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SYMMETRICALLY PSEUDO-AMENABLE BANACH ALGEBRAS

HOGER GHAHRAMANI AND PARVIN ZAMANI

ABSTRACT. We introduce and study a new notion of amenability called sym-
metric pseudo-amenability. We obtain some properties of symmetrically pseudo-
amenable Banach algebras and with examples, we compare this type of amenabil-
ity with some other types of amenability. We also provide some special classes
of symmetrically pseudo-amenable Banach algebras. Finally, Jordan deriva-
tions and Lie derivations from a class of Banach algebras into appropriate
Banach bimodules are investigated using the notion of symmetric pseudo-
amenability.

1. INTRODUCTION

B. E. Johnson studied cohomology of Banach algebras in [13] and defined the
concept of amenable Banach algebra which was based on the amenability of locally
compact groups and proved in [I4] that a Banach algebra $l is amenable if and
only if &l has a bounded approximate diagonal. In the following, many studies
were conducted on amenability of Banach algebras, and various other types of
amenability have been introduced and studied, see [5] [6] [T6] 23] for a comprehensive
survey of results of this type. In [I5], Johnson introduced symmetric amenable
Banach algebras as a special class of amenable Banach algebras. He called a Banach
algebra i is symmetrically amenable if it has a bounded approximate diagonal
consisting of symmetric tensors, and then applied this concept to the study of
Jordan derivations and Lie derivations. The study of Jordan derivations and Lie
derivations also has a long history. The common problem regarding these mappings
is when Jordan or Lie derivations can be characterized in terms of derivations?
Many studies have been carried out in line with the this problem raised, and here
we only refer to Johnson’s results. Johnson showed in [I5] Theorem 6.2] that any
continuous Jordan derivation from a symmetrically amenable Banach algebra 4l into
a Banach 4-bimodule is a derivation. As a consequence he obtained the same result
for continuous Jordan derivations on arbitrary C*-algebras, although not every C*-
algebra is symmetrically amenable. Also, in [I5] Theorem 9.2] Johnson showed that
any continuous Lie derivation from a symmetrically amenable Banach algebra 4l into
a Banach $l-bimodule decomposed into the sum of a continuous derivation and a
continuous center-valued trace, and as a consequence he obtained the same result for
continuous Lie derivations on arbitrary C*-algebras. To see the historical course and

other results in this study path, we refer to [1}, 2} [3 4 @} [0, 1T} [I7, 18, 19} 20, 22| 24]

and the references therein.
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As a generalization of amenability, F. Ghahramani and Y. Zhang in [7] intro-
duced and studied the notion of pseudo-amenability, which is based on existence
of an approximate diagonal for Banach algebras. Precisely, a Banach algebra il
is called pseudo-amenable if it has an approximate diagonal which is not neces-
sarily bounded. According to this definition and with the idea of the definition
of symmetric amenability, in the continuation of studies related to amenability, in
this article we introduce the concept of symmetric pseudo-amenability. We say Ba-
nach algebra il is symmetrically pseudo-amenable if it has an approximate diagonal
consisting of symmetric tensors which is not necessarily bounded. This concept
is a generalization of symmetrically amenable Banach algebras, which is a special
class of pseudo-amenable Banach algebras. In this article, we study symmetrically
pseudo-amenable Banach algebras and identify some of their properties and com-
pare this type of amenability with some other types of amenability with examples,
and we also present some special classes of Banach algebras that are symmetri-
cally pseudo-amenable. According to [15, Theorem 6.2] and [I5] Theorem 9.2], the
question arises whether it is possible to obtain Johnson’s results for Jordan deriva-
tions and Lie derivations of other suitable Banach algebras into suitable Banach
modules? We give answers to this question using the concept of symmetric pseudo-
amenability and obtain generalizations of [15, Theorem 6.2] and [15, Theorem 9.2].

This article is organized as follows. In section 2, definitions, notions and required
tools are introduced. Section 3 is devoted to the study of properties of symmetrically
pseudo-amenable Banach algebras and examples. In section 4, we present some
special classes of symmetrically pseudo-amenable Banach algebras. In sections 5
and 6, respectively, Jordan and Lie derivations from a class of Banach algebras into
appropriate Banach bimodules are investigated using the concept of symmetric
pseudo-amenability.

2. PRELIMINARIES

In this section we fix the notation, and give some basic definitions and points
which will be used in the next sections. Let 4 be an algebra and X be a {-bimodule.
Note that Zg(X) represents the center of X, which is defined as

Zy(X) ={xr € X |ax = za for all a € U}.
A mapping f : 4 — X is central if f(H) C Zy(X).
Recall that a linear mapping 6 : &l — X is called a derivation if
d(ab) = 6(a)b+ ad(b);
a Jordan derivation if
d(ab+ ba) = 6(a)b + ad(b) + d(b)a + bd(a);
and a Lie derivation if
d(ab—ba) = 6(a)b+ ad(b) — §(b)a — bd(a),

for all a,b € 4. A linear mapping 7 : {f — X is a trace, if 7([a,b]) = 0 for all
a,b € 8, where [a,b] = ab — ba (Lie product). Note that a Lie derivation is central
if and only if it is a central trace.

