rents ns(Isw) ≈ ns(0) should be density-independent and
large. We suggest that this observation can be explained
by the kinetic inductance of proximity-induced supercon-
ductivity in the junction region. Being very weak, the
proximity-induced superfluid has an extremely large ki-
netic inductance that is in parallel to the smaller one
from the bulk TBG, effectively shunting it[41].

Let us now return to the densities within the lower flat
band, where Γsw is related to the superfluid density of
bulk MATBG. The dependence of Γsw ∝ ns as a func-
tion of IDC , shown in Fig. 4(c), gives important infor-
mation about the nature of the superconducting gap in
MATBG. Current biasing a superconductor produces a
Doppler shift [42, 43] of the quasiparticle bands in a su-
perconductor, see inset of Fig. 5 (∆E = vs × ℏk, where
vs is the superfluid velocity and k the quasiparticle mo-
mentum). For an isotropic superconductor, depicted in
the inset of Fig. 5, this does not affect the quasiparti-
cle occupations until a critical value of bias current is
reached. As a result, ns(I) dependence is highly nonlin-
ear with an abrupt drop close to the critical current [44].
For a highly anisotropic or nodal superconductor, across
its nodal axis in real space, the quasiparticle band struc-
ture presents cones instead of a gap in density (Fig. 5,
inset). A small shift originating from a finite bias current,
leads to a finite generation of quasiparticle pairs, thus re-
ducing the superfluid density before breaking down the
superconducting condensate. As Fig. 5 shows, the rela-
tion between superfluid density and bias current is linear
in the case of MATBG in the range Idc ∈ [0.6Ic, 0.95Ic].
This result is inconsistent with the behavior expected of
an isotropic superconducting gap, ruling in favor of a
highly anisotropic or nodal pairing state in MATBG.

In conclusion, we have presented a method for charac-
terizing electron dynamics in twisted bilayer graphene
by combining electrostatic and radiofrequency current
bias of the material. Together with a theoretical model,
this allows us to relate the frequency dependence of the
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current-voltage characteristics of a Josephson junction
to physical properties of the electrons in the material for
a wide range of densities. From the extracted electron
thermalization rates we estimated the electron-phonon
coupling in twisted bilayer graphene to be too weak to
explain either superconductivity [4, 5, 9, 10] or strange
metal behavior at low temperatures [32, 33]. From the
evolution of the switching current of the junction, we
extracted a current bias dependence of the superfluid
stiffness that points towards the superconducting gap of
the material being anisotropic. The technique we de-
veloped in this work can be applied to a wide range of
gate-tunable superconducting 2D materials, introducing
a general way to access important thermodynamic quan-
tities, such as specific heat and superfluid stiffness. In
addition to being a valuable addition to experimental
probes of 2D materials, we demonstrated a controllable
driving of a correlated electronic system, opening the
path to realization of out of equilibrium states of elec-
trons.
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Supplemental Material
Experimental Details

A. FABRICATION DETAILS AND MEASUREMENT SETUP

The device being the same as the one presented in reference [16] we refer the reader to the methods section of this
reference for details about the fabrication and measurement setup.

In this work, there are however two modifications with respect to the aforementioned setup. The first one is that
the AC bias is not sent to the central gate but to one of the leads, using a bias T to be able to send both AC and
DC signals to the same contact. The other difference is that, because for the AC measurements we present in this
study we need a higher degree of precision than for the ones presented in reference [16], we must ensure that the AC
amplitude reaching the device is neither frequency-dependent nor sample-resistance-dependent. The details of such
procedure are given in the following section.

B. RADIOFREQUENCY BIASING

When applying a radiofrequency bias to our junction two different aspects must be taken into account. The first
one is the evolution of the amplitude as a function of its frequency. Indeed, having a frequency-dependent amplitude
reaching our junction would make it impossible to disentangle such effects from the physical mechanisms taking place
at the junction level. We performed simulations of our circuit using the software LTspice and obtain an evolution in
amplitude of our radiofrequency bias reaching the junction of less than 5%, for frequencies ranging from 100 kHz to
100MHz. We thus conclude that, in comparison to the experimental results, these effects can be neglected.

Because the junction changes its state during the acquisition of an I/V trace, we must also ensure that the change
in resistance triggered by the RF biasing does not significantly affect the AC current flowing through the device.
In order to achieve that, we place a 100 kΩ resistor in series between the RF feed line and the device. Like for the
previous effect, this leads to a variation in AC amplitude reaching the device of the order of a few percents across
the whole resistivity range of the device. We thus can also neglect this effect taking into account the precision of the
claims made in our analysis.

