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SYMMETRICALLY PSEUDO-AMENABLE BANACH ALGEBRAS

HOGER GHAHRAMANI AND PARVIN ZAMANI

Abstract. We introduce and study a new notion of amenability called sym-
metric pseudo-amenability. We obtain some properties of symmetrically pseudo-
amenable Banach algebras and with examples, we compare this type of amenabil-
ity with some other types of amenability. We also provide some special classes
of symmetrically pseudo-amenable Banach algebras. Finally, Jordan deriva-
tions and Lie derivations from a class of Banach algebras into appropriate
Banach bimodules are investigated using the notion of symmetric pseudo-
amenability.

1. Introduction

B. E. Johnson studied cohomology of Banach algebras in [13] and defined the
concept of amenable Banach algebra which was based on the amenability of locally
compact groups and proved in [14] that a Banach algebra U is amenable if and
only if U has a bounded approximate diagonal. In the following, many studies
were conducted on amenability of Banach algebras, and various other types of
amenability have been introduced and studied, see [5, 6, 16, 23] for a comprehensive
survey of results of this type. In [15], Johnson introduced symmetric amenable
Banach algebras as a special class of amenable Banach algebras. He called a Banach
algebra U is symmetrically amenable if it has a bounded approximate diagonal
consisting of symmetric tensors, and then applied this concept to the study of
Jordan derivations and Lie derivations. The study of Jordan derivations and Lie
derivations also has a long history. The common problem regarding these mappings
is when Jordan or Lie derivations can be characterized in terms of derivations?
Many studies have been carried out in line with the this problem raised, and here
we only refer to Johnson’s results. Johnson showed in [15, Theorem 6.2] that any
continuous Jordan derivation from a symmetrically amenable Banach algebra U into
a Banach U-bimodule is a derivation. As a consequence he obtained the same result
for continuous Jordan derivations on arbitrary C∗-algebras, although not every C∗-
algebra is symmetrically amenable. Also, in [15, Theorem 9.2] Johnson showed that
any continuous Lie derivation from a symmetrically amenable Banach algebra U into
a Banach U-bimodule decomposed into the sum of a continuous derivation and a
continuous center-valued trace, and as a consequence he obtained the same result for
continuous Lie derivations on arbitraryC∗-algebras. To see the historical course and
other results in this study path, we refer to [1, 2, 3, 4, 9, 10, 11, 17, 18, 19, 20, 22, 24]
and the references therein.
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As a generalization of amenability, F. Ghahramani and Y. Zhang in [7] intro-
duced and studied the notion of pseudo-amenability, which is based on existence
of an approximate diagonal for Banach algebras. Precisely, a Banach algebra U

is called pseudo-amenable if it has an approximate diagonal which is not neces-
sarily bounded. According to this definition and with the idea of the definition
of symmetric amenability, in the continuation of studies related to amenability, in
this article we introduce the concept of symmetric pseudo-amenability. We say Ba-
nach algebra U is symmetrically pseudo-amenable if it has an approximate diagonal
consisting of symmetric tensors which is not necessarily bounded. This concept
is a generalization of symmetrically amenable Banach algebras, which is a special
class of pseudo-amenable Banach algebras. In this article, we study symmetrically
pseudo-amenable Banach algebras and identify some of their properties and com-
pare this type of amenability with some other types of amenability with examples,
and we also present some special classes of Banach algebras that are symmetri-
cally pseudo-amenable. According to [15, Theorem 6.2] and [15, Theorem 9.2], the
question arises whether it is possible to obtain Johnson’s results for Jordan deriva-
tions and Lie derivations of other suitable Banach algebras into suitable Banach
modules? We give answers to this question using the concept of symmetric pseudo-
amenability and obtain generalizations of [15, Theorem 6.2] and [15, Theorem 9.2].

This article is organized as follows. In section 2, definitions, notions and required
tools are introduced. Section 3 is devoted to the study of properties of symmetrically
pseudo-amenable Banach algebras and examples. In section 4, we present some
special classes of symmetrically pseudo-amenable Banach algebras. In sections 5
and 6, respectively, Jordan and Lie derivations from a class of Banach algebras into
appropriate Banach bimodules are investigated using the concept of symmetric
pseudo-amenability.

2. Preliminaries

In this section we fix the notation, and give some basic definitions and points
which will be used in the next sections. Let U be an algebra and X be a U-bimodule.
Note that ZU(X) represents the center of X , which is defined as

ZU(X) = {x ∈ X | ax = xa for all a ∈ U}.

A mapping f : U → X is central if f(U) ⊆ ZU(X).
Recall that a linear mapping δ : U → X is called a derivation if

δ(ab) = δ(a)b + aδ(b);

a Jordan derivation if

δ(ab+ ba) = δ(a)b+ aδ(b) + δ(b)a+ bδ(a);

and a Lie derivation if

δ(ab− ba) = δ(a)b+ aδ(b)− δ(b)a− bδ(a),

for all a, b ∈ U. A linear mapping τ : U → X is a trace, if τ([a, b]) = 0 for all
a, b ∈ U, where [a, b] = ab− ba (Lie product). Note that a Lie derivation is central
if and only if it is a central trace.