Assume that 4l is a Banach algebra and X is a Banach i-bimodule. The space
of all bounded derivations from 4 into X is denoted by Z!(4, X). A derivation
d is called inner derivation, if there is x € X such that d(a) = axr — za for all
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a € $. Each inner derivation is bounded and N!(4, X) is the space of all inner
derivations from # into X. The first cohomology group of { with coefficient in X
is the quotient space H'(U, X) = Z1(8, X)/N1 (8, X). We observe that X* is a
Banach $-bimodule with the following module operations

(af,a:):(f,a:a>, <fa,a:>:<f,aa:>

fora e, x € X and f € X*. We call X* the dual bimodule of X. Recall that
a Banach algebra i1 is said to be amenable if for every Banach i-bimodule X, we
have H! (8, X*) = {0}. The notion of an amenable Banach algebra was introduced
by Johnson in 1972 [I3]. A net {ty}aea in the projective tensor product UL is
called approximate diagonal if satisfies the following two conditions

(1) aty —tya — 0;

(2) 7(ty)a — a
for all a € 4, where the operations on 4@ are defined through

ab®@c)=ab®c, (b®c)la=b®ca

for all a,b,c € 4. Here and in the sequel 7 always denotes the product morphism
from UL into U, specified by 7m(a @ b) = ab for all a,b € &L In [14] (see also [3]
2.9.65]), it is proved that a Banach algebra &l is amenable if and only if i has a
bounded approximate diagonal. The flip map on Ul is defined by

(a®@b)°=b®a

for a,b € L and an element t € U4 is called symmetric if t° = t. Johnson in [T5] is
introduced symmetric amenability of Banach algebras. He called a Banach algebra
#l is symmetrically amenable if it has a bounded approximate diagonal consisting
of symmetric tensors. The opposite algebra $1° is the Banach space 4 with product
aob = ba. An approximate diagonal in ULl for I° is a net {ty}rca in UL if it
meets the following two conditions

(1)° aoty—tyoa— 0;

(2)° am®(ty) —a —0
for all a € 4, where

ao(b®c)=b®ac, (bRc)oa=ba®c and 7°(b®c)=cd

for all a,b,c € . There are a number of obvious relationships between these
operations, for example a o t° = (at)° (a € U, t € UBY). The Banach algebra i
is symmetrically amenable if and only if there is a bounded net {ty} s in URYU
such that satisfies (1), (2), (1)° and (2)° ([I5 Proposition 2.2]). The properties and
examples of symmetrically amenable Banach algebras can be found in [T5].

In [6], the authors have introduced and studied a generalization of amenability
called approximate amenability, which is based on a property of derivations from
the algebra. Precisely, a Banach algebra i is approximately amenable if, for every
Banach -bimodule X, every bounded derivation d from 4 into the dual bimodule
X* is approximately inner, which means that there is a net {z)}rea € X* such
that d(a) = limy(azy — xxa) for all a € 4. In [7] pseudo-amenability is presented
as another generalization of amenability, which is based on approximate diagonals.
Precisely, a Banach algebra il is pseudo-amenable if it has an approximate diagonal
which is not necessarily bounded. In [7, Theorem 3.1] it is proved that a Banach
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algebra {1 is approximately amenable if and only if the unitization U* of 4 is pseudo-
amenable (also, see [8]). The properties and examples of these kinds of amenabilities
can be found in [6], [7] [§].

3. BASIC PROPERTIES AND COMPARISONS

In this section, we present definition and some basic properties of symmetric
pseudo-amenability, and with examples, we compare this type of amenability with
some other types. Throughout this section, 4 is a Banach algebra.

Definition 3.1. The Banach algebra i is symmetrically pseudo-amenable if it has
an approximate diagonal consisting of symmetric elements.

In view of this definition, it is clear that a symmetrically amenable Banach
algebras is symmetrically pseudo-amenable and a symmetrically pseudo-amenable
Banach algebra is pseudo-amenable. In the next proposition, a condition equivalent
to the symmetric pseudo-amenablity is presented, the proof of which is similar to
[15] Proposition 2.2], and its proof is omitted.

Proposition 3.2. i is symmetrically pseudo-amenable if and only if there exists
a net {tx}ren in URLU which satisfies
(1) aty — tha — O,’
(ii) 7(tr)a — a;
(i) aoty —tyoa — 0;
(iv) arm®(t\) — a.
for all a € AL.

It should be noted that if t satisfies in conditions (i) to (iv) of the Proposition
B2 then for each a € 4, an(ty) — @ can be concluded from (i) and (ii), and
m°(tx)a — a can be concluded from (iii) and (iv).

We know that in order to show that the Banach algebra il is pseudo-amenable,
it is sufficient to show that for each finite subset F' of 4 and each ¢ > 0 there
is an element t of UBY with ||at — ta| < € and ||7(t)a — a| < ¢ for all a € F.
Now according to the definition of symmetric pseudo-amenability to show that il is
symmetrically pseudo-amenable, it is sufficient to show that for each finite subset F'
of {f and each £ > 0 there is a symmetric element t of 4®Y such that |at — ta| < e
and ||7(t)a —a|| < € for all @ € F. Also, according to Proposition B2 in order to
prove that il is symmetrically pseudo-amenable, it is sufficient to show that for each
finite subset F of &l and each ¢ > 0 there is an element t of U with ||at —ta|| < ¢,
laot —toal <e, ||7(t)a —a| < e and ||jan®(t) —al| < e for all a € F.

