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ABSTRACT
We study selfish mining attacks in longest-chain blockchains like

Bitcoin, but where the proof of work is replaced with efficient proof

systems – like proofs of stake or proofs of space – and consider

the problem of computing an optimal selfish mining attack which

maximizes expected relative revenue of the adversary, thus mini-

mizing the chain quality. To this end, we propose a novel selfish

mining attack that aims to maximize this objective and formally

model the attack as a Markov decision process (MDP). We then

present a formal analysis procedure which computes an 𝜖-tight

lower bound on the optimal expected relative revenue in the MDP

and a strategy that achieves this 𝜖-tight lower bound, where 𝜖 > 0

may be any specified precision. Our analysis is fully automated and

provides formal guarantees on the correctness. We evaluate our

selfish mining attack and observe that it achieves superior expected

relative revenue compared to two considered baselines.

In concurrent work [Sarenche FC’24] does an automated analysis

on selfish mining in predictable longest-chain blockchains based

on efficient proof systems. Predictable means the randomness for

the challenges is fixed for many blocks (as used e.g., in Ouroboros),

while we consider unpredictable (Bitcoin-like) chains where the

challenge is derived from the previous block.
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1 INTRODUCTION
Bitcoin. Blockchain protocols were proposed as a solution to

achieve consensus over some states (e.g., financial transactions) in

a distributed and permissionless (i.e., everyone can participate in

securing the chain) setting. Participants in blockchain protocols

add data into blocks, which are then appended to the blockchain

with some probability that depends on the underlying consensus

protocol. The earliest and most commonly adopted consensus pro-

tocol is proof of work (PoW), which also forms the basis of the

Bitcoin blockchain protocol [21].

Proof of work. The parties that maintain a PoW blockchain like

Bitcoin are called miners. The general idea is that in order to add a

block to the chain, the miners derive a computationally hard but

easily verifiable puzzle from the tip of the chain. To add a block to

the chain, this block must contain a solution to this puzzle. This

mechanism ensures that attacking the chain, in particular rewriting

past blocks in a double spending attack, is computationally very

expensive. In Bitcoin, the puzzle is a hashcash style PoW [2], with

parameters being a difficulty level𝐷 and a global hash function (e.g.,

SHA256). A newly generated block can only be added to the chain if

the hash of the new block, the previous block, the miner’s public key

and some nonce give a value that is less than the current difficulty

𝐷 . To mine a block in Bitcoin, miners will continuously generate

different nonces and hash them until they find a nonce that passes

the threshold. The lucky miner that first finds a block broadcasts it

across the network, where otherminers can easily verify the validity

of the nonce. The Bitcoin protocol specifies that miners should

always work towards extending the longest chain they are aware

of, hence such chains are called “longest-chain blockchains”. An

alternative approach is chains based on Byzantine Fault Tolerance

like Algorand [6] where randomly rotating committees approve

blocks to be added.

Efficient proof systems. As an alternative to PoW, several other

consensus protocols based on efficient proof systems have been pro-

posed [8, 9, 23]. Generally, we say a “proof of X” is efficient if com-

puting a proof for a random challenge is very cheap assuming one

has the resource X. The most popular and best investigated efficient

proofs are Proofs of Stake (PoStake) as e.g., used in Ouroboros [9]
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or post-merge Ethereum. Here the coins recorded in the blockchain

are the resource. Another proposal of an actual physical resource

are Proofs of Space (PoSpace) [10], where the resource is disk-space.

The first proposal for a PoSpace based chain was Spacemint [23].

The first deployed chain was the Chia network [8], it uses PoSpace

in combination with verifiable delay functions (VDFs) to address

some security challenges, and thus is referred to as a Proofs of Space

and Time (PoST) based chain. See Appendix B for more details of

blockchains based on efficient proof systems that we consider in

our work.

Selfish mining. There are various security properties we want

from longest-chain blockchains, the most important ones being

persistence and liveness [16]. Informally, persistence means that

entries added to the chain will remain there forever, while liveness

means that the chain remains available. A less obvious requirement

is fairness, in the sense that a party that contributes a 𝑝 fraction of

the resource (hashing power in PoW, space in PoST, staked coins

in PoStake) should contribute a 𝑝 fraction of the blocks, and thus

get a 𝑝 fraction of the rewards.

It was first observed in [11] that Bitcoin is not fair in this sense

due to selfish mining attacks. In selfish mining, attackers mine

blocks but occasionally selectively withhold these (so the honest

miners cannot mine on top of those) to later release them, overtak-

ing the honest chain and thus orphaning honest blocks. In doing so,

the attackers can reduce the chain quality of the blockchain [11],

this measure quantifies the fraction of blocks contributed by an

adversarial miner.

Although the analysis of selfish mining and its impact on chain

quality is well-studied in Bitcoin and other PoW-based blockchains

[11, 19, 27, 31], a thorough analysis of optimal selfish mining attacks

in blockchains based on efficient proof systems is difficult due the

fact that the computational cost of generating proofs is low in these

systems. This gives rise to several issues that in the PoStake setting

are generally referred to as the “nothing-at-stake” (NaS) problem.
1

The security vs predictability dilemma.Assume one would naïvely

replace PoW in Bitcoin with an efficient proof system like PoStake.

As computing proofs is now cheap, an adversarial miner can try to

extend blocks at different depths (not just on the tip of the longest

chain), growing private trees at each depth. If they manage to create

a tree of depth 𝑑 that starts less than 𝑑 blocks deep in the public

chain, releasing the longest path in this tree will force the honest

miners to switch to this path. Such “tree growing” attacks can be

prevented by diverting from Bitcoin-like protocols, and instead of

using the block at depth 𝑖 to derive the challenge for the block at

depth 𝑖 + 1, one uses some fixed randomness for a certain number

of consecutive blocks. Unfortunately, this creates a new security

issue as an adversary can now predict when in the future they will

be able to create blocks [3, 5]. We note that this approach is used in

the PoStake-based Ouroboros [9] chain, where one only creates a

fresh challenge every five days. An extreme in the other direction is

the PoSpace-based Spacemint [23] chain or an early proposal of the

PoST-based Chia chain [7] which, like Bitcoin, derive the challenge

1
Wewill slightly abuse terminology in our work and continue to use the terms “mining”

and “miners” from PoW-based chains also when discussing chains based on efficient

proof systems even though when using PoStake this is sometimes referred to as

“proposing” and “proposers” (but it is not coherent, some works like [13, 14] use

mining) while in PoSpace it was suggested to use the term “farming” and “farmers”.

from the previous block (the deployed Chia design [8] uses a fresh

challenge every 10 minutes, or 32 blocks).

Limitations of previous analyses. The persistence, i.e., security
against double spending attacks, in predictable (Ouroboros-like)

and unpredictable (Bitcoin-like) longest-chain blockchains is pretty

well understood [3]. In particular, using the “tree growing” attack

outlined above, an adversary can “amplify” its resources in an un-

predictable protocol by a factor of 𝑒 ≈ 2.72. Thus, security requires

that the adversary controls less than
1

1+𝑒 ≈ 0.269 fraction of the

total resources. In a predictable protocol, it is sufficient for the

adversary to have < 1

2
of the resource. This is better, but being

predictable opens new attack vectors like bribing attacks. Unfortu-

nately, the security of blockchain protocols based on efficient proof

systems in the face of selfish mining attacks is a lot less understood.

In particular, previous analyses in this area suffer mainly from two

limitations:

(1) (Model) Although there have also been some very recent works

analysing selfishmining attacks in blockchains based on efficient

proof systems [8, 12, 14, 19, 28, 29], these analyses so far have

only focused on predictable protocols.

(2) (Methodology) Furthermore, they either consider different ad-

versarial objectives [8, 12, 14, 29] or use deep reinforcement

learning to obtain selfish mining strategies [19, 28]. However,

deep reinforcement learning only empirically maximizes the

objective and does not provide formal guarantees on the quality

(lower or upper bound) of learned strategies.

Our approach. In this work, we present the first analysis of self-

ish mining in unpredictable longest-chain blockchains based on

efficient proof systems. Recall that in such chains the challenge

for each block is determined by the previous block. At each time

step, the adversary has to decide whether to mine new blocks or to

publish one of their private forks which is longer than the public

chain. Our analysis is concerned with finding the optimal sequence

of mining and fork reveal actions that the adversary should follow

in order to maximize the expected relative revenue (i.e., the ratio of

the expected adversarial blocks in the main chain when following a

given strategy compared to the total number of blocks in the chain).

