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ABSTRACT. We study higher complex Sobolev spaces and their corresponding functional

capacities. In particular, we prove the Moser-Trudinger inequality for these spaces and dis-

cuss some relationships between these spaces and the complex Monge-Ampère

equation.
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1. INTRODUCTION

In this paper, we study higher complex Sobolev spaces introduced by Dinh which

extend the notion of complex Sobolev space introduced earlier by himself and Sibony

in [DS06a]. The complex Sobolev space has been systematically studied by Vigny in

[Vig07]. The key observation is that this space takes into account the complex structure

of the ambient space and is stable under holomorphic transformations; thus, one could

view it as a tailored version of the classical Sobolev space to the complex setting. As a

consequence, this functional space plays a key role in complex dynamics and it leads to

many fruitful applications in this field (e.g., see [BD22, DKW21, DS06a, DV24, Vig15,

Vu20]). Not limited to the theory of complex dynamics, the complex Sobolev spaces

also find applications in other fields of mathematics. For example, in the study of the

complex Monge-Ampère equation, this space has been used as a test space to obtain

the necessary and sufficient conditions for whether a given measure is a Monge-Ampère

measure with Hölder potentials (see [DKN20, DMV20]). Moreover, it has recently found

applications in studying uniform diameter bound for Kähler metrics (see [Vu23]). Due

to its importance, the complex Sobolev space has attracted a lot of attention from several

mathematicians (see[DMV20, Vig07, VV23, Vu23]).

The classical Sobolev spacesW n,p are important tools in studying differential equations

and are usually used as solution spaces for many fundamental equations. An important
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fact is that when n and p go to infinity, the solution gains more regularity and becomes

the ancient solution.

We study higher complex Sobolev spaces in both local (i.e., on bounded domains

of Ck) and global (i.e., on compact Kähler manifolds) settings. Let Ω be a bounded

domain in Ck, we denote by PSH(Ω) the set of plurisubharmonic (psh) functions in Ω. Let

(X,ω) be a compact Kähler manifold of dimension k, we denote by QPSH(X) the set of

quasi-plurisubharmonic (qpsh) functions on X. These functions are locally given as the

sum of a smooth and a plurisubharmonic function. We also denote by PSH(X,ω) the set

of ω-plurisubharmonic (ω-psh) functions on X, i.e., the set of functions

ϕ ∈ L1(X,R ∪ {−∞}) such that ϕ qpsh and ω + ddcϕ ≥ 0.

Definition 1.1 (Higher complex Sobolev spaces). For q ≥ 1, we define inductively

q-complex Sobolev spaces W ∗
q as follows

(1) (local setting) W ∗
q (Ω) is the set of all functions ϕ ∈ W 1,2(Ω) such that dϕ ∧ dcϕ ≤

ddcψ for some ψ ∈ W ∗
q−1(Ω) ∩ PSH(Ω) (ψ ∈ PSH(Ω) when q = 1) satisfying

∫

Ω

ddcψ ∧ ωk−1 < +∞, where ω is the standard Kähler form on C
k.

(2) (global setting) W ∗
q (X) is the set of all functions ϕ ∈ W 1,2(X) such that dϕ∧ dcϕ ≤

cϕω+dd
cψ for some constant cϕ ≥ 0 and ψ ∈ W ∗

q−1(X)∩QPSH(X) (ψ ∈ QPSH(X)
when q = 1).

We will introduce some notions and technical tools to study these functional spaces.

In particular, using techniques in [DS06a, Vig07], we will build a quasinorm ‖ · ‖∗,q on

W ∗
q which makes W ∗

q a quasi-Banach space sharing many properties with W ∗
1 . After that,

we will prove some basic properties of these spaces and consider some specific examples.

Moreover, we also introduce a family of Vigny’s functional capacities and show that all

these capacities characterize pluripolar sets, similarly to how the original Vigny’s capacity

does.

In Section 3, we will prove the Moser-Trudinger inequalities for these higher complex

Sobolev spaces. An important point in our results is that the exponent in the Moser-

Trudinger inequalities goes to infinity when q goes to infinity. It follows that when q
grows, our spaces will gain more regularity and get closer to the bounded functions

space.

Theorem 1.2 (Moser-Trudinger inequality in a local setting). Let α ∈ [1, 2q) and K be a

compact subset of the unit ball B of Ck. Let v1, . . . , vk be psh functions which are Hölder

continuous of Hölder exponent β for some β ∈ (0, 1) on B. Let ϕ ∈ W ∗
q (B). Assume that

‖vj‖Cβ ≤ 1 for 1 ≤ j ≤ k and ‖ϕ‖∗,q ≤ 1. Then there exist strictly positive constants c1 and

c2 depending on K,α, and β but independent of ϕ, v1, . . . , vk such that
∫

K

ec1|ϕ|
α

ddcv1 ∧ · · · ∧ ddcvk ≤ c2.

In particular, there exist strictly positive constants c1 and c2 depending on K and α such that

for every ϕ ∈ W ∗
q (B) with ‖ϕ‖∗,q ≤ 1, there holds

∫

K

ec1|ϕ|
α

ωk ≤ c2,
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where ω is the standard Kähler form in Ck.

Note that two functions in W ∗
q (B) are equal if they are equal almost everywhere. By

[VV23, Theorem 1.1] (see also [DMV20]), for every function ϕ in W ∗
1 (B) (and thus

W ∗
q (B)), all points are Lebesgue point except for points in some pluripolar set. So by

considering the canonical values of ϕ at its Lebesgue points, the first integral in the

theorem makes sense as ddcv1 ∧ · · · ∧ ddcvk has no mass on pluripolar sets. Throughout

this paper, we always use the canonical values of ϕ as above.

The Moser-Trudinger inequality for W ∗
1 was proven in [DMV20] by using the slicing

method. Recently, in [VV23], alongside the main goal of proving that the complement

of the Lebesgue point set of functions in W ∗
1 is pluripolar, Vigny and Vu obtained a ver-

sion of the Moser-Trudinger inequality for W ∗
1 which corresponds to the last assertion of

Theorem 1.2 for q = 1. For ϕ ∈ W ∗
1 (B), their strategy was to bound |ϕ|α by some psh

function which allows them to use Skoda’s integrability theorem. The construction of

the psh bound is motivated by the proof of Josefson’s theorem (see [Jos78]). Following

their strategy, we construct the psh bound for |ϕ|α where ϕ ∈ W ∗
q (B) (see Theorem 3.11

below) and deduce Theorem 1.2 by using a singular version of Skoda’s integrability

theorem which has been obtained in [DNS10] (see also [Kau17]). We also obtain the

following global version of Theorem 1.2.

Theorem 1.3 (Moser-Trudinger inequality in a global setting). Let (X,ω) be a compact

Kähler manifold and α ∈ [1, 2q). Let v1, . . . , vk be ω-psh functions which are Hölder contin-

uous of Hölder exponent β for some β ∈ (0, 1). Let ϕ ∈ W ∗
q (X). Assume that ‖vj‖Cβ ≤ 1 for

1 ≤ j ≤ k and ‖ϕ‖∗,q ≤ 1. Then there exist strictly positive constants c1 and c2 depending

on X,ω, α and β but independent of ϕ, v1, . . . , vk such that
∫

X

ec1|ϕ|
α

(ω + ddcv1) ∧ · · · ∧ (ω + ddcvk) ≤ c2.

In particular, there exist strictly positive constants c1 and c2 depending on X,α, and ω such

that for every ϕ ∈ W ∗
q (X) with ‖ϕ‖∗,q ≤ 1, there holds

∫

X

ec1|ϕ|
α

ωk ≤ c2.

In Section 4, we will discuss the connection of the higher complex Sobolev spaces to

the theory of complex Monge-Ampère equation. In the global setting, the class E(X,ω),
introduced by Guedj-Zeriahi in [GZ07], is the largest class of ω-psh functions on which

the complex Monge-Ampère operator is well defined and the comparison principle is

valid. We will show that ω-psh functions with bounded ‖ · ‖∗,q-norm belong to this space

for every q ≥ 1. Furthermore, among the subsets of E(X,ω), the finite energy classes

Ep(X,ω) have important applications in the variational approach to complex Monge-

Ampère equation (see [BBGZ13]). In [DGL20], the authors proved a Moser-Trudinger

inequality for functions in Ep(X,ω). The crucial point here is that the exponent in their

Moser-Trudinger inequality is 1 + p/k which converges to infinity as p goes to infinity.

This similar property with our space W ∗
q (X) motivated us to study if W ∗

q (X)∩PSH(X,ω)

is contained in some Ep(q) with p(q) increases to infinity when q goes to infinity. It turns

out we can choose p(q) = q − 1.
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Theorem 1.4. Let (X,ω) be a compact Kähler manifold. Then we have the following inclu-

sions:

(1) W ∗
q (X) ∩ PSH(X,ω) ⊂ E(X,ω) for q ≥ 1,

(2) W ∗
q (X) ∩ PSH(X,ω) ⊂ E q−1(X,ω) for q ≥ 2.

The proof of this theorem is by induction and relies on estimations around energy

functionals.

In the local setting, the domain of the definition of the Monge-Ampère operator D(Ω)
has been well understood after the works of Cegrell ([Ceg04]) and Błocki ([Blo06]). It

has been proved in [Blo04] that in C2, the Monge-Ampère operator is well-defined for

functions in W 1,2
loc and thus in W ∗

1,loc, where W ∗
1,loc is the set of functions that locally are

functions in W ∗
1 . Our next theorem generalizes this fact by showing that the Monge-

Ampère operator (ddc·)k is well-defined in the sense of Cegrell-Błocki for psh locally

q-complex Sobolev functions when q ≥ k − 1.

Theorem 1.5. W ∗
q,loc(Ω) ∩ PSH(Ω) ⊂ D(Ω) for q ≥ k − 1.

We prove this theorem by defining the product of (1, 1)-currents using an induction on

the number of currents.

The paper is organized as follows. In Section 2, we consider some basic properties of

W ∗
q and corresponding Vigny’s capacity. In Section 3, we construct a psh bound in order

to prove Theorems 1.2 and 1.3. Finally, in Section 4, we study the relationship between

W ∗
q and the complex Monge-Ampère equation and prove Theorems 1.4 and 1.5.

2. HIGHER COMPLEX SOBOLEV SPACE

In this section, we prove some basic properties and give examples of our spaces. We

also study their corresponding Vigny’s capacities.

2.1. Quasinorms and compactness. We now define the quasinorm on W ∗
q . First, we

consider the local case. Let ϕ0 ∈ W ∗
q (Ω). Then, by definition, there exist psh functions

ϕ1, . . . , ϕq in Ω such that

‖ddcϕj‖ < +∞ for all j = 1, . . . , q

and

(2.1) dϕj−1 ∧ dcϕj−1 ≤ ddcϕj for all j = 1, . . . , q.

We call a sequence (ϕ1, . . . , ϕq) satisfying (2.1) is a defining sequence of ϕ0 in W ∗
q (Ω). We

define the q-star quasinorm for W ∗
q (Ω) as follows

‖ϕ‖W ∗

q (Ω) = ‖ϕ‖L2 +min
{

q
∑

j=1

‖ddcϕj‖1/2
j

: (ϕ1, . . . , ϕq) is a defining sequence of ϕ
}

.

In the sequel, for simplicity, we will use the notation ‖ · ‖∗,q instead of ‖ · ‖W ∗

q (Ω) when

there is no possible confusion of domain.

Next, we consider the global case. Let ϕ0 ∈ W ∗
q (X). Then, by definition, there exist

qpsh functions ϕ1, . . . , ϕq in X and constants c1, . . . , cq ≥ 0 such that

(2.2) dϕj−1 ∧ dcϕj−1 ≤ cjω + ddcϕj for all j = 1, . . . , q.



5

We call a sequence
(

(c1, ϕ1), . . . , (cq, ϕq)
)

satisfying (2.2) is a defining sequence of ϕ0 in

W ∗
q (X). We define the q-star quasinorm for W ∗(X) as follows

‖ϕ‖∗,q = ‖ϕ‖L2 +min
{

q
∑

j=1

c
1/2j

j :
(

(c1, ϕ1), . . . , (cq, ϕq)
)

is a defining sequence of ϕ
}

.