C. FREQUENCY DEPENDENCE OF THE RETRAPPING CURRENT

We show that the retrapping current shows an asymptotic 1/ω behavior in a wide range of densities. In Fig. S1
we show that [Ire − Ire(100 MHz)]ω is approximately constant above 5 MHz for a range of electron densities. This
motivates the empirical fitting function used to extract Γre in the main text. For theoretical explanation of this
behavior see below.

D. HYSTERETIC DOUBLE STEP

For a narrow range of electron densities and RF frequencies, we observe a double step behavior where the low
current step shows some hysteresis. We show an example in figure S2. This feature is captured by our model, as
discussed in latter sections (see e.g. Fig. S5 (b)).
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FIG. S1. Asymptotic behavior of the retrapping current on frequency (lines are guide to the eye). [Ire − 0.993Ire(100 MHz)]ω
is approximately constant above 5 MHz for a range of electron concentrations suggesting a 1/ω asymptotic behavior.
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FIG. S2. Current-voltage characteristic of the junction for a density of n = −4.56 cm−2 and an RF frequency of 800 kHz. Solid
line represents data from increasing current bias while dashed lines represents data from decreasing current bias.
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Theoretical Analysis

In this part of the Supplemental Material we present the theoretical analysis leading to the model, presented in the
main text, Eq. (1-3) and give the details of the derivation of the results used there. In Sec. E we introduce the RCSJ
and heating-induction models for the Josephson junction dynamics. In Sec. F we analyze the switching and retrapping
in RCSJ model and show that it is both quantitatively and qualitatively inconsistent with the experimental results
reported in the main text. In Sec. G the model of junction dynamics based on overheating and kinetic inductance
is studied. In particular, in Sec. GA we present the details of numerical solutions; in Sec. GB we discuss the DC
properties of the model analytically, in Sec. GC we study the AC properties analytically, while in GD we discuss the
effects of a finite RJ/Rbulk ratio.

E. CONSIDERED MODELS

In this section we introduce the models considered to describe the IV characteristics of the MATBG junctions. In
particular, we consider the IV characteristics of DC and AC-current driven Josephson junctions with two models.
The first model we consider is the RCSJ model [20, 45]:

ℏC
2e
φ̈(t) +

ℏ
2eRJ

φ̇+ Ic sin(φ) = I(t). (S1)

For theoretical analysis it can be recast in dimensionless form:

βcφ̈(t) + φ̇+ sin(φ) = i(t), (S2)

where βc =
2eIcR

2
JC

ℏ is the Stewart-McCumber parameter and time is normalized as t→ ωRSJ t, where ωRSJ = 2eIcRJ

ℏ .
Below (see Sec. F) we demonstrate that RCSJ models fails both qualitatively and quantitavely in describing the
experimental result presented in the main text.

Alternatively, we use a model neglecting capacitance, but including the effects of heating and kinetic inductance
Lkin presented in Eq. (1-3) of the main text. Here we reproduce them for convenience:

Isc(t)− Iex = IJ(T ) sin(φ) +
ℏφ̇

2eRJ
, (S3)

CelṪ =
1

RJ

(
ℏφ̇
2e

)2

−GthT, (S4)

I(t)− Iex = Isc(t)− Iex +
Lİsc +

ℏφ̇
2e

Rbulk
. (S5)

In these equations, the dynamical variables are Isc (current flowing through the superconducting path), φ (phase
difference across the junction) and T (electronic temperature in the junction); Iex is the excess current (see main text),
RJ is the junction resistance, Cel is the electronic specific heat of the junction region, Gth is the thermal conductance
for electron heat loss, Lkin - the kinetic inductance of the superconducting path and Rbulk is the resistance of he
nonsuperconducting path across the sample.

Temperature is measured from the base temperature of the cryostat. We note that the detailed temperature
dependence of the Josephson current IJ(T ) is not experimentally known, although a characteristic temperature of
90 mK is suggested from the temperature dependence of SQUID critical current oscillations [17]. Therefore, we will
assume in what follows that IJ(T ) is determined by a single temperature scale, i.e. IJ(T ) = IJ(0)iJ(τ), where

τ = T/TJ , (S6)

and iJ(τ) decreases strongly for τ > 1.
Below we discuss some general results before focusing on two empirical models

(1) : iJ(τ) = (1− τ)θ(1− τ) (S7)
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(2) : iJ(τ) =
√
1− τθ(1− τ) (S8)

In addition, we considered IJ(τ) = θ(1 − τ), but this form results generically in absence of a voltage jump at the
switching current.

