ALMOST SPECIAL REPRESENTATIONS OF WEYL GROUPS

G. Lusztig

Introduction

0.1. Let W be an irreducible Weyl group and let W be the set of (isomorphism classes of) irreducible representations of W over \mathbb{C} . Let $c \subset \hat{W}$ be a family of W (see [L79],[L84]). Let Γ_c be the finite group associated in [L84] to c and let $c \to M(\Gamma_c)$ be the imbedding defined in [L84]. (For any finite group Γ , we denote by $M(\Gamma)$ the set of Γ -conjugacy of pairs (x, σ) where $x \in \Gamma$ and σ is an irreducible representation over \mathbb{C} of the centralizer of x in Γ .)

In [L82] a set Con_c of (not necessarily irreducible) representations of W with all irreducible components in c was defined and it was conjectured that these are exactly the representations of W carried by the various left cells [KL] contained in the two-sided cell associated to c. (This conjecture was proved in [L86].)

We can view Con_c as a subset of the **C**-vector space $\mathbf{C}[c]$ (with basis c) and hence with a subset of the **C**-vector space $\mathbf{C}[M(\Gamma_c)]$ (with basis $M(\Gamma_c)$) via the imbedding $\mathbf{C}[c] \subset \mathbf{C}[M(\Gamma_c)]$ induced by $c \subset M(\Gamma_c)$. Note that $\mathrm{Ind}_1^{\Gamma_c}(1)$ can be also viewed as an element of $\mathbf{C}[M(\Gamma_c)]$ (namely $\sum_{\rho} \dim(\rho)(1,\rho)$ where ρ runs over the irreducible representations of Γ_c). We have $\mathrm{Ind}_1^{\Gamma_c}(1) \in Con_c$ except when

(a) |c| equals 2, 4, 11 or 17;

(in these cases W is of exceptional type). To remedy this, we enlarge Con_c to the subset $Con_c^+ = Con_c \cup \operatorname{Ind}_1^{\Gamma_c}(1)$ of $\mathbf{C}[M(\Gamma_c)]$. (We have $Con_c^+ = Con_c$ whenever c is not as in (a)).

The main result of this paper is a definition of

a subset $\mathcal{A}_{\Gamma_c} \subset c$ in canonical bijection with Con_c^+ such that each element of \mathcal{A}_{Γ_c} appears with nonzero coefficient in the corresponding element of Con_c^+ .

In [L79a] a specific representation $sp_c \in c$ in c was defined (it was later called the special representation); it corresponds to $(1,1) \in M(G_c)$. One of its properties is that it appears with coefficient 1 in any element of Con_c^+ . We always have $sp_c \in \mathcal{A}_{\Gamma_c}$. In fact, sp_c corresponds to $\operatorname{Ind}_1^{\Gamma_c}(1) \in Con_c^+$. Thus the representations in \mathcal{A}_{Γ_c} generalize sp_c ; we call them almost special representations of W. (This name is justified in 2.4.)

Supported by NSF grant DMS-2153741

We will show elsewhere that (in the case where W is of simply laced type) the irreducible representation of W attached in [L15] to a stratum of G is almost special.

0.2. Our definition of \mathcal{A}_{Γ_c} relies on the theory of new basis [L19],[L20],[L23].

Let \mathcal{Z}_{Γ_c} be the set of pairs $(\Gamma' \subset \Gamma'')$ of subgroups of Γ_c with Γ' normal in Γ'' . For $(\Gamma' \subset \Gamma'') \in \mathcal{Z}_{\Gamma_c}$ let

$$\mathbf{s}_{\Gamma',\Gamma''}: \mathbf{C}[M(\Gamma''/\Gamma')] \to \mathbf{C}[M(\Gamma_c)]$$

be the C-linear map defined in [L20, 3.1]. In [L23, 2.3] to c we have associated a subset X_{Γ_c} of \mathcal{Z}_{Γ_c} .

Let $\bar{X}_{\Gamma_c} = X_{\Gamma_c} \cup \{(S_1, S_1)\}$. (We denote by S_n the symmetric group in n letters.) We have $(S_1, S_1) \in X_{\Gamma_c}$ if and only if c is not as in 0.1(a); in these cases we have $\bar{X}_{\Gamma_c} = X_{\Gamma_c}$. Now,

(a) $(\Gamma' \subset \Gamma'') \mapsto \mathbf{s}_{\Gamma',\Gamma''}(1,1)$ is a bijection of \bar{X}_{Γ_c} onto a subset $S(\Gamma_c)$ of $\mathbf{C}[M(\Gamma_c)]$ which is a part of a basis of $\mathbf{C}[M(\Gamma_c)]$.

(See [L19],[L23]). We have $Con_c^+ \subset S(\Gamma_c)$. More precisely, (a) restricts to a bijection of

$$\bar{X}_{\Gamma_c,*} := \{ (\Gamma', \Gamma'') \in \bar{X}_{\Gamma_c}; \Gamma' = \Gamma'' \}$$

onto Con_c^+ . Let

$$\underline{\bar{X}}_{\Gamma_c} = \{ \Gamma'; (\Gamma', \Gamma') \in \bar{X}_{\Gamma_c, *} \}.$$

In [L20] a bijection ϵ from a certain basis of $\mathbf{C}[M(\Gamma_c)]$ (containing $S(\Gamma_c)$) to $M(\Gamma_c)$ is defined. This restricts to an injective map from $S(\Gamma_c)$ to $M(\Gamma_c)$ whose image is equal to the image of $c \subset M(\Gamma_c)$ (if c is not as in 0.1(a)) and is equal to the image of $c \subset M(\Gamma_c)$, disjoint union with a single element $(1,?) \in M(\Gamma_c) - c$ (if c is as in 0.1(a)). From the definition of ϵ , the following holds.

- (b) $\epsilon(B)$ appears with nonzero coefficient in B for any $B \in S(\Gamma_c)$.
- For $\Gamma'_0 \in \underline{\bar{X}}_{\Gamma_c}$ let $\bar{X}^{\Gamma'_0}_{\Gamma_c}$ be the set of all $(\Gamma', \Gamma'') \in \bar{X}_{\Gamma_c}$ such that Γ' is conjugate to Γ'_0 . The following statement will be verified in §1,§2.
- (c) For $\Gamma'_0 \in \underline{\bar{X}}_{\Gamma_c}$, the function $(\Gamma', \Gamma'') \mapsto |\Gamma''|$ on $\bar{X}_{\Gamma_c}^{\Gamma'_0}$ reaches its maximum at a unique (Γ', Γ'') .

For $\Gamma'_0 \in \underline{\overline{X}}_{\Gamma_c}$ (with corresponding (Γ', Γ'') defined by (c)) we set

 $B_{\Gamma_0'} = \mathbf{s}_{\Gamma',\Gamma''}(1,1) \in S(\Gamma_c),$

 $E_{\Gamma'_0}$ = element of c which maps to $\epsilon(B_{\Gamma'_0})$ under $c \subset M(\Gamma_c)$. (If c is as in 0.1(a), we necessarily have $\epsilon(B_{\Gamma'_0}) \neq (1,?)$.)

We can now define

$${}^{1}S(\Gamma_{c}) = \{B_{\Gamma'_{0}}; \Gamma'_{0} \in \underline{\bar{X}}_{\Gamma_{c}}\} \subset S(\Gamma_{c}),$$

$$\mathcal{A}_{\Gamma_c} = \{ E_{\Gamma_0'}; \Gamma_0' \in \underline{\bar{X}}_{\Gamma_c} \} \subset c.$$

The elements of \mathcal{A}_{Γ_c} are said to be the almost special representations of W in c.