Note that this is a challenging problem. Since at each time step the

adversary can choose between mining new blocks and publishing

any of its private chains, the strategy space of the adversary is

exponential in the number of privately mined forks which makes

the manual formal analysis intractable.

To overcome this challenge, we model our selfish mining attack

as a finite-state Markov Decision Process (MDP) [26]. We then present

a formal analysis procedure which, given a precision parameter

𝜖 > 0, computes

• an 𝜖-tight lower bound on the optimal expected relative revenue
that a selfish mining strategy in the MDP can achieve, and

• a selfish mining strategy achieving this 𝜖-tight lower bound.

At the core of our formal analysis procedure lies a reduction from

the problem of computing an optimal selfish mining strategy under

the expected relative revenue objective to computing an optimal

strategy in the MDP under a mean-payoff objective for a suitably
designed reward function. While we defer the details on MDPs and
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mean-payoff objectives to Section 2, we note that solving mean-

payoff finite-stateMDPs is a classic andwell-studied problemwithin

the formal methods community for which efficient (polynomial-

time) algorithms exist [15, 26] and there are well-developed tools

that implement them together with further optimizations [18, 20].

These algorithms are fully automated and provide formal guarantees
on the correctness of their outputs, and the formal analysis of our

selfish mining attack naturally inherits these desirable features.

Contributions. Our contributions can be summarized as follows:

(1) We study selfish mining in unpredictable efficient proof systems

blockchain protocols where the adversary’s goal is to maximize

expected relative revenue and thus minimize chain quality.

(2) We propose a novel selfish mining attack that optimizes the

expected relative revenue in unpredictable blockchain protocols

based on efficient proof systems. We formally model the attack
as an MDP.

(3) We present a formal analysis procedure for our selfish mining

attack. Given a precision parameter 𝜖 > 0, our formal analy-

sis procedure computes an 𝜖-tight lower bound on the optimal

expected relative revenue in the MDP together with a selfish
mining strategy that achieves it. The procedure is fully auto-
mated and provides formal guarantees on its correctness.

(4) Our formal analysis is flexible to changes in system model pa-

rameter values. For instance, it allows us to tweak systemmodel

parameters and study their impact on the optimal expected rela-

tive revenue that selfish mining can achieve in a fully automated
fashion and without the need to develop novel analyses for dif-

ferent parameter values. This is in stark contrast to formal

analyses whose correctness is proved manually, see Section 3.4

for a more detailed discussion.

(5) We implement the MDP model and the formal analysis proce-

dure and experimentally evaluate the quality of the expected

relative revenue achieved by the computed selfish mining strat-

egy. We compare our selfish mining attack to two baselines:

(1) honest mining strategy and (2) a direct extension of the PoW

selfish mining strategy of [11] to the setting of blockchains

based on efficient proof systems. Our experiments show that

our selfish mining strategy achieves higher expected relative

revenue compared to the two baselines.

A Remark on the Model. While the selfish mining attacks an-

alyzed in this paper apply to PoStake, PoSpace and PoST based

longest-chain blockchains, they capture PoST better than PoStake

and PoSpace as we will shortly outline now. Due to the use of VDFs,

PoST is “strongly unpredictable” in the sense that a miner cannot

predict when they will be able to extend any block, while PoStake

and PoSpace are “weakly unpredictable” in the sense that a miner

can predict when they will find blocks on top of their own (but

not other) blocks. Moreover, in PoST a malicious miner must run a

VDF on top of every block they try to extend, while in PoStake or

PoSpace this comes basically for free. The class of selfish mining

attacks analyzed in this paper does not exploit “weak unpredictabil-

ity” (a necessary assumption for PoST, but not PoStake or PoSpace)

and, to be able to give automated bounds, we also assume a bound

on the number of blocks one tries to extend, which is a realistic

assumption for PoST (as each block requires a VDF) but less so for

PoSpace or PoStake.

1.1 Related Work
Selfish mining in Bitcoin. One of the motivations behind the ini-

tial design of Bitcoin and other PoW blockchain systems is fairness.

That is, a miner controlling 𝑝 ∈ [0, 1] proportion of resources

should generate blocks at the rate of 𝑝 . This led to the initial anal-

ysis claiming Bitcoin is fair when the total resource 𝑝 owned by

adversarial miners is bounded from above by
1

2
[16]. Neverthe-

less, [11] outlined an attack called “selfish mining" in Bitcoin which

shows that even for 𝑝 < 1

2
it is possible to generate blocks at a

rate strictly greater than 𝑝 , implying that Bitcoin is inherently “un-

fair". The attack secretly forks the main chain and mines blocks

in a private, unannounced chain. These blocks are only revealed

when the private chain is longer than the main chain, thus forcing

the honest miners to switch from the main chain to the private

chain. This causes the honest miners to waste their computational

resources on the now shorter public chain. It is shown in [11] that

due to selfish mining, the largest amount of adversarial resources

that can be tolerated while ensuring the security of Bitcoin is
1

3
in

the optimistic setting where honest miners propagate their blocks

first, and
1

4
if both honest and adversarial miners propagate their

blocks first with equal probability.

NaS selfish mining. NaS selfish mining can be studied under sev-

eral different adversarial objectives, see Appendix A for a thorough

discussion and comparison of these objectives. The objective we

consider in our work is the expected relative revenue of the adver-

sary, which is also considered in the analysis of [28] for PoStake.

There have been earlier analyses that consider several other objec-

tives, however. The works of [29] and [8] studied the probability of

an adversarial coalition overtaking the honest chain and showed

respectively that under this objective, the largest fraction of adver-

sarial resources that can be tolerated in PoStake based blockchains

is
1

1+𝑒 ≈ 0.269, and between
1

1+𝑒 < 𝑝 < 1

2
for Chia, a PoST-based

blockchain. The work of [12] studied selfish mining strategies in

PoStake blockchains under the objective of finding strategies that

give the adversarial coalition a larger payoff compared to following

the honest strategy. They showed that the expected advantage of

the adversary when growing a private tree from the genesis block

is 𝑒 times larger than the expected revenue of following the hon-

est strategy, implying that the maximum fraction of adversarial

resource that can be tolerated to be secure under this strategy and

objective is
1

𝑒 ≈ 0.37.

Optimal selfish mining strategies. There have been some works

that go beyond proposing and analysing specific selfish mining

strategies to actually claiming the optimality of these strategies.

The work of [27] modelled the Bitcoin protocol as an MDP and

proposed a method using binary search to solve it approximately in

order to find an optimal selfish mining strategy. [31] improved the

search method in [27], resulting in a method that finds an optimal

strategy but with an order of magnitude less computation. [19]

and [28] use deep reinforcement learning to automate discovery of

attack strategies in Bitcoin andNakamoto-PoStake, respectively, but

without guarantees on optimality. Finally, [13] suggested modelling

mining strategies in PoStake as an MDP and using anMDP solver to

find optimal selfish mining strategies. However, due to the infinite

size of their MDP, finding even an approximately optimal solution

is undecidable.
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2 PRELIMINARIES
2.1 System Model
We define a formal model for blockchain systems which we will

consider throughout this work. The model describes how block

mining proceeds and is parametrized by several parameters. Differ-

ent parameter value instantiations then give rise to formal models

for blockchains based on PoW, PoStake, or PoST protocols. We as-

sume the miners in the blockchain protocol are either adversarial or

honest. Honest miners all follow a prescribed protocol, whereas the

adversarial miners work (i.e. pool resources) together in a coalition.

System model.We assume that block mining proceeds in discrete

time steps, as in many discrete-time models of PoW [17, 24] and

PoStake [9] protocols. For a miner that owns a fraction 𝑝 ∈ [0, 1]
of the total resources in the blockchain and that can mine up to

𝑘 > 0 blocks at any given time step, we define (𝑝, 𝑘)-mining as

follows: the probability of mining a block at the given time step is

proportional to 𝑝 · 𝑘 , and the maximum number of blocks which

are available for mining is 𝑘 . One can think of 𝑘 as some further

constraints on the number of blocks a miner can mine on at any

given point in time, e.g. due to the number of VDFs they own in

PoST. Hence, (𝑝, 1)-mining corresponds to mining in PoW based

blockchains, (𝑝, 𝑘)-mining for 𝑘 < ∞ to mining in PoST based

blockchains with 𝑘 VDFs, and (𝑝,∞)-mining to mining in PoStake

based blockchains.