For numerical calculations and theoretical analysis it is convenient to use dimensionless units:

i(t) = iSC(t) +
i̇SC

ωL
+ φ̇

RJ

R
, (S9)

i0(t) = iJ(τ) sin(φ) + φ̇, (S10)

τ̇ = −γτ + kφ̇2. (S11)

i(t) = iSC(t) +
i̇SC

ωL
+ φ̇

RJ

R
,

i0(t) = iJ(τ) sin(φ) + φ̇,

τ̇ = −γτ + kφ̇2,

(S12)

where ωL = Rbulk

L , γ = Gth

C , k =
I2
J (0)RJ

CTJ
; all currents are normalized to IJ(0), all frequencies - to

ωRSJ =
2eIJ(0)RN

ℏ
, (S13)

all temperatures to TJ , i.e. τ = T/TJ . Finally, t→ ωRSJ t.

F. RCSJ MODEL

In this Section we analyze the IV characteristics of the RCSJ model, Eq. (S2), and show that it is inconsistent
with the experimental results. Eq. (S2) contains only one free parameter - βc. It can therefore be determined from
the size of the hysteresis in the IV characteristic (Isw − Ir)/Isw and for the TBG devices under consideration we find
moderate values, e.g. βc = 4 [16]. In the main text, we argue that for such values of βc, the characteristic frequencies
of the system remain of the order ωRSJ which is of the order GHz, grossly inconsistent with the observed values of
Γre,sw (which are of the order MHz, see Fig. 4 of the main text). Here we show that RCSJ model results in several
qualitative features also inconsistent with the experimental observations.

In Fig. S3 we present Isw and Ir as a function of RF frequency for iRF = 0.1, βc = 4. The results have been
obtained by numerically solving Eq.(S2) with initial conditions φ̇ = 0, φ(0) = {arcsin(i), (i < 1); π/2, (i > 1)}, where
i = I/IJ(0), for the switching branch and φ̇ = 200, φ(0) = 0 for the retrapping one (large value of φ̇ forces the solution
into the finite-voltage state if it is stable).

One notes that both Isw and Ir saturate at high frequency above about 0.3ωRSJ for Isw and ≈ 0.7ωRSJ for Ir.
Importantly, Isw is recovered before Ir on increasing frequency, which is inconsistent with experimental results, where
the opposite is true (see Fig. 3 c and 4 of the main text). In addition, there are additional dip-like features in Isw(ω).
The latter can be attributed to the development of Shapiro steps [20, 45]. In Fig. S4, left panel, a Shapiro step appears
right at the retrapping current, explaining the anomalous behavior in Fig. S3 at this frequency. Note that Shapiro
steps also occur away from this frequency (Fig. S4, right panel). Therefore, both the lower characteristic frequency
observed for Isw than that for Ir and the presence of Shapiro steps are qualitatively inconsistent with experimental
observations, ruling bare RCSJ model out.

G. HEATING & INDUCTANCE MODEL

For most of the discussion below we assume R ≫ RJ , such that the term with φ̇ in Eq. (S5) drops out. For
discussion of its effects see Sec. GD

I(t)− Iexc = ISC − Iexc +
LİSC

R
, (S14)

Additionally, without loss of generality we assume that the excess current is absorbed into ISC for brevity of
notation.
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FIG. S3. Dependence of switching and retrapping current on the driving frequency in the RCSJ model, Eq. (S2), for iRF =
0.1, βc = 4.
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FIG. S4. Current-voltage characteristics of the RCSJ model (Fig. S3) for two frequency values and iRF = 0.1, βc = 4. Shapiro
steps are marked by black dashed lines with the corresponding fraction shown in the adjacent rectangle. Note that for higher
frequency (b) fractional Shapiro steps are seen, which are expected for underdamped junctions [46, 47].

A. Numerical solutions

Here we illustrate in more detail the IV characteristics resulting from Eqs. (S12). For comparison with main text
we use ωRSJ = 250 MHz, IJ(0) = 5.75 nA; we note that these are simply unit choices.

We begin by presenting in Fig. S5 three typical IV characteristics obtained for k = 0.01, γ = 0.0025, IRF /IJ(0) =
0.5, ωL = 2.5 MHz (in Fig. 3 of the main text γ = 0.0049 is used). At small frequency (Fig. S5 (a)) the IV curves
are identical on switching and retrapping and show the double step behavior. Above the second feature the IV
curve is purely linear. On increasing frequency (Fig. S5 (b)), the lower part of the double step splits into two for
switching/retrapping. This allows us to define four characteristic current values: where the IV curve deviates at
high-current linear behavior (I+r , I

+
s ) and where the voltage becomes zero (I−r , I

−
s ). At higher frequencies (Fig. S5

(c)), the splitting at the lower end of double step grows and eventually there remains only a single characteristic value
for switching/retrapping.