We have a bijection $\mathcal{A}_{\Gamma_c} \xrightarrow{\sim} Con_c^+$ given by $E_{\Gamma_0'} \mapsto \mathbf{s}_{\Gamma_0',\Gamma_0'}(1,1)$ for $\Gamma_0' \in \underline{\bar{X}}_{\Gamma_c}$. We have a bijection ${}^1S(\Gamma_c) \to Con_c^+$ given by $B_{\Gamma_0'} \mapsto \mathbf{s}_{\Gamma_0',\Gamma_0'}(1,1)$ for $\Gamma_0' \in \underline{\bar{X}}_{\Gamma_c}$. We have a bijection ${}^1S(\Gamma_c) \to \mathcal{A}_{\Gamma_c}$ given by $B_{\Gamma_0'} \mapsto E_{\Gamma_0'}$ for $\Gamma_0' \in \underline{\bar{X}}_{\Gamma_c}$. The following statement will be verified in §1,§2.

(d) Let $\Gamma'_0 \in \underline{X}_{\Gamma_c}$. Let $(\Gamma', \Gamma'') \in \overline{X}_{\Gamma_c}^{\Gamma'_0}$. Assume that $(x, \sigma) \in M(\Gamma_c)$ appears with nonzero coefficient in $\mathbf{s}_{\Gamma', \Gamma''}(1, 1)$. Then $(x, \sigma) \in M(\Gamma_c)$ appears with nonzero coefficient in $\mathbf{s}_{\Gamma'_0, \Gamma'_0}(1, 1)$.

Assume now that $(x, \sigma) \in M(\Gamma_c)$ corresponds to $E_{\Gamma'_0}$ under $c \subset M(\Gamma_c)$. By (b), (x, σ) appears with nonzero coefficient in $\mathbf{s}_{\Gamma', \Gamma''}(1, 1)$ where (Γ', Γ'') is defined by Γ'_0 as in (c). Using (d) we see that

- (e) (x, σ) appears with nonzero coefficient in $\mathbf{s}_{\Gamma'_0, \Gamma'_0}(1, 1)$.
- **0.3. Notation.** Let F be the field $\mathbf{Z}/2$. For a, b in \mathbf{Z} we write $a \ll b$ whenever $b-a \geq 2$. For a, b in \mathbf{Z} let $[a, b] = \{z \in \mathbf{Z}; a \leq z \leq b\}$. For a finite set E we write |E| for the cardinal of E.

1. Classical types

1.1. Let $D \in 2\mathbb{N}$. Let \mathcal{I}_D be the set of all intervals I = [a, b] where $1 \leq a \leq b \leq D$. For I = [a, b], I' = [a', b'] in \mathcal{I}_D we write $I \prec I'$ whenever $a' < a \leq b < b'$; we write $I \spadesuit I'$ if $a' - b \geq 2$ or $a - b' \geq 2$. Let \mathcal{I}_D^1 be the set of all $I = [a, b] \in \mathcal{I}_D$ such that $a = b \mod 2$. For $I = [a, b] \in \mathcal{I}_D^1$ we define $\kappa(I) \in \{0, 1\}$ by $\kappa(I) = 0$ if a, b are even, $\kappa(I) = 1$ if a, b are odd.

A sequence $I_* = (I_1, I_2, \dots, I_r)$ in \mathcal{I}_D^1 is said to be admissible if

$$I_* = ([a_1, b_1], [a_2, b_2], \dots, [a_r, b_r]), r \ge 1$$

where

$$a_1 \le b_1, a_2 \le b_2, \dots, a_r \le b_r,$$

 $a_2 - b_1 = 2, a_3 - b_2 = 2, \dots, a_r - b_{r-1} = 2.$

For such I_* we define $\kappa(I_*) \in \{0,1\}$ by $\kappa(I_*) = 0$ if all (or some) a_i, b_i are even, $\kappa(I_*) = 1$ if all (or some) a_i, b_i are odd.

For $I = [a, b] \in \mathcal{I}_D^1$ let

$$I^{ev} = \{x \in I; x = a+1 \mod 2\} = \{x \in I; x = b+1 \mod 2\}.$$

- **1.2.** Let R_D^1 be the set whose elements are the subsets of \mathcal{I}_D^1 . Let $B \in R_D^1$. We consider the following properties $(P_0), (P_1)$ that B may or may not have:
 - (P_0) If $I \in B, I' \in B$ then either I = I' or $I \spadesuit I'$ or $I \prec I'$ or $I' \prec I$.
 - (P_1) If $I \in B$ and $x \in I^{ev}$ then there exists I'inB such that $x \in I', I' \prec I$.

Let S_D be the set of all $B \in R_D^1$ that satisfy $(P_0), (P_1)$. (In [L19], two sets S_D, S'_D are introduced and showed to be equal. What we call S_D in this paper was called S'_D in [L19].)

For
$$B \in \overline{S}_D$$
, $I \in B$ let $m_{I,B} = |\{I' \in B; I \subset I'\}|$.

1.3. For $B \in S_D$, $I = [a, b] \in B$ we set

$$X_{I,B} = \{ I' \in B; I' \prec I, m_{I',B} = m_{I,B} + 1 \}.$$

Assuming that a < b, we show:

(a) $X_{I,B}$ is an admissible sequence

$$([a_1,b_1],[a_2,b_2],\ldots,[a_r,b_r])$$

(see 1.1) with $a_1 = a + 1$, $b_r = b - 1$. Moreover $\kappa(X_{I,B}) = 1 - \kappa(I)$. We have $a + 1 \in I^{ev}$. By (P_1) we can find $[a_1, b_1] \in B$ such that $a < a_1 \le a + 1 \le b_1 < b$; we must have $a_1 = a + 1$ and we can assume that b_1 is maximum possible. Then $m_{[a_1,b_1],B} = m_{I,B} + 1$. If $b_1 = b - 1$ then we stop. Assume now that $b \ge b_1 + 3$. Let $a_2 = b_1 + 2$. We have $a_2 \in I^{ev}$ hence by (P_1) we can find $[x,b_2] \in B$ such that $a < x \le a_2 \le b_2 < b$; we can assume that b_2 is maximum possible. Then $m_{[x,b_2],B} = m_{I,B} + 1$. Since $[a_1,b_1] \spadesuit [x,b_2]$, we must have $x = a_2$. If $b_2 = b - 1$ then we stop. Assume now that $b \ge b_2 + 3$. Let $a_3 = b_2 + 2$. We have $a_3 \in I^{ev}$ hence by (P_1) we can find $[x,b_3] \in B$ such that $a < x \le a_3 \le b_3 < b$; we can assume that b_3 is maximum possible. Then $m_{[x,b_3],B} = m_{I,B} + 1$. Since $[a_2,b_2] \spadesuit [x,b_3]$, we must have $x = a_3$. This process continues in this way and it eventually stops. This proves (a). (The last statement of (a) is obvious.)

1.4. Let $B \in S_D$. For $I = [a, b] \in B$ we have

(a)
$$|\{I' \in B; I' \subset I\}| = (b - a + 2)/2.$$

See [L20, 1.3(d)]. We now write the various $I \in B$ such that $m_{I,B} = 1$ in a sequence $[a_1, b_1], [a_2, b_2], \ldots, [a_r, b_r]$ where

$$1 \le a_1 \le b_1 \ll a_2 \le b_2 \ll \cdots \ll a_r \le b_r.$$

From (a) we deduce

$$|B| = \sum_{i \in [1,r]} (b_i - a_i + 2)/2$$

$$= -a_1/2 - ((a_2 - b_1) + (a_3 - b_2) + \dots + (a_r - b_{r-1}))/2 + b_r/2 + r$$

$$\leq (b_r - a_1)/2 - (r - 1) + r \leq (D - 1)/2 + 1 = (D + 1)/2.$$

Since $D \in 2\mathbb{N}$ it follows that $|B| \leq D/2$. We see that:

- (b) the condition that |B| = D/2 is that either
- -each of $a_2 b_1, a_3 b_2, \ldots, a_r b_{r-1}$ equals 2 except one of them which equals 3 and $a_1 = 1, b_r = D$, or
 - -each of $a_2 b_1, a_3 b_2, \dots, a_r b_{r-1}$ equals 2 and $a_1 = 1, b_r = D 1$, or
 - -each of $a_2 b_1, a_3 b_2, \ldots, a_r b_{r-1}$ equals 2 and $a_1 = 2, b_r = D$.