Assume that U is a Banach algebra and X is a Banach U-bimodule. The space
of all bounded derivations from U into X is denoted by Z1(U, X). A derivation
δ is called inner derivation, if there is x ∈ X such that δ(a) = ax − xa for all
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a ∈ U. Each inner derivation is bounded and N1(U, X) is the space of all inner
derivations from U into X . The first cohomology group of U with coefficient in X
is the quotient space H1(U, X) = Z1(U, X)/N1(U, X). We observe that X∗ is a
Banach U-bimodule with the following module operations

〈af, x〉 = 〈f, xa〉, 〈fa, x〉 = 〈f, ax〉

for a ∈ U, x ∈ X and f ∈ X∗. We call X∗ the dual bimodule of X . Recall that
a Banach algebra U is said to be amenable if for every Banach U-bimodule X , we
have H1(U, X∗) = {0}. The notion of an amenable Banach algebra was introduced
by Johnson in 1972 [13]. A net {tλ}λ∈Λ in the projective tensor product U⊗̂U is
called approximate diagonal if satisfies the following two conditions

(1) atλ − tλa −→ 0;
(2) π(tλ)a −→ a

for all a ∈ U, where the operations on U⊗̂U are defined through

a(b⊗ c) = ab⊗ c, (b⊗ c)a = b⊗ ca

for all a, b, c ∈ U. Here and in the sequel π always denotes the product morphism
from U⊗̂U into U, specified by π(a ⊗ b) = ab for all a, b ∈ U. In [14] (see also [5,
2.9.65]), it is proved that a Banach algebra U is amenable if and only if U has a
bounded approximate diagonal. The flip map on U⊗̂U is defined by

(a⊗ b)◦ = b⊗ a

for a, b ∈ U and an element t ∈ U⊗̂U is called symmetric if t◦ = t. Johnson in [15] is
introduced symmetric amenability of Banach algebras. He called a Banach algebra
U is symmetrically amenable if it has a bounded approximate diagonal consisting
of symmetric tensors. The opposite algebra U◦ is the Banach space U with product
a ◦ b = ba. An approximate diagonal in U⊗̂U for U◦ is a net {tλ}λ∈Λ in U⊗̂U if it
meets the following two conditions

(1)◦ a ◦ tλ − tλ ◦ a→ 0;
(2)◦ aπ◦(tλ)− a→ 0

for all a ∈ U, where

a ◦ (b⊗ c) = b⊗ ac, (b⊗ c) ◦ a = ba⊗ c and π◦(b⊗ c) = cb

for all a, b, c ∈ U. There are a number of obvious relationships between these
operations, for example a ◦ t◦ = (at)◦ (a ∈ U, t ∈ U⊗̂U). The Banach algebra U

is symmetrically amenable if and only if there is a bounded net {tλ}λ∈Λ in U⊗̂U

such that satisfies (1), (2), (1)◦ and (2)◦ ([15, Proposition 2.2]). The properties and
examples of symmetrically amenable Banach algebras can be found in [15].

In [6], the authors have introduced and studied a generalization of amenability
called approximate amenability, which is based on a property of derivations from
the algebra. Precisely, a Banach algebra U is approximately amenable if, for every
Banach U-bimodule X , every bounded derivation d from U into the dual bimodule
X∗ is approximately inner, which means that there is a net {xλ}λ∈Λ ⊂ X∗ such
that d(a) = limλ(axλ − xλa) for all a ∈ U. In [7] pseudo-amenability is presented
as another generalization of amenability, which is based on approximate diagonals.
Precisely, a Banach algebra U is pseudo-amenable if it has an approximate diagonal
which is not necessarily bounded. In [7, Theorem 3.1] it is proved that a Banach
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algebra U is approximately amenable if and only if the unitization U♯ of U is pseudo-
amenable (also, see [8]). The properties and examples of these kinds of amenabilities
can be found in [6, 7, 8].

3. Basic properties and comparisons

In this section, we present definition and some basic properties of symmetric
pseudo-amenability, and with examples, we compare this type of amenability with
some other types. Throughout this section, U is a Banach algebra.

Definition 3.1. The Banach algebra U is symmetrically pseudo-amenable if it has
an approximate diagonal consisting of symmetric elements.

In view of this definition, it is clear that a symmetrically amenable Banach
algebras is symmetrically pseudo-amenable and a symmetrically pseudo-amenable
Banach algebra is pseudo-amenable. In the next proposition, a condition equivalent
to the symmetric pseudo-amenablity is presented, the proof of which is similar to
[15, Proposition 2.2], and its proof is omitted.

Proposition 3.2. U is symmetrically pseudo-amenable if and only if there exists

a net {tλ}λ∈Λ in U⊗̂U which satisfies

(i) atλ − tλa −→ 0;
(ii) π(tλ)a −→ a;
(iii) a ◦ tλ − tλ ◦ a −→ 0;
(iv) aπ◦(tλ) −→ a.

for all a ∈ U.

It should be noted that if tλ satisfies in conditions (i) to (iv) of the Proposition
3.2, then for each a ∈ U, aπ(tλ) −→ a can be concluded from (i) and (ii), and
π◦(tλ)a −→ a can be concluded from (iii) and (iv).

We know that in order to show that the Banach algebra U is pseudo-amenable,
it is sufficient to show that for each finite subset F of U and each ε > 0 there
is an element t of U⊗̂U with ‖at − ta‖ < ε and ‖π(t)a − a‖ < ε for all a ∈ F .
Now according to the definition of symmetric pseudo-amenability to show that U is
symmetrically pseudo-amenable, it is sufficient to show that for each finite subset F
of U and each ε > 0 there is a symmetric element t of U⊗̂U such that ‖at− ta‖ < ε
and ‖π(t)a − a‖ < ε for all a ∈ F . Also, according to Proposition 3.2, in order to
prove that U is symmetrically pseudo-amenable, it is sufficient to show that for each
finite subset F of U and each ε > 0 there is an element t of U⊗̂U with ‖at−ta‖ < ε,
‖a ◦ t− t ◦ a‖ < ε, ‖π(t)a− a‖ < ε and ‖aπ◦(t)− a‖ < ε for all a ∈ F .

As an application of Proposition 3.2, we have the following result.

Corollary 3.3. If U is a commutative pseudo-amenable Banach algebra, then U is

symmetrically pseudo-amenable.

Proof. For commutative Banach algebras, in Proposition 3.2, conditions (i) and
(iii), and conditions (ii) and (iv) are the same. �

In the previous corollary, we saw that pseudo-amenability is equivalent to sym-
metric pseudo-amenability on commutative Banach algebras. By using the next
proposition, we can obtain an example of Banach algebras that are pseudo-amenable,
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but not symmetrically pseudo-amenable, and therefore, these classes of Banach alge-
bras are different in general. The idea of the next result comes from [15, Proposition
2.4].