Tracking these values as a function of frequency, we obtain Fig. S6. Importantly, the characteristic frequency values
do not depend strongly on the AC current amplitude - in Fig. S6 (b) the switching and retrapping current values
saturate at roughly the same frequencies as in (a) despite IRF being smaller such that no double step exists. In panel
(c) we also show the results for the same parameters as in main text. The splitting of the lower edge of the double step
is smaller in that case. The main qualitative features presented above for model (2) also occur for a different choice of
IJ(T ). In Fig. S7 we present the characteristic current values from IV curves for model (1) with (a) γ = 0.0069 and
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FIG. S6. Frequency dependence of characteristic current values defined in Fig. S5 (b) for model (2) [used in the main text],
Eqs. (S12) and (S8). In (a), same parameters, as in Fig. S5 are used. In (b), a reduced IRF /IJ(0) = 0.15 is used, such that
there is no double step at all frequencies. In (c), the parameters used in Fig. 3 of the main text are used.

(b) γ = 0.0029 to reproduce the same hysteresis size without AC drive as with model (2). However, as shown below,
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FIG. S7. Same as Fig. S6 but computed using the model (1), Eqs. (S12) and (S8), with(a) γ = 0.0069 and (b) γ = 0.0029.
While the results of the two models looks superficially similar, the asymptotic behavior at large frequencies is different (see
Sec. GC).

only model (2), Eq. (S8), allows to reproduce ∝ 1/ω behavior of the retrapping current observed experimentally.
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B. Analytics: DC case and hysteresis

We first consider the IV characteristic with a purely DC current drive. The equation (S5) is reduced then to
ISC − Iexc = I − Iexc, or i0 = i. Furthermore, the equations can be drastically simplified assuming the timescales for
temperature evolution to be much longer than the RSJ scale, i.e. γ, k ≪ 1. Then, one can solve the RSJ equation
assuming a τ [45]:

ℏφ̇
2e

= V (t) = RJ
I20 − I2J(τ)

I0 + IJ(τ) cos(
√
I20 − I2J(τ)ωRSJ t)

. (S15)

Let us assume that
√
I20 − I2J(τ)ωRSJ ≫ Gth

C = γ
k . In this case, the oscillatory component of φ̇(t) leads only to a weak

variation of temperature suppressed by the factor γ√
I2
0−I2

J (τ)ωRSJ

with respect to the average one. This approximation

will turn out to be correct for all of the results, as is shown below. In this approximation, we can then substitute φ̇2

with its time average resulting in:

τ̇ = −γτ + ki
√
i2 − i2J(τ)θ(i

2 − i2J(τ)), (S16)

where the θ(i2 − i2J(τ)) function reflects the absence of Joule heating in the superconducting state i < iJ .

1. General properties

Several general properties can be deduced from (S16) with few general assumptions about the form of i2J(τ).
In particular, (1): iJ(0) = 1 (by normalization) and (2): iJ(τ > 1) ≪ 1 (assumes that there is a characteristic
temperature scale TJ for the Josephson current). In the DC dirve case, the steady-state solutions of Eq. (S16), i.e.
τ̇ = 0, are experimentally observable.

For i < 1 there is always a solution τ = 0, ⟨φ̇⟩ = 0, reflecting the superconducting branch of the IV characteristic.
For sufficiently large i ≫

√
γ
k there also exists a stable solution τ = k

γ i
2 ≫ 1, iJ(τ ≪ 1) ≪ i, where we used

assumption (2). This solution is characterized by a finite voltage corresponding to Ohm’s law V ≈ IRJ . Note that
for k ≫ γ this solution can exist for i < 1 and therefore coexist with the superconducting solution. This implies
existence of a hysteretic IV characteristic with a discontinuous transition between the two at i = 1 (switching).

Finally, one can show that the resistive branch typically does not extend to i = 0, implying the existence of an
abrupt transition into the superconducting state at ir < 1. In particular, the r.h.s. of Eq. (S16) is simply −γτ for
i < iJ(τ). For small i ≪ 1, τ∗, where i = iJ(τ

∗) is expected to be of the order 1. Above τ∗, the r.h.s. of Eq. (S16)
can be estimated to be below −γτ∗ + ki2. Assuming τ∗ ≈ 1 for i → 0, we find that for i ≪ γ/k the r.h.s. of Eq.
(S16) is negative for all τ , implying that the only steady-state solution is τ = 0 in this regime.

