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Abstract

We consider a hierarchy of nonlinear Schrédinger equations (NLSEs) and
forecast the evolution of positon solutions using a deep learning approach
called Physics Informed Neural Networks (PINN). Notably, the PINN algo-
rithm accurately predicts positon solutions not only in the standard NLSE
but also in other higher order versions, including cubic, quartic and quintic
NLSEs. The PINN approach also effectively handles two coupled NLSEs
and two coupled Hirota equations. In addition to the above, we report exact
second-order positon solutions of the sextic NLSE and coupled generalized
NLSE. These solutions are not available in the existing literature and we con-
struct them through generalized Darboux transformation method. Further,
we utilize PINNs to forecast their behaviour as well. To validate PINN’s accu-
racy, we compare the predicted solutions with exact solutions obtained from
analytical methods. The results show high fidelity and low mean squared
error in the predictions generated by our PINN model.

Keywords: Deep Learning, Neural network, nonlinear Schrodinger
equations, positons

1. Introduction

Study of localized wave solutions in nonlinear integrable systems is flour-
ishing across various disciplines, including nonlinear optics, fluid mechanics,
astrophysics, Bose-Einstein condensates, condensed matter physics, plasma
physics and oceanography [1I, 2, 8] 4]. Solitons are prominent solutions with
diverse applications in these fields. Traditionally, solitons were constructed

Preprint submitted to Physics Letters A May 9, 2024



using negative eigenvalues in Lax pair equations via the Darboux transfor-
mation method [5]. Positon solutions refer to a specific type of solitary wave
solutions characterized by positive eigenvalues, often seen as a counterpart
to solitons. As far as the NLS-type equations are concerned, positons are
also recognized as degenerate soliton solutions due to the degeneracy of com-
plex spectral parameter, which travels with equal amplitude for larger values
of time. Positon solution was introduced by Matveev by leveraging gen-
eralized Darboux transformation (gDT) method for the Korteweg-de Vries
(KdV) equation and considering positive eigenvalues in the Lax pair equa-
tions [0 [7, §]. Positon solutions of the KdV equation are singular solutions
that exhibit soliton-like behaviour in long range [9]. Julia et al. overcame
the singular nature of positon solutions by introducing a class of non-singular
positon solutions known as smooth positons. Notably, these smooth positons
can model the tidal bore phenomenon in rivers [I0]. Subsequently, posi-
ton solutions have been formulated for various nonlinear evolutionary equa-
tions, encompassing NLSE, Hirota equation, complex modified KdV equa-
tion, generalized NLSE (Lakshmanan-Porsezian-Daniel equation), fifth order
NLSE and so on [I1], 12} 13, 14], 15, 16, I7]. Further, breather positons are
also constructed on plane wave background for several nonlinear equations
[12, 13, 18, 19]. The aforementioned solutions move as a compound for a
small time-period and travel separately in the larger time scale [I1]. Fur-
thermore, positon solutions have been developed for specific two-component
systems, such as the coupled NLSE (Manakov model) [20] and coupled Hirota
equation [21].

Recently, Machine Learning (ML) algorithms have been used to predict
and analyze several phenomena, say for example, chaos [22], extreme events
[23], unstable periodic orbits [24] and chimera states [25] in the field of nonlin-
ear dynamics. The vast amount of data in nonlinear dynamics has motivated
researchers to employ various artificial neural network architectures for pre-
dicting nonlinear wave solutions of nonlinear partial differential equations
(PDEs). In this direction, Raissi et al. [26] pioneered Physics-Informed Neu-
ral Networks (PINNs), a powerful deep learning method for tackling a wide
range of PDEs. PINNs uniquely blend deep learning with physics princi-
ples for greater accuracy in scientific and engineering simulations. Crucially,
PINNs are unsupervised, eliminating the need for labeled data from simula-
tions or experiments. PINNs recast PDE solutions as loss function optimiza-
tion problems [27]. PINNs and their generalized forms have found application
in diverse scientific fields, including fluid dynamics, nano-optics, metamateri-



als, and even modeling the spread of diseases. [27, 28,29, (30} 31]. Researchers
have applied PINNs to predict data-driven solutions like solitons, breathers,
and rogue waves in nonlinear integrable equations [32, 33}, 34}, [35], [36], 37, [38].
This study enhances the capabilities of PINN by investigating positon solu-
tions across a hierarchy of NLSEs. We have successfully predicted second-
order positons in NLSE families with cubic, quartic, quintic, and sextic non-
linearities, as well as in coupled NLSE, coupled Hirota equations and coupled
generalized NLSE. In addition to the above, we report second-order positon
solutions for two nonlinear PDEs, namely (i) sixth-order NLSE and (ii) cou-
pled generalized NLSE. We derive the positon solutions using GDT method
and these solutions are reported first time in the literature for these two
equations. By incorporating these new solutions as initial data within the
PINN algorithm, we also predict their behaviour with greater accuracy. Our
findings demonstrate the neural network’s ability to approximate positon
solutions excellently with minimal error throughout the entire NLSE fam-
ily. We mention here that the present work is the first instance of applying
deep learning approach to predict positon solutions within this specific NLSE
domain.

Our work is presented as follows: We begin by outlining the PINN method
for solving nonlinear PDEs in Section 2. In Section 3, we discuss the pre-
diction of second-order positon solutions for a hierarchy of NLSEs using the
PINN approach. In this section, we also conduct an error analysis between
exact and predicted positon solutions for various systems, presenting the re-
sults graphically. Section 4 culminates with a concise summary of our key
findings.

2. Methodology of Solving PDEs using PINN

This section delves into the application of the PINN algorithm for tack-
ling complex nonlinear PDEs. We begin by considering a general form of a
complex PDE

iry + My (7, Ty Tog, Tages o) = 0, © € Qt € [to, T, (1)

where r represents the complex wave function with space (z) and time ()
variables. M, is the general nonlinear function that consists of r and its
higher order derivatives with respect to z,  is a subset of IRP. Complex
differential equations cannot be solved by neural network directly. Hence,



we disintegrate the complex function r(z,t) into real and imaginary parts
as r = u + tv. Substituting this in Eq. , we can get the following two
expressions, namely

U + My (U, Uy, Ugyy ooy U, Vg <) 0, @)
0.