Proposition 3.4. Let U be a symmetrically pseudo-amenable Banach algebra, and

z 6= 0 be an element of Z(U). Then there is a net {fλ}λ∈Λ in U∗ such that fλ(ab−
ba) −→ 0 for every a, b ∈ U and fλ(z) −→ 1. Especially, if U is unital, then for

z = 1 there exists a net {fλ}λ∈Λ in U∗ such that fλ(ab−ba) −→ 0 for every a, b ∈ U

and fλ(1) −→ 1.

Proof. Suppose that {tλ}λ∈Λ is a net in U⊗̂U that satisfies to conditions (i) to (iv)
of Proposition 3.2, and g ∈ U∗ is such that g(z) = 1. For each λ ∈ Λ define

fλ(a) = g(π◦(atλ)) (a ∈ U).

Each fλ is a bounded linear functional on U. For every λ ∈ Λ and a, b ∈ U we have
π◦(abtλ) = π◦(btλa), and hence

fλ(ab− ba) = g(π◦(abtλ − batλ))

= g(π◦(btλa− batλ))

= g(π◦(b(tλa− atλ))) −→ 0

for each a, b ∈ U. Also, since z ∈ Z(U), we have

π◦(ztλ) = π◦(tλ ◦ z) = π◦(tλ)z −→ z

Now, it follows from g ∈ U∗ that

fλ(z) −→ g(z) = 1.

�

In the next example, we present a Banach algebra, which is pseudo-amenable
but not symmetrically pseudo-amenable.

Example 3.5. Let On be the Cuntz algebra, which is a unital amenable C∗-algebra,
and hence it is pseudo-amenable. There are members T1, ...Tn in On such that
T ∗
i Ti = I and

∑n
i=1 TiT

∗
i = I. Suppose that On for n > 1 is symmetrically pseudo-

amenable. According to Proposition 3.4, there exists a net {fλ}λ∈Λ of bounded
linear functionals on On such that

fλ(AB −BA) −→ 0

for each A,B ∈ On and
fλ(I) −→ 1.

Therefore

1 = lim
λ
fλ(I) = lim

λ
fλ(

n∑

i=1

TiT
∗
i ) = lim

λ

n∑

i=1

fλ(TiT
∗
i )

On the other hand

lim
λ

n∑

i=1

fλ(TiT
∗
i )− lim

λ

n∑

i=1

fλ(T
∗
i Ti) = lim

λ

n∑

i=1

fλ(TiT
∗
i − T ∗

i Ti) −→ 0

So limλ

∑n
i=1 fλ(T

∗
i Ti) = 1. but

lim
λ

n∑

i=1

fλ(T
∗
i Ti) =

n∑

i=1

lim
λ
fλ(T

∗
i Ti) =

n∑

i=1

lim
λ
fλ(I) = n
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So n = 1, which contradicts n > 1. Therefore, On for n > 1 cannot be a symmet-
rically pseudo-amenable Banach algebra.

In fact, this example presents a Banach algebra that is amenable but not symmet-
rically pseudo-amenable. By using the next proposition, we can give an example of
a symmetrically pseudo-amenable Banach algebra that is not amenable. To express
this proposition, we first introduce some concepts.

Let {Xi : i ∈ I} be a collection of Banach spaces. Denote by
∏

i∈I Xi the product
space of the collection. This is the space consisting of all mappings x : I −→

⋃
i∈I Xi

for which x(i) ∈ Xi, the linear operations being given coordinatewise. For 1 ≤ p <
∞, we recall that the ℓp-direct sum of the collection is

p⊕

i∈I

Xi =

{
x ∈

∏

i∈I

Xi : ‖x‖p =

(∑

i∈I

‖x(i)‖p
)1

p
<∞

}
,

and the c0-direct sum of the collection is

0⊕

i∈I

Xi =

{
x ∈

∏

i∈I

Xi : ‖x‖∞ = max‖x(i)‖ <∞ and lim
i
x(i) = 0

}
.

For a collection {Ui : i ∈ I} of Banach algebras, the sum
⊕p

i∈I Ui, p > 1 or p = 0,
is also a Banach algebra with the multiplication being defined coordinatewise. If
J ⊂ I, then

⊕p
i∈J Ui can be identified with the complemented closed ideal of⊕p

i∈I Ui consisting of all x with x(i) = 0 for i /∈ J . We let PJ denote the associated

projection from
⊕p

i∈I Ui onto
⊕p

i∈J Ui. It should be noted that for i0 ∈ I, if

ρi0 : Ui0 −→
⊕p

i∈I Ui is the natural embedding map, then ρ̃i0 : Ui0⊗̂Ui0 −→

(
⊕p

i∈I Ui)⊗̂(
⊕p

i∈I Ui) is given by ρ̃i0(
∑∞

k=1 a
i0
k ⊗ bi0k ) =

∑∞
k=1 ρi0(a

i0
k ) ⊗ ρi0(b

i0
k ),

where
∑∞

k=1 a
i0
k ⊗ bi0k ∈ Ui0⊗̂Ui0 is a bounded linear embedding with ‖ρ̃‖ ≤ 1.

Now we have the following proposition, the idea of proof of which is taken from [7,
Proposition 2.1].

Proposition 3.6. Suppose that for each i ∈ I, Ui is a symmetrically pseudo-

amenable Banach algebra. Then so is
⊕p

i∈I Ui for p ≥ 1 or p = 0.

Proof. Let U =
⊕p

i∈I Ui. Given ε > 0 and a finite set F ⊂ U, we can choose a

finite set JF,ε ⊂ I for which ‖PJF,ε
(a) − a‖ <

ε

2
for each a ∈ F . Since each Ui

is symmetrically pseudo-amenable, by Proposition 3.2, for every i ∈ JF,ε there is

ti ∈ Ui⊗̂Ui such that

‖Pi(a)ti − tiPi(a)‖ <
ε

| JF,ε |
;

‖π(ti)Pi(a)− Pi(a)‖ <
ε

2 | JF,ε |
;

‖Pi(a) ◦ ti − ti ◦ Pi(a)‖ <
ε

| JF,ε |

and

‖Pi(a)π
◦(ti)− Pi(a)‖ <

ε

2 | JF,ε |

for each a ∈ F , where | JF,ε |= cardJF,ǫ and Pi denotes the projection P{i}. Now

we consider the embedding ρ̃i : Ui⊗̂Ui −→ U⊗̂U and choose the element tF,ε in
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U⊗̂U as follows

tF,ε =
∑

i∈JF,ε

ρ̃i(ti).