Adversarial and broadcast model. Let 𝑝 ∈ [0, 1] denote the frac-
tion of resources in the chain owned by the adversarial coalition.

We assume the adversarial coalition participates in (𝑝, 𝑘)-mining,

and the honest miners participate in (1 − 𝑝, 1)-mining, where the

only block the honest miners mine on at any time step is the most

recent block on the longest public chain. When there is a tie, i.e.,

two longest chains are gossiped through the network, the honest

miners will mine on the chain which is gossiped to them first. In

such situations, 𝛾 ∈ [0, 1] denotes the switching probability, i.e., the
probability of honest miners switching to the adversary’s chain.

2.2 Selfish Mining Objective
Chain quality. Chain quality is a measure of the number of

honest blocks in any consecutive segment of the blockchain. A

blockchain protocol is said to satisfy (𝜇, ℓ)-chain quality if for any

segment of the chain of length ℓ , the fraction of honest blocks in

that segment is at least 𝜇 [16].

Selfish mining objective. Let 𝜎 denote an adversarial mining strat-

egy. The selfish mining objective we analyse in our work is the ex-
pected relative revenue of the adversary. Formally, let revenueA and

revenueH denote the number of adversarial and honest blocks in

the main chain respectively. The expected relative revenue (ERRev)
of the adversary under strategy 𝜎 is defined as

ERRev(𝜎) = E𝜎
[

revenueA
revenueA + revenueH

]
Note that the chain quality of the blockchain under an adversarial

mining strategy 𝜎 is simply 1− ERRev(𝜎), hence our selfish mining

objective captures the expected change in the chain quality.

2.3 Markov Decision Processes
Asmentioned in Section 1, we will reduce the problem of computing

optimal selfish mining strategies for the expected relative revenue

objective to solving MDPs with mean-payoff objectives. In what

follows, we recall the necessary notions on MDPs and formally

define the mean-payoff objectives. For a finite set 𝑋 , we use D(𝑋 )
to denote the set of all probability distributions over 𝑋 .

Markov decision process. A Markov Decision Process (MDP) [26] is
a tupleM = (𝑆,𝐴, 𝑃, 𝑠0) where
• 𝑆 is a finite set of states, with 𝑠0 ∈ 𝑆 being the initial state,
• 𝐴 is a finite set of actions, overloaded to specify for each state

𝑠 ∈ 𝑆 the set of available actions 𝐴(𝑠) ⊆ 𝐴, and

• 𝑃 : 𝑆 × 𝐴 → D(𝑆) is a transition function, prescribing to each

(𝑠, 𝑎) ∈ 𝑆 ×𝐴 a probability distribution over successor states.

A strategy inM is a recipe to choose an action given a history of

states and actions, i.e. it is a function 𝜎 : (𝑆 ×𝐴)∗ × 𝑆 → D(𝐴). In
general, strategy can use randomization and memory. A positional
strategy uses neither randomization nor memory, i.e. it is a function

𝜎 : 𝑆 → 𝐴. We denote by Σ and Σ𝑝 the set of all strategies and

all positional strategies in M. Given a strategy 𝜎 , it induces a

probability measure P𝜎 [·] inM with an associated expectation

operator E𝜎 [·].
Mean-payoff objective. A reward function in M is a function

𝑟 : 𝑆 ×𝐴 × 𝑆 → R which to each state-action-state triple prescribes

a real-valued reward. Given an MDPM, a reward function 𝑟 and a

strategy 𝜎 , we define the mean-payoff of 𝜎 with respect to 𝑟 via

MP(𝜎) = E𝜎
[
lim inf

𝑁→∞

∑𝑁
𝑛=1 𝑟𝑛

𝑁

]
,

where 𝑟𝑛 = 𝑟𝑛 (𝑠𝑛, 𝑎𝑛, 𝑠𝑛+1) is the reward incurred at step 𝑛.

The mean-payoffMDP problem is to compute the maximal mean-

payoff that a strategy in the MDP can achieve. A classic result

in MDP analysis is that there always exists a positional strategy

𝜎∗ that achieves maximal mean-payoff in the MDP, i.e. there is

𝜎∗ ∈ Σ𝑝 such that MP(𝜎∗) = max𝜎∈Σ𝑝 MP(𝜎) = sup𝜎∈Σ MP(𝜎) [26].
Furthermore, the optimal positional strategy and the mean-payoff

that it achieves can be efficiently computed in polynomial time [15,

26].

3 SELFISH MINING ATTACK
3.1 Overview

Motivation. In order to motivate our selfish mining attack, we

first recall the classic selfish mining attack strategy in Bitcoin [11].

Recall, the goal of the selfish mining strategy is to mine a private

chain that overtakes the public chain (see Figure 1a). Selfish miners

secretly fork the main chain and mine privately, adding blocks to a

private, unannounced chain. These blocks are only revealed when

the length of the private chain catches up with that of the main

chain, forcing the honest miners to switch from the main to the

private chain and waste computational resources. While in PoW

blockchains each party mines on one block, in blockchains based

on efficient proof systems parties can mine on multiple blocks due

to ease of generating proofs. Our selfish mining attack exploits this

observation by creating multiple private forks concurrently.
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(a) Classic selfish mining attack in Bitcoin.

d = 4

(b) An illustration of our selfish mining attack with depth 𝑑 = 4

and 𝑓 = 2. Green boxes denote the main chain and white boxes
denote potential blocks that can be mined under attack strategy.

Outline of the attack. Our selfish mining attack proceeds with the

adversary creating several private forks at different blocks in the

main chain, see Figure 1b for an illustration. Rather than forking

on the most recent block alone, the adversary creates up to 𝑓 forks

on each of the last 𝑑 blocks on the main chain. Here, 𝑓 and 𝑑 are

parameters of the attack where 𝑓 is the number of forks created

at each public block and 𝑑 represents the depth of the adversary’s

attack on the chain. One can view 𝑑 as the persistence parameter of

the blockchain, which represents the depth at which earlier blocks

are practically guaranteed to remain in the main chain [16]. At each

time step, the adversary can either perform a

(1) mining action, i.e. attempt to mine a new block, or

(2) fork reveal action, i.e. publicly announce one of the private forks
whose length is greater than or equal to that of the main chain.

Deciding on the optimal order of mining and fork reveal actions that

the adversary should perform at each time step towards maximizing

its expected relative revenue is a highly challenging problem. This

is because, at each time step, the party to mine the next block is

chosen probabilistically (see our System Model in Section 2.2), and

the process results in a system with an extremely large number of

states. For any given precision parameter 𝜖 > 0, our analysis will

provide both an 𝜖-optimal strategy among selfish mining strategies

that the adversary can follow, together with the exact value of the
expected relative revenue guaranteed by this strategy.

Formal model of the attack. The goal of our analysis is to find

an optimal selfish mining strategy which maximizes the expected

relative revenue of the adversary. Note that this is a sequential

decision making problem, since the optimal strategy under the

above selfish mining setting must at every decision step optimally

choose whether to perform a mining or a fork release action. Hence,

in order to analyze this problem, in Section 3.2 we formally model

our problem as an MDP. The state space of the MDP consists of all

possible configurations of the main chain and private forks with

the initial state corresponding to the time step at which the selfish

mining attack is initiated. The action space of the MDP consists of

the mining action as well as one fork release action for each private

fork whose length is greater than or equal to that of the main chain.

Finally, the probabilistic transition function of the MDP captures

the probabilistic process that generates and determines ownership

(honest or adversarial) of new blocks to be added to the blockchain,

as well as the process of determining the new main chain whenever

the adversary publishes one or more private forks of equal length.

Formal analysis of the attack. Recall, the objective of our self-
ish mining attack is to maximize the expected relative revenue of

the adversary. To do this, in Section 3.3 we define a class of re-

ward functions in the MDP constructed in Section 3.2. We show

that, for any 𝜖 > 0, we can compute an 𝜖-optimal selfish mining

strategy in the MDP and the exact value of the expected relative

revenue that it guarantees by solving the mean-payoff MDP with

respect to a reward function belonging to the class of constructed

reward functions. We solve mean-payoff MDPs by using off-the-

shelf tools as mentioned in Section 2.3. Our analysis yields a fully
automated method for computing 𝜖-optimal strategies and values

of the expected relative revenue that provides formal guarantees on
the correctness of its results.