In the global case, note that by Poincaré-Wirtinger inequality, if we replace L2 in the

definition of ‖ · ‖∗,q by L1, we obtain an equivalent quasinorm.

Proposition 2.1. The function ϕ 7→ ‖ϕ‖∗,q defines a quasinorm on W ∗
q (Ω) (and W ∗

q (X)
respectively).

Proof. Consider the local case. We first check the homogeneity. Let ψ = λϕ, then

(ϕ1, . . . , ϕq) is a defining sequence for ϕ iff (|λ|2ϕ1, . . . , |λ|2qϕq) is a defining sequence

for ψ. Hence, ‖ψ‖∗,q = |λ|‖ϕ‖∗,q. We now only need to check the quasi-triangle in-

equality. Let ϕ and ψ be functions in W ∗
q (Ω) where (ϕ1, . . . , ϕq) and (ψ1, . . . , ψq) are two

corresponding defining sequences. Put f = ϕ+ψ. It is sufficient to prove that (f1, . . . , fq),

with fj =
42

j−1

2
(ϕj + ψj), is a defining sequence of f satisfying

q
∑

j=1

‖ddcfj‖1/2
j ≤ 21−1/2q

(

q
∑

j=1

‖ddcϕj‖1/2
j

+

q
∑

j=1

‖ddcψj‖1/2
j
)

.

We prove it by induction on q. For q = 1, we have

df ∧ dcf = dϕ ∧ dcϕ+ dψ ∧ dcψ + (dϕ ∧ dcψ + dψ ∧ dcϕ) .
It follows from Cauchy-Schwarz inequality that

dϕ ∧ dcψ + dψ ∧ dcϕ ≤ dϕ ∧ dcϕ+ dψ ∧ dcψ.
This implies that

df ∧ dcf ≤ 2(dϕ ∧ dcϕ+ dψ ∧ dcψ) ≤ ddc (2ϕ1 + 2ψ1) .

Then, for f1 = 2(ϕ1 + ψ1), we have

df ∧ dcf ≤ ddcf1,

and

‖ddcf1‖1/2 ≤
√
2(‖ddcϕ1‖1/2 + ‖ddcψ1‖1/2).

This finishes the proof for q = 1. Now we assume that the desired property is true for q−1

where q ≥ 2. We have fq−1 = 42
q−2

2
(ϕq−1 + ψq−1). It thus follows from Cauchy-Schwarz

inequality and the definition of defining sequences that

dfq−1 ∧ dcfq−1 ≤
42

q−1

2
ddc (ϕq + ψq) .

Then, for fq =
42

q−1

2
(ϕq + ψq), we have

dfq−1 ∧ dcfq−1 ≤ ddcfq,

and

‖ddcfq‖1/2
q ≤ 21−1/2q

(

‖ddcϕq‖1/2
q

+ ‖ddcψq‖1/2
q)

.
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Thus, by the induction hypothesis, we have

q
∑

j=1

‖ddcfj‖1/2
j

=

q−1
∑

j=1

‖ddcfj‖1/2
j

+ ‖ddcfq‖1/2
q

≤ 21−1/2q−1
(

q−1
∑

j=1

‖ddcϕj‖1/2
j

+

q−1
∑

j=1

‖ddcψj‖1/2
j
)

+ 21−1/2q
(

‖ddcϕq‖1/2
q

+ ‖ddcψq‖1/2
q
)

≤ 21−1/2q
(

q
∑

j=1

‖ddcϕj‖1/2
j

+

q
∑

j=1

‖ddcψj‖1/2
j
)

,

as desired. The proof in the local case is thus completed.

Consider the global case. The homogeneity is clear. Now let ϕ and ψ be functions

in W ∗
q (X) where

(

(α1, ϕ1), . . . , (αq, ϕq)
)

and
(

(β1, ψ1), . . . , (βq, ψq)
)

are corresponding

defining sequences. Let f = ϕ + ψ. As in the local case, it is sufficient to prove that
(

(γ1, f1), . . . , (γq, fq)
)

, with γj = 42
j−1

2
(αj + βj) and fj = 42

j−1

2
(ϕj + ψj), is a defining

sequence of f satisfying

q
∑

j=1

γ
1/2j

j ≤ 21−1/2q
(

q
∑

j=1

α
1/2j

j +

q
∑

j=1

β
1/2j

j

)

.

We prove it by induction on q. For q = 1, the same computation as in the local case gives

df ∧ dcf ≤ (2α1 + 2β1)ω + ddc (2ϕ1 + 2ψ1) .

Then, for γ1 = 2(α1 + β1) and f1 = 2(ϕ1 + ψ1), we have

df ∧ dcf ≤ γ1ω + ddcf1,

and

γ
1/2
1 ≤

√
2(α

1/2
1 + β

1/2
1 ).

This finishes the proof for q = 1. Now we assume that the desired property is true for

q − 1 where q ≥ 2. We have γq−1 = 42
q−2

2
(αq−1 + βq−1) and fq−1 = 42

q−2

2
(ϕq−1 + ψq−1).

It thus follows from Cauchy-Schwarz inequality and the definition of defining sequences

that

dfq−1 ∧ dcfq−1 ≤
42

q−1

2
(αq + βq)ω +

42
q−1

2
ddc (ϕq + ψq) .

Then, for γq =
42

q−1

2
(αq + βq) and fq =

42
q−1

2
(ϕq + ψq), we have

dfq−1 ∧ dcfq−1 ≤ γqω + ddcfq,

and

γ1/2
q

q ≤ 21−1/2q
(

α1/2q

q + β1/2q

q

)

.
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It thus follows from the induction hypothesis that

q
∑

j=1

γ
1/2j

j =

q−1
∑

j=1

γ
1/2j

j + γ1/2
q

q

≤ 21−1/2q−1
(

q−1
∑

j=1

α
1/2j

j +

q−1
∑

j=1

β
1/2j

j

)

+ 21−1/2q
(

α1/2q

q + β1/2q

q

)

≤ 21−1/2q
(

q
∑

j=1

α
1/2j

j +

q
∑

j=1

β
1/2j

j

)

,

as desired. The proof is completed. �

Remark 2.2. Note that when the domain Ω is nice (e.g., convex domain), we have W ∗
1 =

W ∗. This restriction is from the fact that we cannot solve the equation ddcϕ = T in every

domain. The spaces W ∗
q is decreasing in q. Indeed, by definition, the q-star quasinorms are

increasing in q, namely

‖ϕ‖∗,q ≤ ‖ϕ‖∗,q+1 for every ϕ ∈ W ∗
q+1.

Next, we prove a compactness property of W ∗
q .

Proposition 2.3. Let (ϕn) be a bounded sequence in W ∗
q (Ω) (W ∗

q (X) respectively). Then

there exists a subsequence (ϕnj
) and a function ϕ ∈ W ∗

q (Ω) (W ∗
q (X) respectively) such that

ϕnj
converges weakly to ϕ in W 1,2 and ‖ϕ‖∗,q ≤ lim

j→+∞
‖ϕnj

‖∗,q.

Proof. We prove the proposition for the local case only, as the proof for the global case

merely requires a modification of this proof.

We proceed by induction on q. For q = 1, the proposition is a slight modification of

[Vig07, Proposition 4]. Now, we assume that the desired property is true for q− 1 where

q > 1. Let ψn ∈ W ∗
q−1 such that dϕn ∧ dcϕn ≤ ddcψn and ‖ψn‖∗,q−1 is bounded. It follows

from (ϕn) is bounded in W ∗
q and ‖ϕn‖∗,q−1 ≤ ‖ϕn‖∗,q that (ϕn) is also bounded in W ∗

q−1.

Thus, by the induction hypothesis, there are subsequences (ϕnj
), (ψnj

) of (ϕn), (ψn) and

functions ϕ, ψ ∈ W ∗
q−1 such that ϕnj

, ψnj
converge weakly to ϕ, ψ respectively in W 1,2

and ‖ψ‖∗,q−1 ≤ lim
j→+∞

‖ψnj
‖∗,q−1. Hence, ddcψnj

converges weakly to ddcψ. Moreover, as

noted in the proof of [Vig07, Proposition 4], if Θ is a weak limit of (dϕnj
∧ dcϕnj

), then

dϕ ∧ dcϕ ≤ Θ. So, we have dϕ ∧ dcϕ ≤ ddcψ. Therefore, ϕ ∈ W ∗
q . Let (ψ0,1, . . . , ψ0,q−1)

and (ψnj ,1, . . . , ψnj ,q−1) be respectively the defining sequence of ψ and ψnj
such that

‖ψ‖∗,q−1 = ‖ψ‖L2 +

q−1
∑

t=1

‖ddcψ0,t‖1/2
t

,

and

‖ψnj
‖∗,q−1 = ‖ψnj

‖L2 +

q−1
∑

t=1

∥

∥ddcψnj ,t

∥

∥

1/2t
.

We observe that

(2.3) ‖ϕ‖∗,q ≤ ‖ϕ‖L2 + ‖ddcψ‖1/2 +
q−1
∑

t=1

‖ddcψ0,t‖1/2
t+1

.
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It follows from ‖ψ‖∗,q−1 ≤ lim
j→+∞

‖ψnj
‖∗,q−1 and ϕnj

, ψnj
converge weakly to ϕ, ψ respec-

tively in W 1,2 that

(2.4) ‖ϕ‖L2 ≤ lim inf
j→+∞

‖ϕnj
‖L2 ,

and

(2.5) ‖ddcψ‖1/2 ≤ lim inf
j→+∞

‖ddcψnj
‖1/2,

and

(2.6)

q−1
∑

t=1

‖ddcψ0,t‖1/2
t+1 ≤ lim inf

j→+∞

q−1
∑

t=1

‖ddcψnj ,t‖1/2
t+1

.

Combining inequalities (2.3), (2.4), (2.5), and (2.6) gives us

‖ϕ‖∗,q ≤ lim inf
j→+∞

(

‖ϕnj
‖L2 + ‖ddcψnj

‖1/2 +
q−1
∑

t=1

‖ddcψnj ,t‖1/2
t+1
)

.

Then, by the choice of ψnj
, we obtain

‖ϕ‖∗,q ≤ lim inf
j→+∞

‖ϕnj
‖∗,q.

By passing to a subsequence of (ϕnj
), we complete the proof. �

Now, we prove that with the quasinorm ‖ · ‖∗,q, W ∗
q is a quasi-Banach space.

Proposition 2.4. W ∗
q endowed with the quasinorm ‖ · ‖∗,q is a quasi-Banach space.

Proof. The proof proceeds by induction on q. For q = 1, the proposition is a slight mod-

ification of [Vig07, Proposition 1]. Now, we assume that W ∗
q−1 is a quasi-Banach space

endowed with the quasinorm ‖ · ‖∗,q−1 for q ≥ 2. Let (ϕn) be a Cauchy sequence in W ∗
q .

Since ‖ϕ‖∗,q−1 ≤ ‖ϕ‖∗,q, (ϕn) is also a Cauchy sequence in W ∗
q−1. It thus follows from

the induction hypothesis that this sequence converges to a function ϕ ∈ W ∗
q−1. For every

ǫ > 0, there is an integer N such that for n and m greater than N , we have

d(ϕn − ϕm) ∧ dc(ϕn − ϕm) ≤ ddcψn,m,

where ψn,m is a function with ‖ψn,m‖∗,q−1 < ǫ. Let n go to infinity. Since (ϕn − ϕm)n
converges in W 1,2 to ϕ− ϕm, d(ϕn − ϕm) ∧ dc(ϕn − ϕm) converges in L1 to d(ϕ− ϕm) ∧
dc(ϕ − ϕm). By Proposition 2.3, we can find a subsequence of (ψn,m)n which converges

weakly in W 1,2 to a function ψm. This function satisfies

d(ϕ− ϕm) ∧ dc(ϕ− ϕm) ≤ ddcψm

and ‖ψm‖∗,q−1 ≤ ǫ. Thus, ϕ ∈ W ∗
q and ϕn converges to ϕ in W ∗

q . We complete our

proof. �

Remark 2.5. It is worth noting that in the case when q = 1, one can use a slight modification

of the proof of [Vig07, Proposition 1] to prove that ‖ · ‖∗,1 is a norm and W ∗
1 is a Banach

space with respect to this norm. It is also interesting to know if we can build a norm on W ∗
q

for q > 1. Note that by Aoki-Rolewicz’s Theorem, we can pick some equivalent quasinorm

‖ · ‖ with ‖ · ‖∗,q, such that for some 0 < p ≤ 1, ‖x‖p + ‖y‖p ≤ ‖x + y‖p for all x, y ∈ W ∗
q

(see [KPR84]).
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2.2. Examples. We now give specific examples for functions in W ∗
q .