Vg + My (0, Vs Uy ooy Uy Uy onn) =
The residuals of PINN, ¢, (z,t) and g,(z,t), can be written as

Gu = U+ My (U, Uy, .oy 0, U, ), 3)

v = Ut+MU(07U$7"7uaux7”")7
where M, and M, are the nonlinear functional of v and v and their spatial
derivatives. The functions u(z,t) and v(x,t) are to be determined by the
deep neural network.
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Figure 1: Graphic representation of PINN model. The physical information inherent in
the Physics-Informed Neural Network (PINN) is employed as the training loss function
within the optimization problem.

The PINN setup for solving the given PDE is given in Fig. Nij in Fig.
represents the i neuron of the j** layer. The output of every neuron takes
the form

xi = s(wixi—1 + by). (4)
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We denote the output of the (I — 1)th layer as y;_1. The activation function
applied to this layer is ¢, and the weights and biases are represented by w;
and by, respectively. When [ = 0, yo = (,t) represents the input layer of the
network. Initially, weights and biases are randomly chosen using the Xavier
initializer (or Glorot initializer) [26]. Here, we use the hyperbolic tangent
function, tanh(.), as the activation function for every neuron.

The network is trained to find solutions, represented by u(z,t) and v(x, t),
that minimize a loss function. This loss function combines the governing PDE
along with the initial and boundary conditions. For training the model, we
leverage data within the domain x = 0. The network learns by minimizing
the following mean squared error loss functions:

MSE = Q[CMSEIC + QNC’MSENC + QEMSEE, (5&)
where
Nic .
MSEe = NmDu #3,0) — ulzh, O)F + [5(zh,0) — v(zh OF,  (5b)
Nnc
1 - PON2 a0 4 iy
MSEnc = Nuc Z|U(Oath)_U(07th)| + 100, tye) — v(0, iyl
=1
(5¢)
1 Je o o
MSEp = N—EZ|gu($§37t‘%)|2+|gv($§37t]E)|2- (5d)
=1

In the above, {3}, u(z), to), v(z), to)}év:’f corresponds to the initial sampling
points and M SFE;¢ is the loss function for the initial data. In the proposed
PINN algorithm, we have considered the initial condition as ¢t = 0, which typ-
ically characterize an initial value problem where the solution is determined
by specifying the values at a single initial point. Boundary value problems
typically involve specifying conditions at multiple points along the boundary
of the domain. Unlike conventional PINN approaches that rely on Dirichlet
boundary conditions, we exclusively utilize data points at a single reference
point, x = 0. This indicates that our model addresses an Initial Value Prob-
lem, where the solution is determined by providing initial conditions at a
single point (¢ = 0). Typically, © € (=L, L) is used for boundary conditions.
However, we deviate from the conventional approach by providing data at



x = 0 instead of boundary conditions, which minimizes the loss function
more rapidly for positon solutions. Thus, {tye, u(0, the), v(0, tgvo)}jy:ﬂc cor-
respond to the data points at = 0, and M S Ey¢ is the loss function arising
from the condition z = 0. {29, t}, gu (@), ), 9o (2%, t);) ;V:El are collocation
points selected from the domain, and M SFEg penalizes the given equations
gu(z,t) and g,(z,t). We use the Latin Hypercube Sampling (LHS) strategy
to obtain the collocation points for training the neural network [26]. The
spatial and temporal variables are discretized into 520 and 400 nodes, re-
spectively. Therefore, we have a matrix size of 520 x 400 for the determined
magnitude of density |r(z,t)|%. orc, onc, and gp are the weight correction
coefficients for MSE;c, MSFENc, and MSFEg, respectively, which can be

determined through:

- MSE; _
- max(MSEc, MSEync, MSER)'

0i 1=1IC,NC,E. (6)
Initially, these coefficients are set to 1. It should be noted that these coeffi-
cients vary as the mean squared error (MSE) varies. We simulate the initial
data using a specific number of iterations in Adam and L-BFGS optimiza-
tion. Once training is completed, the PINN setup can predict the solution
of the considered equation in the given space-time domain.

3. Data driven positon solutions of a hierarchy of NLSE

In this section, we investigate second-order positon solutions of a family
of nonlinear Schrodinger equations (NLSEs) with higher-order nonlinearity
using PINN approach. Specifically, we analyze the following nonlinear sys-
tems: (i) NLSE, (ii) third-order NLSE, (iii) fourth-order NLSE, (iv) fifth-
order NLSE, (v) sixth-order NLSE, (vi) two coupled NLSE and (vii) two
coupled Hirota equations. Since all these equations are complex, we split
them as shown in . For two-component systems, we split the functions as
r1 = 1y +1v; and ro = uy + 1vs.

Our PINN architecture employs a single input layer, followed by eight hid-
den layers, and a single output layer. This configuration enables the network
to predict the second-order positon solution of the governing equation.The
input and output layers contain two neurons each, while each hidden layer
consists of 40 neurons. We leverage the hyperbolic tangent function (tanh) as
the activation function within the network layers. The mean squared error
loss function guiding the training process. We use the hyperbolic tangent

6



function, as the activation function. The mean squared error loss function is
formulated as presented in .

In the following subsections, we describe how we utilize PINN to pre-
dict the positon solutions of the considered higher-order NLSEs and coupled
equations.

3.1. Data driven second order positon solution of NLSE

The NLSE plays a significant role in describing various phenomena in
plasma physics, biophysics and in nonlinear optics [39]. A widely recognized
solution of the NLSE equation is solitons, which retain its shape after in-
teraction with another soliton [I]. Covering the wide capability of NLSE,
abundant nonlinear wave solutions such as breathers, rogue waves, bright
and dark solitons, to name a few, are constructed using various mathemat-
ical methods. As far as the utilization of PINN algorithm is concerned, in
the literature, only soliton, breather and rogue wave solutions of the NLSE
are simulated [33, 38]. While various solutions exist for the NLSE, this study
concentrates on exploring the properties of positon solutions,

Ty + Ty + 2\7"|27" =0, (7)

through PINN algorithm, where r represents the complex wave envelope
with x and ¢ are taken as propagation and time variable, respectively. As the
wave functions possess complex values, we decompose them into their real
and imaginary components, r(x,t) = u(x,t) + iw(z,t). Substituting this in
(7)), we get the real and imaginary parts of NLSE in the following form

2u3 + 2uv? — v + Ugz,

203 4+ 202V + Uy + Uy

gu(,1)
gv(xa t)

(8)

The exact positon solutions of the NLSE can be found in reference [12],
where they were determined using the generalized DT method. We present
the explicit form of the positon solution of @ in the Appendix, see Eq..
This solution is utilized to obtain initial and boundary data for training the
PINN. Our simulations are conducted within a spatial and temporal domain
of [~10, 10] for both position (z) and time (t). We initialize the data r(x,0),
by choosing N;c = 100 random samples. Additionally, Nyc = 200 sample
points are selected specifically at x = 0 and Ng = 10000 random points are
drawn within the region —10 < z < 10 and —10 <t < 10. To minimize the
loss function, we perform 80000 iterations in Adam optimization.
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Figure[2|(a) visualizes the second-order positon solution obtained using the
generalized DT method, depicted as a contour plot. The predicted solution
of the model accurately matches the second-order positon solution of Eq.,
as shown in Fig. 2b), and the mean squared error calculated for the model is
in the order of 1077, as seen in Fig. (c) Furthermore, snapshots at various
time regimes confirm that the positon solution predicted through PINN is
highly reliable.