3.2 Formal Model
We now formally model our selfish mining attack as an MDP. Recall,

an MDPM = (𝑆,𝐴, 𝑃, 𝑠0) is an ordered tuple where 𝑆 is a finite set

of states, 𝐴 is a finite set of actions overloaded to specify for each

state 𝑠 ∈ 𝑆 the set of available actions 𝐴(𝑠) ⊆ 𝐴, 𝑃 : 𝑆 ×𝐴→ D(𝑆)
is a probabilistic transition function, and 𝑠0 ∈ 𝑆 is the initial state.

Hence, in order to formally model our attack as an MDP, we need

to define each of these four objects.

Model parameters. Our MDP model uses as a basis the System

Model that we defined in Section 2.2. Thus, it is parameterized by

the parameters 𝑝 and 𝛾 , but also by three additional parameters

specific the selfish mining attack itself. We use N to denote the set

of all positive integers:

• Relative resource of the adversary. 𝑝 ∈ [0, 1] denotes the fraction
of resources in the blockchain owned by the adversary.

• Switching probability. 𝛾 ∈ [0, 1] denotes the probability of an

honest miner switching to a newly revealed adversarial chain

that is of the same length as the main chain.
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• Attack depth. 𝑑 ∈ N denotes the depth of the adversary’s attack

on the chain, i.e. the number of last blocks on the main chain on

which the adversary mines private forks.

• Forking number. 𝑓 ∈ N denotes the number of private forks that

the adversary creates at each of the last 𝑑 public blocks.

• Maximal fork length. 𝑙 ∈ N denotes the maximal private fork

length. Introducing this parameter ensures that our MDP model

consists of finitely many states, which is necessary since existing

mean-payoff MDP solvers are applicable to finite state MDPs [18,

20]. We discuss the implications of this in Section 3.4.

MDP definition. We define the MDPM = (𝑆,𝐴, 𝑃, 𝑠0) as follows:
• States. The state space is defined via

𝑆 =

{
(C,O, type)

���C ∈ {0, . . . , 𝑙}𝑑×𝑓 ,O ∈ {honest, adversary}𝑑−1,
type ∈ {mining,honest, adversary}

}
,

i.e. each state is defined as a triple (C,O, type) where C defines

the current blockchain configuration (i.e. topology) up to depth 𝑑 ,

O specifies who owns each block in the main chain up to depth

𝑑 (honest miners or the adversary), and type specifies whether

the parties are still mining or some party has mined a new block

and is supposed to add it to the blockchain. In particular:

– For each 1 ≤ 𝑖 ≤ 𝑑 and 1 ≤ 𝑗 ≤ 𝑓 , we use C[𝑖, 𝑗] to denote the
length of the 𝑗-th private fork mined by the adversary at the

depth 𝑖 block on the main chain. Each private fork has length

at most 𝑙 , so we impose that each 𝐶 [𝑖, 𝑗] ∈ {0, . . . , 𝑙}.
– For each 1 ≤ 𝑖 < 𝑑 , we use O[𝑖] to denote who owns the block
at depth 𝑖 in the main chain. In particular, O[𝑖] = honest if

the block is owned by honest miners and O[𝑖] = adversary

if the block is owned by the adversary.

– Finally, type specifies whether a new block to be added to the

blockchain is still being mined in which case we set type =

mining, or if some party has generated the proof and gets to

add a new block in which case we set type = honest and

type = adversary, respectively.

• Initial State. Initial state 𝑠0 = (C0,O0, type0) corresponds to the

time step at which the selfishmining attack is initiated. Hence, we

set C0 = [0]𝑑×𝑓 since the length of each private fork is initially

0, O0 = [honest]𝑑 and type0 = mining.

• Actions. The action space is defined via

𝐴 = {mine} ∪
{
release𝑖, 𝑗,𝑘

��� 1 ≤ 𝑖 ≤ 𝑑, 1 ≤ 𝑗 ≤ 𝑓 , 1 ≤ 𝑘 ≤ 𝑙

}
.

Intuitively, mine prescribes that the adversary should not release

any private forks and should simply continue mining new blocks.

On the other hand, release𝑖, 𝑗,𝑘 prescribes that the adversary

should publish the first 𝑘 blocks of the 𝑗-th private fork mined

on the block at depth 𝑖 in the main chain. The set of available

actions at each MDP state 𝑠 = (C,O, type) is defined as follows:

– If type = mining, then 𝐴(𝑠) = {mine}.
– If type ∈ {honest, adversary}, then
𝐴(𝑠) = {mine} ∪ {release𝑖, 𝑗,𝑘 | 𝑘 ≤ C[𝑖, 𝑗]}, where the condi-
tion 𝑘 ≤ C[𝑖, 𝑗] simply ensures that the length of the published

part of the private fork cannot exceed the total length of the

private fork.

• Transition Function. Finally, we define the transition function

𝑃 : 𝑆 × 𝐴 → D(𝑆). Let 𝑠 = (C,O, type) and 𝑎 ∈ 𝐴(𝑠) be an

action available in 𝑠:

– If type = mining, then we must have 𝑎 = mine as the only

available action. The next state in the MDP is chosen prob-

abilistically, based on who mines the next block and where.

Recall, the honest miners own 1−𝑝 fraction of resources in the

blockchain and are mining on the main chain only, whereas the

adversary owns 𝑝 fraction of resources but mines on at most

𝑑 · 𝑓 private forks. Note that the adversary will concurrently

mine on top of each private fork starting at public blocks up

to depth 𝑑 in the main chain, as well as on top of each public

block up to depth 𝑑 at which not all 𝑓 private works were

initiated. Hence:

∗ Denote by 𝜎 the total number of blocks that the adversary

is mining on. For each 1 ≤ 𝑖 ≤ 𝑑 and 1 ≤ 𝑗 ≤ 𝑓 , if the 𝑗-th

private fork on the public block at depth 𝑖 in the main chain

is not empty, adversary mines a new block on it and the

MDP moves to 𝑠
𝑖, 𝑗
adv

= (C′,O, adversary) with probability

𝑃 (𝑠, 𝑎) (𝑠𝑖, 𝑗
adv
) = 𝑝

1 − 𝑝 + 𝑝 · 𝜎 .

Here, C′ coincides with C on all entries except C′ [𝑖, 𝑗] =
min{C[𝑖, 𝑗] + 1, 𝑙}, where the new block is found on top of

the 𝑗-th private fork on the block at depth 𝑖 . The minimum

ensures that new block is not added if the length of the fork

would exceed 𝑙 .

Moreover, if at least one private fork on the public block at

depth 𝑖 in the main chain is empty, adversary mines a block

on it to start a new private fork and theMDPmoves to 𝑠
𝑖, 𝑗∗
adv

=

(C′′,O, adversary) with probability
𝑝

1−𝑝+𝑝 ·𝜎 , where 𝑗∗ is
the smallest index of a private fork that is currently empty

at the depth 𝑖 public block and C′′ coincides with C on all

entries except C′′ [𝑖, 𝑗∗] = 1.

∗ Honest miners add a new block to the main chain and the

MDPmoves to state 𝑠honest = ( [0] 𝑓 ·C[1 : 𝑑−1], [honest] ·
O[1 : 𝑑 − 2],honest) with probability

𝑃 (𝑠, 𝑎) (𝑠honest) =
1 − 𝑝

1 − 𝑝 + 𝑝 · 𝜎 .

where 𝜎 is as defined above. We use [0] 𝑓 · C[1 : 𝑑 − 1] to
denote the 𝑑 × 𝑓 matrix whose first column consists of zeros

(representing empty private forks on the newly added block)

and the remaining columns are the first 𝑑 − 1 columns of C.
Similarly, [honest] · O[1 : 𝑑 − 2] denotes the vector whose
first component is honest corresponding to the new block,

followed by the first 𝑑 − 2 components of O.
– If type ≠ mining but 𝑎 = mine, then the adversary con-

tinues mining new blocks and the MDP moves to 𝑠mine =

(C,O,mining) with probability

𝑃 (𝑠, 𝑎) (𝑠mine) = 1.