As an application of Proposition [3:2] we have the following result.

Corollary 3.3. If U is a commutative pseudo-amenable Banach algebra, then L is
symmetrically pseudo-amenable.

Proof. For commutative Banach algebras, in Proposition B2 conditions (i) and
(iil), and conditions (ii) and (iv) are the same. O

In the previous corollary, we saw that pseudo-amenability is equivalent to sym-
metric pseudo-amenability on commutative Banach algebras. By using the next
proposition, we can obtain an example of Banach algebras that are pseudo-amenable,
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but not symmetrically pseudo-amenable, and therefore, these classes of Banach alge-
bras are different in general. The idea of the next result comes from [I5] Proposition
2.4].

Proposition 3.4. Let i be a symmetrically pseudo-amenable Banach algebra, and
z # 0 be an element of Z(). Then there is a net { fa}ren in U* such that fx(ab—
ba) — 0 for every a,b € Sk and fx(z) — 1. Especially, if 4 is unital, then for
z =1 there exists a net { fa}rea in U* such that f(ab—ba) — 0 for every a,b € 4
and fr(1) — 1.

Proof. Suppose that {t)}aca is a net in U@l that satisfies to conditions (i) to (iv)
of Proposition B2l and g € i* is such that g(z) = 1. For each A € A define

fala) = g(7°(aty)) (o € L0).
Each fy is a bounded linear functional on 4. For every A € A and a,b € 4 we have
w°(abty) = w°(btya), and hence

fa(ab —ba)

g(m°(abty — baty))
g(m°(btra — baty))
g(m°(b(tra —aty))) — 0
for each a,b € 8. Also, since z € Z(4), we have

7w (zty) = 7°(troz) = w°(ty)z — 2
Now, it follows from g € 4* that
iz) —g(z)=1.
O

In the next example, we present a Banach algebra, which is pseudo-amenable
but not symmetrically pseudo-amenable.

Ezxample 3.5. Let O, be the Cuntz algebra, which is a unital amenable C*-algebra,
and hence it is pseudo-amenable. There are members T7,...T, in O, such that
TyT; =1 and Y. T;T;7 = 1. Suppose that O,, for n > 1 is symmetrically pseudo-
amenable. According to Proposition B4l there exists a net {fy}rea of bounded
linear functionals on O,, such that
A(AB - BA) — 0
for each A, B € O,, and
f)\ (I) — 1.
Therefore . .
1= lim fx(I) = lim fm; T,T}) = lgn; AT
On the other hand

hin;mm ) — hin;fA(Ti T;) = hin;fmTiTi ~T;T;) — 0
So limy iy [A(TFT;) = 1. but

ll/r\n;f,\(Ti T)) = ;11§an(1; T)) = ghpf,\(l) =n
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So n = 1, which contradicts n > 1. Therefore, O,, for n > 1 cannot be a symmet-
rically pseudo-amenable Banach algebra.

In fact, this example presents a Banach algebra that is amenable but not symmet-
rically pseudo-amenable. By using the next proposition, we can give an example of
a symmetrically pseudo-amenable Banach algebra that is not amenable. To express
this proposition, we first introduce some concepts.

Let {X; : i € I} be a collection of Banach spaces. Denote by [],.; X; the product
space of the collection. This is the space consisting of all mappings = : I — Ui6 1 X
for which z(i) € X;, the linear operations being given coordinatewise. For 1 < p <
0o, we recall that the ¢,-direct sum of the collection is

1

Dx. - {oeITx < ol = (Sletlr)? <o},

i€l el iel

and the cp-direct sum of the collection is

0

@Xi = {:v € HXi 2l oo = maz||z(i)]| < ocoand hfn:v(z) = O}.

il iel
For a collection {il; : ¢ € I'} of Banach algebras, the sum EBfeILli, p>=1lorp=0,
is also a Banach algebra with the multiplication being defined coordinatewise. If
J C I, then @Y. ;4; can be identified with the complemented closed ideal of
D’ i consisting of all x with (i) = 0 for ¢ ¢ J. We let Py denote the associated
projection from @Y., &l onto @Y. ;L. It should be noted that for ig € I, if
pio + iy — Pl Y is the natural embedding map, then p;, : Ui, Ly, —
( fe[ uz)@(@fg] ul) is given by p~i0 (220:1 a;co ® b;co) = Zzozl Pio (azo) X Piy (b;co)7
where 02 a) ® b € $h;,®4;, is a bounded linear embedding with ||| < 1.
Now we have the following proposition, the idea of proof of which is taken from [7,
Proposition 2.1].

Proposition 3.6. Suppose that for each i € I, i; is a symmetrically pseudo-
amenable Banach algebra. Then so is @felui forp>1orp=0.