X0 433

0.716

0.42 1.00 0.42
(d) (e) (f)
=024 0.50 0.24
0.05 0.01 0.05
—10 0 10 —10 0 10 —10 0 10
xr r b
m— Analytical == = Predicted J

Figure 2: Predicted and exact solution of the second order positon of NLSE using PINN
approach. (a) Contour profile of the analytical second order positon solution with param-
eter value A = 0.01 4 0.257, (b) The predicted second order positon solution by PINN. (c)
Mean squared error plot between the analytical and predicted solution. (d)-(f) are the
various time snapshots of predicted and exact solution respectively. The black line in (a)
represents the data points taken at initial and new conditions, respectively.

3.2. Data-driven positon solution of third order NLSE

When exploring the generation of ultrashort pulses in the sub-picosecond
or femtosecond regime, a crucial equation comes into play: the Hirota equa-
tion, also known as the third-order NLSE. This equation effectively describes



the propagation dynamics of such pulses by incorporating higher-order effects
beyond the standard NLSE. The Hirota equation can be represented as [40]:

iry + Tap + 2|rPr — 0 (ree + 6r4|r[*) =0, 9)

where r represents the complex wave function and « is the nonlinear and
dispersion parameter. In the context of ultra-short laser pulse propaga-
tion, it is crucial to consider higher-order dispersive and nonlinear effects,
including phenomena like self-frequency shift, third-order dispersion, and
self-steepening effects. Researchers have employed a variety of techniques to
discover localized solutions of the Hirota equation. These methods include
the inverse scattering transform, Hirota bilinear method, and Darboux trans-
formation. The smooth positon solutions of the third-order NLSE can be
found in references [12, [13]. Soliton, rogue waves, and breathers of the third-
order NLSE /Hirota equation have also been investigated using deep learning
methods [37]. For our investigations, we set a = 1, r = u(x,t) +iv(z,t), and
split the Hirota equation into two real equations

Gulw, ) :=2u> + 2uv® — v, + 6uv, + 600, + Upy + Vega,

Go(,1) =200 + 20% + vy + vy — 6uPv, — 607Uy — Ugge.

(10)

We provide the actual solution of the second-order positon solution of
the Hirota equation with appropriate parameter values in the Appendix, see
Eq.. This explicit solution is used to generate initial and boundary data
for the PINN to train the solution. The network setup is similar to the NLSE
case, with the mean squared error function calculated accordingly. The
range for the space and time variables is taken as z,¢ € [—10, 10] and sample
points are chosen similar to the NLSE case.

After completing 70000 iterations in Adam optimization, the PINN is
able to predict the second-order positon solution of the Hirota equation with
high accuracy. Figure (a) depicts the exact second-order positon solution,
while Fig. [B[(b) shows the second-order positon solution predicted through
the PINN algorithm. Figure 3|(c) depicts the squared error between the
predicted and exact outcomes of the second-order position. A comparison
between the predicted and exact positon solutions is computed and plotted in
Figs. [3[(d)-(f) for different time regimes, validating the superiority of PINN.

3.3. Data driven positon solution of fourth order NLSE
A higher order NLSE with fourth-order nonlinearity is proposed in [41] in
the context of Heisenberg ferromagnetic spin chain. This equation has also
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Figure 3: Predicted and exact solution of the second order positon of Hirota equation
using PINN approach. (a) Contour profile of the analytical second order positon solution
with parameter value A = 0.3 + 0.5:. (b) The predicted second order positon solution by
PINN. (c¢) Mean squared error plot between the analytical and predicted solution. (d) and
(f) are the various time snapshots of predicted and exact solution respectively. The black
line in (a) represents the data points taken at initial and new conditions, respectively.

been used to study the propagation of periodic ultrashort pulses in optical
fibers. Rogue waves, breathers, positons, bright, dark, kink and optical soli-
tons are constructed for this fourth order NLSE in [42]. In [37], it has been
stated that the PINN algorithm fails to predict solutions when the order of
the differential equation is higher. In this paper, we successfully predict and
analyze the positon solution of the following fourth order NLSE,

Wy + Ty + 2\7"\2?" + v (Tezer + 8\7"|27"m + 2127,
—|—47"|7“x|2—|—67“37"—|—6|r|4r) =0, (11)

using PINN method. Here, r is the complex wave function and + is the coef-
ficient of the fourth order nonlinear parameter. To determine the solution of

fourth order NLSE using PINN method, we first split the wave envelope
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into real and imaginary parts by substituting » = u+ v and we choose v =1
to illustrate the results in a simple manner. Hence Eq. becomes

gu(x,t) = 2u® + 6u° + 2uv® + 12u%0? + 6uv? — v, + 10uv? + 12vu,v,
— 2uv§ + Uy + 100Uy, + 602Uy, + duvvg, + (TO—

go(z,1) = 2u%v + 6utv + 20° + 12u%0® + 60° + u; — 2vu2 + 12uu,v,
+ 10@1}3 + dUuUgy + Vpp + 6U 000 + 100% 000 + Vpppe-

(12)

The exact second-order positon solution of the fourth-order NLSE (11]) is
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Figure 4: Predicted and exact solution of the second order positon of fourth order NLSE
using PINN approach. (a) Contour profile of the analytical second order positon solution
with parameter value A = 0.01+0.254. (b) The predicted second order positon solution by
PINN. (c) Mean squared error plot between the analytical and predicted solution. (d) and
(f) are the various time snapshots of predicted and exact solution respectively. The black
line in (a) represents the data points taken at initial and new conditions, respectively.

presented in the Appendix (see Eq.(A.3])). As previously explained, initial
and boundary data are generated from the explicit solution. The PINN
setup is similar to the previous two cases. Here, we select the spatial and
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time variables in the range x € [—10,10], ¢t € [—10, 10], and sample points
are chosen similarly to the previous two cases.

