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Abstract

Traditional knowledge graph embedding (KGE) methods typ-
ically require preserving the entire knowledge graph (KG)
with significant training costs when new knowledge emerges.
To address this issue, the continual knowledge graph embed-
ding (CKGE) task has been proposed to train the KGE model
by learning emerging knowledge efficiently while simultane-
ously preserving decent old knowledge. However, the explicit
graph structure in KGs, which is critical for the above goal,
has been heavily ignored by existing CKGE methods. On
the one hand, existing methods usually learn new triples in
a random order, destroying the inner structure of new KGs.
On the other hand, old triples are preserved with equal pri-
ority, failing to alleviate catastrophic forgetting effectively.
In this paper, we propose a competitive method for CKGE
based on incremental distillation (IncDE), which considers
the full use of the explicit graph structure in KGs. First, to
optimize the learning order, we introduce a hierarchical strat-
egy, ranking new triples for layer-by-layer learning. By em-
ploying the inter- and intra-hierarchical orders together, new
triples are grouped into layers based on the graph structure
features. Secondly, to preserve the old knowledge effectively,
we devise a novel incremental distillation mechanism, which
facilitates the seamless transfer of entity representations from
the previous layer to the next one, promoting old knowledge
preservation. Finally, we adopt a two-stage training paradigm
to avoid the over-corruption of old knowledge influenced by
under-trained new knowledge. Experimental results demon-
strate the superiority of IncDE over state-of-the-art baselines.
Notably, the incremental distillation mechanism contributes
to improvements of 0.2%-6.5% in the mean reciprocal rank
(MRR) score. More exploratory experiments validate the ef-
fectiveness of IncDE in proficiently learning new knowledge
while preserving old knowledge across all time steps.

Introduction

Knowledge graph embedding (KGE) (Bordes et al. 2013;
Wang et al. 2017; Rossi et al. 2021) aims to embed enti-
ties and relations from knowledge graphs (KGs) (Dong et al.
2014) into continuous vectors in a low-dimensional space,
which is crucial for various knowledge-driven tasks, such as
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Figure 1: Illustration of a growing KG. Two specific learn-
ing orders should be considered: entities closer to the old
KG should be prioritized (a is prioritised over b); entities in-
fluenced heavier to new triples (e.g., connecting with more
relations) should be prioritized (a is prioritised over c).

question answering (Bordes, Weston, and Usunier 2014), se-
mantic search (Noy et al. 2019), and relation extraction (Li
et al. 2022). Traditional KGE models (Bordes et al. 2013;
Trouillon et al. 2016; Sun et al. 2019; Liu et al. 2020) only
focus on obtaining embeddings of entities and relations in
static KGs. However, real-world KGs constantly evolve, es-
pecially emerging new knowledge, such as new triples, enti-
ties, and relations. For example, during the evolution of DB-
pedia (Bizer et al. 2009) from 2016 to 2018, about 1 million
new entities, 2,000 new relations, and 20 million new triples
emerged (DBpedia 2021). Traditionally, when a KG evolves,
KGE models need to retrain the models with the entire KG,
which is a non-trivial process with huge training costs. In
domains such as bio-medical and financial fields, it is sig-
nificant to update the KGE models to support medical as-
sistance and informed market decision-making with rapidly
evolving KGs, especially with substantial new knowledge.
To this end, the continual KGE (CKGE) task has been
proposed to alleviate this problem by using only the emerg-
ing knowledge for learning (Song and Park 2018; Daruna
et al. 2021). In comparison with the traditional KGE, the
key of CKGE lies in learning emerging knowledge well
while preserving old knowledge effectively. As shown in
Figure 1, new entities and relations (i.e., the new entity a,
b, and c) should be learned to adapt to the new KG. Mean-
while, knowledge in the old KG (such as old entity d) should
be preserved. Generally, existing CKGE methods can be
categorized into three families: dynamic architecture-based,



replay-based, and regularization-based methods. Dynamic
architecture-based methods (Rusu et al. 2016; Lomonaco
and Maltoni 2017) preserve all old parameters and learn
the emerging knowledge through new architectures. How-
ever, retaining all old parameters hinders the adaptation
of old knowledge to the new knowledge. Replay-based
methods (Lopez-Paz and Ranzato 2017; Wang et al. 2019;
Kou et al. 2020) replay KG subgraphs to remember old
knowledge, but recalling only a portion of the subgraphs
leads to the destruction of the overall old graph structure.
Regularization-based methods (Zenke, Poole, and Ganguli
2017; Kirkpatrick et al. 2017; Cui et al. 2023) aim to pre-
serve old knowledge by adding regularization terms. How-
ever, only adding regularization terms to the old parameters
makes it infeasible to capture new knowledge well.