We set $S_D^{D/2} = \{ B \in S_D; |B| = D/2 \}.$

1.5. Let 1S_D be the set of all $B \in S_D$ such that $\kappa(I) = 1$ for any $I \in B$ with $m_{I,B} = 1$.

Let $B \in S_D$. We set ${}^1B = B - \{I \in B; \kappa(I) = 0, m_{I,B} = 1\} \in R_D^1$. From the definitions it is clear that ${}^1B \in S_D$. We show that

(a) ${}^{1}B \in {}^{1}S_{D}$.

Let $I' \in {}^{1}B$ be such that $m_{I',{}^{1}B} = 1$. We have either $m_{I',B} = 1, \kappa(I') = 1$ or else $m_{I',B} = 2$ and $I' \prec I''$ for some $I'' \in B$ with $m_{I'',B} = 1, \kappa(I'') = 0$. In the second case we have $I' \in X_{I'',B}$, so that from 1.3(a) we have $\kappa(I') = 1$. This proves (a).

Thus $B \mapsto {}^{1}B$ is a well defined map $S_D \to {}^{1}S_D$.

1.6. Let $B \in {}^{1}S_{D}$. We write the various $I \in B$ such that $m_{I,B} = 1$ in a sequence

$$[a_1^1, b_1^1], [a_2^1, b_2^1], \dots, [a_{r_1}^1, b_{r_1}^1],$$

$$[a_1^2, b_1^2], [a_2^2, b_2^2], \dots, [a_{r_2}^2, b_{r_2}^2],$$

$$\dots,$$

$$[a_1^s, b_1^s], [a_2^s, b_2^s], \dots, [a_{r_-}^s, b_{r_-}^s]$$

whose first r_1 terms form an admissible sequence I_{*1} , the next r_2 terms form an admissible sequence I_{*2} , ..., and the last r_s terms form an admissible sequence I_{*s} ; we also assume that

$$a_1^2 \ge b_{r_1}^1 + 4, a_1^3 \ge b_{r_2}^2 + 4, \dots, a_1^s \ge b_{r_{s-1}}^{s-1} + 4.$$

Here we have

$$r_1 \ge 1, r_2 \ge 1, \dots, r_s \ge 1, s \ge 0, \kappa(I_{*1}) = 1, \kappa(I_{*2}) = 1, \dots, \kappa(I_{*s}) = 1.$$

Let Z(B) be the subset of \mathcal{I}_D^1 consisting of:

all $[a_1^i-1,b_{r_i}^i+1]$ $(i\in[1,s])$ such that $a_1^i\geq 2$ (this is automatic if $i\geq 2$);

all [u, u] with u even, $b_{r_{i-1}}^{i-1} + 1 < u < a_1^i - 1$ for some $i \in [2, s]$ (if s > 1);

all [u, u] with u even, $1 < u < a_1^1 - 1$ (if s > 0);

all [u, u] with u even, $b_{r_s}^s + 1 < u \le D$ (if s > 0);

all [u, u] with u even, $1 < u \le D$ (if s = 0).

For any subset $U \subset Z(B)$ we set $B_U = B \sqcup U$; then $B_U \in S_D$ and $U \mapsto B_U$ defines a bijection from the set of subsets of Z(B) to the fibre at B of the map $S_D \to {}^1S_D$, $B' \mapsto {}^1B'$. Note that $B_\emptyset = B$ and $B_{Z(B)} \in S_D^{D/2}$. Moreover, $B \mapsto B_{Z(B)}$ is the bijection ${}^1S_D \xrightarrow{\sim} S_D^{D/2}$ whose inverse is the restriction to $S_D^{D/2}$ of $S_D \to {}^1S_D$, $B' \mapsto {}^1B'$. (We use 1.4(b).)

1.7. A subset B of R_D^1 is said to be in ${}^1\dot{S}_D$ if it satisfies (P_0) and if each $I \in B$ satisfies $\kappa(I) = 1$. For $B \in {}^1S_D$ we set $\dot{B} = \{I \in B; \kappa(I) = 1\}$. Then $B \mapsto \dot{B}$ is a map

(a)
$${}^{1}S_{D} \to {}^{1}\dot{S}_{D}$$
.

We show:

(b) The map (a) is a bijection.

Let $C \in {}^{1}\dot{S}_{D}$. For $I \in C$ we set $\dot{m}_{I,C} = |\{I' \in C; I \subset I'\}|$.

For
$$k \in \{1, 2, 3, ...\}$$
 we set $C[k] = \{I \in C; \dot{m}_{I,C} = k\}.$

Let $I = [a, b] \in C[k]$. As in 1.6 we can write the intervals $\{I' \in C[k+1]; I' \prec I\}$ in a sequence

$$[a_1^1, b_1^1], [a_2^1, b_2^1], \dots, [a_{r_1}^1, b_{r_1}^1],$$

$$[a_1^2, b_1^2], [a_2^2, b_2^2], \dots, [a_{r_2}^2, b_{r_2}^2],$$

$$\dots,$$

$$[a_1^s, b_1^s], [a_2^s, b_2^s], \dots, [a_{r_s}^s, b_{r_s}^s]$$

whose first r_1 terms form an admissible sequence I_{*1} , the next r_2 terms form an admissible sequence I_{*2} , ..., and the last r_s terms form an admissible sequence I_{*s} ; we also assume that

$$a_1^2 \ge b_{r_1}^1 + 4, a_1^3 \ge b_{r_2}^2 + 4, \dots, a_1^s \ge b_{r_{s-1}}^{s-1} + 4.$$

Here we have

$$r_1 \ge 1, r_2 \ge 1, \dots, r_s \ge 1, s \ge 0, \kappa(I_{*1}) = 1, \kappa(I_{*2}) = 1, \dots, \kappa(I_{*s}) = 1.$$

Moreover we have $a_1^i \ge a+2, b_{r_i}^i \le b-2$ for all i.

Let Y_I be the subset of \mathcal{I}_D^1 consisting of:

- all $[a_1^i 1, b_{r_i}^i + 1]$ $(i \in [1, s]);$
- all [u, u] with u even, $b_{r_{i-1}}^{i-1} + 1 < u < a_1^i 1$ for some $i \in [2, s]$ (if s > 1);
- all [u, u] with u even, $a < u < a_1^1 1$ (if s > 0);
- all [u, u] with u even, $b_{r_s}^s + 1 < u < b$ (if s > 0);
- all [u, u] with u even, a < u < b (if s = 0).

For $l \geq 1$ we set $B[2l-1] = C[l], B[2l] = \bigsqcup_{I \in C[l]} Y_I$. We set $B = \bigsqcup_{l \in \{1,2,3,\dots\}} B[l]$. From the definition we see that $B \in {}^1S_D$ and that $C \mapsto B$ is an inverse of the map ${}^1S_D \to {}^1\dot{S}_D, B \mapsto \dot{B}$. This proves (b).

We shall view any element $C \in {}^{1}\dot{S}_{D}$ as a tableau with columns indexed by [1, D], with rows indexed by $\{1, 2, 3, ...\}$ and with entries in $\cup_{j}[a_{j}, b_{j}]$. Any entry in the s-column is equal to s; the k-th row consists of the elements in $\cup_{I \in C[k]} I$.

1.8. Let $C \in {}^{1}\dot{S}_{D}$. It is an unordered set of intervals $[a_1, b_1], [a_2, b_2], \ldots, [a_t, b_t]$. We can order them by requiring that $b_1 < b_2 < \cdots < b_t$. We view C as a tableau as in 1.7. We associate to C a new tableau \tilde{C} with columns indexed by [1,D], with rows indexed by $\{1,2,3,\ldots\}$ and with entries in $\cup_i [a_i,b_i]$. This is obtained by moving the entry of C in the s-column and row k to the same s-column and to row k+j where $j \in [0, t-1]$ is defined by $b_j < s \le b_{j+1}$ (with the convention $b_0 = 0$); note that $s \leq b_t$ whenever the s-column of C is nonempty.

