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HIGHER COMPLEX SOBOLEV SPACES ON COMPLEX MANIFOLDS
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ABSTRACT. We study higher complex Sobolev spaces and their corresponding functional
capacities. In particular, we prove the Moser-Trudinger inequality for these spaces and dis-
cuss some relationships between these spaces and the complex Monge-Ampere
equation.
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1. INTRODUCTION

In this paper, we study higher complex Sobolev spaces introduced by Dinh which
extend the notion of complex Sobolev space introduced earlier by himself and Sibony
in [DSO06al]l. The complex Sobolev space has been systematically studied by Vigny in
[Vig07]]. The key observation is that this space takes into account the complex structure
of the ambient space and is stable under holomorphic transformations; thus, one could
view it as a tailored version of the classical Sobolev space to the complex setting. As a
consequence, this functional space plays a key role in complex dynamics and it leads to
many fruitful applications in this field (e.g., see [BD22, DKW21), [DS06a, DV24, Vig15,
Vu20]). Not limited to the theory of complex dynamics, the complex Sobolev spaces
also find applications in other fields of mathematics. For example, in the study of the
complex Monge-Ampere equation, this space has been used as a test space to obtain
the necessary and sufficient conditions for whether a given measure is a Monge-Ampere
measure with Holder potentials (see [DKN20, DMV20]). Moreover, it has recently found
applications in studying uniform diameter bound for Kahler metrics (see [Vu23]]). Due
to its importance, the complex Sobolev space has attracted a lot of attention from several
mathematicians (see[[DMV20, Vig07, VV23, Vu23]).

The classical Sobolev spaces W are important tools in studying differential equations
and are usually used as solution spaces for many fundamental equations. An important

Date: May 13, 2024.


http://arxiv.org/abs/2405.06385v1

fact is that when n and p go to infinity, the solution gains more regularity and becomes
the ancient solution.

We study higher complex Sobolev spaces in both local (i.e., on bounded domains
of C*) and global (i.e., on compact Kiahler manifolds) settings. Let Q be a bounded
domain in C*, we denote by PSH((?) the set of plurisubharmonic (psh) functions in €. Let
(X,w) be a compact Kahler manifold of dimension &, we denote by QPSH(X) the set of
quasi-plurisubharmonic (qpsh) functions on X. These functions are locally given as the
sum of a smooth and a plurisubharmonic function. We also denote by PSH(.X, w) the set
of w-plurisubharmonic (w-psh) functions on X, ie., the set of functions
¢ € L'(X,RU {—o0}) such that » qpsh and w + dd“p > 0.

Definition 1.1 (Higher complex Sobolev spaces). For ¢ > 1, we define inductively
q-complex Sobolev spaces W as follows

(1) (local setting) W () is the set of all functions ¢ € W"*(Q) such that dp A dp <
dd“ for some 1 € W, (Q) N PSH(Q) (v € PSH(Q2) when q = 1) satisfying

/ ddy AWl < 400, where w is the standard Kdhler form on CF.
Q

(2) (global setting) W(X) is the set of all functions ¢ € W'?(X) such that dp Nd°p <
cpw+dd®y for some constant ¢, > 0 and ¢» € W (X)NQPSH(X) (v € QPSH(X)
when ¢ = 1).

We will introduce some notions and technical tools to study these functional spaces.
In particular, using techniques in [DS06al, Vig07]], we will build a quasinorm || - ||., on
Wy which makes W a quasi-Banach space sharing many properties with 7. After that,
we will prove some basic properties of these spaces and consider some specific examples.
Moreover, we also introduce a family of Vigny’s functional capacities and show that all
these capacities characterize pluripolar sets, similarly to how the original Vigny’s capacity
does.

In Section 3] we will prove the Moser-Trudinger inequalities for these higher complex
Sobolev spaces. An important point in our results is that the exponent in the Moser-
Trudinger inequalities goes to infinity when ¢ goes to infinity. It follows that when ¢
grows, our spaces will gain more regularity and get closer to the bounded functions
space.

Theorem 1.2 (Moser-Trudinger inequality in a local setting). Let a € [1,29) and K be a
compact subset of the unit ball B of C*. Let vy,..., v, be psh functions which are Holder
continuous of Holder exponent 3 for some 3 € (0,1) on B. Let p € W/ (B). Assume that
llvjllce <1forl <j<kand|pl|., <1 Then there exist strictly positive constants ¢; and
¢y depending on K, «, and ( but independent of ¢, vy, ..., v, such that

/ e ddevy A -+ A ddCuy, < .
K

In particular, there exist strictly positive constants ¢; and c; depending on K and « such that
for every o € Wy(B) with ||¢||., < 1, there holds

«
/ etk < ey,
K



where w is the standard Kdhler form in CF.

Note that two functions in W (B) are equal if they are equal almost everywhere. By
[VV23, Theorem 1.1] (see also [DMV20]), for every function ¢ in W;(B) (and thus
W7 (B)), all points are Lebesgue point except for points in some pluripolar set. So by
considering the canonical values of ¢ at its Lebesgue points, the first integral in the
theorem makes sense as dd°v; A - -+ A dd°v;, has no mass on pluripolar sets. Throughout
this paper, we always use the canonical values of ¢ as above.

The Moser-Trudinger inequality for W was proven in [DMV20] by using the slicing
method. Recently, in [VV23]], alongside the main goal of proving that the complement
of the Lebesgue point set of functions in W is pluripolar, Vigny and Vu obtained a ver-
sion of the Moser-Trudinger inequality for W} which corresponds to the last assertion of
Theorem [1.2] for ¢ = 1. For ¢ € W (B), their strategy was to bound |¢|* by some psh
function which allows them to use Skoda’s integrability theorem. The construction of
the psh bound is motivated by the proof of Josefson’s theorem (see [Jos78]). Following
their strategy, we construct the psh bound for [¢|* where ¢ € W (B) (see Theorem [3.17]
below) and deduce Theorem [1.2] by using a singular version of Skoda’s integrability
theorem which has been obtained in [[DNS10] (see also [[Kaul?7]]). We also obtain the
following global version of Theorem [1.2]

Theorem 1.3 (Moser-Trudinger inequality in a global setting). Let (X,w) be a compact
Kdhler manifold and « € [1,2%). Let vy, ..., v, be w-psh functions which are Holder contin-
uous of Holder exponent 3 for some 3 € (0,1). Let ¢ € W7 (X). Assume that ||v;||cs < 1 for
1 <j<kand ||, <1 Then there exist strictly positive constants ¢, and c, depending
on X,w,«a and [ but independent of ¢, vy, ..., v such that

/ 601|g0|°‘(w + ddc’Ul) A--- A (w —+ ddcvk) < ¢9.
X

In particular, there exist strictly positive constants c¢; and ¢, depending on X, o, and w such
that for every o € Wy (X) with [|o||., < 1, there holds

«
/ eclPl® ok < Cy.
X

In Section 4] we will discuss the connection of the higher complex Sobolev spaces to
the theory of complex Monge-Ampere equation. In the global setting, the class £(X,w),
introduced by Guedj-Zeriahi in [[GZ07], is the largest class of w-psh functions on which
the complex Monge-Ampere operator is well defined and the comparison principle is
valid. We will show that w-psh functions with bounded || - ||. ,-norm belong to this space
for every ¢ > 1. Furthermore, among the subsets of £(X,w), the finite energy classes
EP(X,w) have important applications in the variational approach to complex Monge-
Ampere equation (see [BBGZ13]). In [DGL20], the authors proved a Moser-Trudinger
inequality for functions in £7(X,w). The crucial point here is that the exponent in their
Moser-Trudinger inequality is 1 4+ p/k which converges to infinity as p goes to infinity.
This similar property with our space W7 (X) motivated us to study if W7 (X)NPSH(X,w)
is contained in some £P(9) with p(q) increases to infinity when ¢ goes to infinity. It turns
out we can choose p(q) = g — 1.



Theorem 1.4. Let (X, w) be a compact Kdhler manifold. Then we have the following inclu-
sions:

(1) Wr(X)NPSH(X,w) C £(X,w) for ¢ > 1,

(2) W (X)NPSH(X,w) C £&7(X,w) for ¢ > 2.

The proof of this theorem is by induction and relies on estimations around energy
functionals.

In the local setting, the domain of the definition of the Monge-Ampeére operator D({2)
has been well understood after the works of Cegrell ([Ceg04]]) and Btocki ([Blo06]). It
has been proved in [Blo04] that in C?, the Monge-Ampére operator is well-defined for
functions in . and thus in Wiiee» where WY is the set of functions that locally are
functions in W;. Our next theorem generalizes this fact by showing that the Monge-
Ampére operator (dd®-)* is well-defined in the sense of Cegrell-Btocki for psh locally
g-complex Sobolev functions when ¢ > k — 1.

Theorem 1.5. W7, () NPSH(Q) C D(Q) for ¢ > k — L.

We prove this theorem by defining the product of (1, 1)-currents using an induction on
the number of currents.

The paper is organized as follows. In Section 2, we consider some basic properties of
W7 and corresponding Vigny’s capacity. In Section 3, we construct a psh bound in order
to prove Theorems [1.2] and Finally, in Section 4, we study the relationship between
W7 and the complex Monge-Ampére equation and prove Theorems [1.4 and [1.5l

2. HIGHER COMPLEX SOBOLEV SPACE

In this section, we prove some basic properties and give examples of our spaces. We
also study their corresponding Vigny’s capacities.