Proof. Let 4 = @, 4. Given ¢ > 0 and a finite set F' C 4, we can choose a
finite set Jp. C I for which [|Pj. (a) — af < g for each a € F. Since each 4l;

is symmetrically pseudo-amenable, by Proposition B.2] for every i € Jp . there is

t; € 4,;®4; such that
g

[Pi(a)t; — tiPi(a)|| < =
| JF,E |

9
I (t:) Pi(a) — Pia)|| < STurs |

€
[ P;(a) ot; —t; 0 Pia)|| < 75—
| JF,E |
and

€

2 | JF,E |
for each a € F, where | Jp. |= cardJp and P; denotes the projection Py Now
we consider the embedding p; : LY — URY and choose the element t Fe in

[Pi(a)m®(t:) = Pi(a)]| <
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R as follows
tre = Z pi(t:).
i€EJp, e

For every a € U we have a = . _; P;(a), and hence, according to the definition of
tr. and p; we have

atpe = Z Pi(a)pi(ti) = Z pi(Pi(a)ts).
i€EJp, e i€Jpe
In the same way

trea= Yy pi(tiPi(a));

iEJF,s

aotpe = Z pi(P;i(a) ot;)

1€EJF,e

and

treoa= Y pi(to Pi(a).

i€EJp, e
Therefore, for each a € F we have
latre —treal = || > pi(Pi(a)t: — tiPi(a)]
i€Jpe
< > Ipi(Pila)t; — tiPi(a))|
i€Jp,e
< > (Pila)ti — tiPi(a)l| <&
i€Jp,e
and
[m(tre)a —al| = |7 (trea) — all
= > w(pi(t:iPia)) —a
’L'GJF,E
= Y #(ti)Pi(a) —al
’L'GJF,E
<|| Y wt)Pia) = D Pla)l+] D Pia)—al
’L'GJF,E iEJF,E iEJF,E
e €
< Y Ix(t:i)Pila) = Pila)|| + [Py (a) — al| < 3t5=¢
i€EJp, e

Similarly, we have
laotpe —tpeoal <e
and
lam®(tpe) —all < e

for each a € F. So from Proposition it follows that i is symmetrically pseudo-
amenable. (]

Now we are in a position to present the desired example.
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Ezample 3.7. For each n > 1, let M, (C) be the algebra of n x n matrices over the
complex field C. Every M, (C) is symmetrically amenable because

1 n
t=— Z E;; ® Ejq,
1,j=1
where the E;; are the usual matrix units, is a symmetric diagonal in M, (C) (see [5]
Proposition 1.9.20]). According to Proposition[3.6] @?LGN M, (C) is a symmetrically
pseudo-amenable C*-algebra that is not amenable.

We know that every symmetrically amenable Banach algebra is amenable and
symmetrically pseudo-amenable. According to this point and the above examples,
the following question arises:

Question. What is the relationship between the class of symmetrically amenable
Banach algebras and the class of amenable and symmetrically pseudo-amenable Ba-
nach algebras? Is the Banach algebra that is amenable and symmetrically pseudo-
amenable, is the symmetrically amenable Banach algebra?

We continue this section by studying some hereditary properties.

Proposition 3.8. Let 4 and B be two Banach algebras. 1If 3 is symmetrically
pseudo-amenable and there is a continuous epimorphism 0 from A onto B, then
B is symmetrically pseudo-amenable. In particular, the quotient algebra /I is
symmetrically pseudo-amenable for any two-sided closed ideal I of L.

Proof. Consider the continuous linear mapping 6 ® 0 : 4@ — B®B. For each
t € ULl and a € YU we have the followings

0@0(at) =0(a)d ®0(t) and 0@ 0(ta) =0® 0(t)a;
0@0(aot)=0(a)of®0(t) and O®6O(toa)=0x0(t)ob(a);
70 ®0(t)) =0(m(t)) and w°(0®0O(t)) = 0(7°(t)).
Considering these relationships and that 6 is epimorphism, it follows that #®6 maps

any symmetric approximate diagonal for { to a symmetric approximate diagonal
for B. O

Proposition 3.9. Let i be a symmetrically pseudo-amenable Banach algebra, and
let J be a two-sided closed ideal of k. If J has an approzimate identity {e;}icr
such that the associated left and right multiplication operators L; : a — e;a and
R; : a — ae; from U into J are uniformly bounded, then J is symmetrically pseudo-
amenable.

Proof. Under the condition on e;, there is a constant M > 1 such that |le;al <
M]la|| and |jae;|| < M||a|| for all e; and all a € £L. So ||e;t| < M|Jt]|, ||te;|| < M|,
e ot| < M|t|| and ||t o e < M|t]| for all e; and all t € URLL.

To prove the theorem, we first prove the following claim.
Claim. For each a € J and t € U we have

e; o (ta) — ta.
Reason. Suppose t = Z;’il a;®b; € URY. For each k € N, we put t, = E?Zl a; ®

b;. Since t;, — t, it follows that for a € J, tya — ta. So for € > 0, there exists
a ko such that

[tr,a — tal| <

13
M+2
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On the other hand, since {e;};cs is an approximate identity for J and ty, =

250:1 a; ®b;, we have e; o (ty,a) = 250:1 a; ®e;bja and therefore e; o (ty,a) — ty,a.