For example, ${}^{1}\dot{S}_{4}$ consists of 5 tableaux: (\emptyset) , (1); (3); (1)corresponding tableaux \ddot{C} are (\emptyset) , (1); (3); $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$; (123). Now $^{1}\dot{S}_{6}$ consists of 14 tableaux:

$$(\emptyset); (1); (3); (5); (1 3); (3 5); (1 5); (1 5); (1 3 5); (123); (123 5); (345); (1 345); (12345); (1 2 3 4 5).$$

The corresponding tableaux C are

 $\ddot{C} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & & \\ & & 3 & 4 & 5 & 6 & 7 & \\ & & & 5 & 6 & 7 & 8 & 9 \end{pmatrix}.$

The corresponding tableaux
$$C$$
 are (\emptyset) ; (1) ; (3) ; (5) ; $\begin{pmatrix} 1 & & & \\ & & 3 \end{pmatrix}$; $\begin{pmatrix} 3 & & \\ & & 5 \end{pmatrix}$; $\begin{pmatrix} 1 & & & \\ & & 3 \end{pmatrix}$; $\begin{pmatrix} 123 & & \\ & & 5 \end{pmatrix}$; (345) ; $\begin{pmatrix} 1 & & \\ & & 345 \end{pmatrix}$; (12345) ; $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ & & 3 & & \\ & & & 3 & 4 & 5 \end{pmatrix}$. Here are some further examples. If $C = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & & 3 & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

We show:

(a) Let $j \in [1,t]$. Let k be such that $[a_j,b_j] \in C[k]$. In row j of \ddot{C} , b_j appears and $b_i + 1$ does not appear.

In rows $j+1, j+2, \ldots, j+k-1$ of \ddot{C} , b_j and b_j+1 appear. In any other row of \ddot{C} , b_j and b_j+1 do not appear.

Assume first that $b_j < D$. Then in C, b_j appears in rows 1, 2, ..., k and $b_j + 1$ appears in rows 1, 2, ..., k - 1. Since $b_{j-1} < b_j \le b_j$, $b_j < b_j + 1 \le b_{j+1}$ we see that in \ddot{C} , b_j appears in rows 1 + (j-1), 2 + (j-1), ..., k + (j-1) and $b_j + 1$ appears in rows 1 + j, 2 + j, ..., (k-1) + j. This proves (a) in our case. Now assume that $b_j = D$ (in this case j = t and k = 1). Then in C, b_t appears in row 1 and in no other row. We have $b_{t-1} < b_t \le b_t$. Hence in \ddot{C} , b_t appears in row 1 + (t-1) and in no other row. Thus (a) again holds.

We show:

(b) Let $i \in [1, t]$. Let k be such that $[a_i, b_i] \in C[k]$. Define $j \in [0, t - 1]$ by $b_j < a_i \le b_{j+1}$. In row k + j of \ddot{C} , a_i appears and $a_i - 1$ does not appear. In rows $j + 1, j + 2, \ldots, j + k - 1$ of \ddot{C} , a_i and $a_i - 1$ appear. In any other row of \ddot{C} , a_i and $a_i - 1$ do not appear.

Assume first that $a_i > 1$. Then in C, a_i appears in rows 1, 2, ..., k and $a_i - 1$ appears in rows 1, 2, ..., k - 1. Then (since b_j, a_i are odd) we have $b_j < a_i - 1 \le b_{j+1}$. Hence in \ddot{C} , a_i appears in rows 1 + j, 2 + j, ..., k + j and $a_i - 1$ appears in rows 1 + j, 2 + j, ..., (k - 1) + j. This proves (b) in our case. Now assume that $a_i = 1$ (in this case we have k = 1). Then in C, a_i appears in row 1 and in no other row. We have $b_0 < a_i \le b_1$. Hence in \ddot{C} , a_i appears in row 1 and in no other row. Thus (b) again holds.

Now let $h \in \bigcup_i [a_i, b_i]$ be such that $h \neq a_i, h \neq b_i$ for all $j \in [1, t]$. We show:

- (c) Any row of \ddot{C} that contains h must also contain h+1.
- (d) Any row of C that contains h must also contain h-1. There is a well defined $j \in [0, t-1]$ such that $b_j < h < b_{j+1}$.

We prove (c). Assume first that $h+1 < b_{j+1}$. Then in C, h appears in rows $1, 2, \ldots, k$ and h+1 appears in rows $1, 2, \ldots, k$ (for some k). In \ddot{C} , h appears in rows $j+1, j+2, \ldots, j+k$ and h+1 appears in rows $j+1, j+2, \ldots, j+k$. Hence in this case (c) holds. Next we assume that $h+1=b_{j+1}$. Then in C, h appears in rows $1, 2, \ldots, k$ and h+1 appears in rows in rows $1, 2, \ldots, k+1$ (for some k). In \ddot{C} , h appears in rows $j+1, j+2, \ldots, j+k$ and h+1 appears in rows $j+1, j+2, \ldots, j+k+1$. We see again that (c) holds.

We prove (d). Assume first that $b_j < h-1$. Then in C, h appears in rows $1, 2, \ldots, k$ and h-1 appears in rows $1, 2, \ldots, k$ (for some k). In \ddot{C} , h appears in rows $j+1, j+2, \ldots, j+k$ and h-1 appears in rows $j+1, j+2, \ldots, j+k$. Hence in this case (d) holds.

Next we assume that $b_j = h - 1$. Then in C, h appears in rows $1, 2, \ldots, k$ and h - 1 appears in rows $1, 2, \ldots, k, k + 1$ (for some k). Moreover in \ddot{C} , h appears in rows $j + 1, j + 2, \ldots, j + k$ and h - 1 appears in rows $j, j + 1, j + 2, \ldots, j + k$. We see again that (d) holds.

From (a)-(d) we deduce:

(e) For $j \in [1, t]$, the row j of \ddot{C} consists of $a_{i_j}, a_{i_j} + 1, a_{i_j} + 2, \dots, b_j$ for a well

defined $i_j \in [1, t]$ such that $a_{i_j} \leq b_j$. Moreover, $j \mapsto i_j$ is a permutation of [1, t]. We show:

(f) For $u \in [2, t]$ we have $a_{i_{u-1}} < a_{i_u}$. We set $i = i_u$.

Assume first that $[a_i, b_i] \in C[k], k \geq 2$. By (b), one row of \ddot{C} contains a_i but not $a_i - 1$ (hence it is necessarily the row u) and the row just above it (that is row u - 1) contains a_i and $a_i - 1$. (We use that $k \geq 2$.) Now that row consists of $a_{i_{u-1}}, a_{i_{u-1}} + 1, \ldots, b_{u-1} - 1, b_{u-1}$. Thus we have $a_{i_{u-1}} \leq a_i - 1 < a_i \leq b_{u-1}$. In particular, $a_{i_{u-1}} < a_i$.

Next we assume that $[a_i, b_i] \in C[1]$. Now $[a_i, b_u]$ is contained in the union of all $I \in C[1]$ and consists of consecutive numbers. Hence it is contained in one such I which is necessarily $[a_i, b_i]$. Thus we have $[a_i, b_u] \subset [a_i, b_i]$.

Assume that $a_i \leq b_{u-1}$. In row 1 of C we have $a_i \leq b_{u-1} < b_u$. In row 2 of C, a_i is missing. Since $a_i \leq b_{u-1}$ the unique entry a_i in \ddot{C} appears in a row $\leq u-1$. In particular the row u of \ddot{C} does not contain a_i ; but it contains b_u . This contradicts $a_i = a_{i_u}$. We see that we must have $b_{u-1} < a_i$. But $a_{i_{u-1}} \leq b_{u-1}$ hence $a_{i_{u-1}} < a_i$. This proves (f).