2.1. Quasinorms and compactness. We now define the quasinorm on W;. First, we
consider the local case. Let ¢y € W;(€2). Then, by definition, there exist psh functions
©1,...,p, 10 Q such that

|dd®p;|| < +ooforall j =1,....q
and
(21) d(pj,1 A dc(pj,1 < ddc(pj for allj = 1, o q.

We call a sequence (i1, .. ., ¢,) satisfying (2.1) is a defining sequence of y, in W (£2). We
define the g-star quasinorm for W;(2) as follows

q .
lellwz@) = ll¢llze + min { Z Hddcapjﬂl/y : (¢1,-..,¢,) is a defining sequence of 4,0}.
j=1
In the sequel, for simplicity, we will use the notation || - ||, instead of || - [w; @) when
there is no possible confusion of domain.
Next, we consider the global case. Let ¢y € Wy (X). Then, by definition, there exist
gpsh functions ¢y, ..., ¢, in X and constants ¢y, ..., c, > 0 such that

(22) d(pj_l N dCQDj_l < Cjw + ddc@j for allj = ]_, ...,q.



We call a sequence ((cl, ©1), ..., (Cqs goq)) satisfying (2.2)) is a defining sequence of ¢, in
W7 (X). We define the g-star quasinorm for W*(.X) as follows

q _
l¢lleq = ll¢llz2 + min { Zc;/y : ((cl, ©1),. .., (cq, <pq)) is a defining sequence of <p}.
j=1

In the global case, note that by Poincaré-Wirtinger inequality, if we replace L? in the
definition of || - ||., by L', we obtain an equivalent quasinorm.

Proposition 2.1. The function ¢ ~ ||¢||., defines a quasinorm on Wy (Q2) (and Wy (X)
respectively).

Proof. Consider the local case. We first check the homogeneity. Let {» = Ay, then
(o1, ..,p,) is a defining sequence for ¢ iff (|\|*¢y,...,|\* ¢,) is a defining sequence
for ¢». Hence, ||¢|l., = |A|ll¢]l«q- We now only need to check the quasi-triangle in-
equality. Let ¢ and ¢ be functions in W (Q2) where (¢, ..., ¢,) and (¢4, ...,9,) are two
corresponding defining sequences. Put f = p+1. Itis sufficient to prove that (fi, ..., f,),

Jj—1

with f; = 427(% +1);), is a defining sequence of f satisfying

q ) q v q .
S ldde 1< 272 (3 sV + 3 e
j=1 j=1 J=1

We prove it by induction on ¢. For ¢ = 1, we have
df Nd°f = dp Nd°p + dib A dY + (de Ad“Y + dip A\ d°p) .
It follows from Cauchy-Schwarz inequality that
dp NdY +dp Nd°o < dp N d°p + dip A dY.
This implies that
df Nd°f <2(dp Nd°p + dip A dY) < dd° (2¢1 + 2¢) .
Then, for f; = 2(¢1 + ¥1), we have
df Nd°f < dd°fy,
and
ldd° fi]]V? < V2([[ddCon |2 + | ddyn['7?).
This finishes the proof for ¢ = 1. Now we assume that the desired property is true for ¢—1

202

where ¢ > 2. We have f,_; = £5—(¢,1 + 14_1). It thus follows from Cauchy-Schwarz

inequality and the definition of defining sequences that

29-1

dqul A dchfl S

9 dda(%@ +‘d@)-

Then, for f, = g(apq +1),), we have
dfq—l A dch—l < ddcha

and
[dde f, |V/** < 2712 ([|ddepg ||V + [|dd u,||M*") .



Thus, by the induction hypothesis, we have

q _ q—1 ) .
S ddeflI* = D7 ldd £ + a1
j=1

j=1
-1 -1
1-1/24-1 < e, |1/27 < e, (11/27
<2V (N ddoy |+ D lddewy )
j=1 j=1
217 (| dd iy |2 + |lddusy )

q ) q )
<22 (37 |+ Y e ).
j=1 j=1

as desired. The proof in the local case is thus completed.
Consider the global case. The homogeneity is clear. Now let ¢ and ¢ be functions

in Wy(X) where ((al,apl) (aq,apq)) and ((61,1/11) (Bq,z/zq)> are corresponding
defining sequences. Let [ = ¢ + w As in the local case, 1t 1s sufficient to prove that

(11 0o (s £))> with 95 = (0 + 8) and f; = 5=, + 1), is a defining
sequence of f satisfying

q q q
1/279 — 1/27 1/27
E %‘/ < 2! 1/2q(§ :%‘/ + E @/ )
j=1

i=1 j=1
We prove it by induction on ¢. For ¢ = 1, the same computation as in the local case gives
df Nd°f < (2a1 + 261) w + dd° (21 + 2¢) .
Then, for v; = 2(ay + 81) and f; = 2(p1 + 7 ), we have
df Nd°f < mw +dd° fi,
and
1/2 < \/—( 1/2 I 51/2)-

This finishes the proof for ¢ = 1. Now we assume that the desired property is true for
¢ — 1 where ¢ > 2. We have v,; = ‘QT(aq_l + By—1) and f,_4 = 427(%_1 + Yg-1).
It thus follows from Cauchy-Schwarz inequality and the definition of defining sequences
that

201 201

dfg-r Ndfq1 < T(O‘q + By)w +

dd® (g + 1) -
Then, for v, = (aq +f,) and f, = (<pq +1,), we have

dfg1a Nd°fg1 < yqw +dd° fy,

and
1/24 1—-1/24 1/24 1/24
v <2 (a4 B



It thus follows from the induction hypothesis that

q q—1
1/27 1/27
I WH S
j=1 j=1
g—1 ) q—1 )
< 21—1/2(171(2 a;/Z] n Z 5;/%) 4 gl-1/2 (a;/ﬁ i 6;/2(1)
j=1 j=1
. 1/29 . 1/29
1-1/24
<27 (Yal 308,
j=1 j=1
as desired. The proof is completed. O

Remark 2.2. Note that when the domain 2 is nice (e.g., convex domain), we have W} =
W*. This restriction is from the fact that we cannot solve the equation dd°p = T in every
domain. The spaces W is decreasing in q. Indeed, by definition, the g-star quasinorms are
increasing in ¢, namely

1@ll+q < [l@ll« 41 for every o € Wy,

Next, we prove a compactness property of .

Proposition 2.3. Let (y,) be a bounded sequence in Wy () (W} (X) respectively). Then
there exists a subsequence (i,,;) and a function v € Wy (€2) (W7 (X) respectively) such that
©n, converges weakly to ¢ in Wh? and ||¢l|., < ‘liI_*I_l l@n; |-

Jj—+o0

Proof. We prove the proposition for the local case only, as the proof for the global case
merely requires a modification of this proof.

We proceed by induction on ¢. For ¢ = 1, the proposition is a slight modification of
[Vig07, Proposition 4]. Now, we assume that the desired property is true for ¢ — 1 where
q > 1. Let ¢, € Wy, such that dp, A d°p,, < dd“¢,, and |||« .1 is bounded. It follows
from (i,) is bounded in W and ||o,[«q-1 < [[¢nll+,q that (¢,) is also bounded in W, ;.
Thus, by the induction hypothesis, there are subsequences (v, ), (¥n,) of (¢n), (¥,) and
functions ¢,¢ € Wy, such that ¢, 9, converge weakly to ¢, 1) respectively in W2
and [¢|«g-1 < jEIgloo |4, || +,g-1. Hence, dd“y,,, converges weakly to dd“). Moreover, as

noted in the proof of [Vig07, Proposition 4], if © is a weak limit of (dy,, A d°p,;), then
dp N d°p < ©. So, we have dp A d°p < dd*y. Therefore, p € W Let (Yo, -, %oq-1)
and (¥n; 1, - -, ¥n; q-1) be respectively the defining sequence of ¢ and v,,; such that

q—1
t
g1 = 1]z + > lldd o[
t=1
and
= 1/2¢
1, lleigm1 = oy Iz + D [|dd ]|
t=1

We observe that
q—1

(2.3) loll-q < llllzz + ldd ]2+ llddgo V>

t=1



It follows from |[¢)]. -1 < ‘11111 19n, ||+,q—1 and ¢y, ¥, converge weakly to ¢, ¥ respec-
j—+oo

tively in W12 that

(2.4) lpllze < liminf [l | 22,
J—+o0
and
(2.5) |ddy||'? < liminf ||ddp,,, |2,
J—+oo
and
g—1 q—1
(2.6) Dl |2 < T D ldd* o2
J—+oo
t=1 t=1

Combining inequalities (2.3), (2.4), (2.3), and (2.6) gives us

q—1
.. c c t+1
Il < timin (11w, ll2 + lldd 0, 2 4 D dd i, o).

t=1

Then, by the choice of 1,,,, we obtain
o < liminf |
Il < limind o0, -
By passing to a subsequence of (¢,,;), we complete the proof. O
Now, we prove that with the quasinorm || - |. ,, Wy is a quasi-Banach space.
Proposition 2.4. W7 endowed with the quasinorm || - |. , is a quasi-Banach space.