Example 2.6. Let ϕ be a psh function in Ω. Assume that ϕ satisfies the following condition

(2.7) dϕ ∧ dcϕ ≤ rddcϕ

for some r > 0. Then it is clear by induction that ϕ ∈ W ∗
q (Ω) for all q. The condition (2.7)

was introduced in [DF83] and has many applications in studying the Bergman kernel of Ω
(see for example [BC00, Blo13]).

Example 2.7. Let ϕ be an ω-psh function in a compact Kähler manifold (X,ω). So ddcϕ +
ω ≥ 0. If ϕ is bounded (assume for simplicity that 0 ≤ ϕ ≤ 1), then we have

dϕ ∧ dcϕ = ddc(ϕ2)/2− ϕddcϕ ≤ ω + ddc(ϕ2)/2,

d(ϕ2/2) ∧ dc(ϕ2/2) = ϕ2dϕ ∧ dcϕ ≤ dϕ ∧ dcϕ ≤ ω + ddc(ϕ2/2).

By choosing the defining sequence to be
(

(1, ϕ2/2), . . . , (1, ϕ2/2)
)

, we deduce that ϕ ∈
W ∗
q (X) for all q. Thus, bounded ω-psh functions belong to the intersection of all W ∗

q (X).
If ϕ is unbounded (assume for simplicity that ϕ ≤ −1). Let ψ = − log(−ϕ). We have

dψ ∧ dcψ =
dϕ ∧ dcϕ

|ϕ|2 and

ddcψ = −dd
cϕ

ϕ
+
dϕ ∧ dcϕ

|ϕ|2 ·

It follows that dψ ∧ dcψ = ddcψ + ddcϕ/ϕ ≤ ddcψ + ω. Thus, by choosing the defining

sequence to be
(

(1, ψ), . . . , (1, ψ)
)

, we deduce that ψ ∈ W ∗
q (X) for all q.

Example 2.8. It follows from [Vig07, Section 2.3] (see also [DS06a, Proposition 4.1])

that if f, g ∈ W ∗
q , then

dmax(f, g) ∧ dcmax(f, g) ≤ ddc(f1 + g1),

dmin(f, g) ∧ dcmin(f, g) ≤ ddc(f1 + g1),

where f1, g1 are functions in W ∗
q−1 such that df ∧dcf ≤ ddcf1 and dg∧dcg ≤ ddcg1. So, both

max(f, g) and min(f, g) belong to W ∗
q . Moreover, there exists a constant c not depending on

f and g such that

‖max(f, g)‖∗,q ≤ c (‖f‖∗,q + ‖g‖∗,q) and ‖min(f, g)‖∗,q ≤ c (‖f‖∗,q + ‖g‖∗,q) .
Example 2.9. Let ϕ be the function defined by −(− log |z1|2)α in the unit ball B of Ck. Then,

i∂ϕ ∧ ∂̄ϕ =
idz1 ∧ dz̄1

|z1|2(− log |z1|2)2−2α
·

Let ψ = −(− log |z1|2)2α. We have

∂̄ψ = 2α(− log |z1|2)2α−1 1

z̄1
dz̄1, i∂∂̄ψ = 2α(1− 2α)

idz1 ∧ dz̄1
|z1|2(− log |z1|2)2−2α

·

Thus,

i∂ϕ ∧ ∂̄ϕ =
1

2α(1− 2α)
i∂∂̄ψ·

So, by induction on q and [Vig07, Example 2], we can prove that ϕ ∈ W ∗
q (B) if and only if

α <
1

2q
·
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Example 2.10. Let ϕ be a subharmonic function in W 1,2(U) where U is an open subset of

C. Then for any ball B ⊂ U , by Poincaré-Sobolev inequality, we have

1

|B|

∫

B

|ϕ−mB(ϕ)| ≤ c
(

∫

B

|∇ϕ|2
)1/2

,

where c is a constant not depending on ϕ and B. Let the radius of B go to zero, we deduce

that ϕ is a VMO function. Thus, as pointed out in [BW24, Theorem 1.1], ϕ must have zero

Lelong number at every point of U . Now, consider ϕ to be a psh function inW ∗
1 (Ω). By slicing

method (see [DMV20]) and Siu’s theorem (see [Dem, Chapter. III (7.13)]), we deduce that

ϕ has zero Lelong number at every point of Ω. By remark after [Vig07, Proposition 6],

we deduce that W ∗
q (Ω) is a VMO space for every q > 1. The same result holds in the global

setting. In fact, as we will see in Theorem 1.4, if ϕ ∈ W ∗
1 (X)∩PSH(X,ω), then ϕ ∈ E(X,ω).

And it is well-known that functions in E(X,ω) have zero Lelong numbers at every point.

2.3. Density theorems. We now prove density theorems for W ∗
q . The approximate se-

quences have been constructed in [Vig07], and we use the same construction for our

spaces.

First, we consider the local case. We have the following result.

Theorem 2.11. Let K be a relatively compact subset of Ω and ϕ ∈ W ∗
q (Ω). Then there

exists a sequence of smooth functions (ϕn) converges to ϕ in W 1,2(K). Moreover, we have

‖ϕ‖W ∗

q (K) ≤ lim
n→+∞

‖ϕn‖W ∗

q (K) ≤ ‖ϕ‖W ∗

q (Ω).

Proof. Take χ to be a non-negative smooth radial function with compact support in Ck

such that
∫

Ck χ = 1 and define

χǫ(z) = ǫ−2kχ
(z

ǫ

)

·
Put ϕǫ = ϕ ∗ χǫ, then ϕǫ is well-defined in K when ǫ is small enough. Consider ψ ∈
W ∗
q−1(Ω) ∩ PSH(Ω) such that dϕ ∧ dcϕ ≤ ddcψ. Let (ǫn)n be a sequence decreasing to

zero and define ϕn = ϕǫn, ψn = ψ ∗ χǫn. Then, by [Vig07, Lemma 5], we have dϕn ∧
dcϕn ≤ ddcψn. Now, let (ϕ1, . . . , ϕq) be a defining sequence for ϕ. Define ϕn,j = ϕj ∗ χǫn
for j = 1, . . . , q. Then by an induction, (ϕn,1, . . . , ϕn,q) is a defining sequence for ϕn.

Moreover, we also have

(2.8) lim
n→+∞

∫

K

ddcϕn,j ∧ ωk−1 ≤
∫

Ω

ddcϕj ∧ ωk−1 for j = 1, . . . , q.

It follows that (ϕn) is a bounded sequence in W ∗
q (K). Thus, by Proposition 2.3, there

exists a subsequence (ϕnm
) converges to ϕ in W 1,2(K) and satisfies the first inequality.

By (2.8), this sequence also satisfies the second inequality. We complete the proof. �

We now consider the case of compact Kähler manifolds. We have the following result.

Theorem 2.12. Let ϕ ∈ W ∗
q (X). Then there exists a sequence of smooth functions (ϕn) such

that ϕn converges to ϕ weakly in W 1,2(X). Moreover, there is a constant c not depending on

ϕ such that lim
n→+∞

‖ϕn‖∗,q ≤ c‖ϕ‖∗,q.

Proof. Let (K+
n ) and (K−

n ) be two sequences of positive closed (k, k)-currents constructed

in [DS04]. Recall that (K+
n −K−

n ) converges to the current of integration on the diagonal
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of X ×X. Define Kn = K+
n −K−

n . Now consider ϕ ∈ W ∗
q (X) and put

ϕn(x) =

∫

y∈X

ϕ(y)Kn(x, y).

Let ψ be the function in W ∗
q−1(X) such that dϕ ∧ dcϕ ≤ c(ω + ddcψ), then we can bound

dϕn ∧ dcϕn by

A

∫

y∈X

K±
n (x, y) ∧ (ω + ddcψ).

Here A is a constant depending on the manifold X and ‖ϕ‖∗,q. This is a positive closed

current (note that both K+
n and K−

n are positive closed current) and for N big enough,

we can bound this as the form 2A(ω + ddcψn) where

ψn =

∫

y∈X

ψ(y)K±
n (x, y).

As pointed out in [Vig07, Section 2.4] (see [DNS22, Appendix A] for more information),

after iterating this convolution several times, we can make ϕn smooth. The result is thus

followed by using [Vig07, Theorem 10] and induction in q. �

2.4. Vigny’s functional capacity. Consider the case when (X,ω) is a compact Kähler

manifold. Following [Vig07], for a Borel set E in X, we define

Lq(E) =
{

ϕ ∈ W ∗
q : ϕ ≤ −1 a.e on some neighborhood of E and ϕ ≤ 0 on X

}

.

The corresponding Vigny’s capacity for W ∗
q can be defined as follows

Capq(E) = inf
{

‖ϕ‖2∗,q : ϕ ∈ Lq(E)
}

.

These capacities share similar properties with the original Vigny’s capacity in [Vig07].

We list below some important properties. The proofs are modifications of Vigny’s proofs

in [Vig07].

Proposition 2.13. The capacity Capq satisfies the following properties

(1) for E ⊂ F ⊂ X, Capq(E) ≤ Capq(F );

(2) if (Ej) is a sequence of Borel sets in X, Capq(∪jEj) ≤ c
∑

j

Capq(Ej) for some

constant c not depending on (Ej);
(3) Capq(X) = 1 and Capq(E) ≤ 1 for any E ⊂ X;

(4) if (Kj) is a decreasing sequence of compact sets, lim
j→+∞

Capq(Kj) = Capq(∩nKj);

(5) if (Ej) is an increasing sequence of Borel sets, Capq(∪jEj) = lim
j→+∞

Capq(Ej), that

is, Capq is a Choquet capacity.

Proof. We note that, due to Example 2.8, in W ∗
q , we also have the following inequality

‖min(f, g)‖2∗,q ≤ c
(

‖f‖2∗,q + ‖g‖2∗,q
)

.

Moreover, ‖f‖∗,q = 1 where f is the constant function 1 on X. We can now follow the

proofs of [Vig07, Proposition 27 and Theorem 30] to finish the proof. �

Capq also characterizes pluripolar sets in a manner analogous to the original Vigny’s

capacity.
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Theorem 2.14. There exists a strictly positive constant B such that for all Borel subset E
of X, we have

B−1Capω(E) ≤ Capq(E) ≤ B(Capω(E))
1

k2q−1 .

In particular, Capq(E) = 0 if and only if E is pluripolar.

Recall that the capacity Capω was defined by Kołodziej in [Kol03]. It is related to the

well-known Bedford-Taylor capacity ([BT82]), and defined by

Capω(E) = sup
{

∫

E

(ω + ddcu)k : u ∈ PSH(X,ω), −1 ≤ u ≤ 0
}

,

where E is a Borel subset of X. We refer the reader to [GZ05] for more information on

this capacity for local and global settings.

We also need the following notion of capacity introduced by Dinh and Sibony in

[DS06b]. It is related to the capacities of Alexander in [Ale81] and of Siciak in [Sic62],

see also [HL06] and [GZ05]. For a Borel subset E of X, we consider the function

VE(x) = sup
{

u(x) : u ∈ PSH(X,ω) and u ≤ 0 on E
}

.

Then VE is a non-negative ω-psh function. Define

J (E) = exp
(

− sup
X
VE(x)

)

.

Recall from [GZ05, Proposition 6.1] the following relation between Capω and J .