After 50000 iterations in Adam optimization, the PINN is able to produce
the positon solution of Eq.. The output of the model is illustrated in Fig.
[l The exact positon solution diagram of is given in Fig. [ff(a), while
Fig. (b) represents the corresponding contour plot of the positon solution.
It is evident that the model is able to accurately predict the positon solution
of Eq.(11). The mean squared error is on the order of 1075, and the error
plot is shown in Fig. [4](c).

We also consider another form of NLSE in our study, which has both
cubic and quartic nonlinearities, that is

Wy + Ty + 2|T|2T — (rmm + 6rx|r|2) + W(Txmx + 8|r|2rm

13
+2r2rm+4r|rx|2+67“§7“+6|r|4r) =0 (13)

where the parameters a and v are associated with third and fourth-order dis-
persion and the nonlinear term, respectively. The function r(z,t) represents
the wave envelope of the system. This equation is a generalized version of
the higher-order NLSE, where when the nonlinear parameters o,y are zero,
the equation reduces to the conventional NLSE. Similarly, when o # 0,7 = 0
or a =0, v # 0, the equation takes the form of the Hirota equation or the
fourth-order NLSE, respectively. In earlier work [I3], higher-order smooth
positon and breather positon solutions for Eq. were constructed.

To predict these smooth positon solutions of , we train the PINN
model with the same setup used for the fourth-order NLSE ([L1). In this
case, we set the parameter values as o, v = 1 with the spatial and time
range as x,t € [—10,10]. The predicted results are shown in Fig. [f| The
PINN model (Fig. [5[b)) has provided more accurate results with a low mean
squared error value of the order of 107, as confirmed by Figs. || (c)-(f).
The PINN method has effectively derived the positon solution for Eq. ,
yielding a predicted solution that closely aligns with the exact solution.

3.4. Data driven positon solution of a fifth order NLSE

Next, we investigate a fifth order NLSE which narrates the one-dimensional
anisotropic Heisenberg ferromagnetic spin chain [I4]. In the literature, soli-
tons, Akhmediev breathers, Kuznetsov—Ma solitons and rogue waves for this
fifth order NLSE are studied in [43], [44] 45]. The positon solutions are also
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Figure 5: Predicted and exact solution of the second order positon of extended NLSE
using PINN approach. (a) Contour profile of the analytical second order positon solution
with parameter value A = 0.01+0.354. (b) The predicted second order positon solution by
PINN. (c¢) Mean squared error plot between the analytical and predicted solution. (d) and
(f) are the various time snapshots of predicted and exact solution respectively. The black
line in (a) represents the data points taken at initial and new conditions, respectively.

constructed in [I4] for the fifth order NLSE. To study these positon solutions
via PINN approach, we pick up the following fifth order NLSE

"y + Tpp + 2|r|2r — 10(Teppze + 10|7“|27"zw + 30|7‘|47“x + 10rr,re,
+1077,7%, 4 207 1y + 107207) =0, (14)

where % denotes complex conjugate and ¢ is the arbitrary real parameter.
In this section, we investigate the positon solution of the fifth order NLSE
through PINN algorithm. Since r is the complex valued function, we seg-
regate the equation into real and imaginary parts by choosing the function
r = u + ‘v and fix the parameter 6 = 0.15. The resultant action yields the
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following two expressions, that is

gu(x,t) = 2u® 4 2uv® + Uy, + 306utv, + 306v v, + 600wV v, + 106U,
—i—l()&)i — v + 200UV Uz + 200UtV + 40000,V
+100u V325 + 1000% V00 + OVpprza, (15a)
go(z,t) = 200+ 20° 4+ vy — 300utu, — 3000 u, — 606uv?u, — 100U’
—10(5uxv§ + up — 400Uty gy — 20000, — 2000UL V40
—100uUppy — 1000*Uppy — OUpzzs- (15b)

Utilizing the gD'T method, we derived the second-order positon solution for
Eq., and the exact expression of the constructed solution is provided in
the Appendix, see Eq.. From this solution, we extracted the initial and
boundary data points. The PINN setup was configured as in the previous
cases, with the spatial and time range set to z,t € [—10,10]. After imple-
menting 30000 iterations in Adam optimization, the PINN network predicted
the second-order positon solution of the fifth-order NLSE .

Figures [] (a) and [f] (b) depict the exact and predicted solutions of the
fiftth-order NLSE, respectively. The mean squared error value was signifi-
cantly reduced to the order of 107%, as demonstrated in the error plot, see
Fig. [f] (c). Additionally, a comparison of time snapshots at various regimes
between the exact and predicted results is shown and plotted in Figs. [0]
(d)-(f), further confirming the high precision of PINN.

3.5. Data driven positon solution of a sixth order NLSE

The sixth order NLSE is one of the extended version of the basic NLSE
to incorporate the effects of dispersion at higher orders. This becomes cru-
cial when considering shorter-duration pulses propagating in fibers or other
media. The sextic NLSE, shown below, explicitly accounts for these higher-
order effects, particularly the sextic-order dispersion term &7r,.p000, Where €
is a real parameter

+r[12r* rypge + 8rurh . + 22|72 |%] + T[187ppars + 70(7‘*)27“5] + 20(7‘»7:)27";95

+107, [5roarh + 37 ugs] + 20r* 12, + 10r3[(r2)? + 2777, ] + 20r|7|%) = 0.
(16)

iry + Tag + 2|r*r + & (roswase + [60r*[rg]? + 50(r*) 21y, + 217

The sextic NLS equation is known to admit various solutions, including Lax
pair, solitons, breathers, periodic solutions, and rogue waves. [46]. Breather-
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Figure 6: Predicted and exact solution of the second order positon of fifth order NLSE
using PINN approach. (a) Contour profile of the analytical second order positon solution
of two components 1 and ry with parameter value A = 0.1 4+ 0.3¢ and § = 0.15. (b) The
predicted second order positon solution by PINN. (c) Mean squared error plot between the
analytical and predicted solution. (d) and (f) are the various time snapshots of predicted
and exact solution respectively. The black line in (a) represents the data points taken at
initial and new conditions, respectively.