2. Switching

We now solve the equation (S16) for a particular form of IJ(τ) given by (S7), (S8). For i = 1 in (S16), we obtain a
steady-state solution with τ = 0 and τ = ∆τ , where

∆τ =

{
2g2

g2+1 g < 1

g g ≥ 1

∣∣∣∣∣
model (1)

,

{
g2 g < 1

g g ≥ 1

∣∣∣∣∣
model (2)

, (S17)

where

g =
I2cRJ

TJGth
≡ k

γ
. (S18)

As a result, there is a finite voltage jump at I0 = Ic

∆V =

{
IcRJ

2g
g2+1 g < 1

IcRJ g ≥ 1

∣∣∣∣∣
model (1)

,

{
I0RJg g < 1

I0RJ g ≥ 1

∣∣∣∣∣
model (2)

. (S19)

The case g ≥ 1 corresponds to the Josephson current being completely suppressed by heating. The IV characteristic
is expected then to be simply linear already above Ic: V = I0RJ . In both cases, at large enough current values one

expects that the Joule heating completely suppresses IJ , resulting in φ̇
2e = I0RJ and T =

I2
0RJ

Gth
> TJ .
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3. Retrapping

The solution (S17) with a finite temperature at I0 = Ic does not immediately cease to exist as I0 is decreased. This
indicates a bistability of the system, such that decreasing current below Ic does not immediately lead to retrapping
into the superconducting state. Instead, retrapping occurs when a finite voltage/finite temperature solution ceases to
exist.

In particular, let us consider the steady-state solutions of equation (S12) with iJ(τ) =
√
1− τ (model (2), Eq. (S8))

for τ < 1

τ = gi
√
i2 − (1− τ). (S20)

The solutions are:

τ =
(gi)2 ± gi

√
g2i2 + 4i2 − 4

2
. (S21)

The solution with ”-” sign can be shown to be unstable, i.e. any small deviation from it will make the system evolve
away from this value - τ will grow for τ = τ− + 0 and decrease for τ = τ− − 0. At i = 1, as noted above, τ− = 0 and
becomes negative for larger i, indicating the instability of the zero-temperature solution.

Eq. (S21) also allows to obtain retrapping current value, where real solutions for τ cease to exist and finite τ becomes
unstable. This occurs when the expression under the square root in Eq. (S21) turns to zero; as this expression is a
monotonic function of i, no new solutions may appear for lower i. The resulting value is ir = 2√

g2+4
, however, one

notes that the resulting solution does not necessarily satisfy τ < 1: τr =
gi2r
2 = 2g2

4+g2 . For g > 2, τr > 1 and the

above analysis is inapplicable. In that case, the maximum of the l.h.s. of Eq. (S16) is always at τ = 1 for a fixed i.
Therefore, retrapping occurs when the r.h.s. of Eq. (S21) at τ = 1 becomes zero, i.e. −γ + ki2r = 0. It is clear that
for lower i the r.h.s of Eq. (S21) will be negative and thus only τ = 0 will be a steady state solution. Taking both
cases into account and performing similar calculations for case Eq. (S7), we get:

ir ≡ Ir − Iexc
Ic − Iexc

=

√√
1 + 4g2 − 1

2g2

∣∣∣∣∣∣
model (1)

,


2√
g2+4

g < 2

1√
g g ≥ 2

∣∣∣∣∣∣
model (2)

,

τr =

√
1 + 4g2 − 1√
1 + 4g2 + 1

∣∣∣∣∣
model (1)

,

{
2g2

g2+4 g < 2

1 g ≥ 2

∣∣∣∣∣
model (2)

,

(S22)

For weak thermal conductance, g ≫ 1 these expression yields the same value of ir ≈ 1/
√
g resulting in a large

hysteresis, whereas for good heat conductance the result is ir ≈ 1−O(g2), asymptotically approaching 1.

We can comment now on the applicability of the approximation
√
i20 − i2J(τ)ωRSJ ≫ γ we used above. This

approximation may break when τ becomes too small, such that |IJ(τr) − I0| ≪ IJ(0). However, the hysteresis size
in experiments results in g ∼ 1 for both models such that 1 − τ ∼ 1 and our assumption is well satisfied for values
relevant for our experimental observations.

Another useful quantity is ith, where τ(ith) = 1:

ith =
1
√
g
, (S23)

which is true for both models since IJ(1) = 0. For i < ith deviations from the linear IV characteristic will appear;
note that for g > 2 in the model (2) there will be no deviations from linear IV down to the retrapping current.
In Fig. S8 we compare with numerical results obtained from numerical solution of Eqs. (S3,S4) on increas-

ing/decreasing current. The results are for γ = 0.01 and a varying value of k. The external current is sweeped
linearly in time from 0 to 1.3 on switching or vice versa with rate 1.3/500000. Results for both models agree well
with the analytical results (S22). Qualitatively, the dependencies for both models are similar, but quantitative values
disagree by about 15 % at most.

C. Response to RF

1. Switching

Assuming ωRSJ ≫ ωL, γ, k allows one to make a simple argument about switching based on (S10). The initial state
of the system is τ = 0, iJ(0) = 1 and one can consider that iSC(t) changes adiabatically. Finite voltage will appear
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FIG. S8. Dependence of switching and retrapping current on g, (S18); dashed lines are analytical results (S22).

then when iSC(t) > 1 at any moment, i.e. isw is set by maxt iSC(t) = 1. Solving Eq. (S9) in the RJ ≪ R limit for
i(t) = iDC + irf sin(ωt) we obtain:

iSC(t) = iDC + irf
ωL√

ω2
L + ω2

sin(ωt − ψω),

ψω = arctan
ω

ωL
.