Theorem 2.15. There is a strictly positive constant A such that for all compact subset K of

X, we have

exp
(

− A

Capω(K)

)

≤ J (K) ≤ e · exp
(

− 1

Capω(K)1/k

)

·

Now we can prove Theorem 2.14.

Proof of Theorem 2.14. We follow proofs in [Vig07, DKN20]. Due to Example 2.7, if ϕ
is a qpsh function such that ϕ < −1, then the function ψ = − log(−ϕ) belongs to W ∗

q

for all q, and ψ has the same poles set as ϕ. We can now follow the proofs of [Vig07,

Proposition 28] to see the first inequality.

We now consider the second inequality. Since both capacities are regular (see [GZ05,

Theorem 4.2] and Proposition 2.13.(5)), we only need to show this inequality for any

compact regular set K ⊂ X instead of E. Let M = sup
X
VK(x). Without loss of generality,

we may assume that M < +∞, otherwise both capacities vanish. If M ≤ 1, then by

[DKN20, page 14], the desired inequality follows. Now we only consider the case when

M ≥ 1. Define

fK(x) =
VK(x)−M

M
·

Then fK is equal −1 on K with −1 ≤ fK ≤ 0 and fK is qpsh with ddcfK +M−1ω ≥ 0.

Since fK is a bounded qpsh function, it follows from Example 2.7 that fK ∈ W ∗
q for all q.

We now compute ‖fK‖∗,q. Direct calculation gives us

dfK ∧ dcfK = −fKddcfK +
1

2
ddc(f 2

K) ≤
ω

M
+

1

2
ddc(f 2

K),
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d(f 2
K/2) ∧ dc(f 2

K/2) = (f 2
K)dfK ∧ dcfK ≤ dfK ∧ dcfK ≤ ω

M
+

1

2
ddc(f 2

K)·

Hence, we can choose
(

(M−1, f 2
K/2), . . . , (M

−1, f 2
K/2)

)

as a defining sequence. Now, as

mentioned in the definition of ‖ · ‖∗,q, if we replace L2-norm by L1-norm, we obtain an

equivalent norm. Since max
X

fK = 0, we have

‖fK‖L1 =

∫

X

−fKωn ≤
A

M

for some constant A depending only on (X,ω) because the set of ω-psh function u such

that max
X

u = 0 is a compact subset in L1(X). Thus, we get

‖fK‖∗,q = ‖fK‖L1 +

q
∑

j=1

1

M2j
≤ A

M
+

q
∑

j=1

1

M1/2j
≤ B′

M1/2q

for some constant B′ > 0 since M ≥ 1. So, by Theorem 2.15,

Capq(U) ≤ ‖fK‖2∗,q ≤
B′2

M1/2q−1
≤ B (Capω(U))

1

k2q−1 ·

This finishes the proof. �

Remark 2.16. Theorem 2.14 directly shows that the capacities Capq with p ≥ 1, are equiv-

alent capacities. Observe that the sequence (Capq)q≥1 is increasing and always bounded by

1. Given a Borel set E, it is an interesting question to study the behavior of Capq(E) as q
goes to infinity and their relationship with the Lebesgue measure.

Remark 2.17. As in [Vig07, Remark 33], one can define Capq in the local case by the same

method. It is also a Choquet capacity and the sets of zero capacity are exactly the pluripolar

sets.

3. MOSER-TRUDINGER INEQUALITIES

In this section, we prove a sequence of estimations of Lm type. Then we construct the

psh (qpsh) bound for functions in W ∗
q to prove Theorems 1.2 and 1.3.

3.1. Estimations of Lm type. First, we need some auxiliary results. We begin by recall-

ing the following version of Moser-Trudinger inequality for functions in W ∗
1 .

Theorem 3.1. [DMV20, Theorem 1.1] Let Ω be a domain in Ck and K a compact subset of

U . Let v1, . . . , vk be psh functions which are Hölder continuous of Hölder exponent β ∈ (0, 1)
on Ω. Let ϕ ∈ W ∗

1 (Ω). Assume that ‖vj‖Cβ ≤ 1 for 1 ≤ j ≤ k and ‖ϕ‖∗,1 ≤ 1. Then there

exist strictly positive constants α and c depending on U,K, β but independent of ϕ, v1, . . . , vk
such that

∫

K

eα|ϕ|
2

ddcv1 ∧ · · · ∧ ddcvk ≤ c.

In particular, ϕ belongs to Lploc with respect to the measure ddcv1 ∧ · · · ∧ ddcvk for every

p ∈ [1,∞).

The following result is a direct consequence of Theorem 3.1.
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Corollary 3.2. Let K be a compact subset of Ω and m ∈ N. There exists a strictly positive

constant c1 so that
∫

K

|ϕ|mωk ≤ c1,

for every ϕ ∈ W ∗
1 (Ω) with ‖ϕ‖∗,1 ≤ 1. In particular, the estimate holds for every ϕ ∈ W ∗

q (Ω)
with ‖ϕ‖∗,q ≤ 1.

Here, for the last assertion, we use that ‖ϕ‖∗,1 ≤ ‖ϕ‖∗,q for ϕ ∈ W ∗
q .

Next, let ϕ be a positive function in W ∗
q (B) and (ϕ1, . . . , ϕq) be a defining sequence for

ϕ such that

‖ϕ‖∗,q = ‖ϕ‖L2 +

q
∑

j=1

‖ddcϕj‖1/2
j

.

We can assume that ϕq ≤ 0.

Remark 3.3. Recall that if (ϕ1, . . . , ϕq) is a defining sequence for ϕ, then (ϕ1,ǫ, . . . , ϕq,ǫ) is a

defining sequence for ϕǫ where ϕǫ is the standard regularization of ϕ and ϕj,ǫ is the standard

regularization of ϕj for j = 1, . . . , q (see Theorem 2.11).

We set

• φn = max(ϕq,−n),
• hn = 1 + φn/n ∈ PSH(B, [0, 1]), hn = 0 on {ϕq ≤ −n},

• Tn = ddc (h2n/2). This is a positive closed (1, 1)-current which vanishes on

{ϕq < −n}.

We have the following elementary lemma.

Lemma 3.4. Assume that ϕq−1 and ϕq are smooth. Then

(1) dhn ∧ dchn ≤ Tn and hndd
chn ≤ Tn,

(2) dϕq−1 ∧ dcϕq−1 ≤ ddcφn on {hn > 0},

(3) dϕq−1 ∧ dcϕq−1 ∧ Tn ≤ ddcφn+1 ∧ Tn.

By (1), (2), and the definition of hn, we have the following estimate.

Corollary 3.5. Assume that ϕq−1 and ϕq are smooth. Then

hndϕq−1 ∧ dcϕq−1 ≤ nhndd
chn ≤ nTn.

Now, we state and prove a sequence of estimates of Lm type.

Definition 3.6. Let ω be the canonical Kähler form on Ck. For every m ∈ N, K ⋐ B, define

for 0 ≤ p ≤ k

Im,p,K = sup
v1,...,vp∈PSH(B,[0,1])

∫

K

h2nϕ
2mddcv1 ∧ · · · ∧ ddcvp ∧ ωk−p

and for 0 ≤ p ≤ k − 1

Jm,p,K = sup
v1,...,vp∈PSH(B,[0,1])

∫

K

ϕ2mTndd
cv1 ∧ · · · ∧ ddcvp ∧ ωk−p−1.

As noted after Theorem 1.2, we use the canonical representative of ϕ here, and thus all

the integrals make sense. In what follows, we use . or & to denote ≤ or ≥ respectively

modulo a multiplicative constant independent of n and ϕ provided ‖ϕ‖∗,q ≤ 1. Note that
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all the definitions depend on n. However, we omit the index n since the estimates do not

depend on n.

Lemma 3.7. There is a constant c = c(m,K) independent of ϕ and n such that

Jm,0,K ≤ cn
m

2q−1

for every n.

Proof. By a standard regularization, we can assume that ϕ, ϕ1, . . . , ϕq are smooth. Let χ
be a smooth cut-off function such that χ ≡ 1 on an open neighborhood of K, and χ is

supported on B. It is sufficient to prove that

Jm =

∫

B

χ2ϕ2mTn ∧ ωk−1 . n
m

2q−1 .

It follows from the definition of Tn and Stokes’ formula that

Jm =
1

2

∫

B

χ2ϕ2mddch2n ∧ ωk−1

= −
∫

B

χϕ2mdχ ∧ dch2n ∧ ωk−1 −m

∫

B

χ2ϕ2m−1dϕ ∧ dch2n ∧ ωk−1

= −2
(

∫

B

χϕ2mhndχ ∧ dchn ∧ ωk−1 +m

∫

B

χ2ϕ2m−1hndϕ ∧ dchn ∧ ωk−1
)

.

Let A1 and A2 be respectively the first and second integrals inside the brackets. It follows

from Cauchy-Schwarz inequality, Corollary 3.2 and Lemma 3.4 that

A2
1 ≤

(

∫

B

χ2ϕ2mdhn ∧ dchn ∧ ωk−1
)(

∫

B

ϕ2mh2ndχ ∧ dcχ ∧ ωk−1
)

.
(

∫

B

χ2ϕ2mTn ∧ ωk−1
)(

∫

supp(χ)

ϕ2m ∧ ωk
)

. Jm,

and

A2
2 ≤

(

∫

B

χ2ϕ2mdhn ∧ dchn ∧ ωk−1
)(

∫

B

χ2ϕ2m−2h2ndϕ ∧ dcϕ ∧ ωk−1
)

≤
(

∫

B

χ2ϕ2mTn ∧ ωk−1
)(

∫

B

χ2ϕ2m−2h2ndd
cϕ1 ∧ ωk−1

)

≤ JmB1,m−1,

where

Bj,m =

∫

B

χ2ϕ2mh2ndd
cϕj ∧ ωk−1 for j = 1, . . . , q.

This implies Jm .
√
Jm +

√
Jm
√

B1,m−1, and hence

(3.1) Jm . B1,m−1.

To estimate B1,m−1, we first observe that, by Stokes’ formula, for j = 1, . . . , q − 1,

Bj,m = −2
(

∫

B

χϕ2mh2ndχ ∧ dcϕj ∧ ωk−1

+m

∫

B

χ2ϕ2m−1h2ndϕ ∧ dcϕj ∧ ωk−1 +

∫

B

χ2ϕ2mhndhn ∧ dcϕj ∧ ωk−1
)

.
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Let Cj,1, Cj,2, and Cj,3 be the first, second, and third integrals inside the brackets respec-

tively. It follows from Cauchy-Schwarz inequality that

C2
j,1 ≤

(

∫

B

ϕ2mh2ndχ ∧ dcχ ∧ ωk−1
)(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧ ωk−1
)

.
(

∫

supp(χ)

ϕ2mωk
)(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧ ωk−1
)

,

C2
j,2 ≤

(

∫

B

χ2ϕ2m−2h2ndϕ ∧ dcϕ ∧ ωk−1
)(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧ ωk−1
)

≤
(

∫

B

χ2ϕ2m−2h2ndd
cϕ1 ∧ ωk−1

)(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧ ωk−1
)

and

C2
j,3 ≤

(

∫

B

χ2ϕ2mdhn ∧ dchn ∧ ωk−1
)(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧ ωk−1
)

.

It thus follows from the definition of the defining sequence, Corollary 3.2, Lemma 3.4,

Corollary 3.5 and inequality (3.1) that

C2
j,1 .

{

Bj+1,m if j < q − 1

nB1,m−1 if j = q − 1,
C2
j,2 .

{

B1,m−1Bj+1,m if j < q − 1

nB2
1,m−1 if j = q − 1,

C2
j,3 .

{

B1,m−1Bj+1,m if j < q − 1

nB2
1,m−1 if j = q − 1.

Note that we use (3.1) and the fact that 0 ≤ hn ≤ 1 when j = q − 1. Then, we have

B2
j,m .

{

Bj+1,m +B1,m−1Bj+1,m if j < q − 1

nB2
1,m−1 if j = q − 1,

which implies
{

B2
j,m . B1,m−1Bj+1,m for j < q − 1

Bq−1,m .
√
nB1,m−1,

and hence,

B2q−2

1,m . Bq−1,mB
2q−2−1
1,m−1 .