Despite achieving promising effectiveness, current CKGE
methods still perform poorly due to the explicit graph struc-
ture of KGs being heavily ignored. Meanwhile, previous re-
search has emphasized the crucial role of the graph structure
in addressing graph-related continual learning tasks (Zhou
and Cao 2021; Liang et al. 2022; Febrinanto et al. 2023).
Specifically, existing CKGE methods suffer from two main
drawbacks: (1) First, regarding the new emerging knowl-
edge, current CKGE methods leverage a random-order
learning strategy, neglecting the significance of different
triples in a KG. Previous studies have demonstrated that the
learning order of entities and relations can significantly af-
fect continual learning on graphs (Wei et al. 2022). Since
knowledge in KGs is organized in a graph structure, a ran-
domized learning order can undermine the inherent seman-
tics conveyed by KGs. Hence, it is essential to consider the
priority of new entities and relations for effective learning
and propagation. Figure 1 illustrates an example where en-
tity a should be learned before entity b since the represen-
tation of b is propagated through a from the old KG. (2)
Second, regarding the old knowledge, current CKGE meth-
ods treat the memorization at an equal level, leading to
inefficient handling of catastrophic forgetting (Kirkpatrick
et al. 2017). Existing studies have demonstrated that pre-
serving knowledge by regularization or distillation from im-
portant nodes in the topology structure is critical for con-
tinuous graph learning (Liu, Yang, and Wang 2021). There-
fore, old entities with more essential graph structure features
should receive higher preservation priority. In Figure 1, en-
tity a connecting more other entities should be prioritized
for preservation at time ¢ + 1 compared to entity c.

In this paper, we propose IncDE, a novel method for the
CKGE task that leverages incremental distillation. IncDE
aims to enhance the capability of learning emerging knowl-
edge while efficiently preserving old knowledge simultane-
ously. Firstly, we employ hierarchical ordering to determine
the optimal learning sequence of new triples. This involves
dividing the triples into layers and ranking them through
the inter-hierarchical and intra-hierarchical orders. Subse-
quently, the ordered emerging knowledge is learned layer
by layer. Secondly, we introduce a novel incremental distil-
lation mechanism to preserve the old knowledge considering
the graph structure effectively. This mechanism incorporates
the explicit graph structure and employs a layer-by-layer

paradigm to distill the entity representation. Finally, we use
a two-stage training strategy to improve the preservation of
old knowledge. In the first stage, we fix the representation
of old entities and relations. In the second stage, we train the
representation of all entities and relations, protecting the old
KG from disruption by under-trained emerging knowledge.

To evaluate the effectiveness of IncDE, we construct three
new datasets with varying scales of new KGs. Extensive ex-
periments are conducted on both existing and new datasets.
The results demonstrate that IncDE outperforms all strong
baselines. Furthermore, ablation experiments reveal that in-
cremental distillation provides a significant performance en-
hancement. Further exploratory experiments verify the abil-
ity of IncDE to effectively learn emerging knowledge while
efficiently preserving old knowledge.

To sum up, the contributions of this paper are three-fold:

* We propose a novel continual knowledge graph embed-
ding framework IncDE, which learns and preserves the
knowledge effectively with explicit graph structure.

* We propose hierarchical ordering to get an adequate
learning order for better learning emerging knowledge.
Moreover, we propose incremental distillation and a two
stage training strategy to preserve decent old knowledge.

* We construct three new datasets based on the scale
changes of new knowledge. Experiments demonstrate
that IncDE outperforms strong baselines. Notably, incre-
mental distillation improves 0.2%-6.5% in MRR.

Related Work

Different from traditional KGE (Bordes et al. 2013; Trouil-
lon et al. 2016; Kazemi and Poole 2018; Pan and Wang
2021; Shang et al. 2023), CKGE (Song and Park 2018;
Daruna et al. 2021) allows KGE models to learn emerg-
ing knowledge while remembering the old knowledge. Ex-
isting CKGE methods can be divided into three categories.
(1) Dynamic architecture-based methods (Rusu et al. 2016;
Lomonaco and Maltoni 2017) dynamically adapt to new
neural resources to change architectural properties in re-
sponse to new information and preserve old parameters.
(2) Memory reply-based methods (Lopez-Paz and Ranzato
2017; Wang et al. 2019; Kou et al. 2020) retain the learned
knowledge by replaying it. (3) Regularization-based meth-
ods (Zenke, Poole, and Ganguli 2017; Kirkpatrick et al.
2017; Cui et al. 2023) alleviate catastrophic forgetting by
imposing constraints on updating neural weights. However,
these methods overlook the importance of learning new
knowledge in an appropriate order for graph data. More-
over, they ignore how to preserve appropriate old knowledge
for better integration of new and old knowledge. Several
datasets for CKGE (Hamaguchi et al. 2017; Kou et al. 2020;
Daruna et al. 2021; Cui et al. 2023) have been constructed.
However, most of them restrict the new triples to contain at
least one old entity, neglecting triples without old entities. In
the evolution of real-world KGs like Wikipedia (Bizer et al.
2009) and Yago (Suchanek, Kasneci, and Weikum 2007),
numerous new triples emerge without any old entities.
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Figure 2: An overview of our proposed IncDE framework.