So there is an iy € I such that for every i > iy we have

€
le; o (troa) — tr all < Mo
Thus if 7 > i¢, then
l[ei o (ta) —tal| <|| €i o (ta) — e o (tr,a)ll + [lei o (trya) — troall + [[tr,a — tal|
< M[ta — tryall + le: o (tr,a) — tryall + [ltx,a — tal
€ € €
<M =
M +2 * M +2 * M +2
Therefore, the claim is true.
Now we prove the theorem.
Let {tx}rca C URL be a symmetric approximate diagonal for 4. For an arbi-
trary € > 0 and finite set F' C J, we choose A € A such that

llaty — tra| M? < %

€.

and
lr(tx)a —al|M <

Wl M

for each a € F. Then, according to the proven claim and that {e;};cs is an approx-
imate identity for J, we choose i € I so that

13

lae; — ezal MIjtx]| < 3

13

leia — al|M|[t,]| < 3
and

lles o (bxa) — taal| < %
for a € F. We put
my; = (tyoe;)ei,
where A € A,7 € I. We have the following relations
amy; —my;a = [(aty —tra) o e;le; + (tx o e;)(ae; — e;a)
and
m(my;)a = 7(e; oty)(e;a — a) + w(e; o (tra))
for a € J. So, for A € A and i € I chosen before, we have
[amy; —myiall < [[[(aty — taa) o ei]es]| 4 [[(tx o ei)(ae; — eia)|

< M?||aty — taal| + M||ty]|||lae; — esall

€, €
< 5 + 5 =€
and
[m(myi)a — al| = [|m(e; o ta)(eia — a) + w(ei o (taa)) — al|

< |lw(ei o ta)(eia —a)|| + [[w(ei o (tra)) — w(tra)|| + [[7(tra) — all
< les o talllleia — all + [les o (tra) — taall + [[w(tr)a — af
< Mltxlllleia — all + [lei o (bxa) — trall + [[7(tr)a — af

9

<E+E+ =€
3 3 3
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for each a € F. It is also checked routinely for each (A,7) € A x I that mg, = m,;.
Thus choosing an appropriate subnet of {my;}axs C J&J, we get a symmetric
approximate diagonal for J. So J is symmetrically pseudo-amenable. O

We have the following result from the above theorem.

Corollary 3.10. Let 8 be a symmetrically pseudo-amenable Banach algebra and
let J be a two-sided closed ideal of . If J has a bounded approzimate identity, then
J is symmetrically pseudo-amenable.

Proposition 3.11. Let 4 be a Banach algebra with a system of closed subalgebras
{8, : v €T} such that

(1) (Uyerthy) =4
(ii) if v1,72 € ' then there is v € I with 4L, UL, C & ;
(iii) for each v €T, Yy is a symmetrically pseudo-amenable Banach algebra.

Then L is symmetrically pseudo-amenable.
Proof. For an arbitrary € > 0 and finite set ' C U'yeF Ly, by (ii) we choose v € T’

with F© C &l,. Since Y, is symmetrically pseudo-amenable, there is a symmetric
element trp. € 4, ® U, C U® U such that

latpe — tpeal <e
and
lm(tre)a —al <e
for each a € F. So the result follows from (i). O

4. SOME CLASSES OF SYMMETRICALLY PSEUDO-AMENABLE BANACH ALGEBRAS

In the previous section we saw some classes of symmetrically pseudo-amenable
Banach algebras, especially that every commutative pseudo-amenable Banach al-
gebra is symmetrically pseudo-amenable. In this section, we introduce some other
classes of symmetrically pseudo-amenable Banach algebras.

First, we study a class of Banach algebras that belongs to the class of /!-Munn
algebras. Let N be the set of natural numbers. We denote by My(C), the set of
N x N matrices (a;;) with entries in C such that

(aij) |l =Y lai| < oc.
ijeN
Then My(C) with the usual matrix multiplication is a Banach algebra that belongs

to the class of £!-Munn algebras. We write E;; for the matrix units and af;; for
the matrix with the a at the (i, j)-entry and 0 in all other entries.

Theorem 4.1. The Banach algebra My(C) is symmetrically pseudo-amenable.
Proof. For n € N denote the finite set {1,2,...n} by N,,, and define
1 ~
t, = — E;; ® E;; € My(C)@My(C).
nw‘;w j @ Lyji € N( )® N( )

We will show that {t,},en is a symmetric approximate diagonal for My(C). Let
A = (aij) € My(C). According to the definition of My(C), for each € > 0, there is
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an ng € N such that for all n > ng we have Zi,jiNn |a;;| < e. For n € N we have

7(tn) = = Z nly = I,

€N,
where I, := Y | E;. So for n > ng
Iw(tn)A — A = I, A= A < Y ais] <e.
i,j¢Nn

Consequentially, 7(t,)A — A for each A € My(C). For n € N define the matrices
A,, 1 <r <4 as follows

Ay = (245), where z;; = a;; for 1 <i,5<mn; x;; =0fori>norj>n;
A = (z45), where z;; = a;5for1 <i<mnandj>n; z;; =0fori >norl <j<mn
As = (x;j), where z;; = a5 fori >nand 1 <j <n; z;; =0for1 <i<norj>mn;
and
Ay = (xij), where z;; = a5 fori >nand j >n; z;;, =0for1 <i<norl<j<n.
It can be seen by routine calculations that

1
At, =t, A = — Z ar By @ Ejp;
k,ljEN,

1
Ast, =0 d t,A; =— E Epi @ Ei;
2 an 2 ag ks @ By

1<j,k<n<l

1
£, Ay = _ 2 ® B
nAz =0 and Ast, - Z ap By @ Eji;
1<j.i<n<k
Aut, =t, A4 =0.