Proof. The proof proceeds by induction on ¢. For ¢ = 1, the proposition is a slight mod-
ification of [Vig07, Proposition 1]. Now, we assume that W, is a quasi-Banach space
endowed with the quasinorm || - [|. ,—1 for ¢ > 2. Let (¢,) be a Cauchy sequence in .
Since [|¢[l«q-1 < [[¢]lq (¢n) is also a Cauchy sequence in W, ;. It thus follows from
the induction hypothesis that this sequence converges to a function ¢ € W ,. For every
e > 0, there is an integer N such that for n and m greater than N, we have

d((pn - (pm) A dc((pn - me) < ddcwn,mv

where 1, ,, is a function with ||, |/+,—1 < €. Let n go to infinity. Since (¢, — ¢m)n
converges in W2 to ¢ — v, d(©n — m) A d(©, — pm) converges in L' to d(o — ¢,,) A
d°(¢ — vm). By Proposition [2.3] we can find a subsequence of (¢, ), which converges
weakly in W2 to a function ¢,,. This function satisfies

d(e = om) N (@ — pm) < ddPp,

and |[¢m|l«g-1 < e. Thus, ¢ € Wy and ¢, converges to ¢ in W;. We complete our
proof. O

Remark 2.5. It is worth noting that in the case when q = 1, one can use a slight modification
of the proof of [Vig07, Proposition 1] to prove that || - ||.; is a norm and W} is a Banach
space with respect to this norm. It is also interesting to know if we can build a norm on Wy
for ¢ > 1. Note that by Aoki-Rolewicz’s Theorem, we can pick some equivalent quasinorm
| - [| with [| - [|«q such that for some 0 < p < 1, [[z[|P + [[y||” < [z + y||? for all z,y € W[
(see [KPR84]).



2.2. Examples. We now give specific examples for functions in W.

Example 2.6. Let ¢ be a psh function in (). Assume that o satisfies the following condition
2.7) de N dp < rdd°p

for some r > 0. Then it is clear by induction that ¢ € W;(Q) for all q. The condition (2.7)
was introduced in [DF83]] and has many applications in studying the Bergman kernel of )
(see for example [BCOO, Blo13]).

Example 2.7. Let ¢ be an w-psh function in a compact Kdhler manifold (X,w). So dd°p +
w > 0. If ¢ is bounded (assume for simplicity that 0 < ¢ < 1), then we have
dp N d°p = dd*(¢?) /2 — pdd°p < w + dd*(¢?) /2,
d(©®/2) Nd(9*)2) = @*dp Ad°p < dp A dp < w + dd°(¢?/2).
By choosing the defining sequence to be ((1,@2/2), ce (1,@2/2)>, we deduce that ¢ €

Wy (X) for all q. Thus, bounded w-psh functions belong to the intersection of all W} (X).
If v is unbounded (assume for simplicity that ¢ < —1). Let ¢ = —log(—). We have

dp A d°
dip A dop = % and
r
dd°p  dyp A d°

It follows that dip N\ d“ = dd®) + dd°p/p < dd°i) + w. Thus, by choosing the defining
sequence to be ((1, ), ..., (1, @Z))), we deduce that i) € W (X) for all q.

Example 2.8. It follows from [Vig07), Section 2.3] (see also [DS06al, Proposition 4.1])
that if f,g € W, then

dmax(f,g) ANd°max(f,g) < dd°(f1 + g1),
dmin(f,g) Ad°min(f, g) < dd°(f1 + g1),

where f1, g, are functions in W;_, such that df Ad°f < dd°f, and dg Ad°g < dd°g;. So, both
max(f, g) and min(f, g) belong to W. Moreover, there exists a constant c not depending on
f and g such that

| max(f, g)llsq < ¢ ([fllvq + lgllvg) and [[min(f, g)llvq < c(f[lsq + [lgllcq) -
Example 2.9. Let o be the function defined by —(— log |2 |*)® in the unit ball B of C*. Then,
idzy Ndz
1P (— log 1 [?)22

i0p N Op =

Let ) = —(—log |z1]*)**. We have

- 1 - 1dzy N dz
=2a(—1 22@—1_d7 . —2a(1 — 2 1 1 .

31/} O‘( Og|21| ) 2 21, 288@/) Oz( a)|21|2(_ 10g|21|2)2—2a

Thus,
. = 1 =
So, by induction on q and [Vig07, Example 2], we can prove that p € W7 (B) if and only if
1

o< —-

2q
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Example 2.10. Let ¢ be a subharmonic function in W12?(U) where U is an open subset of
C. Then for any ball B C U, by Poincaré-Sobolev inequality, we have

%/Bw—mza(@)\ SC(/BWW)W,

where c is a constant not depending on ¢ and B. Let the radius of B go to zero, we deduce
that ¢ is a VMO function. Thus, as pointed out in [BW24], Theorem 1.1], ¢ must have zero
Lelong number at every point of U. Now, consider o to be a psh function in W (2). By slicing
method (see [DMV20]) and Siu’s theorem (see [Dem, Chapter. III (7.13)]), we deduce that
© has zero Lelong number at every point of €). By remark after [Vig07, Proposition 6],
we deduce that W;(€2) is a VMO space for every q > 1. The same result holds in the global
setting. In fact, as we will see in Theorem[L.4] if p € W} (X)NPSH(X,w), then ¢ € £(X,w).
And it is well-known that functions in £(X,w) have zero Lelong numbers at every point.

2.3. Density theorems. We now prove density theorems for W. The approximate se-
quences have been constructed in [Vig07]], and we use the same construction for our
spaces.

First, we consider the local case. We have the following result.

Theorem 2.11. Let K be a relatively compact subset of (2 and p € Wr(S2). Then there
exists a sequence of smooth functions (ip,,) converges to ¢ in W12(K). Moreover, we have

lilwzo < Tim Jallws o < el

Proof. Take y to be a non-negative smooth radial function with compact support in C*
such that [, x = 1 and define

Xe(2) = G‘Qkx(z)
€

Put ¢, = ¢ * X, then ¢, is well-defined in K when ¢ is small enough. Consider ¢ €
Wy () N PSH(Q2) such that dp A d°p < dd). Let (¢,), be a sequence decreasing to
zero and define ¢, = ¢, , ¥, = ¥ * x.,. Then, by [Vig07, Lemma 5], we have dp, A
d°p, < dd“,. Now, let (¢1,...,¢,) be a defining sequence for ¢. Define ¢, ; = ¢, * X,
for j = 1,...,¢. Then by an induction, (¢, 1,-..,¥n,) is a defining sequence for y,,.
Moreover, we also have

(2.8 lim dd ey, j N WP < / ddp; N Wkl forj=1,...,q.

n—-+o0o K Q
It follows that (,) is a bounded sequence in W;(K). Thus, by Proposition 2.3} there

exists a subsequence (i, ) converges to o in Wh?(K) and satisfies the first inequality.
By (2.8), this sequence also satisfies the second inequality. We complete the proof. O

We now consider the case of compact Kdhler manifolds. We have the following result.

Theorem 2.12. Let ¢ € W (X). Then there exists a sequence of smooth functions (i) such
that ¢,, converges to ¢ weakly in W2(X). Moreover, there is a constant ¢ not depending on
o such that T [alleg < cllglq

n—-+0oo

Proof. Let (K;}) and (K, ) be two sequences of positive closed (k, k)-currents constructed
in [DS04]. Recall that (K" — K, ) converges to the current of integration on the diagonal



11
of X x X. Define K,, = K, — K. Now consider ¢ € W (X) and put

on(z) = / WKy

Let ¢ be the function in W, (X) such that dp A d°p < ¢(w + dd¢)), then we can bound
dp, N dp, by

A/ KE(x,y) A (w + dd).
yeX

Here A is a constant depending on the manifold X and ||¢||.,. This is a positive closed
current (note that both K" and K, are positive closed current) and for N big enough,
we can bound this as the form 2A(w + ddi,,) where

/ () K (,y).

As pointed out in [Vig07, Section 2.4] (see [DNS22, Appendix A] for more information),
after iterating this convolution several times, we can make ,, smooth. The result is thus
followed by using [[Vig07, Theorem 10] and induction in gq. O

2.4. Vigny’s functional capacity. Consider the case when (X,w) is a compact Kédhler
manifold. Following [Vig07]], for a Borel set £ in X, we define

Ly(E)={p € W7 @ < —1 a.e on some neighborhood of £ and » < 0 on X}.
The corresponding Vigny’s capacity for W, can be defined as follows

Cap,(E) = inf { I, : ¢ € Ly(E) }.

These capacities share similar properties with the original Vigny’s capacity in [Vig07].
We list below some important properties. The proofs are modifications of Vigny’s proofs
in [Vig07].
Proposition 2.13. The capacity Cap, satisfies the following properties

(1) for EC F C X, Cap,(F) < Cap,(F);

(2) if (E;) is a sequence of Borel sets in X, Cap,(U;E;) < cZCapq(Ej) for some

J
constant c not depending on (Ej;);
(3) Cap,(X) =1and Cap,(F) <1 forany E C X;
(4) if (Kj;) is a decreasing sequence of compact sets, lim Cap,(Kj;) = Cap, (N, K;);

(5) if (E;) is an increasing sequence of Borel sets, Cap (U E;) = hm Cap,(Ej;), that
is, Cap, is a Choquet capacity.

Proof. We note that, due to Example 2.8} in W, we also have the following inequality

fmin(£, )12, < e( 1712, + g2, ).