(S24)

From the criterion maxt iSC(t) = 1 derived above, we obtain the switching DC current:

isw = 1− irf
ωL√

ω2
L + ω2

. (S25)

This result implies a 1/ω asymptotic approach to the DC value at large frequencies ω ≫ ωL. This results compares
well to the numerical results in Fig. S6. We can fit the high-frequency I−s (above 2.5 MHz) curves to get 2.7 MHz for
panel (a) and 4.8 MHz for panel (c), whereas ω =L= 2.5 MHz and 4.9 MHz for the two cases.
We note that due to limited frequency range, a scaling analysis of experimental data at large ω, similar to the

retrapping one, is not feasible for the switching current.

2. Retrapping: General properties

Here we show below that for any analytic function iJ(τ) the high-frequency asymptotic behavior of ir(ω) should
have a wide range of ir(ω) ∝ 1/ω2 behavior. In the following we will use the approximation iJ(τ) ≪ iSC(t) that is

well motivated by the experimental results. In particular, the voltage ⟨φ̇⟩ ≈
√
i2SC − i2J on the junction deviates from

simple Ohm’s law V = IRJ due to nonzero iJ . However, in the experiments there are only very small deviations from
the linear behavior even extremely close to retrapping, suggesting that iJ(τ) ≪ iSC(t).
Let us simplify the problem for the case where γ, k ≪ 1 (Eq. (S12)), corresponding to ωRSJ being much larger than

the other frequency scales. The second (RSJ) equation can then be solved, assuming that RF frequency is also small.

As a result, one gets ⟨φ̇2⟩ ≈ i0
√
i20 − i2J , such that a closed-form equation for τ is obtained. In the limit iJ ≪ iSC the

resulting equation is:

τ̇ ≈ −γτ + ki20 − k
i2J(τ)

2
− k

i4J(τ)

8i2SC(t)
+ ki2SC(t). (S26)

This equation allows to discuss the large-frequency asymptotic of the retrapping current. In particular, we use the
ansatz for τ(t) = τ0(t)+ τ1(t), where τ1(t) is an oscillating function with frequency of the order ω and τ0(t) is a slowly
(on the scale of 1/ω) varying function. Using ω ≫ k, γ, the equation for τ1(t) reads:

τ̇1 ≈ k[2iDC ĩrf sin(ωt) +−ĩ2rf cos(2ωt)/2], (S27)
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with the solution:

τ1 ≈ −2kiDC ĩrf
ω

cos(ωt)−
kĩ2rf
4ω

sin(2ωt) (S28)

where we used the form of iSC(t) from (S24).
To obtain the equation for τ0, we average the equation (S26) over time period 2π/ω, such that the oscillatory terms

average out to zero. Moreover, for large ω, we can expand the equation in τ1. Assuming iJ(τ) to be an analytic
function, we get:

τ̇0 = −γτ0 + ki20 − k
i2J(τ0)

2
+ ki2DC + ĩ2rf/2

−k(i′2J (τ0) + i′′J(τ0)iJ(τ0) +O([iJ/iSC ]
2)
⟨τ21 ⟩t
2

− ki3J(τ0)i
′2
J (τ0)

〈
τ1(t)

2i2SC(t)

〉
.

(S29)

At large ω, the second line can be treated perturbatively in 1/ω, shifting ir to a larger value (i.e., increase in iDC is
required to compensate for it). Importantly, the first term on the second line scales as 1/ω2, while the second one - as
1/ω. The latter is however, accompanied by a small factor [iJ/iSC ]

2 (and for weak RF drive, a factor of ĩrf/iDC ≪ 1
in addition to that) such that in practice there is a wide region where ir = ir +O(1/ω2).

3. Retrapping: model analysis

We now consider the asymptotic behavior of the retrapping current for the two models of iJ(τ): (S7) and (S8).
Importantly, the outcome will depend qualitatively on the from of iJ(τ).
Model 1 (S7):

τ̇ = −γτ + kiJ(τ)
2 ≈ −γτ − k

(1− τ)2

2
+ ki20(t). (S30)

We can solve this equation perturbatively in RF amplitude i0 = i + iRF sin(ωt) for frequencies much larger than
γ: τ ≈ τ0(t) + τ1(t), where τ1(t) is an oscillating function with frequency of the order ω and τ0(t) is a slowly (on the
scale of 1/ω) varying function. One gets τ1(t) ≈ − 2kiiRF cosωt