– If type = honest and 𝑎 = release𝑖, 𝑗,𝑘 , then the adversary

publishes the first 𝑘 blocks of the 𝑗-th private fork mined on

the block at depth 𝑖 in the main chain. Hence, the next MDP

state is determined by the chain which gets accepted as the

main chain by honest miners. If the newly published fork is
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strictly longer than the main chain, the honest miners accept

it as the new main chain with probability 1. Otherwise, if the

main chain and the published fork have the same length, then

a “race” between the chains happens and the published fork

becomes the main chain with switching probability 𝛾 . Hence:

∗ If the published fork is longer than themain chain, the honest

miners switch to the fork and the MDP moves to 𝑠accept =

(C′ · [0] (𝑚𝑖𝑛 (𝑑,𝑘 )−1)×𝑓 ·C′′, [adversary]𝑚𝑖𝑛 (𝑑−1,𝑘 ) ·O[𝑘+
1 : 𝑑 − 1],mining) with probability

𝑃 (𝑠, 𝑎) (𝑠accept) = 1.

Here, C′ is a (1× 𝑓 )-dimensional vector with 0 entries except

that C′ [1, 1] = C[𝑖, 𝑗] − 𝑘 . So, the adversary keeps the part

of the published private fork consisting of the last C[𝑖, 𝑗] −
𝑘 blocks that have not been revealed. On the other hand,

C′′ coincides with C[𝑘 + 1 : 𝑑] on all entries except that

C′′ [𝑖, 𝑗] = 0. Hence, the adversary keeps and continues

mining on all usable private forks, with one new private

fork of initial length 0 being created to replace the published

fork. Note, O[𝑘 + 1 : 𝑑 − 1] and C[𝑘 + 1 : 𝑑] are empty if

𝑘 + 1 > 𝑑 − 1 and 𝑘 + 1 > 𝑑 , respectively.

∗ Otherwise, if the published fork and themain chain are of the

same length, a race happens and honest miners switch to the

published fork with probability 𝛾 . and the new block will be

mined by adversarywith probability 𝑝 . So, theMDPmoves to

𝑠accept = (C′·[0] (𝑚𝑖𝑛 (𝑑,𝑘 )−1)×𝑓 ·C′′, [adversary]𝑚𝑖𝑛 (𝑑−1,𝑘 ) ·
O[𝑘 + 1 : 𝑑 − 1],mining) with probability

𝑃 (𝑠, 𝑎) (𝑠accept) = 𝛾,

where C′ and C′′ are as above, and moves to 𝑠reject =

(C,O,mining) with probability

𝑃 (𝑠, 𝑎) (𝑠reject) = 1 − 𝛾 .

– Finally, if type = adversary, 𝑎 = release𝑖, 𝑗,𝑘 and the pub-

lished private fork is longer than the main chain, the MDP

moves to

𝑠accept = (C′·[0] (𝑚𝑖𝑛 (𝑑,𝑘 )−1)×𝑓 ·C′′, [adversary]𝑚𝑖𝑛 (𝑑−1,𝑘 ) ·
O[𝑘 + 1 : 𝑑 − 1],mining) with probability

𝑃 (𝑠, 𝑎) (𝑠accept) = 1.

where C′ and C′′ are defined as the previous case. Note that if
the published fork and the main chain are of the same length,

the race cannot happen as the last block was mined by the

adversary and enough time has passed for all the miners to

receive the public chain.

3.3 Formal Analysis
Goal of the analysis. We now show how to compute the optimal

expected relative revenue together with an adversarial strategy

achieving it in the MDPM = (𝑆,𝐴, 𝑃, 𝑠0), up to an arbitrary preci-

sion parameter 𝜖 > 0. Formally, for each strategy 𝜎 inM, let

ERRev(𝜎) = E𝜎
[

revenueA
revenueA + revenueH

]
be the expected relative revenue under adversarial strategy𝜎 , i.e. the

relative ratio of the number of blocks accepted on the main chain

belonging to the adversary and to honest miners. Moreover, let

ERRev∗ = sup

strategy 𝜎 inM
ERRev(𝜎)

be the optimal expected relative revenue that an adversarial strategy

can attain. Given a precision parameter 𝜖 > 0, our goal is to compute

(1) a lower bound ERRev ∈ [ERRev∗ − 𝜖, ERRev∗], and
(2) a strategy 𝜎 inM such that ERRev(𝜎) ∈ [ERRev∗ − 𝜖, ERRev∗].
We do this by defining a class of reward functions in the MDPM
and showing that, for any value of the precision parameter 𝜖 > 0,

we can compute the above by solving the mean-payoff MDP with

respect to a reward function belonging to this class. Our analysis

draws insight from that of [27], which considered selfish mining

in PoW blockchains and also reduced reasoning about expected

relative revenue to solving mean-payoff MDPs with respect to

suitably defined reward functions. However, in contrast to [27],

we consider selfish mining in efficient proof systems in which the

adversary can mine on multiple blocks, meaning that our design of

reward functions and the analysis require additional care.

Reward function definition. The key challenge in designing the

reward function is that the main chain and the blocks on it may

change whenever the adversary publishes a private fork. Hence, we

design the reward function to incur positive (resp. negative) reward

whenever a block owned by the adversary (resp. honest miners)

is accepted at the depth strictly greater than 𝑑 in the main chain.

Since the adversary only mines and publishes private forks mined

on blocks up to depth 𝑑 in the main chain, this means that blocks

beyond depth 𝑑 are guaranteed to remain on the main chain.

Formally, for each 𝛽 ∈ [0, 1], we define 𝑟𝛽 : 𝑆 × 𝐴 × 𝑆 → R to

be a reward function inM which to each state-action-state triple

(𝑠, 𝑎, 𝑠′) assigns the reward:
• 1− 𝛽 , for each block belonging to the adversary accepted at depth
greater than 𝑑 as a result of performing the action;

• −𝛽 , for each block belonging to honest miners accepted at depth

greater than 𝑑 as a result of performing the action.

This definition can be formalized by following the same case by case

analysis as in the definition of the transition function in Section 3.2.

For the interest of space, we omit the formal definition. For each 𝛽

and strategy 𝜎 in the MDP, let MP𝛽 (𝜎) be the mean-payoff under 𝜎

with respect to the reward function 𝑟𝛽 , and let MP∗
𝛽
= sup𝜎 MP𝛽 (𝜎).

Note that, since for each state-action-state triple the value of the

reward 𝑟𝛽 (𝑠, 𝑎, 𝑠′) is monotonically decreasing in 𝛽 ∈ [0, 1], we
have that MP∗

𝛽
is also monotonically decreasing in 𝛽 ∈ [0, 1].

Formal analysis. Our formal analysis is based on the following

theorem. For clarity of exposition, we defer the proof of the theorem

to Appendix C . For every 𝜖 > 0, the theorem shows how to relate

the optimal expected relative revenue in the MDP and 𝜖-optimal

strategies to the optimal mean-payoff and 𝜖-optimal strategies un-

der the reward function 𝑟𝛽 for a suitably chosen value of 𝛽 .

Theorem 3.1. We have MP∗
𝛽∗

= 0 if and only if 𝛽∗ = ERRev∗.
Moreover, if 𝜖 > 0 and 𝛽 ∈ [ERRev∗ − 𝜖, ERRev∗], then for any
strategy 𝜎 such that MP𝛽 (𝜎) = MP∗

𝛽
we have ERRev(𝜎) ∈ [ERRev∗ −

𝜖, ERRev∗].
Following Theorem 3.1, we compute ERRev and 𝜎 for a given pre-

cision 𝜖 > 0 as follows. Algorithm 1 shows the pseudocode of our
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Algorithm 1 Formal analysis procedure

Input Precision parameter 𝜖 > 0, MDP parameters 𝑝, 𝑑, 𝑓 , 𝑙, 𝛾

M ←MDP constructed as in Section 3.2

𝛽
low

, 𝛽up ← 0, 1

while 𝛽up − 𝛽low ≥ 𝜖 do
𝛽 ← (𝛽

low
+ 𝛽up)/2

MP∗
𝛽
, 𝜎𝛽 ← solve mean-payoff MDPM with reward 𝑟𝛽

if MP∗
𝛽
< 0 then

𝛽up ← 𝛽

else
𝛽
low
← 𝛽

end if
end while
ERRev← 𝛽

low

𝜎 ← solve mean-payoff MDPM with reward 𝑟𝛽low
Return Expected relative revenue ERRev, strategy 𝜎

formal analysis. The algorithm performs binary search in 𝛽 ∈ [0, 1]
in order to find a value of 𝛽 for which 𝛽 ∈ [ERRev∗ − 𝜖, ERRev∗].
In each iteration of the binary search, the algorithm uses an off-

the-shelf mean-payoff MDP solver to compute the optimal mean-

payoff MP∗
𝛽
and a strategy 𝜎𝛽 attaining it. Upon binary search ter-

mination, we have ERRev∗ ∈ [𝛽
low

, 𝛽up], since MP∗𝛽 is a monoton-

ically decreasing function in 𝛽 and since MP∗
𝛽∗

= 0 if and only if

𝛽∗ = ERRev∗ by the first part of Theorem 3.1. Hence, as the bi-

nary search terminates when 𝛽up − 𝛽
low

< 𝜖 , we conclude that

ERRev = 𝛽
low
∈ [ERRev∗ − 𝜖, ERRev∗]. Moreover, since 𝜎 is op-

timal for the mean-payoff objective with reward 𝑟𝛽low and since

𝛽
low
∈ [ERRev∗ −𝜖, ERRev∗], by the second part of Theorem 3.1 we

have ERRev(𝜎) ∈ [ERRev∗ − 𝜖, ERRev∗].