Moreover, | f||., = 1 where f is the constant function 1 on X. We can now follow the
proofs of [Vig07), Proposition 27 and Theorem 30] to finish the proof. O

) ) . .. .
Capq also characterizes pluripolar sets in a manner analogous to the original Vigny’s
capacity.
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Theorem 2.14. There exists a strictly positive constant B such that for all Borel subset F
of X, we have

B~'Cap,(E) < Cap,(E) < B(Cap, (E))w".
In particular, Cap,(F) = 0 if and only if E is pluripolar.

Recall that the capacity Cap,_, was defined by Kotodziej in [Kol03]. It is related to the
well-known Bedford-Taylor capacity ([BT82]), and defined by

Cap,(F) = sup{/(wjtaldcu)l‘C :uw € PSH(X,w), -1 <u< 0},
E

where F is a Borel subset of X. We refer the reader to [[GZ05] for more information on
this capacity for local and global settings.

We also need the following notion of capacity introduced by Dinh and Sibony in
[DS06D]. It is related to the capacities of Alexander in [Ale81] and of Siciak in [Sic62]],
see also [HLO6] and [[GZO05]. For a Borel subset E of X, we consider the function

Ve(z) = sup {u(x) :u € PSH(X,w) and u < 0 on E}
Then V% is a non-negative w-psh function. Define
J(E) =exp ( — sup VE(J:)>
X
Recall from [GZO05, Proposition 6.1] the following relation between Cap_ and 7.

Theorem 2.15. There is a strictly positive constant A such that for all compact subset K of
X, we have

)SJ(K)Se-eXp(—;).

Cap,, (K)'/*

oxc (_L
P\~ Cap, (K)

Now we can prove Theorem [2.14l

Proof of Theorem 2.14] We follow proofs in [Vig07, DKN20]. Due to Example 2.7 if ¢
is a gpsh function such that ¢ < —1, then the function ¢ = —log(—¢) belongs to W
for all ¢, and ¢ has the same poles set as ¢. We can now follow the proofs of [Vig07,
Proposition 28] to see the first inequality.

We now consider the second inequality. Since both capacities are regular (see [GZ05),
Theorem 4.2] and Proposition [2.131(5)), we only need to show this inequality for any
compact regular set X C X instead of F. Let M = sup Vi (z). Without loss of generality,

X

we may assume that M < +oo, otherwise both capacities vanish. If A/ < 1, then by
[DKN20, page 14], the desired inequality follows. Now we only consider the case when
M > 1. Define
VK (.T) - M

fic() =
Then fx is equal —1 on K with —1 < fx < 0 and fx is qpsh with dd°fx + M~'w > 0.
Since f is a bounded qpsh function, it follows from Example 2.7 that fx € Wy for all q.
We now compute || fx||.,. Direct calculation gives us

1 w 1
dfic N fic = = fredd” fic + Sdd*(fR) < 37 + 5dd“ (),
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AP N3 /2) = (e A e < dfic A fic <S04 Sdd(f)

Hence, we can choose ((Mfl, f2/2), ..., (M1, ff(/Q)) as a defining sequence. Now, as

mentioned in the definition of | - ||..,, if we replace L*-norm by L'-norm, we obtain an
equivalent norm. Since max frx =0, we have

A
il = [ —far < 37

for some constant A depending only on (X, w) because the set of w-psh function u such
that max u = 0 is a compact subset in L'(X). Thus, we get

q 1 A q 1 Bl
Iiclla = il + 3 577 = 37+ 23 < 3o
Jj= Jj=

for some constant B’ > 0 since M > 1. So, by Theorem [2.15]

12

B 1
CapQ<U> S ”fK”iq S W S B(Capw(U))kzq—l .

This finishes the proof. O

Remark 2.16. Theorem directly shows that the capacities Cap, with p > 1, are equiv-
alent capacities. Observe that the sequence (Cap,),>1 is increasing and always bounded by
1. Given a Borel set E, it is an interesting question to study the behavior of Cap,(E) as g
goes to infinity and their relationship with the Lebesgue measure.

Remark 2.17. As in [Vig07, Remark 33], one can define Cap,, in the local case by the same
method. It is also a Choquet capacity and the sets of zero capacity are exactly the pluripolar
sets.

3. MOSER-TRUDINGER INEQUALITIES

In this section, we prove a sequence of estimations of L type. Then we construct the
psh (gpsh) bound for functions in W to prove Theorems[1.2]and

3.1. Estimations of L™ type. First, we need some auxiliary results. We begin by recall-
ing the following version of Moser-Trudinger inequality for functions in W7

Theorem 3.1. [DMV20, Theorem 1.1] Let 2 be a domain in C* and K a compact subset of
U. Let vy, ..., vy be psh functions which are Holder continuous of Holder exponent 3 € (0, 1)
on Q. Let p € W{(Q). Assume that |vj||cs < 1for 1 < j < kand ||¢||.1 < 1. Then there
exist strictly positive constants « and ¢ depending on U, K, 3 but independent of ¢, v, ..., vy
such that

/ e““p‘2ddcv1 A Addu, < e
K

In particular, ¢ belongs to L} with respect to the measure dd®vy A --- A dd°vy, for every
p € [1,00).

The following result is a direct consequence of Theorem [3.1]
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Corollary 3.2. Let K be a compact subset of 2 and m € N. There exists a strictly positive

constant c; so that
/ ‘go‘mwk S C1,
K

for every o € Wi (Q) with ||¢||.,, < 1. In particular; the estimate holds for every ¢ € Wr(§2)
with |||y < 1.

Here, for the last assertion, we use that |[¢l[.1 < |||+, for ¢ € W,.
Next, let ¢ be a positive function in W (B) and (¢, ..., ¢,) be a defining sequence for
¢ such that

q
lolleq = llllze + Y Iddog; ]|

j=1
We can assume that ¢, < 0.

Remark 3.3. Recall that if (1, . .., p,) is a defining sequence for ¢, then (p1., ..., @) s a
defining sequence for . where . is the standard regularization of ¢ and ;. is the standard
regularization of p; for j =1,...,q (see Theorem 2.11).

We set
L4 ¢n = maX(‘:Om _n>’
e h,=1+¢,/nePSH(B,I0,1]), h, =0o0n {p, < —n},
e T, = dd° (h?/2). This is a positive closed (1, 1)-current which vanishes on
{¢q < —n}.
We have the following elementary lemma.
Lemma 3.4. Assume that ¢, and y, are smooth. Then
(1) dh, ANd°h, < T, and h,ddh,, < T,,
(2) dpy—1 Nd°py—1 < dd°¢,, on {h, > 0},
(3) dpg_1 Ndpy_1 NT, < dd°Ppiq N'T,.
By (1), (2), and the definition of &,,, we have the following estimate.

Corollary 3.5. Assume that ¢, and ¢, are smooth. Then
hndpg—1 N d°pq—1 < nh,ddh, < nT,,.
Now, we state and prove a sequence of estimates of L™ type.

Definition 3.6. Let w be the canonical Kihler form on C*. For every m € N, K € B, define
for0<p<k

Lipr = sup / higmeddcvl A Addv, A Wk
v1,...,up €PSH(B,[0,1]) J K
andfor0<p<k-1

Imp i = sup / " T,ddvy A -+ A ddv, A Wkt
v1,...,up EPSH(B,[0,1]) J K

As noted after Theorem[1.2] we use the canonical representative of © here, and thus all
the integrals make sense. In what follows, we use < or 2> to denote < or > respectively
modulo a multiplicative constant independent of n and ¢ provided ||¢||., < 1. Note that
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all the definitions depend on n. However, we omit the index n since the estimates do not
depend on n.

Lemma 3.7. There is a constant ¢ = ¢(m, K) independent of ¢ and n such that
Jmox < cnzT
for every n.

Proof. By a standard regularization, we can assume that ¢, ¢4, ..., ¢, are smooth. Let y
be a smooth cut-off function such that y = 1 on an open neighborhood of K, and ¥ is
supported on B. It is sufficient to prove that

— /X2cp2an Awkt < nw-T,
B
It follows from the definition of 7), and Stokes’ formula that
I = % /B X2 ddehl, AWt
= — / x@*dx A dchfl Awk=t — m/ Y2t dp A dchi A wht
B B

- —2( / PP hadx A dhy A WF 1 4+ m / 22 o A dhyy A w’H).
B B

Let A; and A, be respectively the first and second integrals inside the brackets. It follows
from Cauchy-Schwarz inequality, Corollary[3.2] and Lemma [3.4] that

A2 < (/ 2o*dhy, A dhy, A wk_l) (/ ©*™h2dx A dex A wk_l)
B B

< (/XQSOQan /\wk—1> (/ (me/\wk)
B supp(x)
S I
and
Az < (/ 2™ dhy, A d°hy, A wk_l) (/ 2™ 2R dp A dCp A wk_l)
B B
< (/X2cp2an/\wk 1) (/XQSDQm_thddcﬁpl /\wk—l)
B B
S JmBl,m—la
where

Bjm = /X2cp2mhiddcg0j A forj=1,...,q.
B

This implies .J,,, < v Jim + V' Jim+/Bi,m—1, and hence
(31) Jm 5 Bl,mfl-

To estimate B ,,,—1, we first observe that, by Stokes’ formula, for j =1,...,¢— 1,
B, = —2(/Xg02mhidx ANdp; A wh1
B

+ m/ X2g02m_1hidg0 ANdp; A W / X2cp2mhndhn ANdp; A wk_l).
B B
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Let C; 1, C; 2, and C} 5 be the first, second, and third integrals inside the brackets respec-
tively. It follows from Cauchy-Schwarz inequality that

032,1 < (/ ‘PthidX/\ dx /\wk_l) (/X2<P2mhidcpj A dop; /\wk_1>
B B
S (/ 902mwk> (/XQsonhidgoj A dp; /\wk_l),
supp(x) B

C]%Q < (/X2<p2m_2hidcp Adp /\wk_l) (/X2<p2mhid<pj A dp; A wk—1>
B B

< (/X2<P2m_2hiddcs01 /\wk—1> (/XQSDthid%‘ Adop, /\wk—l)
B B
and
Cls < ( / X2 dhy A dhy A w“) ( / 2™ hidp; A dop; A wk_l)-
B B

It thus follows from the definition of the defining sequence, Corollary [3.2] Lemma [3.4}
Corollary[3.5]and inequality (3.1) that

ngl S Bj+1,m lfj <qg-—1 0]22 5 Bl,mlej+1,m 1fj <qg-—1
: nBim-1 ifj=q—1, ’ nB},, if j=qg—1,

2

Bigm-1Bjyim ifj<qg—1
nB},, ifj=q—1.