to-soliton transitions and the interactions between different types of nonlin-
ear waves for Eq. are explored in [47]. Equation provides a more
comprehensive framework for modeling and analyzing the behaviour of non-
linear waves in various physical systems, offering insights into complex wave
dynamics. In this work, we have derived the second order positon solution
for the sextic NLSE using the GDT method (detailed calculation of
GDT will be published elsewhere). This study investigates the application
of PINNs to predict second-order positon solutions within this framework,
hence we present only the explicit solution in the Appendix for brevity.
For that, We extract the real and imaginary parts from the complex eigen-
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function r = u + v, yielding:

gu(z,t) = 2u® + 206U 4 2uv? 4 606u’v? + 60EuPv? + 206uv® — vy + Ugy
+140&uu2 + 1006uv*u? + 200w vu, v, + 12060°u,v, — 20€u?
—|—2O§uv2v§ + 70§u4um + 1006w vy, + 3O§v4um + 70§uium
+30§viuw + 42§“uufch + 406uB 00,4, + 406uv3 v,y + 40UV V0
F40EV ULV + 2§uv§x + 56EUUL ULz + A0EVVLUprr + 20EVULVL0s
— AUV Vg + TAEU P Ugze 4 10607 Ugras + AEUVVsae + Elpprara
go(z,t) = 2u*v 4 206ulv + 20° + 60Eutv® + 60Euv® + 20607 + Uy + Vg
+206u*vu? — 20€v3u? + 12060 u,v, + 2008uvu,v, + 100Euvo?
—1—140&)31)2 + 40£u3vum + 40§uv3um + 40&UVp Uy + 2§vu§,z
+306u* v,y + 100U 0% Vg + TOEV gy + 306UV + TOEV2 V4,
+40& Ut gy Vo + 4251)1)92036 — 4EVUL U gz + 206UV Uprr + A0EUULV 20
F56EVV, Vge + AUV Uggze + 106U Vpa0e + 1460 p000 + EVrarase
(17)
The initial and boundary data points were extracted, and the PINN setup was
constructed following the procedures used in prior cases, with the spatial and
time range defined as z,t € [—10,10]. After executing 50,000 iterations in
Adam optimization, the PINN successfully predicted the second-order posi-
ton solution of the sixth-order NLSE ([L€]). Figures[7](a) and[7] (b) depict the
exact and predicted solutions of the sixth-order NLSE. The mean squared er-
ror value significantly decreased to the order of 1074, as demonstrated in the
error plot shown in Fig. 7] (¢). Additionally, the time snapshots at various

regimes between the exact and predicted results were compared and plotted
in Figs. [7] (d)-(f), confirming the high precision of the PINN.

3.6. Data driven positon solution of coupled NLSE

In the previous sub-secs., 3.1-3.4, we have studied the positon solution
for the family of scalar NLSEs through PINN approach. In this section, we
consider a two component NLSE which is essential for studying optical pulse
propagation in birefringent optical fibers [48, 49]. Positon solution of Eq.(L8)
has been discussed in [20] and the authors have also studied the interaction
between soliton and positon solutions for the following coupled NLSEs:

11 + Tige + 2(|7“1‘2 + ’7“2\2)7“1 =0,

) 18
9t + Tope + 2(|71|* + |r2]*)re = 0. (18)
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Figure 7: Predicted and exact solution of the second order positon of sixth-order NLSE
using PINN approach. (a) Contour profile of the analytical second order positon solution
of two components r; and ro with parameter value A = 0.1 + 0.3¢ and £ = 0.15. (b) The
predicted second order positon solution by PINN. (c) Mean squared error plot between
the analytical and predicted solution. (d)-(f) are the various time snapshots of predicted
and exact solutions. The black line in (a) represents the data points taken at initial and
new conditions, respectively.

Here r; and ry are the wave envelope functions. For the PINN approach, we
split these complex wave functions into real and imaginary parts by choosing
r12 = (U2 + vy 2) in Eq.. The resultant expressions read

Gu, (z,1) = 20} + 2uiul + 2uiv? + 2uiv3 — Vg + Utae,
Go,(1,1) = 2uivy + 2uivy + 207 + 20103 + Uy + Vige,
Gu,(T,1) = 2ud + 2ugu? + 2um03 + 2ugv? — Voy + Uy,
Goo (T, 1) = 2u3vg + 2uivy + 205 4 20907 + Uy + Voge.

(19)

For the two component system, the mean squared error loss functions are
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Figure 8: Predicted and exact solution of second order positon of coupled NLSE using
PINN approach. (a),(d) Contour profile of analytical second order positon solution of two
components 1 and ro with parameter values A = 0.1+ 0.3i, s; = 1.05, s5 = 0.7, s3 = 0.85.
(b) and (e) are the predicted second order positon solution by PINN. (¢),(f) Mean squared
error plot between analytical and predicted solution. (g)-(1) are the various time snapshots
of predicted and exact solution respectively. The exact region of snapshots is denoted as
white dotted lines in (a), (b), (d) and (e). The black line in (a) and (d) represents the
data points taken at initial and new conditions, respectively.

calculated through the modified expressions,

MSE;c

MSEne

MSEpg

Nint

1 . o .

37 (e ) = OO + 1) — O

int j=1

Hia(eh,0) = el OF +6a(eh, 0) - (e OF ), (200)
Nnc

1 ) . ‘ A . .

e 3 (100, ) = (08 + 160, 8h) = a0 4
j=1

+ida (0, the) — ua(0, ) |* + 102(0, tye) — va(0, tfvc)|2)a (20b)

18
1 N o o o
2 30 (19 h P + b (b thP + lalh £
j=1

+|gm<xg,tz;;>12). (200)



The second order positon solution for the coupled NLSE was constructed
in [20] using generalized DT method. The explicit expressions of both the
components r; and o are given in Appendix, see Eq.. The same setup of
PINN was implemented with 4 neurons in the output layer for the two com-
ponent system. The spatial and time variable are taken as x,t € [—15, 15]
and we take 30000 iterations in Adam optimization. Using this PINN al-
gorithm, we predict the second order positon solution of the coupled NLSE
. The predicted outcomes are given in Fig. . The exact and predicted
results of the components r; and ry are shown in Figs. [§(a), (b), (d) and
(e), respectively. The error plot between exact and predicted solutions is
illustrated in Fig. [§] (c) and (f) with mean squared error in the order of 107,
From these results, we conclude that the PINN can predict the positon solu-
tion of coupled NLSE which can further be confirmed from the various time
snapshots between exact and predicted results given in Figs. [§[(g)-(1).