So for n > ny

[Aty, =t All = [ Asty —tn Aol < Y agl+ D lagl < Y ayl <e.

1<i<n<k 1<k<n<l i,7¢N,
Hence At,, —t, A — 0. Also, for each n € N, it is clear that t, = t,,. Therefore,
My(C) is symmetrically pseudo-amenable. O

In the following, we will discuss some algebras over locally compact groups.

Theorem 4.2. Let G be a locally compact group. The group algebra L'(G) is
symmetrically pseudo-amenable if and only if G is an amenable group.

Proof. Suppose that L'(G) is symmetrically pseudo-amenable. So L!(G) is pseudo-
amenable, and hence from [7, Proposition 4.1] it follows that G is an amenable
group. Conversely, if G is amenable, by [I5, Theorem 4.1] we have L'(G) is sym-
metrically pseudo-amenable. O

For any compact group G, L?(G) is non-amenable, except in the finite-dimensional
cases. In the next theorem, we see that L?(() is symmetrically pseudo-amenable.

Theorem 4.3. For any compact group G, the Banach algebra L*(G) is symmetri-
cally pseudo-amenable.
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Proof. By [21, § 32. Theorem 1], the group algebra L?(G) (G compact) is the fo-
direct sum of its minimal two-sided ideals I, each of which is completely isomorphic
to an algebra M, (C) (n € N, and a matrix for each ideal). We know that each
M,,(C) is symmetrically amenable (see Example [37). Hence from Proposition B.0]
it follows that L?(G) is symmetrically pseudo-amenable. O

We note that according to [I5, Proposition 2.7] every strongly amenable C*-
algebra is symmetrically amenable and therefore is symmetrically pseudo-amenable.

5. JORDAN DERIVATIONS OF SYMMETRICALLY PSEUDO-AMENABLE BANACH
ALGEBRAS

Let 4 be a Banach algebra. In the following, ${* means the unitization of {( with
the ¢'-norm, which we consider in any case, whether  is unital or not. The Banach
algebra 4* is unital with unity e where |le|| = 1. Let X be a Banach {-bimodule
and we turn X into a Banach ${*-bimodule by defining 12 = 21 = z for each z € X,
and hence ex = ze = x for each z € X. Let z € X. The mapping (a,b) — azb
from U* x ¥ into X is bilinear and |lazb|| < Mx||a||||z||||b] for all a,b € $4*, where
Mx = sup{|jay|, |lyall : a € Y,y € X,|la]| = ||ly|| = 1}. Thus we can define a
continuous linear operator ¢, : 4* @ U — X by ¢,(a @ b) = axb for all a,b € Y.
It is clear that ||1),| < Mx||z||. Let T : & — X be a bounded linear map, and and
we extend T to U* by putting T'(1) = 0. So T'(e) = 0. Then &7 : 4 @ U — X is
the bounded linear mapping specified by ®r(a ® b) = aT'(b) with || ®r| < ||T|]

Now we are ready to state the main results of this section. In the following
theorems, it is assumed that 1, and @7 are defined as above.

Theorem 5.1. Let i be a Banach algebra such that * is symmetrically pseudo-
amenable with the a symmetric approzimate diagonal {tx}ren. Suppose X is a
Banach {U-bimodule such that

(i) for each x € X the net {1z(tx)}ren is bounded, and
(i) for each bounded Jordan derivation D : 4 — X the net {®p(tr)}ren is
bounded.

Then every bounded Jordan derivation from U to X is a derivation.

Proof. Suppose that D : 4l — X is a bounded Jordan derivation. We extend D to
U* by putting D(1) = 0. So D(e) = 0, where e is the unity of {*. Then

(I)D(at)\—t)\a) = a‘IDD(t)\)—i-(I)D(aot)\)—w(t)\)D(a)—q)D(tA)a—fl)D(tAoa)—d)D(a)(tA),
for each a € U*. Let x5 := ®p(ta). So
W(tA)D(CL) = (CL:E)\ — an) — ‘I)D(at)\ — t)\CL) + (I)D(CL oty —tyo CL) — 1/}D(a)(t>\)v

for each a € U*. We have m(ty) — e and since X is unital over U*, 7(ty)D(a) —
D(a) for a € 4*. On the other hand