Preliminary and Problem Statement
Growing Knowledge Graph

A knowledge graph (KG) G = (£, R, T) contains the col-
lection of entities &, relations R, and triples 7. A triple
can be denoted as (h,r,t) € T, where h, r, and ¢ repre-
sent the head entity, the relation, and the tail entity, respec-
tively. When a KG grows with emerging knowledge at time
i, it is denoted as G; = (&;, R, T;), where &;, R;, T; are
the collection of entities, relations, and triples in G;. More-
over, we denote AT; = T, — Ti_1, AE; = & — E;_1 and
AR; = R; — R;_1 as new triples, entities, and relations,
respectively.

Continual Knowledge Graph Embedding

Given a KG G, knowledge graph embedding (KGE) aims
to embed entities and relations into low-dimensional vector
space R. Given head entity h € &, relation r € R, and
tail entity ¢ € &, their embeddings are denoted as h € R<,
r € R% and t € R? where d is the embedding size. A
typical KGE model contains embedding layers and a scoring
function. Embedding layers generate vector representations
for entities and relations, while the scoring function assigns
scores to each triple in the training stage.

Given a growing KG G; at time 4, continual knowledge
graph embedding (CKGE) aims to update the embeddings
of old entities £_; and relations R;_; while obtaining the
embeddings of new entities AE; and relations AR,;. Finally,
embeddings of all entities £; and relations R; are obtained.

Methodology
Framework Overview

The framework of IncDE is depicted in Figure 2. Initially,
when emerging knowledge appears at time ¢, IncDE per-
forms hierarchical ordering on new triples A7;. Specifically,
inter-hierarchical ordering is employed to divide A7; into
multiple layers using breadth-first search (BFS) expansion
from the old graph G;_;. Subsequently, intra-hierarchical

ordering is applied within each layer to further sort and di-
vide the triples. Then, the grouped A7; is trained layer by
layer, with the embeddings of £;_; and R;_; inherited from
the KGE model in previous time ¢ — 1. During training, in-
cremental distillation is introduced. Precisely, if an entity in
layer j has appeared in a previous layer, its representation is
distilled with the closest layer to the current one. Addition-
ally, a two-stage training strategy is proposed. In the first
stage, only the representations of new entities AE; and rela-
tions AR; are trained. In the second stage, all entities £; and
relations R; are trained in the training process. Finally, the
embeddings of £; and R; at time ¢ are obtained.

Hierarchical Ordering

To enhance the learning of the graph structure for emerging
knowledge, we first order the triples A7; at time ¢ in an inter-
hierarchical way and an intra-hierarchical way, based on the
importance of entities and relations, as shown in Figure 2.
Ordering processes can be pre-calculated to reduce training
time. Then, we learn the new triples A7; layer by layer and
in order. The specific ordering strategies are as follows.

Inter-Hierarchical Ordering For inter-hierarchical or-
dering, we split all new triples A7; into multiple layers
l1,12, ..., 1, at time 7. Since the representations of new en-
tities A&, are propagated from the representations of the old
entities £_1 and old relations R;_1, we split new triples
AT; based on the distance between new entities AE; and old
graph G, 1. We use the bread-first search (BFS) algorithm to
progressively partition A7; from G;_;. First, we take the old
graph as [y. Then, we take all the new triples that contain old
entities as the next layer, /1. Next, we treat the new entities
in [; as the seen old entities. Repeat the above two processes
until no triples can be added to a new layer. Finally, we use
all remaining triples as the final layer. This way, we initially
divide all the new triples A7; into multiple layers.

Intra-Hierarchical Ordering The importance of the
triples in graph structure is also critical to the order in which
entities &; and relations R; are learned or updated at time .



So for the triples of each layer, we further order them based
on the importance of entities and relations in the graph struc-
ture, as shown in Figure 2 (a). To measure the importance of
entities &; in the new triples A7;, we first calculate the node
centrality of an entity e € &; as f,.(e) as follow:

fucle) = Lretarter(©) (1)

where fneighbo,«(e) denotes the number of the neighbors of
e, and N denotes the number of entities in the new triples
AT; at time i. Then, in order to measure the importance of
relations R; in the triples of each layer, we compute the be-
tweenness centrality of a relation r € R; as fp.(7):

Z a(s,t|r) )

s,t€EE;,sF#t G(S’ t)

fbc(r) =

where o (s, t) is the number of shortest paths between s and ¢
in the new triples A7;, and o (s, t|r) is the number of o (s, t)
passing through relation r. Specifically, we only compute
fne and fp. of emerging KGs, avoiding the graph being ex-
cessive. To obtain the importance of the triple (h,r,t) in
each layer, we compute the node centrality of the head entity
h, the node centrality of the tail entity ¢, and the between-
ness centrality of the relation r in this triple. Considering
the overall significance of entities and relations within the
graph structure, we adopt f,. and fp. together. The final im-
portance of each triple can be calculated as:

IT(h,r,t) = max(fnc(h)v fnc(t)) + fbc(r) 3

We sort the triples of each layer according to the values of
their I'T" values. The utilization of intra-hierarchical ordering
guarantees the prioritization of triples that are important to
the graph structure in each layer. This, in turn, enables more
effective learning of the structure of the new graph.