For $X, c_1 < c_2 < \cdots < c_t, d_1 < d_2 < \cdots < d_t$ as above we define a tableau \dot{X} with columns indexed by [1, D], with rows indexed by $\{1, 2, 3, \ldots\}$ and with entries in $\bigcup_j [c_j, d_j]$. This is obtained by moving the entry of X in the s-column and row k to the same s-column and to row k-j where $j \in [0, t-1]$ is defined by $d_j < s \le d_{j+1}$ (with the convention $d_0 = 0$); note that we necessarily have k > j. (Indeed, we have $s \le d_k$; if $k \le j$ then $d_k \le d_j$, hence $s \le d_j$, contradicting $d_j < s$.)

From the definitions we see that $\dot{X} \in {}^{1}\dot{S}_{D}$ and that $X \mapsto \dot{X}$ is a bijection ${}^{1}\ddot{S}_{D} \to {}^{1}\dot{S}_{D}$ inverse to $C \mapsto \ddot{C}, {}^{1}\dot{S}_{D} \to {}^{1}\ddot{S}_{D}$.

1.10. Let U_D be the set of all tableaux

$$\begin{pmatrix} c_1 & c_2 & \dots & c_t \\ d'_1 & d'_2 & \dots & d'_t \end{pmatrix}$$

where $c_1 < c_2 < \dots < c_t$ are odd integers in [1, D], $d'_1 < d'_2 < \dots < d'_t$ are even integers in [1, D] and $c_1 < d'_1, c_2 < d'_2, \dots, c_t < d'_t$.

We have an obvious bijection ${}^1\mathring{S}_D \xrightarrow{\sim} U_D$,

$$(X, c_1 < c_2 < \dots < c_t, d_1 < d_2 < \dots < d_t) \mapsto$$

$$\begin{pmatrix} c_1 & c_2 & \dots & c_t \\ d_1 + 1 & d_2 + 1 & \dots & d_t + 1 \end{pmatrix}.$$

1.11. Let $\ddot{\Sigma}_D$ be the set of all symbols

$$\Lambda = \begin{pmatrix} i_1 & i_2 & \dots & i_{(D+2)/2} \\ j_1 & j_2 & \dots & j_{(D+2)/2} \end{pmatrix}$$

where

$$\{i_1, i_2, \dots, i_{(D+2)/2}\} \sqcup \{j_1, j_2, \dots, j_{(D+2)/2}\} = [0, D+1],$$

$$i_1 < i_2 < \dots < i_{(D+2)/2}, j_1 < j_2 < \dots < j_{(D+2)/2},$$

$$i_1 < j_1, i_2 < j_2, \dots, i_{(D+2)/2} < j_{(D+2)/2}.$$

We then have $i_1 = 0, j_{(D+2)/2} = D + 1$.

For Λ as above let $c_1 < c_2 < \cdots < c_t$ be the odd numbers in $\{i_1, i_2, \dots, i_{(D+2)/2}\}$ (in increasing order) and let $d'_1 < d'_2 < \cdots < d'_{t'}$ be the even numbers in $\{j_1, j_2, \dots, j_{(D+2)/2}\}$ (in increasing order). We have necessarily t = t'. We show:

(a)
$$c_1 < d'_1, c_2 < d'_2, \dots, c_t < d'_t.$$

Assume now that for some $s \in [0, t]$, s < t we already know that $c_1 < d'_1, c_2 < d'_2, \ldots, c_s < d'_s$. We show that $c_{s+1} < d'_{s+1}$.

Assume that $d'_{s+1} \leq c_{s+1}$. Let $Z = \{i_k; k \in [1, (D+2)/2]; i_k < d'_{s+1}\}$. Then

$$Z = \{0, 2, 4, \dots, d'_{s+1} - 2\} \sqcup \{c_1, c_2, \dots, c_s\} - \{d'_1, d'_2, \dots, d'_s\}.$$

(We use that $c_1 < d'_1, c_2 < d'_2, \ldots, c_s < d'_s$. We also use that $d'_{s+1} \le c_{s+1}$.) We have $|Z| = |(0, 2, 4, \ldots, d'_{s+1} - 2)|$. We have $d'_{s+1} = j_m$ for some $m \in [1, (D+2)/2]$ and $i_m < d'_{s+1}$ that is $i_m \in Z$. It follows that $\{i_1, i_2, \ldots, i_m\} \subset Z$ so that $m \le |Z|$. Let

$$Z' = \{j_k; k \in [1, (D+2)/2]; j_k \le d'_{s+1}\}.$$

We have |Z'| = m. Now

$$Z' = \{1, 3, 5, \dots, d'_{s+1} - 1 \sqcup \{d'_1, d'_2, \dots, d'_s, d'_{s+1}\} - \{c_1, s_2, \dots, c_s\}$$

so that $|Z'|=|(1,3,5,\ldots,d'_{s+1}-1)+1)|$. Since |Z'|=m and $m\leq Z$ we have $|Z'|\leq |Z|$ so that

$$|(1,3,5,\ldots,d'_{s+1}-1)+1)| \le |(0,2,4,\ldots,d'_{s+1}-2)|.$$

This is obviously not true. This proves (a).

From (a) we see that

$$\Lambda \mapsto \begin{pmatrix} c_1 & c_2 & \dots & c_t \\ d'_1 & d'_2 & \dots & d'_t \end{pmatrix}$$

(as described above) defines a map

(b)
$$\ddot{\Sigma}_D \to U_D$$
.

We show:

(c) The map (b) is injective.

To any

$$\mu = \begin{pmatrix} c_1 & c_2 & \dots & c_t \\ d'_1 & d'_2 & \dots & d'_t \end{pmatrix} \in U_D$$

we associate a sequence

$$\mu' = (i_1, i_2, \dots, i_{(D+2)/2})$$

and a sequence

$$\mu'' = (j_1, j_2, \dots, j_{(D+2)/2})$$

as follows.

 μ' consists of the elements in $\{c_1, c_2, \ldots, c_t\}$ and those in $\{0, 2, 4, \ldots, D\} - \{d'_1, d'_2, \ldots, d'_t\}$ (in increasing order).

 μ'' consists of the elements in $\{d_1', d_2', \ldots, d_t'\}$ and those in $\{1, 3, 5, \ldots, D+1\} - \{c_1, c_2, \ldots, c_t\}$ (in increasing order).

From the definition we see that if $\Lambda \in \tilde{\Sigma}_D$ has image $\mu \in U_D$ under (b) then $\Lambda = \begin{pmatrix} \mu' \\ \mu'' \end{pmatrix}$. From this it is clear that the map (b) is injective. This proves (c).

1.12. We show:

(a) The injective map $\ddot{\Sigma}_D \to U_D$ in 1.11(b) is a bijection.

Note that $\ddot{\Sigma}_D$ can be viewed as the set of standard Young tableaux attached to a partition with two equal parts of size (D+2)/2. The number of such standard tableaux can be computed from the hook length formula so that it is equal to (D+2)!/((D+2)/2)!(D+4)/2)! that is to the Catalan number $Cat_{(D+2)/2}$. (This interpretation of Catalan numbers in terms of standard Young tableaux has been known before.)

From the bijections

$$U_D \leftarrow {}^1 \ddot{S}_D \rightarrow {}^1 \dot{S}_D \leftarrow {}^1 S_D \rightarrow S_D^{D/2}$$

(see 1.10,1.9,1.7,1.6) we see that $|U_D| = |S_D^{D/2}|$. By [LS], $|S_D^{D/2}|$ is equal to the Catalan number $Cat_{(D+2)/2}$. We see that the map in (a) satisfies $|\ddot{\Sigma}_D| = |U_D| = Cat_{(D+2)/2}$. It follows that this map is a bijection.

(It is likely that (a) has a more direct proof which does not rely on [LS].) We show:

(b) If $\mu \in U_D$ and if μ', μ'' are as in the proof of 1.11(c), then $\begin{pmatrix} \mu' \\ \mu'' \end{pmatrix} \in \overset{\circ}{\Sigma}_D$.