ω . The equation for the ”slow” component τ0 takes the
form:

τ̇0 = −γτ0 − k
(1− τ0)

2

2
+ ki2 +

ki2rf
2

− k

(
kiiRF

ω

)2

. (S31)

One notices that for i below a critical value, the r.h.s. is purely negative and thus τ goes to zero eventually (retrapping
occurs). The corresponding current value is:

ki2r +
ki2rf
2

− k

(
kiiRF

ω

)2

= γ
(
1− γ

2k

)
,

ir =

√
γ

k

(
1− γ

2k

)
−
i2rf
2

+

(
kiiRF

ω

)2

≈ ir0 −
i2rf
4

+
k2i2r0i

2
RF

2ω2
.

(S32)

There are two important observations: (1) Retrapping current depends as 1/ω2 at large ω (2) the coefficient is
independent of γ. In hindsight, this is not unreasonable since we’re discussing ω ≫ γ.
Numerical solutions seem to conform to this prediction; the prefactor differs by a factor 2-3 though. The empirical
fitting function that fits numerical data well is:

Irf (ω) = I∞rf +
(I0rf − I∞rf )Γ

2

ω2 + Γ2
, (S33)

where Γ2 ∼ ir0iRF k
2. iRF should be equal to (I0rf − I∞rf ), so this still allows to determine γ using the hysteresis

width.

Model 2:
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We will demonstrate now that for model (2), the asymptotic behavior of ir(ω) is ∼ 1
ω for k > 2γ.

The solution can be found analytically as follows. The equation is:

τ̇ ≈ −γτ − k
1− τ

2
θ(1− τ) + a+ b sin(ωt), (S34)

where a = ki20, b = 2ki0irf and we neglected the ki2rf sin(2ωt) term, which is possible in the limit irf ≪ i0. Note also

that the response of τ to this term is also suppressed by a factor of 1/4 with respect to sin(ωt). In the absence of RF
drive, the retrapping current value is set by γ = a corresponding to τ = 1.
We assume that over one period of the RF drive there are two time intervals, where one has τ > 1 and the other,

τ < 1. The general solution is then a periodic piecewise function with period 2π/ω. We divide a single period in two
parts as noted above; for ωt ∈ (Φ0−Φ/2,Φ0+Φ/2) one has τ < 1, while for ωt ∈ (Φ0+Φ/2,Φ0−Φ/2+2π) one has τ > 1.
Φ0 and Φ are constants to be determined by the boundary conditions. For a single period ωt ∈ (Φ0−Φ/2,Φ0−Φ/2+2π).

τ =

{
C0e

k−2γ
2 [t−Φ0] − a−k/2

δ − bω cosωt+δ sinωt
ω2+δ2 tω ∈ (Φ0 − Φ/2,Φ0 +Φ/2)

C1e
−γ[t−Φ0−π] + a

γ − bω cosωt−γ sinωt
ω2+γ2 tω ∈ (Φ0 +Φ/2,Φ0 − Φ/2 + 2π),

(S35)

where

δ = k/2− γ, (S36)

and we consider the case k > 2γ. The boundary conditions τ = 1 at the region’s edges are

τ([Φ0 − Φ/2]/ω) = τ([Φ0 +Φ/2]/ω) = τ([Φ0 − Φ/2 + 2π]/ω) = 1. (S37)

This results in the following equations:

C0 sinh

(
Φδ

2ω

)
+ b

ω

ω2 + δ2
sinΦ0 sin

Φ

2
− b

δ

ω2 + δ2
cosΦ0 sin

Φ

2
= 0,

C0 cosh

(
Φδ

2ω

)
+
a− k/2

γ − k/2
− b

ω

ω2 + δ2
cosΦ0 cos

Φ

2
− b

δ

ω2 + δ2
sinΦ0 cos

Φ

2
= 0,

C1 sinh

(
γ
2π − Φ

2ω

)
+ b

ω

ω2 + γ2
sinΦ0 sin

Φ

2
+ b

γ

ω2 + γ2
cosΦ0 sin

Φ

2
= 0,

C1 cosh

(
γ
2π − Φ

2ω

)
+
a− γ

γ
− b

ω

ω2 + γ2
cosΦ0 cos

Φ

2
+ b

γ

ω2 + γ2
sinΦ0 cos

Φ

2
= 0.