Moreover, the intra-hierarchical ordering can help further
split the intra-layer triples, as shown in Figure 2 (b). Since
the number of triples in each layer is determined by the size
of the new graph, it could be too large to learn. To prevent
the number of triples in a particular layer from being too
large, we set the maximum number of triples in each layer
to be M. If the number of triples in one layer exceeds M, it
can split into several layers not exceeding M triples in the
intra-hierarchical ordering.

Distillation and Training

After hierarchical ordering, we train new triples A7; layer
by layer at time i. We take TransE (Bordes et al. 2013) as
the base KGE model. When training the j-th layer (j > 0),
the loss for the original TransE model is:

£ckge — Z max(oa f(hﬂ", t) - f(hl7

(h,rt)€l;

rt)+v) 4

where (h',7,t') is the negative triple of (h,r,t) € [;, and
f(h,r,t) = |h4r—t|11,L2 is the score function of TransE.
We inherit the embeddings of old entities £, _; and relations
R;_1 from the KGE model at time 7— 1 and randomly initial-
ize the embeddings of new entities AE; and relations AR;.

During training, we use incremental distillation to preserve
the old knowledge. Further, we propose a two-stage train-
ing strategy to prevent the embeddings of old entities and
relations from being overly corrupted at the start of training.

Incremental Distillation In order to alleviate catastrophic
forgetting of the entities learned in previous layers, inspired
by the knowledge distillation for KGE models (Wang et al.
2021; Zhu et al. 2022; Liu et al. 2023), we distill the entity
representation in the current layer with the entities that have
appeared in previous layers as shown in Figure 2. Specifi-
cally, if entity e in the j-th (j > 0) layer has appeared in
a previous layer, we distill it with the representation of e
from the nearest layer. The loss of distillation for entity ey
(k€ [1,|&])]) is:
ok sk —ep)?, |ep—exl <1
distill — |e/k _ ek‘ _ %7 |e/k _ek| > 1

®)

where ej, denotes the representation of entity ey in layer 7,
€’i denotes the representation of entity e from the near-
est previous layer. By distilling entities that have appeared
in previous layers, we remember old knowledge efficiently.
However, different entities should have different levels of
memory for past representations. Entities with higher im-
portance in the graph structure should be prioritized and
preserved to a greater extent during distillation. Besides the
node centrality of the entity f,,., similar to the betweenness
centrality of the relation, we define the betweenness central-
ity fp(e) of an entity e at time ¢ as:

Z o(s,tle) ©)

S,tEE;,s#L U(S’ t)

be(e) =

We combine f3.(e) and f,,.(e) to evaluate the importance of
an entity e. Concretely, when training the j-th layer, for each
new entity e appearing at the time i, we compute fp.(ex)
and f,.(ex) to get the preliminary weight A, as:

e = Ao - (foe(er) + freler)) 7

where \g is 1 for new entities that have already appeared in
previous layers, and ) is O for new entities that have not ap-
peared. At the same time, we learn a matrix W € R €] to
dynamically change the weights of distillation loss for dif-
ferent entities. The dynamic distillation weights is:

[)\1,)\2,...,)\‘&"] == [Al,)\g,...,A‘gi‘]OW (8)
where o denotes the Hadamard product. The final distillation
loss for each layer j at the time ¢ is:

&
Laistinn = Z N - Laisti ©
k=1

When training the j-th layer, the final loss function can be
calculated as:

Linal = Lekge + Laistill (10

After layer-by-layer training for new triples A7;, all repre-
sentations of entities &£; and relations R; are obtained.



Time 1 Time 2 Time 3 Time 4 Time 5

Dataset NE NR NT NE NR NT NE NR NT NE NR NT NE NR NT

ENTITY 2,909 233 46,388 5,817 236 72,111 8,275 236 73,785 11633 237 70,506 14,541 237 47,326
RELATION 11,560 48 98,819 13,343 96 93,535 13,754 143 66,136 14,387 190 30,032 14,541 237 21,594
FACT 10,513 237 62,024 12,779 237 62,023 13,586 237 62,023 13,894 237 62,023 14,541 237 62,023
HYBRID 8,628 86 57,561 10,040 102 20,873 12,779 151 88,017 14,393 209 103,339 14,541 237 40,326
GraphEqual 2,908 226 57,636 5,816 235 62,023 8,724 237 62,023 11,632 237 62,023 14,541 237 66,411
GraphHigher 900 197 10,000 1,838 221 20,000 3,714 234 40,000 7,467 237 80,000 14,541 237 160,116
GraphLower 7,505 237 160,000 11,258 237 80,000 13,134 237 40,000 14,072 237 20,000 14,541 237 10,116

Table 1: The statistics of datasets. Ng, Nr and Nt denote the number of cumulative entities, cumulative relations and current

triples at each time <.