Corollary 3.2 (Correctness of the analysis). Let 𝜖 > 0.
Suppose that Algorithm 1 returns a value ERRev and a strategy 𝜎 in
M. Then, we have ERRev, ERRev(𝜎) ∈ [ERRev∗ − 𝜖, ERRev∗].

Corollary 3.3 (Formal lower bound). Suppose that Algo-
rithm 1 returns a value ERRev and a strategy 𝜎 . Then, there exists
a selfish mining attack in the blockchain that achieves the expected
relative revenue of at least ERRev.

3.4 Key Features and Limitations
Key features. The key features of our selfish mining attack and

formal analysis are as follows:

(1) Fully automated analysis. Manual (i.e. non-automated) analysis

of optimal selfish mining attacks is already challenging and

technically involved for PoW blockchains, where the adversary

only grows a single private fork [11]. Hence, it would be even

more difficult and potentially intractable in blockchains based

on efficient proof systems. By modelling our selfish mining

attack as an MDP and reducing the analysis to solving mean-

payoff MDPs, we leverage existing methods for formal analysis

of MDPs to obtain a fully automated analysis procedure, thus
avoiding the necessity for tedious manual analyses.

(2) Formal guarantees on correctness. Our analysis provides for-
mal guarantees on the correctness of its output. Again, this is

achieved by formally reducing our problem to solving mean-

payoff MDPs for which exact algorithms with formal correct-

ness guarantees are available [18, 20].

(3) Flexibility of the analysis. Our analysis is agnostic to the val-

ues of system model and attack parameters and it is flexible
to their changes. Hence, it allows us to tweak the parameter

values and study their impact on the optimal expected relative

revenue, while preserving formal guarantees on the correctness.

To illustrate the flexibility, observe that:

• If the attack depth 𝑑 , forking number 𝑓 or maximal fork

length 𝑙 of the attack change, then both the state space and

the action space of the MDP change.

• If the relative resource of the adversary 𝑝 or the switching

probability 𝛾 change, then the transition function of the MDP

changes.

• As we show in our experiments in Section 4, a change in any

of these parameter values results in a change in the optimal

expected relative revenue that the adversary can achieve.

The flexibility of our analysis is thus a significant feature, since

it again avoids the need for tediousmanual analyses for different

parameter values that give rise to different MDPs.

Limitations. While our formal analysis computes an optimal

selfish mining strategy in the MDP up to a desired precision, note

that there still exist selfish mining attacks that do not correspond to

any strategy in our MDP model. Hence, the strategy computed by

our method is optimal only with respect to the subclass of strategies
captured by the MDP model. There are two key reasons behind the

incompleteness of our MDP model:

(1) Bounded forks. In order to ensure finiteness of our MDP model,

we impose an upper bound 𝑙 on the maximal length of each pri-

vate fork. This means that the adversary cannot grow arbitrarily

long private forks. Since the probability of the adversary being

able to grow extremely long private forks is low, we believe

that this limitation does not significantly impact the expected

relative revenue of selfish mining strategy under this restriction.

(2) Disjoint forks vs fork trees. Our attack grows private forks on dif-

ferent blocks in the main chain. However, rather than growing

multiple disjoint private forks, a more general class of selfish

mining attacks would be to allow growing private trees. We

stick to disjoint private forks in order to preserve computational
efficiency of our analysis, since allowing the adversary to grow

private trees would result in our MDP states needing to store

information about each private tree topology, which would lead

to a huge blow-up in the size of the MDP. In contrast, stor-

ing disjoint private forks only requires storing fork lengths,

resulting in smaller MDP models.

We conclude by noting that, while our formal analysis is incomplete

due to considering a subclass of selfish mining attacks, the formal

guarantees provided by our analysis still ensure that we compute

a true lower bound on the expected relative revenue that a selfish

mining attack achieves.

4 EXPERIMENTAL EVALUATION
We implement the MDP model and the formal analysis procedure

presented in Section 3 and perform an experimental evaluation

towards answering the following research questions (RQs):
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RQ1 What is the expected relative revenue that our selfish mining

strategy achieves? How does it compare to direct extensions

of classic selfish mining attacks on PoW blockchains [11] or

to mining honestly?

RQ2 How do different values of the System Model parameters

impact the expected relative revenue that our selfish mining

attack can achieve? The System Model parameters include

the relative resource of the adversary 𝑝 ∈ [0, 1] and the

switching probability 𝛾 ∈ [0, 1].
Baselines. To answer these RQs, we compare our selfish mining

attack against two baselines:

(1) Honest mining strategy. This is the strategy extending only the

leading block of the main chain.

(2) Single-tree selfish mining attack. This is the attack strategy that

exactly follows the classic selfish mining attack in Bitcoin pro-

posed in [11], however it grows a private tree fork rather than

a private chain. Analogously as in [11], the adversary publishes

the private tree whenever the length of the main chain catches

up with the depth of the private tree. We omit the formal model

of this baseline due to space limitations. We also use this base-

line to empirically evaluate how severe is the second limitation

discussed in Section 3.4.

Experimental setup. We perform an experimental comparison of

our attack and the two baselines for the values of the adversarial

relative resource 𝑝 ∈ [0, 0.3] (in increments of 0.01) and the switch-

ing probability 𝛾 ∈ {0, 0.25, 0.5, 0.75, 1}. As for the parameters of

each selfish mining attack:

• For our selfish mining attack, we set the maximal length of pri-

vate forks 𝑙 = 4 and consider all combinations

(𝑑, 𝑓 ) ∈ {(1, 1), (2, 1), (2, 2), (3, 2), (4, 2)} of the values of the at-
tack depth 𝑑 and the forking number 𝑓 .

• For the single-tree selfish mining attack baseline, we set the

maximal depth of the private tree 𝑙 = 4 to match our maximal

private fork length, and the maximal width of the private tree

𝑓 = 5.

All experiments were run on Ubuntu 20, 2.80GHz 11th Gen Intel(R)

Core(TM) i7-1165G7 CPU, 16 GB RAM, and 16 GB SWAP SSD

Memory. For solving mean-payoff MDPs, we use the probabilistic

model checker Storm [18], a popular MDP analysis tool within the

formal methods community
2
.

Attack Type Parameters Time (s)

Our Attack 𝑑 = 1, 𝑓 = 1 3.8

Our Attack 𝑑 = 2, 𝑓 = 1 5.4

Our Attack 𝑑 = 2, 𝑓 = 2 61.7

Our Attack 𝑑 = 3, 𝑓 = 2 2295.3

Our Attack 𝑑 = 4, 𝑓 = 2 77761.7

Single-tree Selfish Mining 𝑓 = 5 2406.8

Table 1: Runtimes for various attack types and parameter
settings and 𝛾 = 0.5.

2
Refer to our github repository for our implementation details:

https://github.com/mehrdad76/Automated-Selfish-Mining-Analysis-in-EPS-

Blockchains

Results. Table 1 shows the runtimes of both our selfish mining

attack as well as the single-tree selfish mining attack given various

parameter settings and for a fixed switching parameter of 𝛾 = 0.5.

We only show timings for 𝛾 = 0.5 as we found the runtimes of

our experiments to be very similar across all 𝛾 parameter settings.

As can be seen from Table 1, increasing the depth of the attack

increases the runtime of our evaluation by an order of magnitude

due to the exponential increase in state space.