√
nB2q−2

1,m−1.

It thus follows that

B1,m . n
1

2q−1B1,m−1,

and hence

(3.2) B1,m . n
m

2q−1 .

Now, combining inequalities (3.1) and (3.2) gives us

Jm . n
m

2q−1 ,

as desired. �

Lemma 3.8. There is a constant c = c(m,K) independent of ϕ and n such that

Jm,p,K ≤ cn
m

2q−1

for every n.
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Proof. We prove the lemma by induction on p. If p = 0, the desired assertion is Lemma 3.7.

Assume now that it is true for all p′ with p′ ≤ p− 1. By a standard regularization, we can

assume that ϕ, ϕ1, . . . , ϕq are smooth. Let χ be a smooth cut-off function such that χ ≡ 1
on an open neighborhood of K, and χ is supported on B. It is sufficient to prove that

Jm,p = sup
v1,...,vp∈PSH(B,[0,1])

∫

B

χ2ϕ2mTndd
cv1 ∧ · · · ∧ ddcvp ∧ ωk−p−1 . n

m

2q−1 .

We prove this inequality by induction on m (p now fixed). When m = 0, it is obvious.

Assume that it is true for all m′ with m′ ≤ m− 1. Consider v1, . . . , vp ∈ PSH(B, [0, 1]), we

set R = ddcv2 ∧ · · · ∧ ddcvp ∧ Tn ∧ ωk−p−1. It follows from Stokes’ formula that
∫

B

χ2ϕ2mTndd
cv1 ∧ · · · ∧ ddcvp ∧ ωk−p−1

= −2
(

∫

B

χϕ2mdχ ∧ dcv1 ∧R +m

∫

B

χ2ϕ2m−1dϕ ∧ dcv1 ∧R
)

.

Let D1 and D2 be the first and second integrals inside the brackets respectively. By the

Cauchy-Schwarz inequality, the induction hypothesis on p, the induction hypothesis on

m, and Lemma 3.4, we have

D2
1 ≤

(

∫

B

ϕ2mdχ ∧ dcχ ∧ R
)(

∫

B

χ2ϕ2mdv1 ∧ dcv1 ∧ R
)

.
(

∫

supp(χ)

ϕ2mR ∧ ω
)(

∫

B

χ2ϕ2mddc(v21) ∧R
)

. Jm,p−1,supp(χ)Jm,p

. n
m

2q−1 Jm,p,

and

D2
2 ≤

(

∫

B

χ2ϕ2m−2dϕ ∧ dcϕ ∧R
)(

∫

B

χ2ϕ2mdv1 ∧ dcv1 ∧R
)

.
(

∫

B

χ2ϕ2m−2ddcϕ1 ∧ R
)(

∫

B

χ2ϕ2mddc(v21) ∧R
)

. E1,m−1Jm,p,

where

Ej,m = sup
v2,...,vp∈PSH(B,[0,1])

∫

B

χ2ϕ2mddcϕj ∧R for j = 1, . . . , q.

Note that since χ depends on K, the estimate here only depends on K. Then, by taking

the supremum over all v1, . . . , vp ∈ PSH(B, [0, 1]), we observe that

(3.3) Jm,p . n
m

2q−1 + E1,m−1.

To estimate E1,m−1, we consider v2, . . . , vp ∈ PSH(B, [0, 1]). It follows from Stokes’ for-

mula that, for j = 1, . . . , q − 1,
∫

B

χ2ϕ2mddcϕj ∧ R = −2
(

∫

B

χϕ2mdχ ∧ dcϕj ∧ R +m

∫

B

χ2ϕ2m−1dϕ ∧ dcϕj ∧ R
)

.

Let Fj,1 and Fj,2 be the first and second integrals inside the brackets respectively. By the

Cauchy-Schwarz inequality, the induction hypothesis on p, and the induction hypothesis
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on m, we have

F 2
j,1 ≤

(

∫

B

ϕ2mdχ ∧ dcχ ∧ R
)(

∫

B

χ2ϕ2mdϕj ∧ dcϕj ∧ R
)

. Jm,p−1,supp(χ)

(

∫

B

χ2ϕ2mdϕj ∧ dcϕj ∧ R
)

. n
m

2q−1

(

∫

B

χ2ϕ2mdϕj ∧ dcϕj ∧ R
)

,

and

F 2
j,2 ≤

(

∫

B

χ2ϕ2m−2dϕ ∧ dcϕ ∧ R
)(

∫

B

χ2ϕ2mdϕj ∧ dcϕj ∧ R
)

≤
(

∫

B

χ2ϕ2m−2ddcϕ1 ∧ R
)(

∫

B

χ2ϕ2mdϕj ∧ dcϕj ∧ R
)

≤ E1,m−1

(

∫

B

χ2ϕ2mdϕj ∧ dcϕj ∧ R
)

.

Then, by taking the supremum over all v1, . . . , vp ∈ PSH(B, [0, 1]), Lemma 3.4 and in-

equality (3.3), we have

E2
j,m .







Ej+1,m

(

E1,m−1 + n
m

2q−1

)

if j < q − 1

n
(

n
m

2q−1 (n
m

2q−1 + E1,m−1) + E1,m−1(n
m

2q−1 + E1,m−1)
)

if j = q − 1.

It thus follows that






E2
j,m . Ej+1,m

(

E1,m−1 + n
m

2q−1

)

if j < q − 1

Eq−1,m .
√
n
(

E1,m−1 + n
m

2q−1

)

.

Then, we have

E2q−2

1,m ≤ Eq−1,m

(

E1,m−1 + n
m

2q−1

)2q−2−1

.
√
n
(

E1,m−1 + n
m

2q−1

)2q−2

,

and hence,

E1,m . n
1

2q−1

(

E1,m−1 + n
m

2p−1

)

.

Therefore, we obtain

(3.4) E1,m . n
m+1

2q−1 .

Combining inequalities (3.3) and (3.4) gives us

Jm,p . n
m

2q−1

as desired. �

Lemma 3.9. There is a constant c = c(m,K) independent of ϕ and n such that

Im,p,K ≤ cn
m

2q−1

for every n.
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Proof. We argue similarly as in the proof of Lemma 3.8, by induction on p. If p = 0, the

desired assertion follows from Corollary 3.2. We assume now that it is true for every

p′ with p′ ≤ p − 1. By a standard regularization, we can assume that ϕ, ϕ1, . . . , ϕq are

smooth. Let χ be a smooth cut-off function such that χ ≡ 1 on an open neighborhood of

K, and χ is supported on B. To prove the desired assertion, it suffices to prove that

Im,p = sup
v1,...,vp∈PSH(B,[0,1])

∫

B

χ2ϕ2mh2ndd
cv1 ∧ · · · ∧ ddcvp ∧ ωk−p . n

m

2q−1 .

We prove this inequality by induction on m (p now fixed). When m = 0, it is obvious.

Assume that it is true for all m′ with m′ ≤ m− 1. Consider v1, . . . , vp ∈ PSH(B, [0, 1]), we

set R′ = ddcv2 ∧ · · · ∧ ddcvp ∧ ωk−p. It follows from Stokes’ formula that
∫

B

χ2ϕ2mh2ndd
cv1 ∧R′ =− 2

(

∫

B

χϕ2mh2ndχ ∧ dcv1 ∧ R′

+

∫

B

χ2ϕ2mhndhn ∧ dcv1 ∧ R′ +m

∫

B

χ2ϕ2m−1h2ndϕ ∧ dcv1 ∧R′
)

.

Let G1, G2, and G3 be the first, second, and third integrals inside the brackets respec-

tively. By the Cauchy-Schwarz inequality, the induction hypothesis on p, the induction

hypothesis on m, and Lemma 3.8, we have

G2
1 ≤

(

∫

B

h2nϕ
2mdχ ∧ dcχ ∧R′

)(

∫

B

h2nϕ
2mχ2dv1 ∧ dcv1 ∧ R′

)

. Im,p−1,supp(χ)

(

∫

B

h2nϕ
2mχ2ddc(v21) ∧ R′

)

. n
m

2q−1 Im,p,

G2
2 ≤

(

∫

B

χ2ϕ2mdhn ∧ dchn ∧ R′
)(

∫

B

χ2ϕ2mh2ndv1 ∧ dcv1 ∧R′
)

≤
(

∫

B

χ2ϕ2mTn ∧R′
)(

∫

B

χ2ϕ2mh2ndd
c(v21) ∧ R′

)

≤ Jm,p−1,supp(χ)Im,p

. n
m

2q−1 Im,p,

and

G2
3 ≤

(

∫

B

χ2ϕ2m−2h2ndϕ ∧ dcϕ ∧R′
)(

∫

B

χ2ϕ2mh2ndv1 ∧ dcv1 ∧ R′
)

≤
(

∫

B

χ2ϕ2m−2h2ndd
cϕ1 ∧R′

)(

∫

B

χ2ϕ2mh2ndd
c(v21) ∧ R′

)

≤ H1,m−1Im,p

where

Hj,m = sup
v2,...,vp∈PSH(B,[0,1])

∫

B

χ2ϕ2mh2ndd
cϕj ∧R′ for j = 1, . . . , q.

Then, by taking the supremum over all v1, . . . , vp ∈ PSH(B, [0, 1]), we have

(3.5) Im,p . n
m

2q−1 +H1,m−1.
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To estimate H1,m−1, we consider v2, . . . , vp ∈ PSH(B, [0, 1]). It follows from Stokes’ for-

mula that, for j = 1, . . . , q − 1,
∫

B

χ2ϕ2mh2ndd
cϕj ∧ R′ = −2

(

∫

B

χϕ2mh2ndχ ∧ dcϕj ∧ R′+

m

∫

B

χ2ϕ2m−1h2ndϕ ∧ dcϕj ∧ R′ +

∫

B

χ2ϕ2mhndhn ∧ dcϕj ∧R′
)

.

Let Lj,1, Lj,2, and Lj,3 be the first, second, and third integrals inside the brackets re-

spectively. It follows from Lemma 3.4, Lemma 3.8, Cauchy-Schwarz inequality and the

induction hypothesis on p that

L2
j,1 ≤

(

∫

B

ϕ2mh2ndχ ∧ dcχ ∧R′
)(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧R′
)

≤
(

∫

supp(χ)

ϕ2mh2n ∧R′ ∧ ω
)(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧R′
)

≤ Im,p−1,supp(χ)

(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧R′
)

. n
m

2q−1

(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧ R′
)

,

L2
j,2 ≤

(

∫

B

χ2ϕ2m−2h2ndϕ ∧ dcϕ ∧R′
)(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧R′
)

≤
(

∫

B

χ2ϕ2m−2h2ndd
cϕ1 ∧R′

)(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧R′
)

. H1,m−1

(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧ R′
)

,

and

L2
j,3 ≤

(

∫

B

χ2ϕ2mdhn ∧ dchn ∧ R′
)(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧ R′
)

≤
(

∫

B

χ2ϕ2mTn ∧ R′
)(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧R′
)

≤ Jm,p−1,supp(χ)

(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧R′
)

. n
m

2q−1

(

∫

B

χ2ϕ2mh2ndϕj ∧ dcϕj ∧R′
)

.

Then, by taking the supremum over all v2, . . . , vp ∈ PSH(B, [0, 1]), Corollary 3.5, Lemma 3.8,

and inequality (3.5), we have

H2
j,m .







Hj+1,m

(

H1,m−1 + n
m

2q−1

)

if j < q − 1

n
(

H1,m−1 + n
m

2q−1

)2

if j = q − 1.

It thus follows that






H2
k,m . Hk+1,m

(

H1,m−1 + n
m

2q−1

)

if k < q − 1

Hq−1,m .
√
n
(

H1,m−1 + n
m

2q−1

)

,
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and hence

H2q−2

1,m−1 . Hq−1,m

(

H1,m−1 + n
m

2q−1

)2q−2−1

.
√
n
(

H1,m−1 + n
m

2q−1

)2q−2

.

Then, we have

H1,m . n
1

2q−1

(

H1,m−1 + n
m

2q−1

)

,

which implies

(3.6) H1,m . n
m+1

2q−1 .

