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ALMOST SPECIAL REPRESENTATIONS OF WEYL GROUPS

G. LuszTIG

INTRODUCTION

0.1. Let W be an irreducible Weyl group and let W be the set of (isomorphism
classes of) irreducible representations of W over C. Let ¢ C W be a family of
W (see [L79],[L84]). Let I'. be the finite group associated in [L84] to ¢ and let
¢ — M(T'.) be the imbedding defined in [L84]. (For any finite group I', we denote
by M(T) the set of I'-conjugacy of pairs (x,0) where x € " and o is an irreducible
representation over C of the centralizer of x in T'.)

In [L82] a set Con, of (not necessarily irreducible) representations of W with
all irreducible components in ¢ was defined and it was conjectured that these are
exactly the representations of W carried by the various left cells [KL] contained
in the two-sided cell associated to c¢. (This conjecture was proved in [L86].)

We can view Con, as a subset of the C-vector space C[c| (with basis ¢) and
hence with a subset of the C-vector space C[M(I'.)] (with basis M(T'.)) via the
imbedding C[c] ¢ C[M(T,)] induced by ¢ ¢ M(T'.). Note that Ind}*(1) can be
also viewed as an element of C[M (I'c)] (namely > dim(p)(1, p) where p runs over
the irreducible representations of T'.). We have Indj*(1) € Con,. except when

(a) |c| equals 2,4, 11 or 17;

(in these cases W is of exceptional type). To remedy this, we enlarge Con, to the
subset Con} = Con, UInd}*(1) of C[M(T'.)]. (We have Con} = Con, whenever
¢ is not as in (a)).

The main result of this paper is a definition of

a subset Ar, C c in canonical bijection with Con} such that each element of
Ar. appears with nonzero coefficient in the corresponding element of Conl .

In [L79a] a specific representation sp. € c in ¢ was defined (it was later called
the special representation); it corresponds to (1,1) € M(G.). One of its properties
is that it appears with coefficient 1 in any element of Con}. We always have
spe € Ar,. In fact, sp. corresponds to Ind{c(l) € Con}. Thus the representations
in Ar, generalize sp.; we call them almost special representations of W. (This
name is justified in 2.4.)
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We will show elsewhere that (in the case where W is of simply laced type)
the irreducible representation of W attached in [L15] to a stratum of G is almost
special.

0.2. Our definition of Ap, relies on the theory of new basis [L19],[L20],[L23].
Let Zp, be the set of pairs (I C I'") of subgroups of I'. with I'” normal in I'”.
For (I" c I') € Zp_ let

SF’,F” : C[M(F”/F/)] — C[M(PC)]

be the C-linear map defined in [L20, 3.1]. In [L23, 2.3] to ¢ we have associated a
subset Xr_ of Zr_.

Let Xr, = Xr, U{(51,51)}. (We denote by S,, the symmetric group in n
letters.) We have (S1,.51) € Xr, if and only if ¢ is not as in 0.1(a); in these cases
we have Xp_ = Xt_. Now,

(a) (I € I”) w sprv(1,1) is a bijection of Xr, onto a subset S(T.) of
C[M(T.)] which is a part of a basis of CIM(T'.)].

(See [L19],[L23]). We have Con C S(I'.). More precisely, (a) restricts to a
bijection of
XFC,* = {(F,, FH> € X[‘c; I = F”}

onto Con/. Let ) )
X, ={I";(I",T') € Xr,_+}.

In [L20] a bijection € from a certain basis of C[M(I'.)] (containing S(I'.)) to
M(T.) is defined. This restricts to an injective map from S(I';)) to M(T'.) whose
image is equal to the image of ¢ C M(I';) (if ¢ is not as in 0.1(a)) and is equal to
the image of ¢ C M (I'.), disjoint union with a single element (1,7) € M(I';) — ¢
(if ¢ is as in 0.1(a)). From the definition of €, the following holds.

(b) €(B) appears wzth nonzero coefficient in B for any B € S(I';).

For Ty € Xp_ let Xy, "0 be the set of all (I",T") € Xr, such that I is conjugate to
I'y. The following statement will be verified in §1,62.

(c) For Ty € Xy, the function (I, T") — |T"| on Xll:f reaches its maximum at
a unique (I, T").