For every a ∈ U we have a =
∑

i∈I Pi(a), and hence, according to the definition of
tF,ε and ρ̃i we have

atF,ε =
∑

i∈JF,ε

Pi(a)ρ̃i(ti) =
∑

i∈JF,ε

ρ̃i(Pi(a)ti).

In the same way

tF,εa =
∑

i∈JF,ε

ρ̃i(tiPi(a));

a ◦ tF,ε =
∑

i∈JF,ǫ

ρ̃i(Pi(a) ◦ ti)

and

tF,ε ◦ a =
∑

i∈JF,ε

ρ̃i(ti ◦ Pi(a)).

Therefore, for each a ∈ F we have

‖atF,ε − tF,εa‖ = ‖
∑

i∈JF,ε

ρ̃i(Pi(a)ti − tiPi(a))‖

≤
∑

i∈JF,ε

‖ρ̃i(Pi(a)ti − tiPi(a))‖

≤
∑

i∈JF,ε

‖(Pi(a)ti − tiPi(a)‖ < ε

and

‖π(tF,ε)a− a‖ = ‖π(tF,εa)− a‖

= ‖
∑

i∈JF,ε

π(ρ̃i(tiPi(a)) − a‖

= ‖
∑

i∈JF,ε

π(ti)Pi(a)− a ‖

≤ ‖
∑

i∈JF,ε

π(ti)Pi(a)−
∑

i∈JF,ε

Pi(a)‖ + ‖
∑

i∈JF,ε

Pi(a)− a‖

≤
∑

i∈JF,ε

‖π(ti)Pi(a)− Pi(a)‖+ ‖PJF,ε
(a)− a‖ <

ε

2
+
ε

2
= ε.

Similarly, we have

‖a ◦ tF,ε − tF,ε ◦ a‖ < ε

and

‖aπ◦(tF,ε)− a‖ < ε

for each a ∈ F . So from Proposition 3.2 it follows that U is symmetrically pseudo-
amenable. �

Now we are in a position to present the desired example.
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Example 3.7. For each n > 1, let Mn(C) be the algebra of n× n matrices over the
complex field C. Every Mn(C) is symmetrically amenable because

t =
1

n

n∑

i,j=1

Eij ⊗ Eji,

where the Eij are the usual matrix units, is a symmetric diagonal inMn(C) (see [5,

Proposition 1.9.20]). According to Proposition 3.6,
⊕0

n∈N
Mn(C) is a symmetrically

pseudo-amenable C∗-algebra that is not amenable.

We know that every symmetrically amenable Banach algebra is amenable and
symmetrically pseudo-amenable. According to this point and the above examples,
the following question arises:

Question. What is the relationship between the class of symmetrically amenable
Banach algebras and the class of amenable and symmetrically pseudo-amenable Ba-
nach algebras? Is the Banach algebra that is amenable and symmetrically pseudo-
amenable, is the symmetrically amenable Banach algebra?

We continue this section by studying some hereditary properties.

Proposition 3.8. Let U and B be two Banach algebras. If U is symmetrically

pseudo-amenable and there is a continuous epimorphism θ from U onto B, then

B is symmetrically pseudo-amenable. In particular, the quotient algebra U/I is

symmetrically pseudo-amenable for any two-sided closed ideal I of U.

Proof. Consider the continuous linear mapping θ ⊗ θ : U⊗̂U −→ B⊗̂B. For each
t ∈ U⊗̂U and a ∈ U we have the followings

θ ⊗ θ(at) = θ(a)θ ⊗ θ(t) and θ ⊗ θ(ta) = θ ⊗ θ(t)a;

θ ⊗ θ(a ◦ t) = θ(a) ◦ θ ⊗ θ(t) and θ ⊗ θ(t ◦ a) = θ ⊗ θ(t) ◦ θ(a);

π(θ ⊗ θ(t)) = θ(π(t)) and π◦(θ ⊗ θ(t)) = θ(π◦(t)).

Considering these relationships and that θ is epimorphism, it follows that θ⊗θ maps
any symmetric approximate diagonal for U to a symmetric approximate diagonal
for B. �

Proposition 3.9. Let U be a symmetrically pseudo-amenable Banach algebra, and

let J be a two-sided closed ideal of U. If J has an approximate identity {ei}i∈I

such that the associated left and right multiplication operators Li : a → eia and

Ri : a→ aei from U into J are uniformly bounded, then J is symmetrically pseudo-

amenable.

Proof. Under the condition on ei, there is a constant M ≥ 1 such that ‖eia‖ ≤
M‖a‖ and ‖aei‖ ≤M‖a‖ for all ei and all a ∈ U. So ‖eit‖ ≤M‖t‖, ‖tei‖ ≤M‖t‖,
‖ei ◦ t‖ ≤M‖t‖ and ‖t ◦ ei‖ ≤M‖t‖ for all ei and all t ∈ U⊗̂U.

To prove the theorem, we first prove the following claim.
Claim. For each a ∈ J and t ∈ U⊗̂U we have

ei ◦ (ta) −→ ta.

Reason. Suppose t =
∑∞

j=1 aj⊗ bj ∈ U⊗̂U. For each k ∈ N, we put tk =
∑k

j=1 aj ⊗
bj. Since tk −→ t, it follows that for a ∈ J , tka −→ ta. So for ε ≥ 0, there exists
a k0 such that

‖tk0
a− ta‖ <

ε

M + 2
.