Combining inequalities (3.5) and (3.6) gives

Im,p . n
m

2q−1 ,

as desired. �

We end this subsection by estimates of Bedford-Taylor’s capacity of sub-level sets,

which will be used in the sequel. We recall that, for a compact subset K ⊂ Ω, the

Bedford-Taylor’s capacity of K in Ω is defined by the formula

Cap(K,Ω) = sup
{

∫

K

(ddcu)n : u ∈ PSH(Ω),−1 ≤ u ≤ 0
}

.

We refer the reader to [BT82, Kol98, Kol05] for more information on this capacity.

For every Borel set E ⊂ B, the relative extremal function for E in B is defined as

uE = sup
{

u ∈ PSH(B) : u ≤ 0 on B, u ≤ −1 on E
}

.

Let u∗E be the upper semicontinuous regularization of uE. Then we have the following

relationship between the relative extremal functions and Bedford-Taylor’s capacity.

Cap(E,B) =

∫

B

(ddcu∗E)
k =

∫

E

(ddcu∗E)
k,

see [BT82]. Now, fix a compact subset K of B. Let 22
q−1

< λ < 22
q

be a constant. For

n ∈ N, we set

Kn =
{

z ∈ K : ϕ(z) ≥ 2n, ϕq ≥ −λn
}

,

and un = uKn
.

We have the following estimates for Bedford-Taylor’s capacity of Kn in B.

Lemma 3.10. For every m ∈ N, there is a constant cm independent of ϕ such that for all

n ∈ N
∫

Kn

(ddcu∗n)
k ≤ Cap(Kn,B) ≤ cm

( λ

22q

)
mn

2q−1 ·

Proof. The first inequality is clear. We only need to prove the second inequality. Let l
be a positive integer and Vl be an open subset in B so that Cap(Vl,B) ≤ l−1 and ϕ is

continuous on B \ Vl. We have

(3.7) Cap(Kn,B) ≤ Cap(Kn \ Vl,B) + Cap(Vl,B) ≤
∫

Kn\Vl

(ddcu∗Kn\Vl
)k + l−1.

Since h2λn ≥ 1/2 on Kn (recall that hn = 1 +max(ϕq,−n)/n), we have
∫

Kn\Vl

(ddcu∗Kn\Vl
)k ≤ 4× 4−mn

∫

Kn\Vl

h22λnϕ
2m(ddcu∗Kn\Vl

)k . 4−mn(2λn)
m

2q−1 .
( λ

22q

)
mn

2q−1
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by Lemma 3.9. This combined with inequality (3.7) gives

Cap(Kn,B) ≤ cm

( λ

22q

)
mn

2q−1

+ l−1·

Let l → +∞, we complete the proof. �

3.2. Psh bound (local version). Now we construct the psh bound for functions in W ∗
q .

Theorem 3.11. Let ϕ ∈ W ∗
q (B) with ‖ϕ‖∗,q ≤ 1 and α ∈ [1, 2q). Then for every compact

subset K of B, there exist a strictly positive constant C and a psh function u on B such that

|ϕ|α ≤ −u
on K and ‖u‖L1(K) ≤ C.

Proof. Fix α ∈ [1, 2q) and λ ∈ (max(2α, 22
q−1

), 22
q

). Assume that ϕ ∈ W ∗
q (B) with ϕ ≥ 0.

Let (ϕ1, . . . , ϕq) be a defining sequence for ϕ such that

‖ϕ‖∗,q = ‖ϕ‖L2 +

q
∑

j=1

‖ddcϕj‖1/2
j

.

We can assume that ϕq ≤ 0. Consider

u =

∞
∑

n=1

2nα
(

u∗n +
max(ϕq,−λn)

λn

)

·

Similar to the proof of [VV23, Theorem 1.3], we need to prove the following claims.

Claim 1. 2αu+ 1 ≤ −ϕα outside a pluripolar set.

Claim 2. u is not identically −∞.

Claim 3. One can choose u so that L1-norm of u is bounded by a constant that not

depends on ϕ.

Proof of Claim 1. Set

An =
{

x ∈ B : ϕ(x) ∈ [2n, 2n+1), ϕq > −λn
}

.

Let x ∈ B \
(

∪∞
n=1 An

)

. Thus, there exists n such that ϕ(x) ∈ [2n, 2n+1) and ϕq ≤ −λn.

Thus

u(x) ≤ 2nα
(max(ϕq,−λn)

λn

)

≤ −2nα·
This means

2αu+ 1 ≤ −ϕα

on B \
(

∪∞
n=1An

)

. Note that u∗n = un outside some pluripolar set En, on An \En, we have

u(x) ≤ 2nαun(x) = −2nα.

Hence,

2αu+ 1 ≤ −ϕα

on
(

∪∞
n=1 An

)

\
(

∪∞
n=1 En

)

and the Claim 1 follows. �
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Proof of Claim 2. Let

Bn =
{

2nαu∗n <
1

n2
ρ
}

,

where ρ(z) = ‖z‖2 − 1. By the comparison principle (see [Kol05, Theorem 1.16]) and

Lemma 3.10, we have, for every m ≥ 1, there is a constant cm > 0 depending only on m
such that

∫

Bn

ωk =

∫

Bn

(ddcρ)k ≤ n2k2nkα
∫

Bn

(ddcu∗n)
k ≤ cmn

2k2nkα
( λ

22q

)
mn

2q−1 ·

Then for every n0 ≥ 1,
∑

n≥n0

∫

Bn

ωk ≤ cm
∑

n≥n0

n2k
(

22
q−1kα

( λ

22q

)m) n

2q−1 ·

Thus by choosing m large enough
(

precisely so that 22
q−1kα

(

λ
22

q

)m

< 1
)

, we see that

∑

n≥n0

∫

Bn

ωk <

∫

B

ωk,

for n0 large enough (independent of ϕ and K). In particular, B \
(

∪n≥n0
Bn

)

6= ∅ and

0 ≥ 2nαu∗n(x) ≥
1

n2
ρ(x), for all n ≥ n0, x ∈ B \

(

∪n≥n0
Bn

)

.

Since B \
(

∪n≥n0
Bn

)

has a positive measure, it is a non-pluripolar set. It thus follows

that we can choose x0 ∈ B \
(

∪n≥n0
Bn

)

such that ϕq(x0) 6= −∞. Now we observe that

u(x0) =
∑

n≥1

2nα
(max(ϕq(x0),−λn)

λn

)

+
∑

n≥1

2nαu∗n(x0)

≥ ϕq(x0)
∑

n≥1

(2α

λ

)n

+
∑

1≤n≤n0

2nαu∗n(x0) +
∑

n>n0

2nαu∗n(x0)

≥ ϕq(x0)
∑

n≥1

(2α

λ

)n

−
∑

1≤n≤n0

2nα +
∑

n>n0

1

n2
ρ(x0) > −∞·

This proves Claim 2. �

Proof of Claim 3. Define

Mϕ = inf
{

‖u‖L1(K) : |ϕ|α ≤ −u, u ∈ PSH(B)
}

.

Let

M = sup
{

Mϕ, ϕ ∈ W ∗
q , ϕ ≥ 0, ‖ϕ‖∗,q ≤ 1

}

.

Suppose by contradiction that M = +∞. Hence, we can find a sequence (ϕn)n in W ∗
q (B)

with ‖ϕ‖∗,q ≤ 1 such that Mϕn
≥ 2n. Define

v =
∑

n≥1

ϕn
n2

·

Then, since W ∗
q is a quasi-Banach space, v ∈ W ∗

q . Hence, by Claim 2, we can find a

negative psh function u on B with |u| ≥ vα. This deduce that |u| ≥ n−2αϕαn and hence,

n2α|u| ≥ ϕαn. It follows that

Mϕn
≤ ‖n2αu‖L1(K) = n2α‖u‖L1(K) ≪ 2n,
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when n is big enough. This is a contradiction since Mϕn
≥ 2n. So M < +∞ and the

Claim 3 follows. �

Now, for general ϕ, we decompose ϕ = max(ϕ, 0) + min(ϕ, 0). By Example 2.8, we

can rescale the function a little bit to get the answer. This completes the proof of Theo-

rem 3.11. �

Example 3.12. (Sharpness of the exponential α) As in [VV23, page 13], we consider the

case when α > 2q and k = 1. We choose the function ϕ to be (− log |z|2)1/2q−δ where

δ ∈ (0, 1/2q). Then by Example 2.9, ϕ ∈ W ∗
q . Since α > 2q, we can choose δ small enough

such that β = α(1/2q − δ) > 1. Thus, ϕα = (− log |z|2)β and then ecϕ
α ≥ c

|z|2 which is

not locally integrable at 0 in C. Also, note that by arguments in [VV23], this function is

not bounded from above by minus of a subharmonic function. So the exponential coefficient

here as well as the one in Theorem 1.2 can not be greater than 2q. It is natural to predict

that the result still holds for α = 2q (like in the case q = 1), but currently, we don’t know

how to prove that.

3.3. Psh bound (global version). The following result is a global version of Theo-

rem 3.11.

Theorem 3.13. Let ϕ ∈ W ∗
q (X) with ‖ϕ‖∗,q ≤ 1 and α ∈ [1, 2q). Then there exist a strictly

positive constant C not depending on ϕ and a negative Cω-psh u on X such that

|ϕ|α ≤ −u and ‖u‖L1(X) ≤ C.

Proof. We follow the proof of Theorem 3.11 almost line by line with the only additional

consideration being the careful selection of un to ensure that it is Cω-psh for some uni-

form constant C. Recall that the capacity of a Borel set E in X with respect to a Kähler

form η on X is defined as

Capη(E) = sup
{

∫

X

(η + ddcv)k : v ∈ PSH(X, η), −1 ≤ v ≤ 0
}

.

Following [GZ05, Proposition 3.1, Theorem 3.2], we have

Capη(E) =

∫

X

−u∗E,η(η + ddcu∗E,η)
k =

∫

E

−u∗E,η(η + ddcu∗E,η)
k

where

uE,η = sup
{

u ∈ PSH(X, η) : u ≤ 0 on X and u ≤ −1 on E
}

.

Let α ∈ [1, 2q) and take λ such that 2α < λ. As in Theorem 3.11, it suffices to take

ϕ ∈ W ∗
q (X) with ϕ ≥ 0. Let

(

(c1, ϕ1), . . . , (cq, ϕq)
)

be a defining sequence such that

‖ϕ‖∗,q = ‖ϕ‖L2 +

q
∑

j=1

c
1/2j

j .