Two-Stage Training During the training process, when
incorporating the new triples A7; into the existing graph
Gi—1 at time 4, the embeddings of old entities and rela-
tions that are not present in the new triples A7; remain un-
changed. However, the embeddings of old entities and rela-
tions that are included in the new triples A7; are updated.
Therefore, in the initial stage of each time ¢, part of the rep-
resentations of entities £,_; and relations R;_1 in the old
graph G;_; will be corrupted by the new entities AE; and
relations AR; that are not fully trained. To solve this prob-
lem, IncDE uses a two-stage training strategy to preserve the
knowledge in the old graph better, as shown in Figure 2. In
the first training stage, IncDE freezes the embeddings of all
old entities £;,_1 and relations R;_; and trains only the em-
beddings of new entities AE; and relations AR;. Then, In-
¢DE trains the embeddings of all entities &£; and relations R ;
in the new graph in the second training stage. With the two-
stage training strategy, IncDE prevents the structure of the
old graph from disruption by new triples in the early train-
ing phase. At the same time, the representations of entities
and relations in the old graph and those in the new graph can
be better adapted to each other during training.

Experiments
Experimental Setup

Datasets We use seven datasets for CKGE, including four
public datasets (Cui et al. 2023): ENTITY, RELATION,
FACT, HYBRID, as well as three new datasets constructed
by us: GraphEqual, GraphHigher, and GraphLower. In EN-
TITY, RELATION, and FACT, the number of entities, re-
lations, and triples increases uniformly at each time step.
In HYBRID, the sum of entities, relations, and triples in-
creases uniformly over time. However, these datasets con-
strain knowledge growth, requiring new triples to include at
least one existing entity. To address this limitation, we relax
these constraints and construct three new datasets: GraphE-
qual, GraphHigher, and GraphLower. In GraphEqual, the
number of triples consistently increases by the same incre-
ment at each time step. In GraphHigher and GraphLower,
the increments of triples become higher and lower, respec-
tively. Detailed statistics for all datasets are presented in Ta-
ble 1. The time step is set to 5. The train, valid, and test
sets are allocated 3:1:1 for each time step. The datasets are
available at https://github.com/seukgcode/IncDE.

Baselines We select two kinds of baseline models: non-
continual learning methods and continual learning-based
methods. First, we select a non-continual learning method,
Fine-tune (Cui et al. 2023), which is fine-tuned with the
new triples each time. Then, we select three kinds of con-
tinual learning-based methods: dynamic architecture-based,
memory replay-based baselines, and regularization-based.
Specifically, the dynamic architecture-based methods are
PNN (Rusu et al. 2016) and CWR (Lomonaco and Maltoni
2017). The memory replay-based methods are GEM (Lopez-
Paz and Ranzato 2017), EMR (Wang et al. 2019), and DiC-
GRL (Kou et al. 2020). The regularization-based methods
are SI (Zenke, Poole, and Ganguli 2017), EWC (Kirkpatrick
et al. 2017), and LKGE (Cui et al. 2023).

Metrics We evaluate our model performance on the link
prediction task. Particularly, we replace the head or tail en-
tity of the triples in the test set with all other entities and then
compute and rank the scores for each triple. Then, we com-
pute MRR, Hits@1, and Hits@ 10 as metrics. The higher the
MRR, Hits@1, Hits@3, and Hits@ 10, the better the model
works. At time 7, we use the mean of the metrics tested on all
test sets at the time [1, 7] as the final metric. The main results
are obtained from the model generated at the last time.

Settings All experiments are implemented on the NVIDIA
RTX 3090Ti GPU with the PyTorch (Paszke et al. 2019).
In all experiments, we set TransE (Bordes et al. 2013) as
the base KGE model and the max size of time ¢ as 5. The
embedding size for entities and relations is 200. We tune
the batch size in [512, 1024, 2048]. We choose Adam as
the optimizer and set the learning rate from [le-5, le-4, le-
3]. In our experiments, we set the max number of triples in
each layer M in [512, 1024, 2048]. To ensure fairness, all
experimental results are averages of 5 running times.

Results

Main Results The results of the main experiments on the
seven datasets are reported in Table 2 and Table 3.

Firstly, it is worth noting that IncDE exhibits a consid-
erable improvement when compared to Fine-tune. Specif-
ically, IncDE demonstrates enhancements ranging from
2.9%-10.6% in MRR, 2.4%-7.2% in Hits@1, and 3.7%-
17.5% in Hits@10 compared to Fine-tune. The results sug-
gest that direct fine-tuning leads to catastrophic forgetting.