3.7. Data driven positon solution of coupled Hirota equation

Finally, we explore the positon solution of the coupled Hirota equation
through PINN approach. Tasgal and Potasek proposed the CH equations,
incorporating higher-order effects such as third dispersion, self-steepening,
and inelastic Raman scattering terms to depict a non-relativistic boson field
[50]. The underlying equation plays a significant role in optics [51]. The
study of positon solution of Eq. through PINN algorithm is yet to be
investigated in the literature. We consider the CH equations in the following
form

i1y 4 Tiee + 20|71 + [72|*)r1 + i (T ieee + (6|72 + 3|ra|P)rie + 3ririre,) = 0,
irar + Towe + 2|11 + |r2*)re + ip(razae + (6]r2|® 4 3|r1[*)ros + 3roriri,) = 0,
(21)
where r; and ro are the complex wave envelope functions with p as the arbi-
trary nonlinear parameter. Eq. can be converted to the coupled NLSE by
letting + = 0. Interaction among rogue waves and the other nonlinear waves
such as dark-bright solitons and breathers of Eq.(21) are reported in [52].
In our earlier studies, we have constructed the positon and breather positon
solutions of Eq. through gDT method in [21]. For the present analysis,
we consider only the second order positon solution of Eq.. To begin,
we split the complex wave functions (112 = w2 + v 2) into the following
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Figure 9: Predicted and exact solution of second order positon of coupled Hirota equation
using PINN approach. (a),(d) Contour profile of analytical second order positon solution
of two components ry and r, with parameter value A = 0.1+ 0.37, s; = 1.01, 50 = 0.9, 53 =
0.85 and p = 0.1. (b),(e) The predicted second order positon solution by PINN. (c),(f)
Mean squared error plot between the analytical and predicted solution. (g)-(1) are the
various time snapshots of predicted and exact solution respectively. The exact region of
snapshots is denoted as white dotted lines in (a), (b), (d) and (e). The black line in (a)
and (d) represents the data points taken at initial and new conditions, respectively.

equations

Guy (2, 1)

Gy (:L‘, t)

Guy (Ia t)

vy (x, t)

2ui1)’ + 2u1u§ + 2ulv% + 2ulv§ — V1 — SUULV Uy + UV U,
—6uu%v1x — 3/LU§U1$ — 6/wfle + Uigr — 3,uv§v1w

—3lUr UV — UV V2V — WV1gza

Uiy + 2u3v; + 207 + 20105 + Uy + Bpuiug, + Spusu,
F600 Uz, + BV ULE + UL U Uy + Vigg + SV Vgl

— 31UV V9, + 3UUI VU2 + UL zas

2u§ + 2u2u% + 2u21)§ + 2u2vf — 3UUVU, + SUULVL UL,
—6puzve, — 3putve, — 6pvsvy, — 3UVTV,

—3puaug v, — 32018 — Vay + Ungr — Vs

2U§U2 + 2U%U2 + 211;’ + 2vgvf + Guugu% + 3,uu%u2m

F605Une + VU, + UL Ul + SHVI VU,

—3pU V2V + ULV V1 + Uy + Vg + UUzgs- (22)



The initial and boundary data points are extracted from the second order
positon solution of Eq. . We adapt the same preliminary setup of PINN
which we considered for the other equations. For the present case, we consider
x,t € [—15,15] as the spatial and time range and we run the model for 50000
iterations to optimize the loss function. The second order positon solutions of
both the components are predicted through PINN algorithm. The expected
results of Eq. are produced in Fig. @ Subsequently, the exact and
predicted solutions of 1 and 75 are shown in Figs. [ (a), (d) and [9] (b),
(e), respectively. The error plot shows that the intensity has been reduced
significantly, see Figs. [9] (c), (f) which has the mean squared error value in
the order of 10™%. The relationship between the predicted and actual positon
solutions at different time instances is graphically represented in Figs[9| (g)-(1)
affirming the precision of PINN.

3.8. Data driven positon solution for the coupled generalized NLSE

In this section, we investigate a system governed by the following coupled
generalized NLSE [53],

i1 + Quae + 2(d|q1]* + |2’k @ + K qoq})r1 = 0,

. * * * 23
ot + ous + 2(dl1[2 + clgoPhargs + K gaq7)ra = 0. (23)

The wave functions are denoted by r; and ry, while ¢t and z are time and
space variables. The constants ¢ and d represent how the intensity of one
wave can affect its own speed (self-phase modulation) and the speed of the
other wave (cross-phase modulation). Additionally, the complex constant k
captures the phenomenon of four-wave mixing, where interacting nonlinear
waves generate new wave types. The asterisk * denotes the complex conju-
gate. It’s important to note that under specific conditions d = ¢ and k£ = 0,
the governing equation simplifies to the Manakov system. Analyzing the
influence of the four-wave mixing parameter (represented by d) in coupled
NLSEs has faced limitations. However, Agalarov et al.[54] recently intro-
duced the transformation ¢; = r1 — k*ry, go = drs in Eq. to overcome the
limitations. Then the Eq. becomes

1 + Tige + 2d(|7“1|2 + 0|r2|2)7"1 =0,

24
ir2t —i-?”zm—i—2d(|'r1|2 +O”7”2|2>7”2 =0. ( )

This transformation simplifies the coupled generalized NLSE into the
system presented in Eq . Here, a new parameter o = dc — |k?| emerges,
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which combines the original constants d, ¢, and k. Notably, when d and o
are both set to 1, Eq. reduces to the well-known Manakov model. Now,
we can recognize that the four-wave mixing effect is implicitly embedded
within Eq. (24). As explored in [53], this phenomenon plays a significant
role in the complex interactions between various nonlinear waves, including
solitons, breathers, and rogue waves. DT for this Eq. already exists in
[55], here, we employ generalized DT method and constructed the second
order positon solution for the governing equation. The detailed calculations
will be published in future. In this work, we focus on predicting these positon
solution in PINN approach. First we split the complex wave functions into
real and imaginary parts as 712 = (uj2 + iv12) and rewrite the Eq. in
the following form

Gu, (z,1) = 2du? + 4k, utug + 2cuiul — dkuiugvy + 2durv? + dkudv,
+4k,uv1v9 + 20u1v§ — V1 + Uiae

Go, (2, 1) = 2dudvy + 4k uyuguy + 2cudv — dkugv? 4 2dvd + dkiuyviv;
+4krva2 + 201)11}% + Uy + Vige