We can assume that ϕq ≤ 0. Consider

Xn =
{

x ∈ X : ϕ(x) ∈ [2n, 2n+1), ϕq(x) > −λn
}

.
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We set un = uXn,3−nαω and

u =
∞
∑

n=1

2nα
(

u∗n +
max(ϕq,−λn)

λn

)

·

It follows from the proof of Lemma 3.10 that for every m ∈ N, there exists a constant cm
independent of ϕ such that, for all n ∈ N,

(3.8) Cap3−nαω(Xn) ≤ cm

( λ

22q

)
mn

2q−1 ·

As before, we also have 2αu+ 1 ≤ −ϕα outside a pluripolar set. Let

η =
∞
∑

n=1

2nα(3−nαω) + 2nαλ−ncqω ≤ Cω

for some C > 0 depending only on α and λ (note that cq ≤ 1). Since u∗n is 3−nαω-psh and

ϕq is cqω-psh, we have u is Cω-psh if u 6≡ −∞.
It remains to check that u 6≡ −∞. We argue as in the proof of Theorem 3.11. Let

Yn =
{

2nαu∗n < − 1

n2

}

·

It follows from the comparison principle (see [Kol05, Theorem 6.4]) and inequality (3.8)

that, for any m ∈ N,

∫

Yn

(3−nαω)k ≤
∫

Yn

(3−nαω + ddcu∗n)
k ≤ 2nαn2

∫

Yn

−u∗n(3−nαω + ddcu∗n)
k

≤ 2nαn2Cap3−nαω(Xn) ≤ cm2
nαn2

( λ

22q

)
mn

2q−1 ·

Hence, for every n0 ≥ 1, we have

∑

n≥n0

∫

Yn

ωk ≤ cm
∑

n≥n0

2nα3nkαn2
( λ

22q

)
mn

2q−1

< cm
∑

n≥n0

n2
(

3(k+1)α
( λ

22q

)
m

2q−1
)n

·

Since λ < 22
q

, we can choose m large enough such that

3(k+1)α
( λ

22q

)
m

2q−1

< 1·

It thus follows that
∑

n≥n0

∫

Yn

ωk < 1 =

∫

X

ωk

for n0 large enough (independent of ϕ). In particular, X \
(

∪n≥n0
Yn
)

6= ∅ and

0 ≥ 2nαu∗n(x) ≥ − 1

n2
, for all n ≥ n0, x ∈ X \

(

∪n≥n0
Yn
)

·
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Since X \
(

∪n≥n0
Yn
)

has a positive measure, it is a non-pluripolar set. It thus follows

that we can choose x0 ∈ X \
(

∪n≥n0
Yn
)

such that ϕq(x0) 6= −∞. Now we observe that

u(x0) =
∑

n≥1

2nα
(max(ϕq(x0),−λn)

λn

)

+
∑

n≥1

2nαu∗n(x0)

≥ ϕq(x0)
∑

n≥1

(2α

λ

)n

+
∑

1≤n≤n0

2nαu∗n(x0) +
∑

n>n0

2nαu∗n(x0)

≥ ϕq(x0)
∑

n≥1

(2α

λ

)n

−
∑

1≤n≤n0

2nα −
∑

n>n0

1

n2
> −∞·

The proof is thus completed. �

4. COMPLEX MONGE-AMPÈRE EQUATION

In this section, we study the relationship between W ∗
q and the complex Monge-Ampère

operator.

4.1. Relationship between the classes W ∗
q (X), E(X,ω) and Ep(X,ω). Let (X,ω) be a

compact Kähler manifold of dimension k. We recall some definitions from [GZ07]. Let

ϕ be some unbounded ω-psh function on X and consider ϕj = max(ϕ,−j) be canonical

approximation of ϕ by bounded ω-psh functions. By [BT87], we can define the Monge-

Ampère measure (ω + ddcϕj)
k. The sequence of measures

1{ϕ>−j} (ω + ddcϕj)
k

is an increasing sequence and converges to the non-pluripolar Monge-Ampère measure

µϕ of ϕ. Its total mass µϕ(X) can take any value in
[

0,
∫

X
ωk
]

. Define

E(X,ω) =
{

ϕ ∈ PSH(X,ω) : µϕ(X) =

∫

X

ωk
}

.

Recall the following criterion for functions in E(X,ω).

Lemma 4.1. [GZ07, Lemma 1.2] Fix ϕ ∈ PSH(X,ω) and define ϕj = max(ϕ,−j) for

j ∈ N. Let (sj) be any sequence of real numbers converging to +∞, such that sj ≤ j for all

j ∈ N. The following conditions are equivalent

(1) ϕ ∈ E(X,ω);
(2) (ω + ddcϕj)

k(ϕ ≤ −j) → 0;

(3) (ω + ddcϕj)
k(ϕ ≤ −sj) → 0.

Now, we prove that any ω-psh complex Sobolev function belongs to E(X,ω).

Proof of Theorem 1.4(1). Assume that ϕ is a negative ω-psh function in W ∗
1 (X) and ϕj =

max(ϕ,−j). We note that ϕj/j equals to −1 when ϕ ≤ −j and equals to ϕ/j < 0 when

ϕ > −j. Let Tϕ be a positive closed current on X such that dϕ ∧ dcϕ ≤ Tϕ. By [Vig07] or
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Example 2.8, we have dϕj ∧ dcϕj ≤ Tϕ. By Stokes’ formula, we have
∫

{ϕ≤−j}

(ω + ddcϕj)
k ≤ −

∫

X

ϕj
j
(ω + ddcϕj)

k

=
1

j

(

∫

X

dϕj ∧ dcϕj ∧
k−1
∑

m=0

(ω + ddcϕj)
k−1−m ∧ ωm −

∫

X

ϕjω
k
)

≤ 1

j

(

∫

X

Tϕ ∧
k−1
∑

m=0

(ω + ddcϕj)
k−1−m ∧ ωm −

∫

X

ϕωk
)

·

Since Tϕ is closed, the first integral doesn’t change if we replace the closed current
k−1
∑

m=0

(ω + ddcϕj)
k−1−m ∧ ωm by a closed form in its de Rham cohomology class. We can

replace it by kωk−1 and obtain
∫

{ϕ≤−j}

(ω + ddcϕj)
k ≤ k · ‖Tϕ‖

j
− 1

j

(

∫

X

ϕωk
)

→ 0 as j → +∞·

This, combined with Lemma 4.1, finishes our proof. �

Next, we recall the definition of finite energy classes in [GZ07]. For simplicity, assume

that
∫

X
ωk = 1. Denote ωϕ = ω + ddcϕ. For bounded ω-psh functions, define the energy

functional

Ep(ϕ) = − 1

k + 1

k
∑

m=0

∫

X

(−ϕ)p(ωϕ)m ∧ ωk−m·

We can extend this functional for arbitrary ω-psh functions by canonical approximation

as above

Ep(ϕ) = lim
j→+∞

Ep(ϕj).

So, we can define the finite energy class

Ep(X,ω) = {ϕ ∈ E(X,ω) : Ep(ϕ) > −∞} .
To prove Theorem 1.4(2), we first recall some facts about finite energy classes that will

be used in sequel. We only use the results for the class Ep(X,ω) with p ≥ 1. For more

general classes, we refer the readers to [GZ07] and [DV22].

Proposition 4.2. Let ϕ and ψ be bounded non-positive ω-psh functions and p ≥ 1. Then,

for every positive closed current T of bi-dimension (1, 1), we have

0 ≤
∫

X

(−ϕ)pωψ ∧ T ≤ 2p

∫

X

(−ϕ)pωϕ ∧ T + 2p

∫

X

(−ψ)pωψ ∧ T.

Recall that ωϕ = ω+ ddcϕ and ωψ = ω+ ddcψ. For a proof of this proposition, see [GZ07,

Proposition 3.6].

Proposition 4.3. Let ϕ0, . . . , ϕk be bounded non-positive ω-psh functions and p ≥ 1. Then

there exists a strictly positive constant Cp depending only on p such that
∫

X

(−ϕ0)
pωϕ1

∧ · · · ∧ ωϕk
≤ Cp max

0≤m≤k

(

∫

X

(−ϕm)pωkϕm

)

.

See [GZ07, Proposition 3.8] for a proof. We will use the following direct corollary.
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Corollary 4.4. Let ϕ and ψ be non-positive functions in Ep(X,ω) with p ≥ 1. Then for

0 ≤ m ≤ k − 1, there exists a strictly positive constant Cp depending only on p such that

∫

X

(−ϕ)pωψ ∧ ωk−m−1
ϕ ∧ ωm ≤ Cp

(

∫

X

(−ϕ)pωkϕ +
∫

X

(−ψ)pωkψ
)

.

Here the measure ωψ ∧ ωk−m−1
ϕ ∧ ωm is defined in the non-pluripolar sense (see [GZ17,

Chapter 10.2.3].

Proof. Let ϕj = max(ϕ,−j) and ψj = max(ψ,−j). By [GZ17, Theorem 10.18],

∫

X

(−ϕj)pωψ ∧ ωk−m−1
ϕ ∧ ωm = lim

j′→+∞

∫

X

(−ϕj)pωψj′
∧ ωk−m−1

ϕj′
∧ ωm.

By Proposition 4.3, we have

∫

X

(−ϕj)pωψj′
∧ ωk−m−1

ϕj′
∧ ωm ≤ Cp

(

∫

X

(−ϕj)pωkϕj
+

∫

X

(−ϕj′)pωkϕj′
+

∫

X

(−ψj′)pωkψj′

)

≤ Cp

(

∫

X

(−ϕ)pωkϕ +
∫

X

(−ψ)pωkψ
)

.

Let j′ → +∞ and then let j → +∞ give us the result. �

Proof of Theorem 1.4(2). We prove this by induction. First, consider the case when q = 2.

Let ψ be the function in W ∗
1 (X) such that dϕ ∧ dcϕ ≤ C(ω + ddcψ). By Theorem 1.4(1),

we have ϕ, ψ ∈ E(X,ω). Now, by using Stokes’ formula, we have

−E1(ϕ) =
1

k + 1

k
∑

m=1

m−1
∑

l=0

∫

X

dϕ ∧ dcϕ ∧ ωlϕ ∧ ωk−l−1

≤ C

k + 1

k
∑

m=1

m−1
∑

l=0

∫

X

ωψ ∧ ωlϕ ∧ ωk−l−1

=
C

k + 1

k
∑

m=1

m−1
∑

l=0

1 < +∞·

So, ϕ ∈ E1(X,ω). Assume now that our theorem is true for q − 1 with q > 2. Let ψ
be an ω-psh function in W ∗

q−1(X) such that dϕ ∧ dcϕ ≤ C(ω + ddcψ). By the induction

hypothesis, we have ϕ, ψ ∈ E q−2(X,ω). We observe that

ddc((−ϕ)q/q) = (q − 1)(−ϕ)q−2dϕ ∧ dcϕ− (−ϕ)q−1ddcϕ.

Then, by using Stokes’s formula, we can write

∫

X

(−ϕ)q−1ddcϕ ∧ T = (q − 1)

∫

X

(−ϕ)q−2dϕ ∧ dcϕ ∧ T −
∫

X

ddc((−ϕ)q/q) ∧ T

= (q − 1)

∫

X

(−ϕ)q−2dϕ ∧ dcϕ ∧ T,
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for T is a sufficiently regular positive closed current of bi-dimension (1, 1). This deduces

that

−Eq−1(ϕ) =
1

k + 1

k
∑

m=0

∫

X

(−ϕ)q−1(ωϕ)
m ∧ ωk−m

=

∫

X

(−ϕ)q−1ωk +
q − 1

k + 1

k
∑

m=1

m−1
∑

l=0

∫

X

(−ϕ)q−2dϕ ∧ dcϕ ∧ (ωϕ)
l ∧ ωk−l−1

≤
∫

X

(−ϕ)q−1ωk +
C(q − 1)

k + 1

k
∑

m=1

m−1
∑

l=0

∫

X

(−ϕ)q−2ωψ ∧ (ωϕ)
l ∧ ωk−l−1

< +∞
by applying Corollary 4.4 for p = q − 2 and the induction hypothesis. So ϕ ∈ E q−1(X,ω)
and we complete our proof. �

Remark 4.5. The above theorem gives us a lower bound for p(q) by q−1. From Example 3.12

and [DGL20, Theorem 2.1], we see that p(q) has an upper bound by k(2q − 1). It is an

interesting question to know what is the best choice for p(q). It has been noted in [Vig07]

that W ∗
1 (X) is a BMO space and hence by [JN61], there are constants c and A such that

∫

X
ec|ϕ|ωk ≤ A for all ϕ in W ∗

1 (X) with ‖ϕ‖∗,1 ≤ 1. This fact can be used instead of Skoda’s

integrability theorem in the proof of Theorem 2.1 in [DGL20].

4.2. Relationship between the classes W ∗
q (Ω) and D(Ω). We will prove Theorem 1.5.

First, we recall Błocki’s criterion for functions in class D(Ω).

Theorem 4.6. [Blo06, Theorem 1.1] Let Ω be a domain in Ck and ϕ be a negative psh

function on Ω, the following properties are equivalent

(1) There exists a measure µ in Ω such that if U ⊂ Ω is open and a sequence ϕn ∈
PSH(U) ∩ C∞(U) is decreasing to u in U , then (ddcϕn)

k tends weakly to µ in U ;

(2) For every open subset U of Ω and any sequence ϕn ∈ PSH(U) ∩ C∞(U) decreasing

to ϕ in U, the sequence (ddcϕn)
k is locally weakly bounded in U ;

(3) For every open subset U of Ω and any sequence ϕn ∈ PSH(U) ∩ C∞(U) decreasing

to ϕ in U, the sequences

(4.1) |ϕn|k−p−2dϕn ∧ dcϕn ∧ (ddcϕn)
p ∧ ωk−p−1, p = 0, . . . , k − 2,

are locally weakly bounded in U ;

(4) For every z ∈ Ω there exists an open neighborhood U of z in Ω and a sequence

ϕn ∈ PSH(U) ∩ C∞(U) decreasing to ϕ in U such that the sequences in (4.1) are

locally weakly bounded in U .