ENTITY RELATION FACT HYBRID GraphEqual
Method |[MRR H@1 H@I10 MRR H@] H@10|MRR H@l H@10|MRR H@l H@10|MRR H@1 H@I0
Fine-tune [ 0.165 0.085 0.321 {0.093 0.039 0.195 |0.172 0.090 0.339 |0.135 0.069 0.262 {0.183 0.096 0.358
PNN 0.229 0.130 0.425 |0.167 0.096 0.305 [0.157 0.084 0.290 [0.185 0.101 0.349 |0.212 0.118 0.405
CWR 0.088 0.028 0.202 {0.021 0.010 0.043 |0.083 0.030 0.192 |0.037 0.015 0.077 |0.122 0.041 0.277
GEM 0.165 0.085 0.321 {0.093 0.040 0.196 [0.175 0.092 0.345 |0.136 0.070 0.263 |0.189 0.099 0.372
EMR 0.171 0.090 0.330 {0.111 0.052 0.225 |0.171 0.090 0.337 |0.141 0.073 0.267 |0.185 0.099 0.359
DiCGRL [0.107 0.057 0.211 [0.133 0.079 0.241 |0.162 0.084 0.320 |0.149 0.083 0.277 |0.104 0.040 0.226
SI 0.154 0.072 0.311 |0.113 0.055 0.224 [0.172 0.088 0.343 [0.111 0.049 0.229 |0.179 0.092 0.353
EWC 0.229 0.130 0.423 |0.165 0.093 0.306 [0.201 0.113 0.382 |0.186 0.102 0.350 |0.207 0.113 0.400
LKGE [0.234 0.136 0.425 (0.192 0.106 0.366 |0.210 0.122 0.387 |0.207 0.121 0.379 |0.214 0.118 0.407
IncDE  [0.253 0.151 0.448 (0.199 0.111 0.370 |0.216 0.128 0.391 |0.224 0.131 0.401 |0.234 0.134 0.432

Table 2: Main experimental results on ENTITY, RELATION, FACT, HYBRID, and GraphEqual. The bold scores indicate the
best results and underlined scores indicate the second best results.

GraphHigher GraphLower
Method [MRR H@1 H@10 MRR H@1 H@10
Fine-tune |0.198 0.108 0.375 [0.185 0.098 0.363
PNN 0.186 0.097 0.364 [0.213 0.119 0.407
CWR 0.189 0.096 0.374 |0.032 0.005 0.080
GEM 0.197 0.109 0.372 [0.170 0.084 0.346
EMR 0.202 0.113 0.379 |0.188 0.101 0.362
DiCGRL [0.116 0.041 0.242 |0.102 0.039 0.222
SI 0.190 0.099 0.371 [0.186 0.099 0.366
EWC 0.198 0.106 0.385 [0.210 0.116 0.405
LKGE [0.207 0.120 0.382 [0.210 0.116 0.403
IncDE  [0.227 0.132 0.412 [0.228 0.129 0.426

Table 3: Main experimental results on GraphHigher and
GraphLower.

Secondly, IncDE outperforms all CKGE baselines. No-
tably, IncDE achieves improvements of 1.5%-19.6%, 1.0%-
12.4%, and 1.9%-34.6%, respectively, in MRR, Hits@1,
and Hits@10 compared to dynamic architecture-based ap-
proaches (PNN and CWR). Compared to replay-based base-
lines (GEM, EMR, and DiCGRL), IncDE improves 2.5%-
14.6%, 1.9%-9.4%, and 3.3%-23.7% in MRR, Hits@]1,
and Hits @ 10. Moreover, IncDE obtains 0.6%-11.3%, 0.5%-
8.2%, and 0.4%-17.2% improvements in MRR, Hits@]1,
and Hits @ 10 compared to regularization-based methods (SI,
EWC, and LKGE). These results demonstrate the superior
performance of IncDE on growing KGs.

Thirdly, IncDE exhibits distinct improvements across dif-
ferent types of datasets when compared to the strong base-
lines. In datasets with equal growth of knowledge (ENTITY,
FACT, RELATION, HYBRID, and GraphEqual), IncDE has
an average improvement of 1.4% in MRR over the state-of-
the-art methods. In datasets with unequal growth of knowl-
edge (GraphHigher and GraphLower), IncDE demonstrates
an improvement of 1.8%-2.0% in MRR over the optimal
methods. It means that IncDE is particularly well-suited
for scenarios involving unequal knowledge growth. No-
tably, when dealing with a more real-scenario-aware dataset,
GraphHigher, where a substantial amount of new knowl-
edge emerges, IncDE demonstrates the most apparent ad-

vantages compared to other strongest baselines by 2.0% in
MRR. It indicates that IncDE performs well when a sub-
stantial amount of new knowledge is emerging. Therefore,
we verify the scalability of IncDE in datasets (GraphHigher,
GraphLower, and GraphEqual) with varying sizes (triples
from 10K to 160K, from 160K to 10K, and the remaining
62K). In particular, we observe that IncDE only improves
by 0.6%-0.7% in MRR on RELATION and FACT compared
to the best results among all baselines, where the improve-
ments are insignificant as other datasets. This can be at-
tributed to the limited growth of new entities in these two
datasets, indicating that IncDE is highly adaptable to situa-
tions where the number of entities varies significantly. In real
life, the number of relations between entities remains rela-
tively stable, while it is the entities themselves that appear in
large numbers. This is where IncDE excels in its adaptabil-
ity. With its robust capabilities, IncDE can effectively handle
the multitude of entities and their corresponding relations,
ensuring seamless integration and efficient processing.