Note that we use (3.1) and the fact that 0 < h,, < 1 when j = ¢ — 1. Then, we have

{BjJrl,m + Bim-1Bjm ifj<qg-—1

B2 <
nB%,mfl lfj:q_la

J.m v

which implies

sz,m S Bl,m—lBj—i—l,m fOI'j <q-— 1

qul,m SJ \/ﬁBl,mflv
and hence,

202 20-2 1 20—2

Bl,m 5 BQ*LmBl,mfl Sx \/ﬁBl,mfl'

It thus follows that
1
Bl,m S nFBl,m—la

and hence
(3.2) By Szt
Now, combining inequalities (3.1) and (3.2)) gives us
I < na-T,
as desired. O

Lemma 3.8. There is a constant ¢ = ¢(m, K ) independent of ¢ and n such that
Impr < cnai=T

for every n.
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Proof. We prove the lemma by induction on p. If p = 0, the desired assertion is Lemma[3.7.
Assume now that it is true for all p’ with p’ < p — 1. By a standard regularization, we can
assume that ¢, ¢y, ..., ¢, are smooth. Let x be a smooth cut-off function such that y =1
on an open neighborhood of K, and y is supported on B. It is sufficient to prove that

Imp = sup / X2 Toddvy A - - A ddvy A wF P~ < pmT
v1,...,up €PSH(B,[0,1]) /B

We prove this inequality by induction on m (p now fixed). When m = 0, it is obvious.
Assume that it is true for all m’ with m’ < m — 1. Consider vy, ..., v, € PSH(B, [0, 1]), we
set R = dd°vy A -+ - A dd®v, A'T,, A wk=P~1 Tt follows from Stokes’ formula that

/ X2p? " Tpddvy A - - - A dd v, A wF P
B

= —2(/ x©*dy A dvi A R + m/ 2™t A dvy A R).
B B

Let D; and D, be the first and second integrals inside the brackets respectively. By the
Cauchy-Schwarz inequality, the induction hypothesis on p, the induction hypothesis on
m, and Lemma [3.4] we have

D3 < (/ O™ dx A dx A R) (/X2g02mdv1 A dvp A R)
B B

S (/Supp(x) "R A w) (/BX2<p2mddc(vf) A R)

5 vap_ 1,supp(x) Jm7p

m
—1
STy,

and
D3 < (/X2<p2m2dg0 Adp N R) (/X2g02mdv1 A dvy A R)
B B
S ( / X2 dd gy A R) ( / X" dde (v}) A R)
B B
5 El,mflt]m,pu
where
Ejm = sup /X2<p2mddcapj ARforj=1,...q.
v2,...,up€PSH(B,[0,1]) /B
Note that since y depends on K, the estimate here only depends on K. Then, by taking
the supremum over all vy, ..., v, € PSH(B, [0, 1]), we observe that
(33) Jm7p 5 712‘%1 + El,m—l-
To estimate E ,,_1, we consider vy, ...,v, € PSH(B, [0, 1]). It follows from Stokes’ for-

mula that, for j =1,...,¢— 1,

/ 2™ ™ddo; N R = —2( / xp*"dx NdCp; A R+ m/ 2™t A dCp; A R).
B B B

Let F;; and Fj - be the first and second integrals inside the brackets respectively. By the
Cauchy-Schwarz inequality, the induction hypothesis on p, and the induction hypothesis
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on m, we have
Fj < ( /B @ dx A dx N R) ( /B X2 dp; A dp; A R)
S Jmp—1,supp(x) ( /B X2 dps N dop; A R)
< par-t ( /B X2 dpj A dp; A R),
and
F}, < ( /B X2 2dp A dfp A R) ( /B X2 dp; A dop; A R)
< ( /B X292 ddopy A R) ( /B X2 dp; A dop; A R)

< By ( / X2y N dép; A R)-
B

Then, by taking the supremum over all vy,...,v, € PSH(B, [0,1]), Lemma and in-
equality (3.3), we have
Ej-i-l,m (ELm—l + ’I’LTIL_I) lfj <q- 1

B2 < . . -
”(”2‘1771(712‘1771 + Eyme1) + B i (n2 T + El,m—1)> ifj=¢q—1.

J,m ~~

It thus follows that
Ej2m S Ejvim (E1,m—1 + nﬂ%) ifj<g-—1

qul,m SJ \/E(El,mfl + nQQWil)-

Then, we have

2921 29—2
q—2 m m
Efm < Eg-1m (El,mfl + an’l) S \/E(El,m—l + nzqﬂ) ’
and hence,
1 m
By S 2t (El,mfl + nz T )

Therefore, we obtain

m—+1

(34) ELm S n29-1

Combining inequalities ([3.3) and (3.4) gives us
mep S nz-T
as desired. O
Lemma 3.9. There is a constant ¢ = ¢(m, K) independent of ¢ and n such that
Ipx < cnzT

for every n.
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Proof. We argue similarly as in the proof of Lemma [3.8] by induction on p. If p = 0, the
desired assertion follows from Corollary 3.2l We assume now that it is true for every
p’ with p’ < p — 1. By a standard regularization, we can assume that ¢, ¢;,...,p, are
smooth. Let x be a smooth cut-off function such that y = 1 on an open neighborhood of
K, and y is supported on B. To prove the desired assertion, it suffices to prove that

Iy = sup / X2 hEddvy A - - A ddv, A WFTP S na-T,
v1,...,up €PSH(B,[0,1]) /B

We prove this inequality by induction on m (p now fixed). When m = 0, it is obvious.
Assume that it is true for all m’ with m’ < m — 1. Consider vy, ..., v, € PSH(B, [0, 1]), we
set R’ = ddvy A - - - A ddv, A w*P. It follows from Stokes’ formula that

/X2¢2mhiddcvl /\R/ — _ 2</X(p2mhidx/\dcvl /\R/
B B
+ / 20> hpdhy, A dvy A R +m / 2™ thEdp A dvy A R’).
B B
Let GG, G4, and G5 be the first, second, and third integrals inside the brackets respec-

tively. By the Cauchy-Schwarz inequality, the induction hypothesis on p, the induction
hypothesis on m, and Lemma [3.8] we have

G2 < (/ hZp*™dx A dx A R’) (/ h2 p*xdvy A dvy A R')
B
S Imp-1.supp(x0) (/ h ¥ X2 dde(v}) A R/)

<n2q ]

~ m,p»

G2 < ( / 2o dhy, A dChy, A R’) ( / P h2 vy A dévy A R’)
B B

< ( /B X ™" T, AR’) ( /B X2 @*™ bl dde () /\R')

< Jmp 1 supp(x)jmvp

< n2q 2q—T Impa
and
( / P22 do A dip A R’) ( / G2 h2 dvoy A doy A R’)
B
< / 222 ddo gy A R’) ( / P R2dde(v2) A R’)
B

S Hl ,m— 1[mp

where
Hj,m = sup / X2Q02mhiddc()0j AR forj = 1, .. q.
v2,...,up €EPSH(B,[0,1]) /B

Then, by taking the supremum over all vy, ..., v, € PSH(B, [0, 1]), we have

(35) -[m7p 5 7’1,2‘1%1 + HLm—l-
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To estimate H,,_;, we consider vy, ...,v, € PSH(B, [0, 1]). It follows from Stokes’ for-
mula that, for j =1,...,q9— 1,

/ X*hiddo; AR = —2( / xP? " hidx AdCp; A R'+
B B
m/ X2?" hide AdCo; N R+ / X2 hypdhy, A dCpj A R').
B B
Let L;,,L;2, and L;3 be the first, second, and third integrals inside the brackets re-

spectively. It follows from Lemma [3.4] Lemma [3.8] Cauchy-Schwarz inequality and the
induction hypothesis on p that

L2, < (/ G h2dx A dox A R’) (/ X" hado; A dp; A R/)
B B
< (/ ©"™"h2 AR A w) (/ X2g02mhidg0j Ndép; N R')
supp(x) B
2 2m1.2 c /
S Im,p—l,supp(x) ( / X @ hndwj Nd 2 N R)
B

<ot (/X2<P2mhid<ﬁj N dep; N R’>,
B

2, < ( /B 2P 22 dip A dCp A R’) ( /B X2 B2 dip; A dop; A R’)
< ( / Ve 2ddoo A R ) ( / X2 h2dp; A dp; AR
B B
S Hipna ( /B X*o* iy A dip; A R’)>
and
2, < / N dhy A dhy AR ( / N 2y A doy AR
B B
< ( /B X" T, A R’) ( /B X2 hodo; A dp; A R’)
< Jinp—1supp(x) ( /B X2p¥hidps A dop; A Rl)
< ( / N b2 A doy AR,
B

Then, by taking the supremum over all vs, ..., v, € PSH(B, [0, 1]), Corollary[3.5, Lemma[3.8]
and inequality (3.5]), we have

o< Hj+1,m(H1,m—1 +TN‘ZL’1> ifj<qg—1

J,m ~~

n(H1,m—1 + n?‘;nl)Q ifj=q—1.