The following result is the key point in our proof of Theorem 1.5.

Proposition 4.7. Let 1 ≤ p ≤ k − 1 and 0 ≤ m ≤ k − p. Let q1, . . . , qp+1 be integers

satisfying

(1) qp+1 ≥ max
1≤j≤p

qj ,

(2)

p
∑

j=1

qj ≥ p(p− 1 +m),
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(3) max
1≤j≤p

qj − min
1≤j≤p

qj ≤ 1.

Let ϕ1, . . . , ϕp+1 be negative smooth psh functions on Ω such that, for j = 1, . . . , p + 1,

‖ϕj‖∗,qj ≤ 1. Assume that there exists a defining sequence (ϕj,1, . . . , ϕj,qj) of ϕj such that

ϕj,l is smooth for l = 1, . . . , qj , ‖ϕj,l‖∗,qj−l ≤ 1 for l = 1, . . . , qj − 1 and ‖ϕj,qj‖L1 ≤ 1. Then

for every compact subset K of Ω, there is a constant C > 0 depending only on K,m and p
such that

∫

K

(−ϕp+1)
mddcϕ1 ∧ · · · ∧ ddcϕp ∧ ωk−p ≤ C.

Proof. We prove by induction on p and m. Fix a compact set K and a cut-off function χ
on Ω such that 0 ≤ χ ≤ 1 and χ = 1 on K.

Consider the case p = 1. If m = 0 then the desired property is trivial. Assume that the

desired property is true for 0, . . . , m − 1 for some 1 ≤ m ≤ k − p. We now prove it for

m. By hypothesis, q2 ≥ q1 ≥ m. Hence, there exist smooth psh functions ψ1, ψ2 satisfying

‖ψ1‖∗,m−1 ≤ 1, ‖ψ2‖∗,m−1 ≤ 1 such that

(4.2) dϕ1 ∧ dcϕ1 ≤ ddcψ1, dϕ2 ∧ dcϕ2 ≤ ddcψ2.

By Stokes’ formula, we have
∫

K

(−ϕ2)
mddcϕ1 ∧ ωk−1 .

∣

∣

∣

∣

∫

Ω

χ(−ϕ2)
m−1dϕ2 ∧ dcϕ1 ∧ ωk−1

∣

∣

∣

∣

(4.3)

+

∣

∣

∣

∣

∫

Ω

(−ϕ2)
mdχ ∧ dcϕ1 ∧ ωk−1

∣

∣

∣

∣

,

where . denotes ≤ modulo a multiplicative constant depending only on m and K. For

the first term, by using Cauchy-Schwarz inequality and inequalities (4.2), we can bound

it from above by the square root of
(
∫

Ω

χ(−ϕ2)
m−1ddcψ1 ∧ ωk−1

)(
∫

Ω

χ(−ϕ2)
m−1ddcψ2 ∧ ωk−1

)

.

It follows from the induction hypothesis for m − 1 that both factors are bounded by a

constant depending only on supp(χ) (and hence only on K). Hence, the first term of the

RHS of inequality (4.3) is bounded by a constant depending only on K. For the second

term of the RHS of inequality (4.3), by using Cauchy-Schwarz inequality and inequalities

(4.2), we can bound it from above by the square root of
(
∫

Ω

(−ϕ2)
m+1dχ ∧ dcχ ∧ ωk−1

)(
∫

supp(χ)

(−ϕ2)
m−1ddcψ1 ∧ ωk−1

)

.

We use the induction hypothesis for m − 1 for the second factor. The first factor can be

bound by using Corollary 3.2. Hence, the second term of the RHS of inequality (4.3)

is bounded by a constant depending only on K. The proof for the case p = 1 is thus

complete.

Now, we consider the case when p > 1. Assume that the desired property is true for

p − 1, where 2 ≤ p ≤ k − 1. We prove that it is true for p. We can further assume that

qp = max
1≤j≤p

qj. Consider the case m = 0. We note that

ddcϕ1 ∧ · · · ∧ ddcϕp = ddc (ϕpdd
cϕ1 ∧ · · · ∧ ddcϕp−1) .
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Hence, by Stokes’ formula, we have
∫

K

ddcϕ1 ∧ · · · ∧ ddcϕp ∧ ωk−p ≤
∫

Ω

χddc (ϕpdd
cϕ1 ∧ · · · ∧ ddcϕp−1) ∧ ωk−p

=

∫

Ω

(−ϕp)ddcχ ∧ ddcϕ1 ∧ · · · ∧ ddcϕp−1 ∧ ωk−p

.

∫

supp(χ)

(−ϕp)ddcϕ1 ∧ · · · ∧ ddcϕp−1 ∧ ωk−p+1.

We now only need to check if ϕ1, . . . , ϕp satisfies the induction hypothesis for p − 1 and

m = 1. Indeed, condition (2) becomes

(4.4) q1 + · · ·+ qp ≥ p(p− 1).

Condition (3) thus becomes

(4.5) qp − qj ≤ 1 for every j = 1, . . . , p− 1.

Combining inequalities (4.4) and (4.5) gives us

p−1
∑

j=1

qj =
p− 1

p

p−1
∑

j=1

qj +
1

p

q−1
∑

j=1

qj ≥
p− 1

p

p−1
∑

j=1

qj +
1

p

q−1
∑

j=1

(qp − 1)

=
p− 1

p

(

p
∑

j=1

qj − 1

)

≥ p− 1

p
· p(p− 1)

=(p− 1)(p− 1) = (p− 1)(p− 2 + 1).

It follows that q1, . . . , qp satisfy the condition (2) for p−1 and m = 1. Obviously, q1, . . . , qp
satisfy the conditions (1) and (3) for p− 1 and m = 1. Hence, by applying the induction

hypothesis for p− 1 and m = 1, we get the statement for m = 0.

Assume that the statement is true for 0, . . . , m−1, where 1 ≤ m ≤ k−p. We now prove

it for m. We can further assume that qp = max
1≤j≤p

qj . Since qp+1 ≥ qp, there exist smooth

psh functions φp, φp+1 satisfying ‖φp‖∗,qp−1 ≤ 1, ‖φp+1‖∗,qp−1 ≤ 1 such that

(4.6) dϕp ∧ dcϕp ≤ ddcφp, dϕp+1 ∧ dcϕp+1 ≤ ddcφp+1.

We need to bound, for ϕ = ϕp+1,
∫

K

χ(−ϕ)mddcϕ1 ∧ · · · ∧ ddcϕp ∧ ωk−p.

By Stokes’ formula, we have
∫

K

χ(−ϕ)mddcϕ1 ∧ · · · ∧ ddcϕp ∧ ωk−p(4.7)

.

∣

∣

∣

∣

∫

Ω

(−ϕ)mdχ ∧ dcϕp ∧ ddcϕ1 ∧ · · · ∧ ddcϕp−1 ∧ ωk−p
∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω

χ(−ϕ)m−1dϕ ∧ dcϕp ∧ ddcϕ1 ∧ · · · ∧ ddcϕp−1 ∧ ωk−p
∣

∣

∣

∣

,

where . denotes ≤ modulo a multiplicative constant depending only on m and K. For

the second term of the RHS of inequality (4.7), by using Cauchy-Schwarz inequality and
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inequalities (4.6), we can bound it from above by the square root of
(
∫

Ω

χ(−ϕ)m−1ddcφp ∧ ddcϕ1 ∧ · · · ∧ ddcϕp−1 ∧ ωk−p
)

×
(
∫

Ω

χ(−ϕ)m−1ddcφp+1 ∧ ddcϕ1 ∧ · · · ∧ ddcϕp−1 ∧ ωk−p
)

.

We note that qp − 1, q1, . . . , qp−1, qp+1 satisfy the conditions (1), (2), and (3) for p and

m− 1. It follows from the induction hypothesis for m− 1 that both factors are bounded

by a constant depending only on supp(χ) (and hence only on K). Hence, the second

term of the RHS of inequality (4.7) is bounded by a constant depending only on K. For

the first term of the RHS of inequality (4.7), by using Cauchy-Schwarz inequality and

inequalities (4.6), we can bound it from above by the square root of
(
∫

Ω

(−ϕ)m+1dχ ∧ dcχ ∧ ddcϕ1 ∧ · · · ∧ ddcϕp−1 ∧ ωk−p
)

×
(
∫

supp(χ)

(−ϕ)m−1ddcφp ∧ ddcϕ1 ∧ · · · ∧ ddcϕp−1 ∧ ωk−p
)

.

To deal with the second factor, we note that qp− 1, q1, . . . , qp−1, qp+1 satisfy the conditions

(1), (2) and (3) for p and m − 1. Thus, we can bound the second factor by using

the induction hypothesis for m − 1. To deal with the first factor, we first observe that

q1, . . . , qp−1, qp+1 satisfy the conditions (1) and (3) for p− 1 and m+ 1. For the condition

(2), as in the case m = 0, we have

p
∑

j=1

qj ≥ p(p− 1 +m),

and

qp − qj ≤ 1, for every j = 1, . . . , p− 1.

It follows that

p−1
∑

j=1

qj ≥
p− 1

p

(

p
∑

j=1

qj − 1

)

≥ p− 1

p
· p(p− 1 +m) = (p− 1)(p− 1 +m).

Hence q1, . . . , qp−1, qp+1 satisfy the conditions (2) for p−1 and m+1. Thus, we can bound

the first factor by using the induction hypothesis for p− 1 and m+ 1. Therefore, we can

bound the first term of the RHS of inequality (4.7). The proof is complete. �

We now prove that psh q-complex Sobolev functions belong to D(Ω) for q ≥ k − 1.

End of proof of Theorem 1.5. Let ϕ ∈ W ∗
k−1,loc(Ω)∩PSH(Ω). Since the problem is local, we

can assume that ϕ ∈ W ∗
k−1(Ω) ∩ PSH(Ω). We will prove that ϕ satisfies the condition (4)

of Proposition 4.6. Indeed, we consider an open relatively compact subset U of Ω and let

(ϕn) be the sequence of smooth psh functions constructed in the proof of Theorem 2.11.

We note that ‖ϕn‖W ∗

k−1
(U) ≤ 2‖ϕ‖W ∗

k−1
(Ω) for every n. Let (ϕ0,1, . . . , ϕ0,k−1) be a smooth

defining sequence for ϕ. By the proof of Theorem 2.11, we can construct smooth defining

sequence (ϕn,1, . . . , ϕn,k−1) for ϕn such that ‖ϕn,l‖W ∗

k−1−l
(U) ≤ 2‖ϕ0,l‖W ∗

k−1−l
(Ω) for 1 ≤ l ≤
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k − 2, ‖ϕn,k−1‖L1(U) ≤ 2‖ϕ0,k−1‖L1(Ω), for every n. Since dϕn ∧ dcϕn ≤ ddcϕn,1, we have
∫

U

|ϕn|k−p−2dϕn ∧ dcϕn ∧ (ddcϕn)
p ∧ ωk−p−1

≤
∫

U

|ϕn|k−p−2ddcϕn,1 ∧ (ddcϕn)
p ∧ ωk−p−1.

Rescale ϕ if necessary, we can assume that, for every n, ‖ϕn‖W ∗

k−1
(U) ≤ 1, ‖ϕn,l‖W ∗

k−1−l
(U) ≤

1 for 1 ≤ l ≤ k − 2 and ‖ϕn,k−1‖L1(U) ≤ 1. It follows from Proposition 4.7 that the

right-hand side is uniformly bounded by a constant depending only on U . Therefore,

|ϕn|k−p−2dϕn ∧ dcϕn ∧ (ddcϕn)
p ∧ ωk−p−1 are locally weakly bounded in U for every p =

0, . . . , k − 2. The proof is thus complete. �
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