SYMMETRICALLY PSEUDO-AMENABLE BANACH ALGEBRAS 9

On the other hand, since {ei}i∈I is an approximate identity for J and tk0
=∑k0

j=1 aj⊗bj, we have ei ◦(tk0
a) =

∑k0

j=1 aj⊗eibja and therefore ei ◦(tk0
a) → tk0

a.
So there is an i0 ∈ I such that for every i > i0 we have

‖ei ◦ (tk0
a)− tk0

a‖ <
ε

M + 2
.

Thus if i ≥ i0, then

‖ei ◦ (ta)− ta‖ ≤‖ ei ◦ (ta)− ei ◦ (tk0
a)‖+ ‖ei ◦ (tk0

a)− tk0
a‖+ ‖tk0

a− ta‖

≤M‖ta− tk0
a‖+ ‖ei ◦ (tk0

a)− tk0
a‖+ ‖tk0

a− ta‖

< M
ε

M + 2
+

ε

M + 2
+

ε

M + 2
= ε.

Therefore, the claim is true.
Now we prove the theorem.
Let {tλ}λ∈Λ ⊆ U⊗̂U be a symmetric approximate diagonal for U. For an arbi-

trary ε > 0 and finite set F ⊆ J , we choose λ ∈ Λ such that

‖atλ − tλa‖M
2 <

ε

2
and

‖π(tλ)a− a‖M <
ε

3
for each a ∈ F . Then, according to the proven claim and that {ei}i∈I is an approx-
imate identity for J , we choose i ∈ I so that

‖aei − eia‖M‖tλ‖ <
ε

2
;

‖eia− a‖M‖tλ‖ <
ε

3
and

‖ei ◦ (tλa)− tλa‖ <
ε

3
for a ∈ F . We put

mλi = (tλ ◦ ei)ei,

where λ ∈ Λ, i ∈ I. We have the following relations

amλi −mλia = [(atλ − tλa) ◦ ei]ei + (tλ ◦ ei)(aei − eia)

and
π(mλi)a = π(ei ◦ tλ)(eia− a) + π(ei ◦ (tλa))

for a ∈ J . So, for λ ∈ Λ and i ∈ I chosen before, we have

‖amλi −mλia‖ ≤ ‖[(atλ − tλa) ◦ ei]ei‖+ ‖(tλ ◦ ei)(aei − eia)‖

≤M2‖atλ − tλa‖+M‖tλ‖‖aei − eia‖

<
ε

2
+
ε

2
= ε

and

‖π(mλi)a− a‖ = ‖π(ei ◦ tλ)(eia− a) + π(ei ◦ (tλa))− a‖

≤ ‖π(ei ◦ tλ)(eia− a)‖+ ‖π(ei ◦ (tλa))− π(tλa)‖+ ‖π(tλa)− a‖

≤ ‖ei ◦ tλ‖‖eia− a‖+ ‖ei ◦ (tλa)− tλa‖+ ‖π(tλ)a− a‖

≤M‖tλ‖‖eia− a‖+ ‖ei ◦ (tλa)− tλa‖+ ‖π(tλ)a− a‖

<
ε

3
+
ε

3
+
ε

3
= ε
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for each a ∈ F . It is also checked routinely for each (λ, i) ∈ Λ× I that m◦
λi = mλi.

Thus choosing an appropriate subnet of {mλi}Λ×I ⊂ J⊗̂J , we get a symmetric
approximate diagonal for J . So J is symmetrically pseudo-amenable. �

We have the following result from the above theorem.

Corollary 3.10. Let U be a symmetrically pseudo-amenable Banach algebra and

let J be a two-sided closed ideal of U. If J has a bounded approximate identity, then

J is symmetrically pseudo-amenable.

Proposition 3.11. Let U be a Banach algebra with a system of closed subalgebras

{Uγ : γ ∈ Γ} such that

(i) (
⋃

γ∈Γ Uγ) = U;

(ii) if γ1, γ2 ∈ Γ then there is γ ∈ Γ with Uγ1
∪ Uγ2

⊆ Uγ;

(iii) for each γ ∈ Γ, Uγ is a symmetrically pseudo-amenable Banach algebra.

Then U is symmetrically pseudo-amenable.

Proof. For an arbitrary ε > 0 and finite set F ⊆
⋃

γ∈Γ Uγ , by (ii) we choose γ ∈ Γ
with F ⊆ Uγ . Since Uγ is symmetrically pseudo-amenable, there is a symmetric
element tF,ε ∈ Uγ ⊗ Uγ ⊆ U⊗ U such that

‖atF,ε − tF,εa‖ < ε

and

‖π(tF,ε)a− a‖ < ε

for each a ∈ F . So the result follows from (i). �

4. Some classes of symmetrically pseudo-amenable Banach algebras

In the previous section we saw some classes of symmetrically pseudo-amenable
Banach algebras, especially that every commutative pseudo-amenable Banach al-
gebra is symmetrically pseudo-amenable. In this section, we introduce some other
classes of symmetrically pseudo-amenable Banach algebras.

First, we study a class of Banach algebras that belongs to the class of ℓ1-Munn
algebras. Let N be the set of natural numbers. We denote by MN(C), the set of
N× N matrices (aij) with entries in C such that

‖(aij)‖ =
∑

i,j∈N

|aij | <∞.

ThenMN(C) with the usual matrix multiplication is a Banach algebra that belongs
to the class of ℓ1-Munn algebras. We write Eij for the matrix units and aEij for
the matrix with the a at the (i, j)-entry and 0 in all other entries.

Theorem 4.1. The Banach algebra MN(C) is symmetrically pseudo-amenable.

Proof. For n ∈ N denote the finite set {1, 2, . . . n} by Nn, and define

tn =
1

n

∑

i,j∈Nn

Eij ⊗ Eji ∈MN(C)⊗̂MN(C).

We will show that {tn}n∈N is a symmetric approximate diagonal for MN(C). Let
A = (aij) ∈MN(C). According to the definition of MN(C), for each ε > 0, there is
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an n0 ∈ N such that for all n ≥ n0 we have
∑

i,j /∈Nn
|aij | < ε. For n ∈ N we have

π(tn) =
1

n

∑

i∈Nn

nEii = In,

where In :=
∑n

i=1Eii. So for n ≥ n0

‖π(tn)A−A‖ = ‖InA−A‖ ≤
∑

i,j /∈Nn

|aij | < ε.