It thus follows that
ng,m S Hk—l—l,m(Hl,m—l + nw%) ifk<qg-—1
qul,m § \/E(Hl,mq + nwﬁl),
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and hence

24—2 m 20721 m 29—2
5 () S )

Then, we have

Hyim S T (Hl,mfl + n%)a
which implies
(3.6) Hyp Snaet.
Combining inequalities ([3.5) and gives

as desired. O

We end this subsection by estimates of Bedford-Taylor’s capacity of sub-level sets,
which will be used in the sequel. We recall that, for a compact subset K C (), the
Bedford-Taylor’s capacity of K in (2 is defined by the formula

Cap(K,Q) = sup { / (ddu)" : uwe PSH(Q?),—-1 <u < O}.
K
We refer the reader to [BT82, Kol98, Kol05]] for more information on this capacity.

For every Borel set £ C B, the relative extremal function for £ in B is defined as
ug :sup{uEPSH(]B) cu<0onB, u<-—1 onE}.

Let u}, be the upper semicontinuous regularization of ux. Then we have the following
relationship between the relative extremal functions and Bedford-Taylor’s capacity.

Cap(E,B) = [ (ddup)* = [ (daui ),

B E

see [BT82]. Now, fix a compact subset K of B. Let 227" < X\ < 22 be a constant. For
n € N, we set

K, = {z eK: p(z) >2", p, > —)\”},

and u,, = ug,,-
We have the following estimates for Bedford-Taylor’s capacity of K, in B.

Lemma 3.10. For every m € N, there is a constant c,, independent of ¢ such that for all
n €N

mn

c, * A 2q—1
/ (dd°u*)* < Cap(K,,B) < cm<ﬁ> :

n

Proof. The first inequality is clear. We only need to prove the second inequality. Let [
be a positive integer and V; be an open subset in B so that Cap(V;,B) < [7! and ¢ is
continuous on B \ V;. We have

(3.7) Cap(K,,B) < Cap(K, \ Vi, B) + Cap(V;, B) < / (dd°uj, )" + 171
Ka\Vi

Since hoy» > 1/2 on K, (recall that h,, = 1 4+ max(yp,, —n)/n), we have

/ (dduf,\y;)" <4 x 47" / W™ ™ (ddufe )" S 47 (207)
Kn\V; Kn\V;

2qn11 < (i) 207!
~J 22(]
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by Lemma [3.91 This combined with inequality (3.7) gives

)\ Qzlnfnl _
Cap(K,,B) < Cm(ﬁ) 4+ 7L

Let [ — 400, we complete the proof. O

3.2. Psh bound (local version). Now we construct the psh bound for functions in Wy

Theorem 3.11. Let ¢ € Wx(B) with [|¢||., < 1 and o € [1,27). Then for every compact
subset K of B, there exist a strictly positive constant C' and a psh function u on B such that

p]* < —u
on K and |[ul[p1x) < C.
Proof. Fix o € [1,29) and A € (max(2%,2%""),2%"). Assume that ¢ € W(B) with ¢ > 0.
Let (¢1,...,p,) be a defining sequence for ¢ such that

q
lolleq = llgllze + Y Iddog; ]|

j=1
We can assume that ¢, < 0. Consider
- . max(p,, —A\")
e
U ; u, + W

Similar to the proof of [VV23] Theorem 1.3], we need to prove the following claims.
Claim 1. 2%u + 1 < —¢* outside a pluripolar set.
Claim 2. u is not identically —oo.

Claim 3. One can choose u so that L'-norm of u is bounded by a constant that not
depends on .

Proof of Claim 1. Set
A, = {ZE €B: p(x) € [2",2"), p, > —)\”}.

Let z € B\ (U2, 4,). Thus, there exists n such that ¢(z) € [2",2"™) and ¢, < —\".

Thus
u(z) < 2na(—max(giqn, _)\n)> < —gne.

This means

2% 41 < —p*
onB\ (U;l’ozl An). Note that u} = u,, outside some pluripolar set £,,, on A, \ E,, we have

u(z) < 2", (x) = —2".

Hence,

2% +1 < —p®
on (U2, 4,)\ (U, E,) and the Claim 1 follows. O

n=1
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Proof of Claim 2. Let
no, * 1
Bn = {2 u,, < ﬁp},
where p(z) = ||z||*> — 1. By the comparison principle (see [Kol05, Theorem 1.16]) and
Lemma [3.10, we have, for every m > 1, there is a constant ¢,, > 0 depending only on m

such that
/ Wk :/ (ddcp)k < n2k2nka/ (ddcu;)k < Cmn2k2nka(i>2q—l.
n n B?’L

22"
Then for every ng > 1,

[ e T () )

n>ng n>no

Thus by choosing m large enough (precisely so that 22" ke (%)m < 1) , we see that

£l

n>ng

for ng large enough (independent of ¢ and K). In particular, B\ ( Uy, B,) # 0 and
1
0 > 2"y (z) > ﬁp(:c), forall n > ng, © € B\ (Upsn, Bn).

Since B \ ( Un>ne Bn) has a positive measure, it is a non-pluripolar set. It thus follows
that we can choose g € B\ ( Uy, Bn) such that ¢ (zo) # —co. Now we observe that

) = Y e (IR 5 g

n>1 n>1
2a n * no, *
> (o) Z (7> + Z 2" (o) + Z 2"k (o)
n>1 1<n<ng n>ng
“ " no 1
> Y (2) = Y e Y Lot > o
n>1 1<n<ng n>ng
This proves Claim 2. O

Proof of Claim 3. Define
M, = inf {||u||L1(K) ol® < —uu e PSH(]B%)}.
Let
M = sup { My, 0 € Wy 0> 0, g < 1},

Suppose by contradiction that M = +occ. Hence, we can find a sequence (y,), in Wy (B)
with [|¢||., < 1 such that M, > 2". Define

V= ﬂ
::TLQ
n>1

Then, since W, is a quasi-Banach space, v € W;. Hence, by Claim 2, we can find a
negative psh function v on B with |u| > v*. This deduce that |u| > n=2*¢% and hence,
n?*|u| > 2. It follows that

M,, < ||n20‘u||L1(K) = n20‘||u||L1(K) < 2",
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when n is big enough. This is a contradiction since M,, > 2". So M < +oo and the
Claim 3 follows. 0

Now, for general ¢, we decompose ¢ = max(y,0) + min(p,0). By Example 2.8] we
can rescale the function a little bit to get the answer. This completes the proof of Theo-

rem [3.111 O

Example 3.12. (Sharpness of the exponential «) As in [VV23, page 13], we consider the
case when a > 27 and k = 1. We choose the function o to be (—log|z|*)/>'~% where
6 € (0,1/2%). Then by Example @ € W Since o > 2%, we can choose § small enough
such that 8 = a(1/29 — §) > 1. Thus, ¢* = (—log|z|*)? and then %" > # which is
not locally integrable at 0 in C. Also, note that by arguments in [VV23|l, this function is
not bounded from above by minus of a subharmonic function. So the exponential coefficient
here as well as the one in Theorem [I.2] can not be greater than 29. It is natural to predict
that the result still holds for o = 29 (like in the case ¢ = 1), but currently, we don’t know
how to prove that.

3.3. Psh bound (global version). The following result is a global version of Theo-

rem [3.11]

Theorem 3.13. Let » € Wy (X) with |[¢||., < 1 and « € [1,27). Then there exist a strictly
positive constant C' not depending on  and a negative Cw-psh u on X such that

lp|® < —u and ||u||L1(X) < C.