Experimental results are shown in Figure 2, showing plots for

each 𝛾 ∈ {0, 0.25, 0.5, 0.75, 1}. As we can see from the plots, our

selfish mining attack consistently achieves higher expected relative
revenue ERRev than both baselines for each value of 𝛾 , except when

𝑑 = 1 and 𝑓 = 1. Indeed, already for 𝑑 = 2 and 𝑓 = 1 when the

adversary grows a single private fork on the first two blocks in

the main chain, our attack achieves higher ERRev than both base-

lines. This shows that growing private forks at two different blocks

already provides a more powerful attack than growing a much

larger private tree at a single block. Hence, our results indicate

that growing disjoint private forks rather than trees is not a signifi-

cant limitation, justifying our choice to grow private forks towards

making the analysis computationally tractable.

The attained ERRev grows significantly as we increase 𝑑 and 𝑓

and allow the adversary to grow more private forks. In particular,

for 𝑑 = 4, 𝑓 = 2, and relative adversarial resource 𝑝 = 0.3, our

attack achieves ERRev that is larger by at least 0.2 than that of both

baselines, for all values of the switching probability𝛾 . This indicates

a significant advantage of selfish mining attacks in efficient proof

systems blockchains compared to PoW, as the ability to simulta-

neously grow multiple private forks on multiple blocks translates

to a much larger ERRev. Our results suggest that further study of

techniques to reduce the advantage of the adversary when mining

on several blocks is important in order to maintain reasonable chain

quality for efficient proof systems blockchains.

Finally, we notice that larger 𝛾 values correspond to larger ERRev
in our strategies. This is expected, as larger 𝛾 values introduce bias

in the likelihood of the adversarial chain becoming the main chain.

This is most pertinently observed in the case of 𝑑 = 𝑓 = 1: since

𝑑 = 𝑓 = 1 corresponds to a strategy that only mines a private block

on the leading block in the main chain, the only way to deviate

from honest mining is to withhold a freshly mined block and reveal

it together with the occurrence of a freshly mined honest block.

As we can see in the plots, for 𝛾 < 0.5 the achieved ERRev of the

strategy with 𝑑 = 𝑓 = 1 corresponds to that of honest mining and

the two lines in plots mostly overlap, whereas this strategy only

starts to pay off for 𝛾 > 0.5 and for the proportion of resource

𝑝 > 0.25. Altogether, this suggests that further and careful analysis

of the control of the adversary over the broadcast network as well

as the fork choice breaking rule is necessary.

Key takeaways. The key takeaways of our experimental evalua-

tion are as follows:

• Our selfishmining attack achieves significantly higher ERRev than
both baselines, reaching up to 0.2 difference in ERRev. Thus, our
results strongly suggest that growing private forks at multiple

blocks is much more advantageous than growing all forks on the

first block in the main chain.

https://github.com/mehrdad76/Automated-Selfish-Mining-Analysis-in-EPS-Blockchains
https://github.com/mehrdad76/Automated-Selfish-Mining-Analysis-in-EPS-Blockchains
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(a) 𝛾 = 0 (b) 𝛾 = 0.25 (c) 𝛾 = 0.5

(d) 𝛾 = 0.75 (e) 𝛾 = 1

Figure 2: Comparison of expected relative revenue ERRev as a function of adversarial resource achieved by our attack and the
baselines for different values of 𝛾 .

• Our results suggest that growing private trees rather than disjoint

private forks would not lead to a significant improvement in the

adversary’s ERRev. Hence, the second limitation of our attack

discussed in Section 3.4 does not seem to be significant.

• Our results suggest that enhancing security against selfishmining

attacks in efficient proof system blockchains requires further and

careful analysis of the control that the adversary has over the

broadcast system. In particular, for large values of the switching

probability 𝛾 , even the simplest variant of our attack with 𝑑 = 1

and 𝑓 = 1 starts to pay off when 𝑝 > 0.25.

5 CONCLUSION
We initiated the study of optimal selfish mining strategies for un-

predictable blockchain protocols based on efficient proof systems.

To this end, we considered a selfish mining objective corresponding

to changes in chain quality and proposed a novel selfish mining

attack that aims to maximize this objective. We formally modeled

our attack as an MDP strategy and we presented a formal analysis

procedure for computing an 𝜖-tight lower bound on the optimal

expected relative revenue in the MDP and a strategy that achieves

it for a specified precision 𝜖 > 0. The procedure is fully automated

and provides formal guarantees on the correctness of the computed

bound.

We believe that our work opens several exciting lines for future

research. We highlight two particular directions. First, our formal

analysis only allows us to compute lower bounds on the expected

relative revenue that an adversary can achieve. A natural direction

of future research would be to consider computing upper bounds on
the optimal expected relative revenue for fixed resource amounts.

Second, as discussed in Section 3.4, our formal analysis only com-

putes 𝜖-tight lower bounds on the expected relative revenue by

following a strategy in our MDP model. However, our model in

Section 3.2 introduces assumptions such as growing private forks

instead of trees and bounding the maximal length of each fork

for tractability purposes. It would be interesting to study whether

these assumptions could be relaxed while still providing formal

correctness guarantees.
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A NAS MINING OBJECTIVES
Adversarial mining strategies in blockchains based on efficient

proof systems can be analysed with respect to several adversarial

goals. Here, we outline three such goals: double spending, short

and long term selfish-mining.

The first objective is double spending, where one considers the

probability of an adversarial chain overtaking the public, honest

chain [8, 29] (see Figure 3). Here the goal of the adversary is to

rapidly and secretly grow a sufficiently long private chain such that

this private chain eventually overtakes the honest chain, this way

removing a presumably confirmed transaction. What “sufficiently”

long means depends on the confirmation time in the chain, e.g., in

Bitcoin one generally assumes a transaction that is six blocks deep

in the chain to be confirmed.

The second objective, “short-term selfish mining”, considered

eschews the goal of overtaking the honest chain completely and

focuses simply on finding an adversarial mining strategy that is

more profitable for the adversary rather than following the stip-

ulated mining protocol [12] (see Figure 4). The profitability of an

adversarial mining strategy under this objective is measured by

the total number of adversarial blocks on the main chain. Like in

the analyses of selfish mining strategies under the first objective,

analyses of strategies under this second objective also focus on

finding the largest fraction of adversarial resources the blockchain

can tolerate in order to be secure under such adversarial strategies.

The final objective, “long-term selfish mining”, considered is

directly related to attacking the chain quality of the underlying

blockchain. Under this objective, the adversary’s reward is not

measured by the total number of adversarial blocks on the main

chain, but the relative number of adversarial blocks on the main

chain. Figure 5 illustrates the difference between simplymaximising

the total reward as per objective 2 and the relative reward. In the

top chain in Figure 5, the adversary’s total reward is 4 which is

larger than the total reward of 3 in the bottom chain. However,

the relative reward of the adversary in the top chain is
2

3
which

is smaller than the relative reward of 1 in the bottom chain. Note

that the chain quality and the relative reward sum up to 1, thus

maximising the relative reward minimises the chain quality.

B EFFICIENT PROOF SYSTEMS
Proof of stake. PoStake is a block leader election protocol where

a leader is selected with probability proportionate to the amount of

stake (i.e., coins) they hold in the ledger at the selection time. Thus,

a user with 𝑝 ∈ [0, 1] fraction of stake is elected with probability

proportionate to 𝑝 . Examples of longest-chain blockchains based

on PoStake are Ouroboros [9] and post-merge Ethereum [1].

Proofs of space and time. Proof of Space (PoSpace) is a protocol
between a prover and a verifier whereby the prover stores some

data and, upon a challenge from the verifier, has to return a solution

to the challenge that involves reading a small portion of the data.

The consensus protocol of blockchains based on PoST [8] use both

PoSpace challenges as well as verifiable delay functions [4, 25, 30]

(VDFs). VDFs are functions that are inherently sequential to com-

pute but the correctness of computation is efficiently verifiable. As

such, the process of mining blocks in such blockchains depends not

https://docs.chia.net/assets/files/Precursor-ChiaGreenPaper-82cb50060c575f3f71444a4b7430fb9d.pdf
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G

G

Figure 3: The top chain shows adversarial (red) and honest
(green) miners extending the public chain. The bottom
chain shows adversarial miners growing a private chain
to overtake the public chain.
G

G

reward = 3

reward = 4

Figure 4: The chains show the reward of the adversary
when following the honest strategy and when growing a
private chain to overtake the public chain.