Gu,(T,1) = 2duiug + 4k, uiuy + 2cus — 4kauzvy + 2dugvy + dkugugvy
4k, U0V 4 2¢UnVE — Vop + Uiy

Gu (2, 1) = 2du%1}2 + 4k, uguqvy + 2cu%v2 — 4k;usv109 + 2dU%U2 + 4kiulv§

+4krvlv§ + QCUS + Ugp + Vogy
(25)

Our investigation leverages the established PINN architecture with a 4-
neuron output layer to handle the two-component system described by the
coupled generalized NLSE (24). The spatial and temporal domain spans
from —15 to 15 for both position (z) and time (t). We employ the Adam
optimizer for 30,000 iterations during the training process. Using this op-
timized PINN, we aim to predict the second-order positon solution for the
coupled NLSE. Figure [10] presents the predicted results alongside the exact
solutions for the two components. Figures|10| (a), (b), (d), and (e) illustrate
these comparisons. The mean squared error between the predicted and exact
solutions is on the order of 107°, as shown in Figures [10(c) and (f). These
results demonstrate the capability of PINNs to predict positon solutions for
coupled generalized NLSEs. This is further supported by the close agreement
between the exact and predicted solutions across various time snapshots de-

picted in Figures [10J(g) to (1).
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Figure 10: Predicted and exact solution of second order positon of coupled general-
ized NLSE using PINN approach. (a),(d) Contour profile of analytical second order
positon solution of two components ry and r with parameter values A\ = 0.2 + 0.34,
s1=1.2,80=0.9,83 =085,k = 0.2+ 0.4i,d = 0.5,¢ = 0.7 (b),(e) The predicted second
order positon solution by PINN. (c),(f) Mean squared error plot between analytical and
predicted solution. (g)-(1) are the various time snapshots of predicted and exact solution
respectively. The exact region of snapshots is denoted as white dotted lines in (a), (b),
(d) and (e). The black line in (a) and (d) represents the data points taken at initial and
new conditions, respectively.

4. Conclusion

In this work, we have considered Physics-Informed Neural Networks to in-
vestigate data-driven positon solutions within a family of higher-order nonlin-
ear Schrodinger Equations. We have demonstrated that with minimal infor-
mation (data points from the solution at t = 0 and x = 0) one can predict the
propagation of second-order positons in NLSEs with cubic, quartic, quintic
nonlinearities. We have also extended the methodology for two-component
systems, namely (i) coupled NLSE and (ii) coupled Hirota equations. In ad-
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PDEs MSE (for Dirichlet BC) | MSE (for 2 = 0 condition)
NLSE 3.10 x 107 6.20 x 10~7
Hirota equation 1.70 x 107° 1.60 x 107°
Fourth order NLSE 1.00 x 10~* 2.00 x 1076
Extended NLSE 2.00 x 1072 2.00 x 1074
Fifth order NLSE 8.00 x 10~* 8.00 x 107
Sixth order NLSE 8.00 x 1073 4.00 x 1074

Coupled NLSE
Coupled Hirota
Coupled generalized NLSE

8.50 x 1074, 1.29 x 1073
1.31 x 1073, 1.77 x 1073
5.60 x 107>, 6.80 x 107°

8.50 x 107°, 1.20 x 10~*
1.31 x 107*, 1.77 x 10~*
3.80 x 107>, 4.90 x 107°

Table 1: Calculated mean squared error values from the results of PINN with Dirichlet
boundary condition and x = 0 condition for the family of NLSEs

dition to the above studies, with the help of GDT method we have derived
the second-order positon solutions for both the sixth-order NLSE and the
coupled generalized NLSE. These two solutions are new to the literature.
Then, we leveraged PINNs to predict the behaviour of these two solutions.
Predicted outcomes closely align with the exact solutions obtained through

the analytical methods.

We have also compared the performance of our

modified PINN algorithm with the traditional PINN approach for predicting
positon solutions of NLSEs. Our findings reveal that, for basic NLSE, both
approaches achieve similar MSE values, suggesting comparable performance
for lower-order equations. For higher-order NLSEs, the considered modified
PINN algorithm significantly outperforms the traditional method, requiring
less iterations to achieve high accuracy. The traditional PINN algorithm re-
quires more number of iterations to achieve the same level of accuracy. Some
of the NLSEs exhibit similar MSE values for both methods, so we did not
present the visual representation of PINN results with Dirichlet boundary
condition, as it would not provide significant insights. Hence we present the
comparison of MSE values obtained using both PINN methods for various
NLSEs in Table. 1. As shown in the table, the traditional PINN method re-
quires further improvement for consistent performance across various PDEs
and this data confirms the improved efficiency and accuracy of our modified
approach for higher-order PDES. These results also demonstrate the effec-
tiveness of our modifications in addressing the limitations identified in the
original PINN algorithm, particularly for handling the complexities of higher-
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order nonlinear PDEs. Visual comparisons of predicted and exact solutions
at various time points further confirm the method’s precision. This work
achieves a significant breakthrough by demonstrating the PINN’s capability
to solve PDEs with nonlinearities of up to sixth order, surpassing limitations
cited in prior literature [37]. Our results hold promise for future applications
in the numerical and PINN communities. Further exploration will focus on
using deep learning to investigate breather positon and hybrid solutions in
nonlinear integrable systems.

Appendix A.
The exact expression for the second order positon solution of NLS equa-
tion is given by [12]

=5 (A.1)

r

Ap = 8be2bmi)Rat2ibite) (1 4 Qabt 4 8ib*t + 2bx + M) (1 — Sabt
+8ib*t — 2bx)),
Dy = 14 Blatte) 4 gptblatta) () 4 19842572 + 128b%2 + 64ab’tx + 8b*z?).

The second order positon solution of third order NLS equation @ takes
the following form [12]

Ay
== A2
with
Ay = 8b€(4(a—ib)2(—i+2ia+2b)t+2iaac—2b(8at+8b2t+;r))(6(4b(4at+4b2t+z))(1 + 24a2bt

+8ib%t — 24b%t — 2bx) + 3 (1 — 244bt + 8a(1 — 6ib)bt
+8a(—1 — 6ib)bt + 8ib°t + 24b°t + 2bx)),
B, = o(4(ia+b)z) + e(732abt+96a2bt732b3t+4iaxf4bx) 4+ 9 6(716abt+48a2bt716b3t+4iax)
x (1 — 768a°b*t* + 1152a*b*t* + 115205 + 64a*b*t((2 + 36b%)t — 37)
+8b%2° + 64ab’t(—12b*t + x) + 64b"t(2t + 3z)).