Moreover $\mu \mapsto \begin{pmatrix} \mu' \\ \mu'' \end{pmatrix}$ is the inverse of the map $\ddot{\Sigma}_D \to U_D$ in 1.11.

If $\mu \in U_D$, then by (a) we can find $\Lambda \in \ddot{\Sigma}_D$ whose image under the map 1.11(b) is μ . By the proof of 1.11(c) we have $\Lambda = \begin{pmatrix} \mu' \\ \mu'' \end{pmatrix}$. It follows that $\begin{pmatrix} \mu' \\ \mu'' \end{pmatrix} \in \ddot{\Sigma}_D$.

1.13. Let V_D be the F-vector space with basis e_1, e_2, \ldots, e_D and with the symplectic form $(,): V \times V \to F$ given by $(e_i, e_j) = 1$ if $i - j = \pm 1$, $(e_i, e_j) = 0$, otherwise. For any subset J of [1, D] we set $e_J = \sum_{i \in J} e_i \in V_D$.

For $B \in S_D$ let $\langle B \rangle$ be the subspace of V_D spanned by $\{e_I; I \in B\}$. (This is actually a basis of $\langle B \rangle$, see [L19].)

For $j \in [1, D]$ and $B \in S_D$ we set $B_j = \{I \in B; j \in I\}$ and

$$\epsilon_j(B) = |B_j|(|B_j| + 1)/2 \in F$$

. For $B \in S_D$ we set

$$\epsilon(B) = \sum_{j \in [1,D]} \epsilon_j(B) e_j \in V_D.$$

We show:

(a)
$$\epsilon(B) = \sum_{I \in B; m_{I,B} \in 2\mathbf{N} + 1} e_I.$$

An equivalent statement is:

If $j \in [1, D]$ then $|\{I \in B_j, m_{I,B} \in 2\mathbf{N} + 1\}|$ is even if $|B_j| \in (4\mathbf{Z}) \cup (4\mathbf{Z} + 3)$ and is odd if $|B_j| \in (4\mathbf{Z} + 1) \cup (4\mathbf{Z} + 2)$.

This follows immediately from the following statement (which holds by the definition of S_D):

 B_j consists of intervals $I_k \prec I_{k-1} \prec \cdots \prec I_1$ in \mathcal{I}_D^1 such that $m_{I_k,B} = k, m_{I_{k-1},B} = k-1, \ldots, m_{I_1,B} = 1$.

For $C \in {}^{1}\dot{S}_{D}$ we define

(b)
$$\dot{\epsilon}(C) = \sum_{I \in C} e_I.$$

For $\ddot{C} \in {}^{1}\ddot{S}_{D}$ we define

(c)
$$\ddot{\epsilon}(\ddot{C}) = \sum_{k} e_{[c_k, d_k]} \in V_D$$

where $c_k, c_k + 1, c_k + 2, \dots, d_k$ are the entries in the k-th row of \ddot{C} . From the definitions we have

$$\dot{\epsilon}(C) = \ddot{\epsilon}(\ddot{C})$$

if C, \ddot{C} correspond to each other under the bijection in 1.9.

- **1.14.** By [L19, 1.16], $B \mapsto \epsilon(B)$ is an injective map $\epsilon: S_D \xrightarrow{\sim} V_D$. By 1.13(a), for $B \in {}^1S_D$ we have $\epsilon(B) = \dot{\epsilon}(\dot{B})$ ($\dot{\epsilon}$ as in 1.13(b)). Hence the restriction of ϵ to 1S_D can be identified with $\dot{\epsilon}: {}^1\dot{S}_D \to V_D$ via the bijection 1.7(b). In particular, $\dot{\epsilon}$ is injective. Using 1.13(d) we see that via the bijection in 1.9, $\dot{\epsilon}: {}^1\dot{S}_D \to V_D$ becomes $\ddot{\epsilon}: {}^1\ddot{S}_D \to V_D$. In particular, $\ddot{\epsilon}$ is injective.
- **1.15.** Let Σ_D be the set of all unordered pairs $\binom{A}{B}$ of subsets of [0, D+1] such that $[0, D+1] = A \sqcup B, |A| = |B| \mod 4.$

There is a unique bijection $f: V_D \to \Sigma_D$ such that

$$f(0) = \begin{pmatrix} 0 & 2 & 4 & \dots & D \\ 1 & 3 & 5 & \dots & D+1 \end{pmatrix}$$

and such that if $x \in V_D$, $f(x) = \begin{pmatrix} A \\ B \end{pmatrix}$ and $i \in [1, D]$ then

$$f(x + e_i) = \begin{pmatrix} A\sharp\{i, i+1\} \\ B\sharp\{i, i+1\} \end{pmatrix}$$

where \sharp is the symmetric difference; it follows that for $1 \leq i < j \leq D$ we have

$$f(x + e_i + e_{i+1} + \dots + e_j) = \begin{pmatrix} A\sharp\{i, j+1\} \\ B\sharp\{i, j+1\} \end{pmatrix}.$$

- **1.16.** We can regard $\ddot{\Sigma}_D$ as a subset of Σ_D . If $\ddot{C} \in {}^1\ddot{S}_D$ corresponds to $\mu \in U_D$ under 1.10 then from the definitions we have $f(\ddot{\epsilon}(\ddot{C})) = \begin{pmatrix} \mu' \\ \mu'' \end{pmatrix}$ (notation of 1.12(b)). In particular we have
- (a) $f(\ddot{\epsilon}(\ddot{C})) \in \dot{\Sigma}_D$ and (using 1.12(b)) we see that
 - (b) $\ddot{C} \mapsto f(\ddot{\epsilon}(\ddot{C}))$ is a bijection ${}^{1}\ddot{S}_{D} \xrightarrow{\sim} \ddot{\Sigma}_{D}$.
- **1.17.** We have $V_D = V_D^0 \oplus V_D^1$ where V_D^0 is the subspace spanned by $\{e_2, e_4, \ldots, e_D\}$ and V_D^1 is the subspace spanned by $\{e_1, e_3, \ldots, e_{D-1}\}$. For $I \in \mathcal{I}_D^1$ we have $I = I^0 \sqcup I^1$ where $I^0 = I \cap \{2, 4, \ldots, D\}$, $I^1 = I \cap \{1, 3, \ldots, D-1\}$. As shown in [L19], for $B \in S_D$ we have $A > 0 \oplus A > 0$ where

$$\langle B \rangle_0 = \langle B \rangle \cap V_D^0, \langle B \rangle_1 = \langle B \rangle \cap V_D^1;$$

moreover,

(a) $< B >_1 has basis \{e_{I^1}; I \in B, \kappa(I) = 1\}, < B >_0 has basis \{e_{I^0}; I \in B, \kappa(I) = 0\}.$

G. LUSZTIG

1.18. If \mathcal{L} is a subspace of V_D^{δ} $(\delta \in \{0,1\})$ we set

$$\mathcal{L}! = \{ x \in V^{1-\delta}; (x, \mathcal{L}) = 0 \}.$$

Let $\mathcal{C}(V_D^{\delta})$ be the set of subspaces of V_D^{δ} of the form $\langle B \rangle_{\delta}$ for some $B \in S_D$. If $\mathcal{L} \in \mathcal{C}(V_D^{\delta})$ we have $\mathcal{L}^! \in \mathcal{C}(V_D^{1-\delta})$; see [L19, §2]. Let $\mathcal{A}(V_D^1)$ be the set of all $(\mathcal{L}, \mathcal{L}') \in \mathcal{C}(V_D^1) \times \mathcal{C}(V_D^1)$ such that $\mathcal{L} \subset \mathcal{L}'$ and $\mathcal{L} \oplus \mathcal{L}'^! = \langle B \rangle$ for some $B \in S_D$.