Ablation Experiments We investigate the effects of hier-
archical ordering, incremental distillation, and the two-stage
training strategy, as depicted in Table 4 and Table 5. Firstly,
when we remove the incremental distillation, there is a sig-
nificant decrease in the model performance. Specifically,
the metrics decrease by 0.2%-6.5% in MRR, 0.1%-5.2% in
Hits@1, and 0.2%-11.6% in Hits@10. These findings high-
light the crucial role of incremental distillation in effectively
preserving the structure of the old graph while simultane-
ously learning the representation of the new graph. Sec-
ondly, there is a slight decline in model performance when
we eliminate the hierarchical ordering and two-stage train-
ing strategy. Specifically, the metrics of MRR decreased by
0.2%-1.8%, Hits@1 decreased by 0.1%-1.8%, and Hits@10
decreased by 0.2%-4.4%. The results show that the hierar-
chical ordering and the two-stage training improve the per-
formance of IncDE.

Performance of IncDE in Each Time Figure 3 shows
how well IncDE remembers old knowledge at different
times. First, we observe that on several test data (D1, D2,
D3, D4 in ENTITY; D3, D4 in HYBRID), the performance
of IncDE decreases slightly by 0.2%-3.1% with increasing



ENTITY RELATION FACT HYBRID GraphEqual
Method MRR H@l H@10| MRR H@l H@10| MRR H@l H@10| MRR H@l H@I0| MRR H@l H@I10
IncDE w/o HO | 0.248 0.148 0.441 | 0.186 0.105 0.344 | 0.197 0.119 0.347 | 0.210 0.122 0.380 | 0.230 0.131 0.426
IncDEw/oID | 0.188 0.099 0.354 | 0.134 0.070 0.254 | 0.167 0.090 0.321 | 0.185 0.105 0.340 | 0.199 0.107 0.383
IncDE w/o TS | 0.250 0.149 0.444 | 0.186 0.099 0.354 | 0.213 0.126 0.389 | 0.220 0.127 0.397 | 0.231 0.132 0.430
IncDE 0.253 0.151 0.448 | 0.199 0.111 0.370 | 0.216 0.128 0.391 | 0.224 0.131 0.401 | 0.234 0.134 0.432

Table 4: Ablation experimental results on ENTITY, RELATION, FACT, HYBRID and GraphEqual. HO is the hierarchical
ordering. ID is the incremental distillation. TS is the two-stage. We learn the new KG in randomized order w/o HO.

GraphHigher GraphLower
Method MRR H@1 H@10 | MRR H@l1 H®@I10
IncDE w/o HO | 0.221 0.129 0.405 | 0.224 0.126 0.424
IncDEw/o ID | 0.225 0.131 0.410 | 0.196 0.105 0.377
IncDE w/o TS | 0.225 0.130 0.408 | 0.225 0.128 0.423
IncDE 0.227 0.132 0.412 | 0.228 0.129 0.426

Table 5: Ablation experimental results on GraphHigher and
GraphLower.
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Figure 3: Effectiveness of IncDE at Each Time on ENTITY,
HYBRID, and GraphLower. Different colors represent the

performance of models generated at different times. Dz de-
notes the test set at time i.

time. In particular, the performance of IncDE does not un-
dergo significant degradation on several datasets, such as D1
of HYBRID (Time 2 to Time 4) and D2 of GraphLower
(Time 2 to Time 5). It means that IncDE can remember old
knowledge well on most datasets. Second, on a few datasets,
the performance of IncDE unexpectedly gains as it continues
to be trained. Specifically, the performance of IncDE gradu-
ally increases by 0.6% on D3 of GraphLower in MRR. This
demonstrates that IncDE learns emerging knowledge well
and enhances the old knowledge with emerging knowledge.

Effect of Learning and Memorizing In order to verify
that IncDE can learn emerging knowledge well and remem-
ber old knowledge efficiently, we study the effect of IncDE
and Fine-tune each time on the new KG and old KGs, re-
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Figure 4: Effectiveness of learning emerging knowledge and
memorizing old knowledge.
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Figure 5: Results of MRR and Hits@ 10 with different max
sizes of layers in all datasets.

spectively, as shown in Figure 4. To assess the performance
on old KGs, we calculated the mean value of the MRR
across all past time steps. Firstly, we observe that IncDE
outperforms Fine-tune on the new KG, with a higher MRR
ranging from 0.5% to 5.5%. This indicates that IncDE is ca-
pable of effectively learning emerging knowledge. Secondly,
IncDE has 3.8%-11.2% higher than Fine-tune on old KGs in
MRR. These findings demonstrate that IncDE mitigates the
issue of catastrophic forgetting and achieves more efficient
retention of old knowledge.

Effect of Maximum Layer Sizes To investigate the effect
of the max size of each layer M in incremental distillation
on model performance, we study the performances of In-
cDE models at the last time with different M, as shown in
Figure 5. First, we find that the model performance on all
datasets rises with M in the range of [128, 1024]. This in-
dicates that, in general, the higher M, the more influential
the incremental distillation becomes. Second, we observe
a significant performance drop on some datasets when M
reaches 2048. It implies that too large an M could lead to too



Query (Arizona State University, major_field_of study, ?)