The following expression represents the second order positon solution of
the fourth order NLS equation (11)) [12]

_ A

= 5o (A.3)

r
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Ay = 8b62(—2i(a—ib)2+8i(a—z’b)4)t—4iax(62(ia+b)a¢(1 + 64a3bt + 8ib%t — 192ia2b%t
+64Zb4t . 8(1(() + 24b3)t _ 2b£l§') + €(2a(8(—1+8a2)bt—64b3t+ix)—26x)
x (1 — 64a°bt + 8ib*t — 192ia*b’t + 64ib’t + 8a(b + 24b°)t + 2bx)),
Dy = plbw + 6(—4b(—64a3t+8a(t+8b2t)+x)) + 26(16ab(—1+8a2—8b2)t)(1 + 8192451242
+128b** + 204865t + 8192b%t + 2048a*b*(—1 + 12b°)¢?
+128a2b%(1 4+ 192b*)t* — 512a*b*tx 4 64ab®(1 + 24b%)tx + 8b*a?).

The second order positon solution of extended NLS equation is given
by [13]

Ay
= A4
r=. (A-4)
where
A, = 8be—8i(a—ib)2(1/2—a—2(a—ib)2+ib)t+2iaac—2b(8b2t+as)(e4b(4b2t+a:)(1+8ib(ia+b)

1 — 8a? 4 a(—3 + 16ib) + b(3i + 8b))t — 2bx) 4 e16ab(~1+a(3+8a)=8b)1)

1+ 2b(—4(a +ib)(—1 + 8a* + a(3 + 16ib) + (3i — 8b)b)t + x))),

D, = pAliatb)z + e—32b(b2+a(1—a(3+8a)+8b2))t+4i(a+ib)x
+€716b(b2+a(1fa(3+8a)+8b2))t+4iax(2 + 16[)2(16(@2 + b2>((—1 + a(3 + 8@))2
+(25 + 16a(3 + 8a))b? + 64b")t* 4+ 8(3b* + a(1 — a(3 + 8a)
+240°) )tz + 2?)).

x(
x(

The second order positon solution of fifth order NLS equation takes
the following form [I4]

As
r=—, (A.5)
Ds
where
As = _466—4i(2a2t—262t+ax+16a(a4—10a2b2+5b4)t6)(_€2i(a+ib)(2at+2ibt+:c)+32i(a+ib)5t6

x (1 + 2b(4at + 4ibt + x + 80(a + ib)*18)) + ¢2(a+0)(at=2ibt+e+16(ia+b)*0)
x (—1 + 2b(4at — 4ibt + x + 80(ia + b)*t5))),

Ds = (1+8b*(16a*t* + 16b°t* + 8atx + x* + 160t(4a(a® — 3b%)(a® + b*)t
+(a* — 6a?b* + b")x)d + 6400(a® + b*)*t26?)
+ cosh[4b(x + 4t(a + 4(5a* — 10a*b* + b*)0))]).
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The second order positon solution of Sixth-order NLS equation takes
the following form

As
r=— A.6
B (A.6)
where
Ag = 8be—4z’(a:c+2(a2—b2)t(1+16a4§—224a2b2§+16645))(Z-62i(a—ib)(2(a—ib)t+m+32(a—ib)5t§)

X (—i + 2ibx + 8i(a — ib)bt(1 + 48(a — ib)*¢)) + e+ atib)tte32(atib)’te)

X (14 2bx + 8(a + ib)bt(1 + 48(a + ib)*€))),
Dy = 2+ ¢~ 4b(@+192071 6400707t +4a(t-H48VME)) y Ab(w-+19207 16 ~640a b1 +da(t+48b41€))

+16b%2% + 128ab’tx(1 + 48a*¢ — 480ab*¢ + 240b*¢) + 256(a — ib)

x (a4 ib)b*t* (1 + 48(a — ib)*¢ + 48(a + ib)*£(1 + 48(a — ib)*¢)).

The second order positon solution of coupled NLS equation ([18]) is given
by [20]

r = S;j?, ro = S;j? (A.7)
where
A, = 8b6(4ia2t+8abt+4ib2t+2iam+2br)Sl(6(46(4at+z))s%(_1 + 2b(4at — 4ibt + x))
—(s5 4 53)(1 + 2b(4at + 4ibt + x))),
D, — o(Bia®t+32abt+diaz+8bz) Szlx + el4ia(2at+a)) ( Sg + 33)2 4 ¢l 6abt+dba-+dia(2at+)
x 52 (53 + 53)(1 4 8b*(16(a” + b*)t* + 8atx + 2?)). (A.8)

The coupled Hirota equation constitutes the following second order
positon solution [21]

59 Ag 5343
= = A9
1 D8 ) ) D8 ( )
where
AS — —8b5?(€2i(a_ib)($+2(a_ib)t(1+2a#_2ibu))S%(1 o 2bf[} _ 8(0/ o Zb)bt

% (14 3ag — 3ib)) + e@ila+)r2arible(i+2aw+2ibu) (32 | 2y
X (1 4 2bx 4 8(a + ib)bt(1 + 3ap + 3ibu))),

Dy = etila—ib)(a+2(a—ib)ii+2au—2ibyn) 6 | Ai(ar+ib) o 2atib)(1+ 200+ 2ibn)
XS%(Sg + 33)2 . 2641’(2a2t—2b2t+4a3tu+a(z—12b2tu))Szll(Sg + 8§)<_1 — 8212
—128(a — ib)(a + ib)b*t*(1 + 3au — 3ibu) (1 + 3ap + 3ibu)
+64b%tz(—a — 3ap + 3b*p)). (A.10)
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The second order positon solution of coupled generalized NLSE (24) is

given by
89 Ay s3Ag

ry = , o=
YT VApy 7 \/d{de — kk*)Dy

(A.11)

where

Ay = 8ibsy(—iePliatt)Rat=2ibtte)) 21 1 8apt — 8ib*t 4 2bx)
+ie(Zilatib)Rat+2ibidn)) (2 | (2)(1 4 Qubt 4 8ib*t + 2bx)),
Dy = ( e4(ia+b)(2at—2ibt+$) 5‘11 + 64i(a+ib)(2at+2ibt+x)( s% + 33)2 +92 €4i(2a2t—2b2t+am)
s1(s3 + s3) (1 4 128a°b** + 1280"¢* + 64ab*tx + 8b°x?)).
(A.12)
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