(a) If $B \in S_D$ then $B \mapsto (\langle B \rangle_1, \langle B \rangle_0^!)$ is a bijection $\Phi : S_D \to \mathcal{A}(V_D^1)$; see [L19, §2]. Let $\mathcal{A}_*(V_D^1)$ be the set of all $(\mathcal{L}, \mathcal{L}') \in \mathcal{C}(V_D^1) \times \mathcal{C}(V_D^1)$ such that $\mathcal{L} = \mathcal{L}'$. In [L19,§2] it is shown that $\mathcal{A}_*(V_D^1) \subset \mathcal{A}(V_D^1)$; more precisely if $\mathcal{L} \in \mathcal{C}(V_D^1)$ then $\mathcal{L} \oplus \mathcal{L}^! = \langle B \rangle$ for a well defined $B \in S_D^{D/2}$. Moreover $B \mapsto (\langle B \rangle_1, \langle B \rangle_0^!)$ is a bijection $S_D^{D/2} \to \mathcal{A}_*(V_D^1)$ and $(\mathcal{L}, \mathcal{L}') \mapsto \mathcal{L} = \mathcal{L}'$ is a bijection $\mathcal{A}_*(V_D^1) \to \mathcal{C}(V_D^1)$. The composition of these bijections is a bijection $B \mapsto \langle B \rangle_1$,

(b) $S_D^{D/2} \xrightarrow{\sim} \mathcal{C}(V_D^1)$.

Next we note that $B \mapsto \langle B \rangle_1$ is also a bijection

(c)
$${}^1S_D \xrightarrow{\sim} \mathcal{C}(V_D^1)$$
.

This follows from (b) since the bijection (b) is a composition

$$S_D^{D/2} \xrightarrow{\sim} {}^1S_D \to \mathcal{C}(V_D^1)$$

where the fist map is the bijection $B \mapsto {}^{1}B$ and the second map is the map in (c). Here we use that

(d) $\langle B \rangle_1 = \langle {}^1B \rangle_1$ for any $B \in S_D$, which follows from definitions.

We show:

(e) For any $\mathcal{L} \in \mathcal{C}(V_D^1)$, the set

$$\{\mathcal{L}' \in \mathcal{C}(V_D^1); (\mathcal{L}, \mathcal{L}') \in \mathcal{A}(V_D^1)\}$$

contains a unique \mathcal{L}' with $|\mathcal{L}'|$ maximal.

An equivalent statement is:

(f) For any $\mathcal{L} \in \mathcal{C}(V_D^1)$ the set $\{B' \in S_D; \langle B' \rangle_1 = \mathcal{L}\}$ contains a unique B' with $|\langle B' \rangle_0^! \mid maximal$ (that is $\dim(\langle B' \rangle_0) \mid minimal$).

By (b) we have $\mathcal{L} = \langle B \rangle_1$ for a well defined $B \in S_D^{D/2}$. The condition that $\langle B' \rangle_1 = \langle B \rangle_1$ is equivalent to $\langle B' \rangle_1 = \langle B \rangle_1$ (see (d)) and this is equivalent to |B'| = |B| (see (c)). Hence the set in (f) is equal to

$$\{B' \in S_D; {}^1B' = {}^1B\}.$$

By the results in 1.6 this is the same as $\{(^1B)_U; U \in Z(^1B)\}$. By 1.17(a), for $U \in Z(^1B)$ we have

$$\dim((^{1}B)_{U})_{0} = \dim(^{1}B)_{0} + |U|.$$

This is $\geq \dim(^{1}B)_{0}$ with equality if and only if $U = \emptyset$. This proves (f) and hence (e).

For $\mathcal{L} \in \mathcal{C}(V_D^1)$ we denote by \mathcal{L}^{max} the element \mathcal{L}' in (e) with $|\mathcal{L}'|$ maximal. Let $\mathcal{A}^*(V_D^1)$ be the set of all $(\mathcal{L}, \mathcal{L}') \in \mathcal{C}(V_D^1) \times \mathcal{C}(V_D^1)$ such that $\mathcal{L}' = \mathcal{L}^{max}$. We have $\mathcal{A}^*(V_D^1) \subset \mathcal{A}(V_D^1)$ and

(g) $(\mathcal{L}, \mathcal{L}') \mapsto \mathcal{L}$ is a bijection $\mathcal{A}^*(V_D^1) \to \mathcal{C}(V_D^1)$.

From (c),(g) we see (using the proof of (f)) that

(h)
$$B \mapsto (\langle B \rangle_1, \langle B \rangle_0^!)$$
 is a bijection ${}^1S_D \xrightarrow{\sim} \mathcal{A}^*(V_D^1)$.

1.19. In this subsection we assume that $D \in \{2,4,6\}$. In each case we give a table with rows of the form $\alpha....\beta....\gamma$ where $\alpha \in S_D^{D/2}, \beta \in {}^1S_D$ corresponds to α and $\gamma \in \ddot{\Sigma}_D$. We write an interval [a,b] as a,a+1,a+2,...,b (without commas).

$$\{1,3,5\}....\{1,3,5\}....\begin{pmatrix} 0 & 1 & 3 & 5 \\ 2 & 4 & 6 & 7 \end{pmatrix}$$

$$\{2,123,6\}....\{2,123\}...\begin{pmatrix} 0 & 1 & 2 & 6 \\ 3 & 4 & 5 & 7 \end{pmatrix}$$

$$\{4,345,23456\}....\{4,345\}....\begin{pmatrix} 0 & 2 & 3 & 4 \\ 1 & 5 & 6 & 7 \end{pmatrix}$$

$$\{2,4,12345\}....\{2,4,12345\}....\begin{pmatrix} 0 & 1 & 2 & 4 \\ 3 & 5 & 6 & 7 \end{pmatrix}$$

$$\{1,4,345\}....\{1,4,345\}.....\begin{pmatrix} 0 & 1 & 3 & 4 \\ 2 & 5 & 6 & 7 \end{pmatrix}$$

$$\{2,123,5\}....\{2,123,5\}.....\begin{pmatrix} 0 & 1 & 2 & 5 \\ 3 & 4 & 6 & 7 \end{pmatrix}$$

$$\{3,234,12345\}....\{3,234,12345\}.....\begin{pmatrix} 0 & 1 & 2 & 3 \\ 4 & 5 & 6 & 7 \end{pmatrix}$$

2. Exceptional types

2.1. Let W, c, Γ_c be as in 0.1. We must show that 0.2(c), 0.2(d) hold.

If W is of type $A_n, n \ge 1$ we have $|c| = 1, \Gamma_c = S_1$. In this case, 0.2(c), 0.2(d) are trivial.

If W is of type B_n or C_n , $n \geq 2$ or D_n , $n \geq 4$, we can identify $\Gamma_c = V_D^1$ for some $D \in 2\mathbb{N}$. We can identify $M(\Gamma_c) = V_D$ as in [L19, 2.8(i)]. In these cases, 0.2(c), 0.2(d) follow from 1.18(e) and the proof of 1.18(f). Now \mathcal{A}_c is the same as $\ddot{\Sigma}_D$ (see 1.11) in the symbol notation [L84] for objects of \hat{W} (assuming that W is of type D and c is a cuspidal family).

2.2. In the remainder of this section we assume that W is of exceptional type. Then we are in one of the following cases.

$$|c| = 1, \Gamma_c = S_1;$$

 $|c| = 2, \Gamma_c = S'_2;$
 $|c| = 3, \Gamma_c = S_2;$
 $|c| = 4, \Gamma_c = S'_3;$
 $|c| = 5, \Gamma_c = S_3;$
 $|c| = 11, \Gamma_c = S_4;$
 $|c| = 17, \Gamma_c = S_5.$

Here S'_2 (resp. S'_3) is another copy of S_2 (resp. S_3).