Consequentially, π(tn)A −→ A for each A ∈MN(C). For n ∈ N define the matrices
Ar, 1 ≤ r ≤ 4 as follows

A1 = (xij), where xij = aij for 1 ≤ i, j ≤ n; xij = 0 for i > n or j > n;

A2 = (xij), where xij = aij for 1 ≤ i ≤ n and j > n; xij = 0 for i > n or 1 ≤ j ≤ n;

A3 = (xij), where xij = aij for i > n and 1 ≤ j ≤ n; xij = 0 for 1 ≤ i ≤ n or j > n;

and

A4 = (xij), where xij = aij for i > n and j > n; xij = 0 for 1 ≤ i ≤ n or 1 ≤ j ≤ n.

It can be seen by routine calculations that

A1tn = tnA1 =
1

n

∑

k,l,j∈Nn

aklEkj ⊗ Ejl;

A2tn = 0 and tnA2 =
1

n

∑

1≤j,k≤n<l

aklEkj ⊗ Ejl;

tnA3 = 0 and A3tn =
1

n

∑

1≤j,l≤n<k

aklEkj ⊗ Ejl;

A4tn = tnA4 = 0.

So for n ≥ n0

‖Atn − tnA‖ = ‖A3tn − tnA2‖ ≤
∑

1≤l≤n<k

|aij |+
∑

1≤k≤n<l

|aij | ≤
∑

i,j /∈Nn

|aij | < ε.

Hence Atn − tnA −→ 0. Also, for each n ∈ N, it is clear that t◦n = tn. Therefore,
MN(C) is symmetrically pseudo-amenable. �

In the following, we will discuss some algebras over locally compact groups.

Theorem 4.2. Let G be a locally compact group. The group algebra L1(G) is

symmetrically pseudo-amenable if and only if G is an amenable group.

Proof. Suppose that L1(G) is symmetrically pseudo-amenable. So L1(G) is pseudo-
amenable, and hence from [7, Proposition 4.1] it follows that G is an amenable
group. Conversely, if G is amenable, by [15, Theorem 4.1] we have L1(G) is sym-
metrically pseudo-amenable. �

For any compact groupG, L2(G) is non-amenable, except in the finite-dimensional
cases. In the next theorem, we see that L2(G) is symmetrically pseudo-amenable.

Theorem 4.3. For any compact group G, the Banach algebra L2(G) is symmetri-

cally pseudo-amenable.
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Proof. By [21, § 32. Theorem 1], the group algebra L2(G) (G compact) is the ℓ2-
direct sum of its minimal two-sided ideals Iα, each of which is completely isomorphic
to an algebra Mn(C) (n ∈ N, and a matrix for each ideal). We know that each
Mn(C) is symmetrically amenable (see Example 3.7). Hence from Proposition 3.6
it follows that L2(G) is symmetrically pseudo-amenable. �

We note that according to [15, Proposition 2.7] every strongly amenable C∗-
algebra is symmetrically amenable and therefore is symmetrically pseudo-amenable.

5. Jordan derivations of symmetrically pseudo-amenable Banach

algebras

Let U be a Banach algebra. In the following, U♯ means the unitization of U with
the ℓ1-norm, which we consider in any case, whether U is unital or not. The Banach
algebra U♯ is unital with unity e where ‖e‖ = 1. Let X be a Banach U-bimodule
and we turn X into a Banach U♯-bimodule by defining 1x = x1 = x for each x ∈ X ,
and hence ex = xe = x for each x ∈ X . Let x ∈ X . The mapping (a, b) 7→ axb
from U♯ × U♯ into X is bilinear and ‖axb‖ ≤MX‖a‖‖x‖‖b‖ for all a, b ∈ U♯, where
MX = sup{‖ay‖, ‖ya‖ : a ∈ U, y ∈ X, ‖a‖ = ‖y‖ = 1}. Thus we can define a
continuous linear operator ψx : U♯ ⊗ U♯ → X by ψx(a ⊗ b) = axb for all a, b ∈ U♯.
It is clear that ‖ψx‖ ≤MX‖x‖. Let T : U → X be a bounded linear map, and and
we extend T to U

♯ by putting T (1) = 0. So T (e) = 0. Then ΦT : U♯ ⊗ U
♯ → X is

the bounded linear mapping specified by ΦT (a⊗ b) = aT (b) with ‖ΦT ‖ ≤ ‖T ‖
Now we are ready to state the main results of this section. In the following

theorems, it is assumed that ψx and ΦT are defined as above.

Theorem 5.1. Let U be a Banach algebra such that U♯ is symmetrically pseudo-

amenable with the a symmetric approximate diagonal {tλ}λ∈Λ. Suppose X is a

Banach U-bimodule such that

(i) for each x ∈ X the net {ψx(tλ)}λ∈Λ is bounded, and

(ii) for each bounded Jordan derivation D : U → X the net {ΦD(tλ)}λ∈Λ is

bounded.

Then every bounded Jordan derivation from U to X is a derivation.

Proof. Suppose that D : U → X is a bounded Jordan derivation. We extend D to
U♯ by putting D(1) = 0. So D(e) = 0, where e is the unity of U♯. Then

ΦD(atλ−tλa) = aΦD(tλ)+ΦD(a◦tλ)−π(tλ)D(a)−ΦD(tλ)a−ΦD(tλ◦a)−ψD(a)(tλ),

for each a ∈ U♯. Let xλ := ΦD(tλ). So

π(tλ)D(a) = (axλ − xλa)− ΦD(atλ − tλa) + ΦD(a ◦ tλ − tλ ◦ a)− ψD(a)(tλ),

for each a ∈ U♯. We have π(tλ) −→ e and since X is unital over U♯, π(tλ)D(a) −→
D(a) for a ∈ U