Proof. We follow the proof of Theorem [3.11] almost line by line with the only additional
consideration being the careful selection of u,, to ensure that it is Cw-psh for some uni-
form constant C. Recall that the capacity of a Borel set F in X with respect to a Kéhler
form n on X is defined as

Cap, (E) = sup { / (n+ ddv)* : v € PSH(X,n), -1 <v < 0}.
X
Following [GZ05, Proposition 3.1, Theorem 3.2], we have
Cap,(E) = [ —up(n+ ddvui,) = [ —up,(n+ ddu, )

where
Up,, = Sup {u €PSH(X,n): u<0on X andu < —1on E}

Let o € [1,27) and take \ such that 2* < A. As in Theorem [3.17] it suffices to take
¢ € Wy(X) with ¢ > 0. Let ((cl, ©1),. .., (cq cpq)> be a defining sequence such that

q
1/27
lelleg = lollzz + D e
j=1
We can assume that ¢, < 0. Consider

X, = {:1: € X : p(z) € 27,27, @ (z) > —)\”}.
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We set u,, = uy, 3-na, and

0 A\
U = Z gna (u:; + max(iq; >)
n=1

It follows from the proof of Lemma that for every m € N, there exists a constant ¢,
independent of ¢ such that, for all n € N,

(3.8) Capy- o, (X) < e (2%) 2T

As before, we also have 2%u + 1 < —¢* outside a pluripolar set. Let

n= Z 2" (37 W) + 2" A "ew < Cw

n=1

for some C' > 0 depending only on « and A (note that ¢, < 1). Since v}, is 37 "*w-psh and
@, is c,w-psh, we have u is Cw-psh if u # —oo.
It remains to check that u # —oco. We argue as in the proof of Theorem B.17] Let
1
Yn = {Q"QUZ < ——2}
n

It follows from the comparison principle (see [Kol05, Theorem 6.4]) and inequality (3.8)
that, for any m € N,

/ (37mw)k < / (37w + dd°u?)F < Q”O‘nZ/ —u (37w + ddul)F

A ) QZn—nl

< 2"*n2Cap,-na,(X,) < 2" n? (ﬁ

Hence, for every ny > 1, we have

A\ 3aoT A —T\"
k naqgnka, 2 24 2 k+1)a 24
E / Wt < ey, E 213 n (—22q) < ¢ E n (3( ) (—22q) ) .

n>ng n>ng n>ng

Since \ < 22, we can choose m large enough such that

A\ saoT
k+1)a a
3(k+1) (_22q> <1

Z/nwk<1:/ka

n>ng

It thus follows that

for ny large enough (independent of ¢). In particular, X \ ( Un>neo Yn) # () and

1
0> 2" (z) > 3 foralln > ng, 2 € X \ (Upsng Yn)-
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Since X \ ( Un>ne Yn) has a positive measure, it is a non-pluripolar set. It thus follows
that we can choose g € X \ (U,n, Y;) such that ,(z) # —oo. Now we observe that

u(rg) = 3 2o (AT ZADY S o )

n>1 n>1

> o) 3 (5) 30 2 + Y 2 wo)

n>1 1<n<ng n>ng
20\ n o 1
> gia) Y () - D 2D > oo
n>1 1<n<ng n>ng
The proof is thus completed. O

4. COMPLEX MONGE-AMPERE EQUATION

In this section, we study the relationship between W and the complex Monge-Ampere
operator.

4.1. Relationship between the classes W (X), £(X,w) and £7(X,w). Let (X,w) be a
compact Kdhler manifold of dimension k. We recall some definitions from [GZ07]. Let
¢ be some unbounded w-psh function on X and consider ¢; = max(y, —j) be canonical
approximation of ¢ by bounded w-psh functions. By [BT87], we can define the Monge-
Ampere measure (w + dd°p;)*. The sequence of measures

Lips—j (0 + dd°p;)"

is an increasing sequence and converges to the non-pluripolar Monge-Ampére measure
., of . Its total mass 1,(X) can take any value in [O, Ix wk} . Define

E(X,w) = {cp € PSH(X, w) : p,(X) :/ wk}.
X
Recall the following criterion for functions in £(X,w).

Lemma 4.1. [GZ07, Lemma 1.2] Fix ¢ € PSH(X,w) and define y; = max(p, —j) for
j € N. Let (s;) be any sequence of real numbers converging to +oo, such that s; < j for all
j € N. The following conditions are equivalent

(1) p € E(X,w);
(2) (w+ddp;)*(p < —j) = 0;
(3) (w+ dd°p;)*(p < —s;) — 0.

Now, we prove that any w-psh complex Sobolev function belongs to £(.X, w).

Proof of Theorem [1.4((1). Assume that ¢ is a negative w-psh function in W} (X) and ¢; =
max(p, —j). We note that ¢,/j equals to —1 when ¢ < —j and equals to ¢/j < 0 when
¢ > —j. Let T,, be a positive closed current on X such that dy A d°% < T,,. By [Vig07] or



27

Example [2.8] we have dp; A d°¢; < T,,. By Stokes’ formula, we have

/ (w + ddp,)F < / 23 (4 + ddéip;)*
{e<—j}

x J
1 k-1
:f(/ dgoj/\dcgoj/\Z(erddccpj)k_l_m/\wm—/ gojwk>
JNIx 0 X
< 1 T A — dd¢ k—l—m/\ m k
< ([ Ton Xt dagpmawr [ o).

m=0

Since T, is closed, the first integral doesn’t change if we replace the closed current
k-1
S (w + ddp;)*1=™ A w™ by a closed form in its de Rham cohomology class. We can

m=0
replace it by kw*~! and obtain

k-||T. 1
/ (w—i—ddcgoj)kgM——,(/@wk)—>Oasj—>+oo~
{p<—j} J JNIX
This, combined with Lemma [4.7] finishes our proof. O

Next, we recall the definition of finite energy classes in [GZ07]. For simplicity, assume
that [, w* = 1. Denote w, = w + dd°¢p. For bounded w-psh functions, define the energy
functional

Byo) =7 2 [ (P aut

We can extend this functional for arbitrary w-psh functions by canonical approximation
as above

Ey(p) = lim E,(¢)).
So, we can define the finite energy class
E'X w) ={p € &(X,w): Ep(p) > —oo}.
To prove Theorem[1.4{(2), we first recall some facts about finite energy classes that will

be used in sequel. We only use the results for the class £#(X,w) with p > 1. For more
general classes, we refer the readers to [[GZ07]] and [DV22].

Proposition 4.2. Let ¢ and 1) be bounded non-positive w-psh functions and p > 1. Then,
for every positive closed current T of bi-dimension (1,1), we have

0< [ (corwsnT <2 [ (—oPu T+ [ oy AT,

Recall that w, = w + dd°p and wy, = w + dd“. For a proof of this proposition, see [GZ07,
Proposition 3.6].

Proposition 4.3. Let @y, ..., pr be bounded non-positive w-psh functions and p > 1. Then
there exists a strictly positive constant C,, depending only on p such that

/X(_%Vwm A Awg, <Gy 0Sm<k (/X(—wm)pwiim).

See [[GZ07, Proposition 3.8] for a proof. We will use the following direct corollary.
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Corollary 4.4. Let ¢ and ¢ be non-positive functions in EP(X,w) with p > 1. Then for
0 <m < k — 1, there exists a strictly positive constant C,, depending only on p such that

[ coroondsmtno <o [ omi+ [ o)

Here the measure wy A w} ™™ ! Aw™ is defined in the non-pluripolar sense (see [GZ17,
Chapter 10.2.3].

Proof. Let p; = max(p, —j) and ¢; = max(¢», —j). By [GZ17, Theorem 10.18],

(=)' wy A AT = lim | (=) g, AW A W™
X v j'=+o00 Jx j P

By Proposition 4.3, we have

J oo, naminem < ([ ot + [ onrit, + [ (uras)
< [ (—orak+ [ (curat).

Let j/ — +oco and then let j — +oo give us the result. O
Proof of Theorem [1.4l(2). We prove this by induction. First, consider the case when ¢ = 2.

Let ¢ be the function in W} (X) such that dp A d°p < C(w + dd“¢)). By Theorem [1.4](1),
we have ¢, 1 € £(X,w). Now, by using Stokes’ formula, we have

k. m—
—Ei(p) = ZZ/dgp/\d‘ip/\w A whmi=t

k—i-1

IN

w/\w:@/\w

& ﬁMW I
LM
\

‘Q+Q+

1<+oo-

o
—_

+

—_

l

Il
o

3

So, p € £YX,w). Assume now that our theorem is true for ¢ — 1 with ¢ > 2. Let ¢
be an w-psh function in Wy ,(X) such that dp A d°¢ < C(w + dd“). By the induction
hypothesis, we have ¢, € £77?(X,w). We observe that

dd*((—¢)"/q) = (g — D(=9)"dp N d°p — (—p) T dd .
Then, by using Stokes’s formula, we can write
Jcerdaont = -1 [ (ortdpndont - [ da-er/a AT
X X X

=(¢—1) / (=) 2dp ANd°p AT,
X
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for T is a sufficiently regular positive closed current of bi-dimension (1, 1). This deduces
that

—E, () = %H > /X(—w)“(wga)m A wh=m

_ qg—1 -2 c l k—I—1
= [ (—p) w4+ —— / —0)T2dp Adp A (wy) Aw
[eome g2 S [ (@)
Clg—1) o=
< — Q—l k‘+ — / _ q—2w /\ W l/\wk‘—l—l
< [0 ST [t )

< +00

by applying Corollary 4.4 for p = ¢ — 2 and the induction hypothesis. So p € £971(X, w)
and we complete our proof. O

Remark 4.5. The above theorem gives us a lower bound for p(q) by ¢q—1. From Example[3.12]
and [DGL20, Theorem 2.1], we see that p(q) has an upper bound by k(27 — 1). It is an
interesting question to know what is the best choice for p(q). It has been noted in [Vig07]]
that W (X) is a BMO space and hence by [IN61]l, there are constants ¢ and A such that
[y ek < A for all ¢ in W (X) with ||¢l||.1 < 1. This fact can be used instead of Skoda’s
integrability theorem in the proof of Theorem 2.1 in [DGL20].

4.2. Relationship between the classes 1/;($2) and D(2). We will prove Theorem [1.5]
First, we recall Blocki’s criterion for functions in class D(2).