(S38)

The coefficients C0, C1 can be excluded first resulting in two equations:

bωδ

(ω2 + δ2)(a− γ)

[
cosh

(
Φδ

2ω

)
sin

Φ

2

(
sinΦ0 −

δ

ω
cosΦ0

)
+sinh

(
Φδ

2ω

)
cos

Φ

2

(
cosΦ0 +

δ

ω
sinΦ0

)]
+ sinh

(
Φδ

2ω

)
= 0,

bωγ

(ω2 + γ2)(a− γ)

[
cosh

(
γ
2π − Φ

2ω

)
sin

Φ

2

(
sinΦ0 +

γ

ω
cosΦ0

)
+sinh

(
γ
2π − Φ

2ω

)
cos

Φ

2

(
cosΦ0 −

δ

ω
sinΦ0

)]
− sinh

(
γ
2π − Φ

2ω

)
= 0.

(S39)

In the limit ω → ∞ one expects acr − γ → 0, where for acr = ki2r, (i.e. the relevant current values are close to
the undriven retrapping current set by a = γ). As a result, for both terms in the equation above to be of the same
order in this limit, the content of the brackets has to go to zero, implying that either Φ0 → 0 or Φ → 0. The second
possibility is self-contradictory, as for Φ = 0 the system is always at τ > 1. Thus, Φ0 → 0 in the ω → ∞ limit. In the
leading order, we assume that Φ0 ∝ 1/ω and show below that this leads to a consistent solution in the ω → ∞ limit.

For Φ0 ∝ 1/ω, keeping leading terms in 1/ω in the first equation results in:

Φ0 ≈ δ

ω
−

Φδ
2ω

sin Φ
2

(
(a− γ)ω

bδ
+ cos

Φ

2

)
, (S40)
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which requires a− γ ∝ 1/ω to be shown below. We next get for Φ:

k sin
Φ

2
+ (2πγ − kΦ/2) cos

Φ

2
=

2π(a− γ)ω

b
. (S41)

The function on the l.h.s. is bounded from above and below, so the solution exist only for a range of Φ. The
extrema of the l.h.s. occur at Φ = 0, 2π, 4πγk , where Φ = 0 and Φ = 2π correspond to maxima with values 2πγ and

2π(k/2 − γ), respectively and Φ = 4πγ
k is the minimum with the value k sin 2πγ

k . Thus, a nontrivial solution exists

for k sin 2πγ
k < 2π(a−γ)ω

b < max[2πγ, 2π(k/2− γ)]. Using the definitions of a and b we find 2π(a−γ)ω
b ≈ 4πω(i0−

√
γ/k)

irf
,

which yields

ir(ω → ∞) ≈
√
γ

k
+
kirf sin

2πγ
k

2πω
(S42)

This leads to the empirical fitting function

Irf (ω) = I∞rf +
(I0rf − I∞rf )Γ

(2)√
ω2 + (Γ(2))2

,

Γ(2) =
k sin 2πγ

k

2π

(S43)

We can compare this to numerical results in Sec. GA. For γ = 0.0025 numerical fitting of the results in Fig. S6
yields Γ(2) ≈ 0.49 MHz, while the expression (S43) yields 0.4 MHz. The discrepancy can be attributed to the influence
of the kinetic inductance, so that ωL ≫ γ, k is only approximate. On the other hand, for data in panel (c) of Fig. S6
the model fails, yielding 0.025 MHz, while the characteristic scale in the plot is still of the order MHz. The reason
for this discrepancy is that for γ/k > 1/2 the model exhibits a ∼ 1/ω2 at ω ≫ 1 behavior as does model (1) or any
analytical IJ(T ) dependence will.

D. Effects of finite R

We can now also assess the effects of a finite RJ/Rbulk ratio in Eq. (S9). As discussed above, for i > iJ ϕ̇ evolves
with time (S15) at high frequencies of the order ωRSJ for all regimes of interest. Therefore,
Eq. (S9) can be solved as:

iSC(t) = ωLe
−ωLt

∫ t

−∞
dt′

[
i(t′)− φ̇

RJ

Rbulk

]
≈ ĩ(t)− ⟨φ̇⟩ RJ

Rbulk
, (S44)

resulting in a renormalization of the current in (S10) iSC(t) → ĩ(t) − ⟨φ̇⟩ RJ

Rbulk
. We now use the expression for ⟨φ̇⟩

from Eq.(S10):

⟨φ̇⟩ =

√(
ĩ− ⟨φ̇⟩ RJ

Rbulk

)2

− i2J . (S45)

Solving the equation for ⟨φ̇⟩ we obtain (only one of two roots is physical):

⟨φ̇⟩ =

√
ĩ2 − i2J

(
1− R2

J

R2
bulk

)
− ĩ RJ

Rbulk

1− R2
J

R2
bulk

. (S46)

Clearly, a small RJ leads to a weak current renormalization. On the other hand, (S46) is well-defined for all values of
RJ and for large RJ is approximately equal to ⟨φ̇⟩ ≈ (̃i− iJ)/(RJ/Rbulk), implying that current through the junction
is always renormalized to value close to iJ , which would strongly suppress hysteretic effects.
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