For the elements $(\Gamma', \Gamma'') \in \bar{X}_{\Gamma_c}$ we use the notation of [L23]. Following [L23] we give for each $\Gamma'_0 \in \underline{\bar{X}}_{\Gamma_c}$ the list

$$L(\Gamma'_0) = \{\Gamma''; (\Gamma', \Gamma'') \in \bar{X}_{\Gamma_c}^{\Gamma'_0} \}.$$
Assume that $|c| = 1$. Then $L(S_1) = \{S_1\}$.
Assume that $|c| \in \{2, 3\}$. Then
$$L(S_1) = \{S_2, S_1\}, L(S_2) = \{S_2\}.$$
Assume that $|c| \in \{4, 5\}$. Then
$$L(S_1) = \{S_3, S_2, S_1\}, L(S_2) = \{S_2\}, L(S_3) = \{S_3\}.$$

```
Assume that |c| = 11. Then L(S_1) = \{S_4, S_3, S_2S_2, S_2, S_1\}, L(S_2) = \{S_2S_2, S_2\}, L(S_2S_2) = \{\Delta_8, S_2S_2\}, L(S_3) = \{S_3\}, L(\Delta_8) = \{\Delta_8\}, L(S_4) = \{S_4\}. Assume that |c| = 17. Then L(S_1) = \{S_5, S_4, S_3S_2, S_3, S_2S_2, S_2, S_1\}, L(S_2) = \{S_3S_2, S_2S_2, S_2\}, L(S_2S_2) = \{\Delta_8, S_2S_2\}, L(S_3) = \{S_3S_2, S_3\}, L(\Delta_8) = \{\Delta_8\}, L(S_3S_2) = \{S_3S_2\}, L(S_4) = \{S_4\}, L(S_5) = \{S_5\}. In each case we see that L(\Gamma_4) contains a unique term with \Gamma_4 maximum. (It is
```

In each case we see that $L(\Gamma'_0)$ contains a unique term with || maximum. (It is the first term of $L(\Gamma'_0)$.) We see that 0.2(c) holds in each case. Now 0.2(d) can be easily verified using the tables in [L20,§3].

2.3. Applying ϵ to $\mathbf{s}(\Gamma', \Gamma'')$ for each Γ'' in the list $L(\Gamma'_0)$ (recall that $(\Gamma', \Gamma'') \in \bar{X}_{\Gamma_c}^{\Gamma'_0}$) we obtain a list $L'(\Gamma'_0)$ of elements in $M(\Gamma_c)$; we write in the same order as the elements of $L(\Gamma'_0)$. (The notation for elements in $M(\Gamma_c)$ is taken from [L84].)

Assume that |c| = 1. Then $L'(S_1) = \{(1, 1)\}.$

Assume that $|c| \in \{2,3\}$. Then $L'(S_1) = \{(1,1), (1,\epsilon)\}, L'(S_2) = \{(g_2,1)\}.$

Assume that $|c| \in \{4, 5\}$. Then

$$L'(S_1) = \{(1,1), (1,r), (1,\epsilon)\}, L'(S_2) = \{(g_2,1)\}, L'(S_3) = \{(g_3,1)\}.$$

Assume that |c| = 11. Then

$$L'(S_1) = \{(1,1), (1,\lambda^1), (1,\sigma), (1,\lambda^2), (1,\lambda^3)\}, L'(S_2) = \{(g_2,1), (g_2,\epsilon'')\}, L'(S_2S_2) = \{(g_2',1), (g_2',\epsilon'')\}, L'(S_3) = \{(g_3,1)\}, L'(\Delta_8) = \{(g_2',\epsilon')\}, L'(S_4) = \{(g_4,1)\}.$$

Assume that |c| = 17. Then

$$L'(S_1) = \{(1,1), (1,\lambda^1), (1,\nu), (1,\lambda^2), (1,\nu'), (1,\lambda^3), (1,\lambda^4)\},\$$

$$L'(S_2) = \{(g_2, 1), (g_2, r), (g_2, \epsilon)\}, L'(S_2S_2) = \{(g'_2, 1), (g'_2, \epsilon'')\},$$

$$L'(S_3) = \{(g_3, 1), (g_3, \epsilon)\}, L'(\Delta_8) = \{(g'_2, \epsilon')\}, L'(S_3S_2) = \{(g_6, 1)\},$$

$$L'(S_4) = \{(g_4, 1)\}, L'(S_5) = \{(g_5, 1)\}.$$

The almost special representations in c are represented by the first term in each list. They are as follows.

```
If |c| = 1 we have A_{\Gamma_c} = \{(1, 1)\}.
```

If
$$|c| \in \{2,3\}$$
 we have $\mathcal{A}_{\Gamma_c} = \{(1,1), (g_2,1)\}.$

If
$$|c| \in \{4, 5\}$$
 we have $\mathcal{A}_{\Gamma_c} = \{(1, 1), (g_2, 1), (g_3, 1)\}.$

If
$$|c| = 11$$
 we have $\mathcal{A}_{\Gamma_c} = \{(1,1), (g_2,1), (g_2',1), (g_3,1), (g_2',\epsilon'), (g_4,1)\}.$

If |c| = 17 we have

$$\mathcal{A}_{\Gamma_c} = \{(1,1), (g_2,1), (g'_2,1), (g_3,1), (g'_2,\epsilon'), (g_6,1), (g_4,1), (g_5,1)\}.$$

2.4. In the case where |c| = 17 we have that W must of type E_8 . An element of each list $L'(\Gamma'_0)$ can be identified with an element of c (under the imbedding $c \subset M(\Gamma_c)$) represented by its dimension (with the single exception of $(1, \lambda^4)$). Then the lists $L'(\Gamma'_0)$ become:

```
L'(S_1) = \{4480, 5670, 4536, 1680, 1400, 70, ?\},\
```

$$L'(S_2) = \{7168, 5600, 448\},\$$

$$L'(S_2S_2) = \{4200, 2688\},\$$

$$L'(S_3) = \{3150, 1134\},\$$

18 G. LUSZTIG

$$L'(\Delta_8) = \{168\}, L'(S_3S_2) = \{2016\},$$

 $L'(S_4) = \{1344\}, L'(S_5) = \{420\}.$

Note that the first representation in a given list $L'(\Gamma'_0)$ has the *b*-invariant (see [L84, (4,1,2)]) strictly smaller than the *b*-invariant of any subsequent representation in the list. (We expect that this property holds for any *c*.) This property is similar to the defining property of special representations [L79a] and justifies the name of "almost special" representations.

References

- [L79] G.Lusztig, Unipotent representations of a finite Chevalley group of type E₈, Quart.J.Math. **30** (1979), 315-338.
- [L79a] G.Lusztig, A class of irreducible representations of a Weyl group, Proc.Kon.Nederl. Akad.(A) 82 (1979), 323-335.
- [KL] D.Kazhdan and G.Lusztig, Representations of Coxeter groups and Hecke algebras, Inv.Math. **53** (1979), 165-184.
- [L82] G.Lusztig, A class of irreducible representations of a Weyl group, II, Proc.Kon.Nederl. Akad.(A) 85 (1982), 219-226.
- [L84] G.Lusztig, Characters of reductive groups over a finite field, Ann.Math.Studies 107, Princeton U.Press, 1984.
- [L86] G.Lusztig, Sur les cellules gauches des groupes de Weyl, C.R.Acad.Sci.Paris(A) **302** (1986), 5-8.
- [L15] G.Lusztig, On conjugacy classes in a reductive group, Representations of Reductive Groups, Progr.in Math. 312, Birkhäuser, 2015, pp. 333-363.
- [L19] G.Lusztig, A new basis for the representation ring of a Weyl group, Repres.Th. 23 (2019), 439-461.
- [L20] G.Lusztig, The Grothendieck group of unipotent representations: a new basis, Represent.Th. 24 (2020), 178-209.
- [L23] G.Lusztig, Precuspidal families and indexing of Weyl group representations, arxiv:2304.05130.
- [LS] G.Lusztig and E.Sommers, Constructible representations and Catalan numbers jour arxiv:2403.02550.

DEPARTMENT OF MATHEMATICS, M.I.T., CAMBRIDGE, MA 02139