♯. On the other hand

‖ΦD(atλ − tλa)‖ ≤ ‖D‖‖atλ − tλa‖ −→ 0

and

‖ΦD(a ◦ tλ − tλ ◦ a)‖ ≤ ‖D‖‖a ◦ tλ − tλ ◦ a‖ −→ 0

for a ∈ U♯. Therefore,

(5.1) D(a) = lim
λ
((axλ − xλa)− ψD(a)(tλ))
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for a ∈ U♯. Now, viewing X as a closed U♯-subbimodule of X∗∗, and hence D is
a bounded Jordan derivation from U♯ to X∗∗. Since {xλ}λ∈Λ is bounded, define
Ω ∈ X∗∗ as follows:

〈Ω, f〉 = Limλ〈xλ, f〉,

where f ∈ X∗ and Limλ is a generalized limit on Λ. Also, by our assumption,
define the bounded linear map ∆ : U♯ → X∗∗ by

〈∆(a), f〉 = Limλ〈ψD(a)(tλ), f〉,

where a ∈ U♯ and f ∈ X∗. It follows from (5.1) that

〈D(a), f〉 = Limλ〈axλ − xλa, f〉 − Limλ〈ψD(a)(tλ), f〉

= 〈aΩ− Ωa, f〉 − 〈∆(a), f〉

for any a ∈ U♯ and f ∈ X∗. So

D(a) = aΩ− Ωa−∆(a)

for each a ∈ U♯, and hence ∆ is a bounded Jordan derivation. For each a, b ∈ U♯

we have

〈a∆(b), f〉 = Limλ〈ψD(b)(tλ), fa〉

= Limλ〈aψD(b)(tλ), f〉

= Limλ〈ψD(b)(atλ), f〉

= Limλ〈ψD(b)(tλa), f〉

= Limλ〈ψD(b)(tλ)a, f〉

= 〈∆(b)a, f〉

for all f ∈ X∗, because atλ−tλa −→ 0 and the nets {ψD(b)(atλ)}λ∈Λ, {ψD(b)(tλa)}λ∈Λ

are bounded. Thus

(5.2) a∆(b) = ∆(b)a

for each a, b ∈ U♯. Now we do the same process for ∆ as we did earlier for D and
therefore

∆(a) = aΩ1 − Ω1a−∆1(a)

for a ∈ U♯, where Ω1 ∈ X∗∗ and ∆1 is a bounded linear map from U to X∗∗ defined
by

〈∆1(a), f〉 = Limλ〈ψ∆(a)(tλ), f〉

for a ∈ U♯ and f ∈ X∗ (By condition (ii) of our assumption ∆1 is well-defined). It
follows from (5.2) that

ψ∆(a)(t) = π(t)∆(a)

for each a ∈ U♯ and t ∈ U♯ ⊗U♯. So ψ∆(a)(tλ) −→ ∆(a). Consequentially, ∆1(a) =

∆(a) for all a ∈ U♯ and

∆(a) = a(
1

2
Ω1)− (

1

2
Ω1)a

for a ∈ U
♯. According to this identity and D(a) = aΩ− Ωa−∆(a) we have

D(a) = a(Ω−
1

2
Ω1)− (Ω−

1

2
Ω1)a

for a ∈ U
♯, and hence D is a derivation. �
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We note that if U is a commutative approximately amenable Banach algebra,
then by [7, Theorem 3.1-(iv)] and Corollary 3.3, U♯ is symmetrically pseudo-amenable.
Examples of this kind of Banach algebras are given in [8].

We have the following result that is proved in [15, Theorem 6.2]. Therefore, it
can be said that Theorem 5.1 is a generalization of [15, Theorem 6.2].

Corollary 5.2. Let U be a symmetrically amenable Banach algebra and X be a Ba-

nach U-bimodule. Then every bounded Jordan derivation from U to X is a deriva-

tion.

Proof. By [15, Theorem 3.1], U♯ is symmetrically amenable, and so it has a bounded
symmetric approximate diagonal {tλ}λ∈Λ. Since ψx : U♯ ⊗ U♯ → X for each x ∈ X
and ΦT : U♯ ⊗ U

♯ → X for each bounded linear map T : U♯ → X are bounded
mappings, it follows from boundness of {tλ}λ∈Λ that the conditions (i) and (ii) of
Theorem 5.1 are satisfied. Therefore, the desired result is proved. �

In the following theorem, we consider a special type of Jordan derivations.

Theorem 5.3. Let U be a Banach algebra such that U♯ is symmetrically pseudo-

amenable and X is a Banach U-bimodule. Then every bounded central Jordan

derivation from U to X is a derivation.

Proof. Suppose that D : U → X is a bounded central Jordan derivation and
{tλ}λ∈Λ is a symmetric approximate diagonal for U♯. We extend D to U♯ by putting
D(1) = 0. With the same process of proving Theorem 5.1, it is proved that

D(a) = lim
λ
((axλ − xλa)− ψD(a)(tλ))

for a ∈ U♯. Since D is central, it follows that

ψD(a)(t) = π(t)D(a)

for each a ∈ U♯ and t ∈ U♯ ⊗ U♯. Thus ψD(a)(tλ) −→ D(a) and

D(a) =
1

2
lim
λ
(axλ − xλa)

for a ∈ U
♯. �

Let U be a Banach algebra. The Banach U-bimodule X is called symmetric if
ax = xa, for all a ∈ U and x ∈ X . According to Theorem 5.3, we have the following
result which checks the bounded Jordan derivations into a certain class of Banach
bimodules.

Corollary 5.4. If U is a Banach algebra such that U♯ is symmetrically pseudo-

amenable, then every bounded Jordan derivation from U to a symmetric Banach

U-bimodule X is a derivation.

6. Lie derivations of symmetrically pseudo-amenable Banach

algebras

In this section, we consider U♯ as in the previous section and convert a U-bimodule
to a U♯-bimodule. Also, ΦT is defined as in the previous section. The following
lemma is about central derivations.
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Lemma 6.1. Let U be a Banach algebra such that U♯ is symmetrically pseudo-

amenable and X be a Banach U-bimodule. Then every bounded central derivation

from U to X is a derivation.