[®p(aty —tra)|| < [[D|[laty — tral| — 0O

and
||<I>D(aot)\ —t)o a)|| < ||D||||aot>\ —ty oa|| — 0
for a € U, Therefore,

(5.1) D(a) = hiﬂ((axx —xza) — Yp(a)(ta))
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for a € Y. Now, viewing X as a closed {f-subbimodule of X**, and hence D is
a bounded Jordan derivation from U* to X**. Since {x\}xea is bounded, define
Q€ X** as follows:

<Qv f> = Lim,\<x>\, f>7

where f € X* and Lim) is a generalized limit on A. Also, by our assumption,
define the bounded linear map A : {* — X** by

(A(a), f) = Limx(¥p(a)(ta), f),
where a € $* and f € X*. It follows from (I that
(D(a), f) = Limx(axx — xxa, f) — Limx(¥p(a)(tr), f)
= (aQ = Qa, f) — (A(a), f)
for any a € U¥ and f € X*. So
D(a) = a2 — Qa — A(a)

for each a € 4*, and hence A is a bounded Jordan derivation. For each a,b € 8
we have

(aA(b), f) = Limx(¥p)(tr), fa)

= Lim( ), f

= le,\<¢D y(aty), f

(Upw)(tra), f
= Limx(¥pw)(ta)a, f
= (A(b)a, f)

forall f € X*, because aty—txa — 0 and the nets {1/ p)(atx)}aca, {¥pr) (tra) brea

are bounded. Thus

(5.2) aA(b) = A(b)a

for each a,b € 4. Now we do the same process for A as we did earlier for D and
therefore

Aa) = a1 — Q1a — Ay (a)
for a € ¥, where Q; € X** and A is a bounded linear map from & to X ** defined
by
<A1 (a)v f> = Lim)\<1/}A(a) (tA)v f>
for a € 4% and f € X* (By condition (ii) of our assumption A; is well-defined). It
follows from (5.2]) that

VYa(a)(t) = 7(t)A(a)
for each a € Y* and t € £* @ UF. So A (q)(tr) — A(a). Consequentially, Ai(a) =
A(a) for all a € 4* and

1 1
Aa) = a(§Ql) - (591)(1
for a € 4*. According to this identity and D(a) = a©2 — Qa — A(a) we have
1 1
D(a) =a(2— 591) - (Q- 591)(1

for a € {4f, and hence D is a derivation. O
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We note that if 4 is a commutative approximately amenable Banach algebra,
then by [7, Theorem 3.1-(iv)] and Corollary[3.3} {/* is symmetrically pseudo-amenable.
Examples of this kind of Banach algebras are given in [g].

We have the following result that is proved in [I5, Theorem 6.2]. Therefore, it
can be said that Theorem [5lis a generalization of [I5, Theorem 6.2].

Corollary 5.2. Let 3 be a symmetrically amenable Banach algebra and X be a Ba-
nach U-bimodule. Then every bounded Jordan deriwvation from U to X is a deriva-
tion.

Proof. By [I5, Theorem 3.1], U* is symmetrically amenable, and so it has a bounded
symmetric approximate diagonal {t)}xea. Since 1, : 4 @ U¥ — X for each x € X
and &7 : UF ® U¥ — X for each bounded linear map 7' : ¥ — X are bounded
mappings, it follows from boundness of {t)}xea that the conditions (i) and (ii) of
Theorem [B.1] are satisfied. Therefore, the desired result is proved.

In the following theorem, we consider a special type of Jordan derivations.

Theorem 5.3. Let i be a Banach algebra such that $\* is symmetrically pseudo-
amenable and X is a Banach -bimodule. Then every bounded central Jordan
derivation from Y to X is a derivation.

Proof. Suppose that D : {4 — X is a bounded central Jordan derivation and
{tr}aea is a symmetric approximate diagonal for {f. We extend D to {* by putting
D(1) = 0. With the same process of proving Theorem 5], it is proved that

D(a) = liin((ax,\ —2xa) — Yp(a)(tr))
for a € U¥. Since D is central, it follows that
VYp(a)(t) = 7(t)D(a)
for each a € U and t € ! @ 4f. Thus ¥p(a)(tr) — D(a) and

1.,
D(a) = 3 hin(ax,\ —zNa)
for a € 4%, O

Let & be a Banach algebra. The Banach i-bimodule X is called symmetric if
ax = zxa, for all @ € Y and z € X. According to Theorem 53] we have the following
result which checks the bounded Jordan derivations into a certain class of Banach
bimodules.

Corollary 5.4. If il is a Banach algebra such that U* is symmetrically pseudo-
amenable, then every bounded Jordan derivation from i to a symmetric Banach
U-bimodule X s a derivation.

6. LIE DERIVATIONS OF SYMMETRICALLY PSEUDO-AMENABLE BANACH
ALGEBRAS

In this section, we consider 4 as in the previous section and convert a ${-bimodule
to a YUf-bimodule. Also, &7 is defined as in the previous section. The following
lemma is about central derivations.
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Lemma 6.1. Let 8 be a Banach algebra such that 4! is symmetrically pseudo-
amenable and X be a Banach U-bimodule. Then every bounded central derivation
from U to X is a derivation.