Theorem 4.6. [Blo06, Theorem 1.1] Let ) be a domain in C* and ¢ be a negative psh
function on €, the following properties are equivalent
(1) There exists a measure j in €) such that if U C 2 is open and a sequence p,, €
PSH(U) N C>(U) is decreasing to u in U, then (ddp,)* tends weakly to p in U;
(2) For every open subset U of {2 and any sequence ¢, € PSH(U) N C*°(U) decreasing
to ¢ in U, the sequence (dd°y,)* is locally weakly bounded in U;
(3) For every open subset U of €2 and any sequence ¢, € PSH(U) N C*°(U) decreasing
to ¢ in U, the sequences

(4.1) lon| " P 2dip, A dCn A (ddCp,)P A WFPTE p=0,....k—2,

are locally weakly bounded in U;

(4) For every z € () there exists an open neighborhood U of z in ) and a sequence
on € PSH(U) N C*®°(U) decreasing to ¢ in U such that the sequences in (4.1) are
locally weakly bounded in U.

The following result is the key point in our proof of Theorem [1.5

Proposition 4.7. Let 1 < p < k—1and 0 < m < k —p. Let ¢u,...,q,+1 be integers
satisfying

> .
1) gp1 > max g;,

p
2 > ¢ >pp—1+m)

J=1
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3 . — mi C < 1.
(3) maxg; — min g, <

Let ¢1,...,p,+1 be negative smooth psh functions on <) such that, for j = 1,...,p+ 1,
l¢jllvq < 1. Assume that there exists a defining sequence (@; 1, ..., ¥;q;) of @; such that
@juis smooth for 1 = 1,...,q;, ||@jilleg—t < 1forl=1,...,¢; — L and ||, |/11 < 1. Then
for every compact subset K of (), there is a constant C' > 0 depending only on K, m and p
such that

/ (—ppp1)™dd oy A - -+ NddCpp, NP < C.
K

Proof. We prove by induction on p and m. Fix a compact set K and a cut-off function y
on 2 suchthat0 <y <1land y=1on K.

Consider the case p = 1. If m = 0 then the desired property is trivial. Assume that the
desired property is true for 0,...,m — 1 for some 1 < m < k — p. We now prove it for
m. By hypothesis, ¢ > ¢; > m. Hence, there exist smooth psh functions 1)1, 1), satisfying
lr]lem—1 <1, ||¥2]lsm—1 < 1 such that

(42) d(pl N dcwl S ddcwl, d(pg A dc(pg S ddc’ll)g.

By Stokes’ formula, we have

(4.3) / (—p2)"ddpy A Wkt <
K

/ X(—=p2)" gy A dpy A"
Q

+ ’/ (—p2)™dx AdCpr Aw" !
Q

Y

where < denotes < modulo a multiplicative constant depending only on m and K. For
the first term, by using Cauchy-Schwarz inequality and inequalities (4.2]), we can bound
it from above by the square root of

</ X(_(pQ)mflddcwl Awkl) </ X(_(pQ)mflddch Awkl) )
Q Q

It follows from the induction hypothesis for m — 1 that both factors are bounded by a
constant depending only on supp(x) (and hence only on K). Hence, the first term of the
RHS of inequality (4.3) is bounded by a constant depending only on K. For the second
term of the RHS of inequality (4.3)), by using Cauchy-Schwarz inequality and inequalities
(4.2), we can bound it from above by the square root of

</(_§02)m+1dx/\dcx/\wkl> </ (_@Q)milddcwl /\wkl) )
Q supp(x)

We use the induction hypothesis for m — 1 for the second factor. The first factor can be
bound by using Corollary 3.2l Hence, the second term of the RHS of inequality (4.3)
is bounded by a constant depending only on K. The proof for the case p = 1 is thus
complete.

Now, we consider the case when p > 1. Assume that the desired property is true for
p — 1, where 2 < p < k — 1. We prove that it is true for p. We can further assume that
Gp = Max g;. Consider the case m = 0. We note that

ddepy A -+ A ddp, = dd° (0ddpr A -+ A ddp, 1) .
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Hence, by Stokes’ formula, we have
/K ddpy A -+ Nddp, N WP < /Q Xdd® (ppddSpy A -+ A ddp, 1) AwFP
— /Q (—@p)ddx A dd°oy A -+ Addp, 1 Aw"P

. / (—gp)ddpr A+ Addoppy A" TP
supp(x)

We now only need to check if ¢, ..., ¢, satisfies the induction hypothesis for p — 1 and
m = 1. Indeed, condition (2) becomes
(4.4) @t g > plp—1).
Condition (3) thus becomes
(4.5) ¢p—qj<1lforeveryj=1,...,p—1
Combining inequalities (4.4) and (4.5) gives us
p—1 p—1 q—1 p—1 q—1
p—1 1 p—1 1
IR SRR D SR SRS D
j=1 Pa P Pa P
p
p—1 p—1
—— g—1|=2— pp—1)

=p-Dp-1D=p@E-Lp-2+1).

It follows that ¢y, . . ., g, satisfy the condition (2) for p—1 and m = 1. Obviously, ¢, ..., ¢,
satisfy the conditions (1) and (3) for p — 1 and m = 1. Hence, by applying the induction
hypothesis for p — 1 and m = 1, we get the statement for m = 0.

Assume that the statement is true for 0, ..., m—1, where 1 < m < k—p. We now prove
it for m. We can further assume that ¢, = max g;. Since ¢,11 > ¢, there exist smooth
ISP
psh functions ¢,, ¢,41 satisfying ||¢p|[.q—1 < 1, ||@pt1]ls,q,—1 < 1 such that
(4.6) dpp N dopp < dd°¢p,  dppir A dppi1 < dd°Ppia.

We need to bound, for ¢ = ¢,,1,

/ X(—@)™dd oy A -+ A ddp, A wFP.
K

By Stokes’ formula, we have

(4.7) / X(—@)"dd oy A -+ A ddp, N wWFTP
K
< / (—@)™dx A d°pp Addoy A -+ Addp, 1 Aw"P
Q
+ / X(=@)" o N dpy Nddipy N - A ddCpp g AP
Q

where < denotes < modulo a multiplicative constant depending only on m and K. For
the second term of the RHS of inequality (4.7), by using Cauchy-Schwarz inequality and
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inequalities (4.6), we can bound it from above by the square root of

</ X(—@)" 7 dd g, A ddpi A -+ - N ddpyq N w’“p)
Q

X (/ X(_‘P)milddcfbpﬂ Addpr N\ Nddp,_q N wkp> .
Q

We note that ¢, — 1,¢1,...,¢,—1,¢p+1 satisfy the conditions (1), (2), and (3) for p and
m — 1. It follows from the induction hypothesis for m — 1 that both factors are bounded
by a constant depending only on supp(x) (and hence only on K). Hence, the second
term of the RHS of inequality (4.7) is bounded by a constant depending only on K. For
the first term of the RHS of inequality (4.7), by using Cauchy-Schwarz inequality and
inequalities (4.6), we can bound it from above by the square root of

(/Gwﬁ”wawyAdfwﬂy“Adf%)Uuﬁp)
Q

- (/ (=)™ lddo gy A ddCpr A - A dd o1 N wkp) .
supp(x)

To deal with the second factor, we note that ¢, — 1, q1, . . ., gp—1, gp+1 satisfy the conditions
(1), (2) and (3) for p and m — 1. Thus, we can bound the second factor by using
the induction hypothesis for m — 1. To deal with the first factor, we first observe that
Qs - -, qp—1, ¢p+1 satisfy the conditions (1) and (3) for p — 1 and m + 1. For the condition
(2), as in the case m = 0, we have

p
> g =pp—1+m),

j=1
and

¢p—q; <1, foreveryj=1,...,p— L
It follows that

p—1 P
p—1 p—1
E:%Z———<§:%—1>Z———~Mp—1+m%=@—D@—1+ﬂw
j=1 L\ p

Hence ¢, . .., ¢y—1, ¢p+1 satisfy the conditions (2) for p—1 and m+ 1. Thus, we can bound
the first factor by using the induction hypothesis for p — 1 and m + 1. Therefore, we can
bound the first term of the RHS of inequality (4.7). The proof is complete. O

We now prove that psh ¢-complex Sobolev functions belong to D({2) for ¢ > k — 1.

End of proof of Theorem [L.3] Let ¢ € W;_, 1, .(2)NPSH((2). Since the problem is local, we
can assume that ¢ € W} |(Q) NPSH(Q2). We will prove that ¢ satisfies the condition (4)
of Proposition 4.6l Indeed, we consider an open relatively compact subset U of 2 and let
() be the sequence of smooth psh functions constructed in the proof of Theorem 2.11]
We note that ||, |lw: @) < 2[|¢llws (@) for every n. Let (o1, .., %or-1) be a smooth
defining sequence for (. By the proof of Theorem[2.11] we can construct smooth defining
sequence (¢n,1,- - -, Pnk-1) for ¢, such that ||onillws @) < 2[lpoillwy | @ for1 <1<
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k=2, leni—1llor@) < 2ll¢ok-1llri @), for every n. Since dy,, A d°p, < dd°p,, we have
/ lon|" P 2dp, A dCp, A (ddSp,)P A wWF P
U

< / |g0n|k_p_2ddccpn,1 A (ddp,)P A whr=1
U

Rescale  if necessary, we can assume that, for every n, |[onllw:_ @) <1, lonillw: @) <
lforl <1 < k—2and |gnr1lzr@wy < 1. It follows from Proposition [4.7] that the
right-hand side is uniformly bounded by a constant depending only on U. Therefore,
lonlFP=2d,, A d°p, A (dd°p,)P A w* P! are locally weakly bounded in U for every p =
0,...,k — 2. The proof is thus complete. O
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