Proof. Let δ : U → X be a bounded central derivation and {tλ}λ∈Λ be a symmetric
approximate diagonal for U♯. We extend δ to U♯ by putting δ(1) = 0. From the
fact that δ is central, for each a, b, c ∈ U♯ we have

Φδ(ab⊗ c)− Φδ(b ⊗ ca) = abδ(c)− bδ(ca)

= abδ(c)− δ(ca)b

= abδ(c)− cδ(a)b− δ(c)ab

= cbδ(a).

So

Φδ(atλ − tλa) = π(t◦λ)δ(a)

for all a ∈ U♯. Since t◦λ = tλ (λ ∈ Λ), atλ − tλa −→ 0 and π(tλ)δ(a) −→ δ(a), it
follows that δ = 0. �

The restriction of a central derivation to a subalgebra is central so we can extend
Lemma 6.1 to the following.

Corollary 6.2. Let U be the smallest closed subalgebra which contains all the closed

subalgebras V of U such that V♯ is symmetrically pseudo-amenable. Then every

bounded central derivation with domain U is 0.

Lemma 6.3. Let U be a Banach algebra such that U♯ is symmetrically pseudo-

amenable. Suppose that Y is a Banach U-bimodule and X is a closed U-subbimodule

of Y . If δ : U → Y is a bounded derivation and τ : U → ZU(Y ) is a linear map

such that (δ + τ)(U) ⊆ X, then δ(U) ⊆ X and τ(U) ⊆ ZU(X).

Proof. Let πX : Y → Y/X be the quotient map where W = Y/X is the quotient
Banach U-bimodule. We have

0 = πX ◦ (δ + τ) = πX ◦ δ + πX ◦ τ.

Hence

πX ◦ δ = −πX ◦ τ.

Since πX maps ZU(Y ) into ZU(W ) and τ(U) ⊆ ZU(Y ), it follows that

πX ◦ δ(U) = −πX ◦ τ(U) ⊆ ZU(W ).

So by the fact that πX is a bounded module homomorphism, πX ◦ δ is a bounded
central derivation from U into W . According to Lemma 6.1, πX ◦ δ = 0, and
hence δ(U) ⊆ X . Now from assumption and the obtained result, we have τ(U) ⊆
X ∩ ZU(Y ) = ZU(X). �

In the following theorem we state the main result of this section.

Theorem 6.4. Let U be a Banach algebra such that U♯ is symmetrically pseudo-

amenable with the a symmetric approximate diagonal {tλ}λ∈Λ. Suppose X is a

Banach U-bimodule such that for each x ∈ X the net {ψx(tλ)}λ∈Λ is bounded, and

D : U → X is a bounded Lie derivation such that the net {ΦD(tλ)}λ∈Λ is bounded.

Then there exist a bounded derivation d : U → X and a bounded central trace

τ : U → ZU(X) such that D = d+ τ .



16 HOGER GHAHRAMANI AND PARVIN ZAMANI

Proof. Assume that D : U → X is a bounded Lie derivation. We extend D to U♯

by putting D(1) = 0. Then

ΦD(atλ−tλa) = aΦD(tλ)−ΦD(a◦tλ)+ψD(a)(tλ)−π(tλ)D(a)+ΦD(tλ◦a)−ΦD(tλ)a

for each a ∈ U♯. Let xλ := ΦD(tλ). Since atλ − tλa −→ 0, a ◦ tλ − tλ ◦ a −→ 0 and
π(tλ)D(a) −→ D(a), it follows that

(6.1) D(a) = lim
λ
((axλ − xλa) + ψD(a)(tλ))

for a ∈ U♯. Now, viewing X as a closed U♯-subbimodule of X∗∗, and hence D is a
bounded Lie derivation from U♯ to X∗∗. In view of our assumptions, define Ω ∈ X∗∗

and the bounded linear map τ : U♯ → X∗∗ by

〈Ω, f〉 = Limλ〈xλ, f〉

and

〈τ(a), f〉 = Limλ〈ψD(a)(tλ), f〉,

where a ∈ U♯, f ∈ X∗ and Limλ is a generalized limit on Λ. It follows from (6.1)
that

〈D(a), f〉 = 〈aΩ− Ωa, f〉+ 〈τ(a), f〉

for any a ∈ U
♯ and f ∈ X∗. Consequentially,

D(a) = aΩ− Ωa+ τ(a)

for each a ∈ U♯. The linear map d : U♯ → X∗∗ defined by d(a) = aΩ − Ωa is a
continuous derivation, and therefore D = d + τ . Also, with a proof similar to the
proof of centrality of ∆ in the proof of Theorem 5.1, we have τ(a) ∈ ZU♯(X∗∗) ⊆
ZU(X

∗∗). So τ = D − d is a bounded Lie derivation, and from the fact that
τ(U) ⊆ ZU♯(X∗∗), it follows that τ([a, b]) = 0 for every a, b ∈ U♯. The conditions of
Lemma 6.3 hold for d and τ on U, hence d maps U toX and τ maps U to ZU(X). �

The following result is immediate.

Corollary 6.5. Let U be a Banach algebra such that U♯ is symmetrically pseudo-

amenable with the a symmetric approximate diagonal {tλ}λ∈Λ. Suppose X is a

Banach U-bimodule such that

(i) for each x ∈ X the net {ψx(tλ)}λ∈Λ is bounded, and

(ii) for each bounded Lie derivation D : U → X the net {ΦD(tλ)}λ∈Λ is

bounded.

Then for every bounded Lie derivation D : U → X there exist a bounded derivation

d : U → X and a bounded central trace τ : U → ZU(X) such that D = d+ τ .

Similar to the proof of Corollary 5.2, the following result is obtained, which
is proved in [15, Theorem 9.2]. Therefore, it can be said that Theorem 6.4 (and
Corollary 6.5) is a generalization of [15, Theorem 9.2].

Corollary 6.6. Let U be a symmetrically amenable Banach algebra and X be a

Banach U-bimodule. Then for every bounded Lie derivation D : U → X there exist

a bounded derivation d : U → X and a bounded central trace τ : U → ZU(X) such

that D = d+ τ .
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