G

G

reward = 4
chain quality = 1

3

reward = 3
chain quality = 0

Figure 5: The chains show the reward of the adversary and
chain quality of the chain when all users mine honestly
and when the adversary grows a private chain.

only on the amount of space allocated to compute PoSpace chal-

lenges, but also on the amount of VDFs to compute VDF challenges.

C PROOF OF THEOREM 3.1
Theorem 3.1. We have MP∗

𝛽∗
= 0 if and only if 𝛽∗ = ERRev∗.

Moreover, if 𝜖 > 0 and 𝛽 ∈ [ERRev∗ − 𝜖, ERRev∗], then for any
strategy 𝜎 such that MP𝛽 (𝜎) = MP∗

𝛽
we have ERRev(𝜎) ∈ [ERRev∗ −

𝜖, ERRev∗].

Proof. Before we prove the theorem, we start by making sev-

eral observations and introducing additional notation. The proof

assumes familiarity with basic notions of Markov chains and MDPs,

for which we refer the reader to [22, 26]. First, we observe that

every strategy in the MDPM = (𝑆,𝐴, 𝑃, 𝑠0) gives rise to an ergodic
Markov chain. To see this, observe that the initial state 𝑠0 is reached
with positive probability from any other state in the MDP, since

honest miners with positive probability mine and add new blocks

to the main chain for 𝑑 consecutive time steps upon which the MDP

would return to the initial state 𝑠0.

Next, we define two auxiliary reward functions in the MDPM:

• 𝑟𝐻 : 𝑆 × 𝐴 × 𝑆 → R, which incurs reward 1 for each honest

miner’s block accepted at depth > 𝑑 upon the action.

• 𝑟𝐴 : 𝑆 ×𝐴 × 𝑆 → R, incurs reward 1 for each adversary’s block

accepted at depth > 𝑑 upon the action.

For each integer 𝑛 ≥ 1, denote by 𝑟𝐴𝑛 and 𝑟𝐻𝑛 the rewards incurred

at the 𝑛-th step in the MDP. Since the expected relative revenue is

defined as the expected ratio of the revenues of the adversary and

the total revenue of all parties, for every strategy 𝜎 we have

ERRev(𝜎) = E𝜎
[
lim inf

𝑁→∞

∑𝑁
𝑛=1 𝑟

𝐴
𝑛∑𝑁

𝑛=1 𝑟
𝐴
𝑛 + 𝑟𝐻𝑛

]
.

On the other hand, for each 𝛽 ∈ [0, 1] we have 𝑟𝛽 = 𝑟𝐴−𝛽 · (𝑟𝐻 +𝑟𝐴).
Finally, for each 𝑁 ≥ 1, let 𝑅𝐴

𝑁
= (∑𝑁

𝑛=1 𝑟
𝐴
𝑛 )/𝑁 and 𝑅𝐻

𝑁
=

(∑𝑁
𝑛=1 𝑟

𝐻
𝑛 )/𝑁 . Then 0 ≤ 𝑅𝐻

𝑁
, 𝑅𝐴

𝑁
≤ 𝑙 for each 𝑁 ≥ 1, where 𝑙

is the maximal length of a private fork. This is because, at every

time step up to 𝑙 new blocks can be accepted in the main chain at

the depth greater than 𝑑 . Hence, since the MDPM under every

strategy gives rise to an ergodic Markov chain and since we showed

that 𝑅𝐴
𝑁

and 𝑅𝐻
𝑁

are bounded, it follows from the Strong Law of

Large Numbers for Markov chains [22, Theorem 1.10.2] that under

every MDP strategy the limits lim𝑁→∞ 𝑅𝐴
𝑁

and lim𝑁→∞ 𝑅𝐻
𝑁

exist

and almost-surely converge to some value. Moreover, we also have

lim𝑁→∞ (𝑅𝐴𝑁 + 𝑅
𝐻
𝑁
) ≥ 𝛿 > 0 almost-surely, where 𝛿 =

1−𝑝
1−𝑝+𝑝 ·𝑑 ·𝑓 .

To see this, recall from Section 3.2 that at every time step the prob-

ability of an honest miner adding a new block to the main chain

and thus either 𝑟𝐻𝑛 = 1 or 𝑟𝐴𝑛 = 1 with probability 𝛿 =
1−𝑝

1−𝑝+𝑝 ·𝑑 ·𝑓 .
We are now ready to prove the theorem. To prove the first part

of the theorem claim, observe that for each 𝛽 ∈ [0, 1] and for each

strategy 𝜎 we have

MP𝛽 (𝜎) = E𝜎
[
lim inf

𝑁→∞

∑𝑁
𝑛=1 𝑟

𝐴
𝑛 − 𝛽 · (𝑟𝐻𝑛 + 𝑟𝐴𝑛 )

𝑁

]
= E𝜎

[
lim inf

𝑁→∞
𝑅𝐴𝑁 − 𝛽 · (𝑅

𝐻
𝑁 + 𝑅

𝐴
𝑁 )

]
= E𝜎

[
lim

𝑁→∞
𝑅𝐴𝑁 − 𝛽 · (𝑅

𝐻
𝑁 + 𝑅

𝐴
𝑁 )

]
,

(1)

where the last limit exists since lim𝑁→∞ 𝑅𝐴
𝑁
and lim𝑁→∞ 𝑅𝐴

𝑁
+𝑅𝐻

𝑁
both exist and are almost-surely finite. Hence, MP𝛽 (𝜎) = 0 if and

only if E𝜎 [lim𝑁→∞ 𝑅𝐴
𝑁
− 𝛽 · (𝑅𝐻

𝑁
+𝑅𝐴

𝑁
)] = 0. Since lim𝑁→∞ (𝑅𝐴𝑁 +

𝑅𝐻
𝑁
) ≥ 𝛿 > 0 almost-surely, we may divide the expression in the

expectation by 𝑅𝐴
𝑁
+ 𝑅𝐻

𝑁
to get that MP𝛽 (𝜎) = 0 if and only if

ERRev(𝜎) = E𝜎
[
lim

𝑁→∞

𝑅𝐴
𝑁

𝑅𝐻
𝑁
+ 𝑅𝐴

𝑁

]
= 𝛽.

Thus, we have MP∗
𝛽
= sup𝜎 MP𝛽 (𝜎) = 0 if and only if

𝛽 = sup

𝜎
E𝜎

[
lim

𝑁→∞

𝑅𝐴
𝑁

𝑅𝐴
𝑁
+ 𝑅𝐻

𝑁

]
= ERRev∗,

which concludes the proof of the first part of the theorem claim.
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To prove the second part of the theorem claim, let 𝜖 > 0, 𝛽 ∈
[ERRev∗ − 𝜖, ERRev∗] and suppose that 𝜎 is a strategy such that

MP𝛽 (𝜎) = MP∗
𝛽
. We need to show ERRev(𝜎) ∈ [ERRev∗ − 𝜖, ERRev∗].

Since 𝛽 ≤ ERRev∗ and since MP∗𝑥 is a monotonically decreasing

function in 𝑥 ∈ [0, 1], we have that MP𝛽 (𝜎) = MP∗
𝛽
≥ MP∗

ERRev∗ = 0,

by the first part of the theorem. Analogously as in eq. (1), we get

MP𝛽 (𝜎) = E𝜎
[
lim

𝑁→∞
𝑅𝐴𝑁 − 𝛽 · (𝑅

𝐻
𝑁 + 𝑅

𝐴
𝑁 )

]
≥ 0.

Then, since lim𝑁→∞ (𝑅𝐴𝑁 + 𝑅
𝐻
𝑁
) ≥ 𝛿 > 0 almost-surely, we may

divide the expression in the expectation by 𝑅𝐴
𝑁
+ 𝑅𝐻

𝑁
to get

E𝜎
[
lim

𝑁→∞

𝑅𝐴
𝑁

𝑅𝐴
𝑁

= 𝑅𝐻
𝑁

− 𝛽
]
≥ 0.

and thus ERRev(𝜎) ≥ 𝛽 . Thus, as 𝛽 ∈ [ERRev∗ − 𝜖, ERRev∗], we
conclude that ERRev(𝜎) ∈ [ERRev∗ − 𝜖, ERRev∗], as desired (where

ERRev(𝜎) ≤ ERRev∗ follows by the definition of ERRev∗). □
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