Proof. Let 6 : s — X be a bounded central derivation and {t)}xea be a symmetric
approximate diagonal for {f. We extend § to U* by putting 6(1) = 0. From the
fact that ¢ is central, for each a,b, ¢ € U* we have

Ds(ab @ c) — Ps(b® ca) = abd(c) — bd(ca)

= abd(c) — §(ca)b
= abd(c) — cd(a)b — d(c)ab
= cbd(a).

So

@5(&1])\ —tra) = W(ti)&(@)
for all a € UF. Since t§ =ty (A € A), aty —taa — 0 and 7(t))d(a) — (a), it
follows that § = 0. O

The restriction of a central derivation to a subalgebra is central so we can extend
Lemma to the following.

Corollary 6.2. Let il be the smallest closed subalgebra which contains all the closed
subalgebras B of i such that ' is symmetrically pseudo-amenable. Then every
bounded central derivation with domain 4 s 0.

Lemma 6.3. Let 8 be a Banach algebra such that 4! is symmetrically pseudo-
amenable. Suppose that'Y is a Banach U-bimodule and X is a closed {-subbimodule
of Y. If § : 4 — Y is a bounded derivation and T : 3 — Zy(Y) is a linear map
such that (6 + 7)(U) C X, then 6(U) C X and 7(4) C Zy(X).

Proof. Let mx : Y — Y/X be the quotient map where W = Y/X is the quotient
Banach $-bimodule. We have

O=nmxo(0+7)=mxod+mxoT.
Hence
Tx 00 =—TxOT.
Since mx maps Zy(Y) into Zy (W) and 7(L) C Z¢(Y), it follows that
mx 0 d(U) = —mx oT(U) C Zy(W).

So by the fact that mx is a bounded module homomorphism, 7wx o d is a bounded
central derivation from i into W. According to Lemma B1] 7x o d = 0, and
hence 6(4) € X. Now from assumption and the obtained result, we have 7(4l) C
XﬂZu(Y) :Zu(X) [l

In the following theorem we state the main result of this section.

Theorem 6.4. Let i be a Banach algebra such that $\* is symmetrically pseudo-
amenable with the a symmetric approzimate diagonal {t\}xen. Suppose X is a
Banach U-bimodule such that for each x € X the net {1,(tx)}rea is bounded, and
D : 8l — X is a bounded Lie derivation such that the net {®p(tx)}rea is bounded.
Then there exist a bounded derivation d : 4 — X and a bounded central trace
T: 4 — Z¢(X) such that D =d + 7.
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Proof. Assume that D : {4 — X is a bounded Lie derivation. We extend D to U
by putting D(1) = 0. Then

(I)D(at)\—t)\a) = CL(I)D (t)\)—(I)D(CLOt)\)+1/JD(a) (t)\)—W(tA)D(a)—l-(I)D(t)\oa)—(I)D(t)\)a

for each a € UF. Let zy := ®p(ty). Since aty —tya — 0, a0ty —tyoa — 0 and
m(tx)D(a) — D(a), it follows that

(6.1) D(a) = lim((azx — 2xa) + ¢¥p(a)(tr))

for a € 4. Now, viewing X as a closed if-subbimodule of X**, and hence D is a
bounded Lie derivation from * to X**. In view of our assumptions, define Q € X**
and the bounded linear map 7 : {* — X** by

(Q, f) = Limx(x, f)
and
(t(a), f) = Limx(¢pa)(tr), f),

where a € U¥, f € X* and Lim, is a generalized limit on A. It follows from (G.I))
that

(D(a), f) = (a2 — Qa, f) + (7(a), f)
for any a € U¥ and f € X*. Consequentially,

D(a) = a2 — Qa+ 7(a)

for each a € U*. The linear map d : {4 — X** defined by d(a) = a2 — Qa is a
continuous derivation, and therefore D = d + 7. Also, with a proof similar to the
proof of centrality of A in the proof of Theorem [B.I], we have 7(a) € Zyu (X**) C
Zy(X**). So T = D —d is a bounded Lie derivation, and from the fact that
7(U) C Zys (X**), it follows that 7([a,b]) = 0 for every a,b € U*. The conditions of
Lemmal6.3 hold for d and 7 on 4, hence d maps 4 to X and 7 maps 4 to Zy(X). O

The following result is immediate.

Corollary 6.5. Let { be a Banach algebra such that U* is symmetrically pseudo-
amenable with the a symmetric approzimate diagonal {t\}xen. Suppose X is a
Banach U-bimodule such that

(i) for each x € X the net {5 (tr)}ren is bounded, and
(i) for each bounded Lie derivation D : $ — X the net {®p(tr)}ren is
bounded.

Then for every bounded Lie derivation D : 3 — X there exist a bounded derivation
d: 3 — X and a bounded central trace T : s — Zy(X) such that D = d + 7.

Similar to the proof of Corollary (2] the following result is obtained, which
is proved in [I5, Theorem 9.2]. Therefore, it can be said that Theorem [64] (and
Corollary [6.5]) is a generalization of [15, Theorem 9.2].

Corollary 6.6. Let i be a symmetrically amenable Banach algebra and X be a
Banach U-bimodule. Then for every bounded Lie derivation D : 3 — X there exist
a bounded derivation d : 4 — X and a bounded central trace T : s — Zy(X) such
that D =d+ .
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