Methods Top 3 Candidates
EWC  Medicine, Electrical engineering, Computer Science
PNN  Medicine, Electrical engineering, Computer Science
LKGE English Literature, Computer Science, Political Science
IncDE ~ Computer Science, University of Tehran, Medicine
w/o HO  Computer Science, Medicine, University of Tehran
w/o ID Political Science, English Literature, Theatre
w/o TS ~ Computer Science, Medicine, University of Tehran

Table 6: Results of the case study. We use the model gen-
erated at time 5 and randomly select a query appearing in
ENTITY at time 1 for prediction. The italic one is the query,
and the bold ones are true prediction results.

few layers and limit the performance of incremental distilla-
tion. Empirically, M'=1024 is the best size in most datasets.
This further proves that it is necessary to limit the number
of triples learned in each layer.

Case Study To further explore the capacity of IncDE to
preserve old knowledge, we conduct a comprehensive case
study as shown in Table 6. In the case of predicting the ma-
jor field of study of Arizona State University, IncDE ranks
the correct answer Computer Science in the first position,
outperforming other strong baselines such as EWC, PNN,
and LKGE, which rank it second or third. It indicates that
although other methods forget knowledge in the past time
to some degree, IncDE can remember old knowledge at
each time accurately. Moreover, when incremental distilla-
tion (ID) is removed, IncDE fails to predict the correct an-
swer within the top three positions. This demonstrates that
the performance of IncDE significantly declines when pre-
dicting old knowledge without the incremental distillation.
Conversely, after removing hierarchical ordering (HO) and
the two-stage training strategy (TS), IncDE still accurately
predicts the correct answer in the first position. This obser-
vation strongly supports the fact that the incremental distil-
lation provides IncDE with a crucial advantage over alterna-
tive strong baselines in preserving the old knowledge.

Discussion

Novelty of IncDE The novelty of IncDE can be summa-
rized by the following two aspects. (1) Efficient knowledge-
preserving distillation. Although IncDE utilizes distillation
methods, it is different from previous KGE distillation meth-
ods (Wang et al. 2021; Zhu et al. 2022; Liu et al. 2023). For
one thing, compared to other KGE distillation methods that
mainly distill final distribution, incremental distillation (ID)
distills the intermediate hidden states. Such a manner skill-
fully preserves essential features of old knowledge, making
it adaptable to various downstream tasks. For another thing,
only ID transfers knowledge from the model itself, thus mit-
igating error propagation compared to transferring knowl-
edge from other models. (2) Explicit graph-aware mecha-
nism. Compared to other CKGE baselines, IncDE stands out
by incorporating the graph structure into continual learning.
This explicit graph-aware mechanism allows IncDE to lever-
age the inherent semantics encoded within the graph, en-

abling it to intelligently determine the optimal learning order
and effectively balance the preservation of old knowledge.

Three Components in IncDE The three components of
IncDE, hierarchical ordering (HO), incremental distillation
(ID), and two-stage training (TS) are inherently dependent
on each other and necessary to be used together. We explain
it in the following two aspects. (1) Designing Principle. The
fundamental motivation of IncDE lies in effectively learning
emerging knowledge while simultaneously preserving old
knowledge. This objective is accomplished by all three com-
ponents: HO, ID, and TS. On the one hand, HO plays a role
in dividing new triples into layers, optimizing the process of
learning emerging knowledge. On the other hand, ID and TS
try to distill and preserve the representation of entities, en-
suring the effective preservation of old knowledge. (2) Inter
Dependence. The three components are intrinsically interre-
lated and should be employed together. For one thing, HO
plays a vital role in generating a partition of new triples,
which are subsequently fed into ID. For another thing, by
employing TS, ID prevents old entities from being disrupted
in the early training stages.

Significance of Incremental Distillation Even though the
three proposed components of IncDE: incremental distilla-
tion (ID), hierarchical ordering (HO), and two-stage training
(TS) are all effective for the CKGE task, ID serves as the
central module among them. Theoretically, the primary chal-
lenge in the continual learning task is catastrophic forgetting
that occurs when learning step by step, which is also suitable
for the CKGE task. To tackle this challenge, ID introduces
the explicit graph structure to distill entity representations,
effectively preserving old knowledge layer by layer during
the whole training time. However, HO focuses on learning
new knowledge well, and TS can only alleviate catastrophic
forgetting in the early stages of training. Therefore, ID plays
the most important role among all components in the CKGE
task. In experiments, we observe that ID exhibits significant
improvements (4.1% in MRR on average) compared to HO
(0.9% in MRR on average) and TS (0.5% in MRR on av-
erage) from Table 4 and Table 5. Such results further verify
ID as the pivotal component compared with HO and TS. The
three components interact with each other and work together
to complete the CKGE task.

Conclusion

This paper proposes a novel continual knowledge graph em-
bedding method, IncDE, which incorporates the graph struc-
ture of KGs in learning emerging knowledge and remember-
ing old knowledge. Firstly, we perform hierarchical ordering
for the triples in the new knowledge graph to get an optimal
learning sequence. Secondly, we propose incremental dis-
tillation to preserve old knowledge when training the new
triples layer by layer. Moreover, We optimize the training
process with a two-stage training strategy. In the future, we
will consider how to handle the situation where old knowl-
edge is deleted as knowledge graphs evolve. Also, it is im-
perative to address the integration of cross-domain and het-
erogeneous data into expanding knowledge graphs.
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