For Ty, € X (with corresponding (I',I"”) defined by (c)) we set

Br, = s/ rn(1,1) € S(T'e),

Er;, = element of ¢ which maps to €(Bry) under ¢ C M(I';). (If ¢ is as in 0.1(a),
we necessarily have e(Br; ) # (1,7).)

We can now define

'S(Te) = {Bry; T € Xp } € S(To),

Ar, ={Ep;;T e Xp } Ce

The elements of Ar_ are said to be the almost special representations of W in c.
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We have a bijection Ar, — Con/ given by Er; — spy v (1,1) for T € X .
We have a bijection *S(I'.) — Con/ given by Br; + sry i (1,1) for Iy € XPC'
We have a bijection 1S(T'.) — Ar, given by By, + Er; for I'y € XFC'

The following statement will be verified in §1,§2.

(d) Let T € X . Let (I",T") € X?E Assume that (x,0) € M(T'.) appears

with nonzero coefficient in sp/ pv(1,1). Then (xz,0) € M(I'.) appears with nonzero
coefficient in sr; ry (1,1).
Assume now that (z,0) € M(I';) corresponds to Er, under ¢ C M(I';). By (b),
(x,0) appears with nonzero coefficient in sp pr(1,1) where (I, T") is defined by
I'{) as in (c). Using (d) we see that

(e) (z,0) appears with nonzero coefficient in sry ry (1,1).

0.3. Notation. Let F' be the field Z/2. For a,b in Z we write a < b whenever
b—a>2. Fora,bin Z let [a,b] = {z € Z;a < z < b}. For a finite set E we write
|E| for the cardinal of E.

1. CLASSICAL TYPES

1.1. Let D € 2N. Let Zp be the set of all intervals I = [a,b] where 1 < a < b < D.
For I = [a,b],I' = [a/,b'] in Tp we write I < I’ whenever o’ < a < b < b'; we write
INI"ifa’ —b>2o0ra—0b >2 Let I} be the set of all I = [a,b] € Zp such that
a="b mod 2. For I = [a,b] € I}, we define x(I) € {0,1} by x(I) = 0 if a,b are
even, k(I) =1 if a,b are odd.

A sequence I, = (I1, Is,...,I.) in I}, is said to be admissible if
I* = ([al,bl], [ag,bg], . ..,[ar,br]),r Z 1
where
al Sbl,ag Sbg,...,ar Sb,«,

ag—bl:2,a3—b2:2,...,ar—bT_1:2.

For such I, we define (1) € {0,1} by x(I.) = 0 if all (or some) a;, b; are even,
k(I,) =1 if all (or some) a;,b; are odd.
For I = [a,b] € T}, let

I={zxeljz=a+1 mod2}={zxel;z=>b+1 mod 2}.

1.2. Let R}, be the set whose elements are the subsets of Z3,. Let B € RL. We
consider the following properties (P), (P;) that B may or may not have:

(Py) If I € B,I' € B then either I =I' or I&8I'" or I < I' or I' < I.

(P)) If I € B and x € IV then there exists I'inB such that z € I’ I' < I.

Let Sp be the set of all B € R} that satisfy (Pp), (P1). (In [L19], two sets
Sp, ST, are introduced and showed to be equal. What we call Sp in this paper
was called Sp, in [L19].)

For Be Sp,I € Blet mrp=1|{I'"e B;I CI'}|.



4 G. LUSZTIG
1.3. For B € Sp, I = [a,b] € B we set
X[’B = {I/ € B;I/ < I,m]/’B =mr B + 1}

Assuming that a < b, we show:
(a) X1, is an admissible sequence

([a1,b1], [a2,b2], . .., [ar, by])

(see 1.1) with a; = a+1,b, =b—1. Moreover k(X1 ) =1—r(I).

We have a +1 € I°V. By (P1) we can find [a1,b1] € B such that a < a3 <
a+1<b; <b; we must have a; = a + 1 and we can assume that b; is maximum
possible. Then m,, 3,1, = myp + 1. If by = b — 1 then we stop. Assume now
that b > by + 3. Let ag = by + 2. We have ay € I°” hence by (P;) we can find
[x,b2] € B such that a < x < ay < by < b; we can assume that by is maximum
possible. Then m, ,1, 3 = mr,p + 1. Since [ay, b1|#]x, by}, we must have z = as.
If b5 = b—1 then we stop. Assume now that b > by + 3. Let ag = by + 2. We have
az € I1°¥ hence by (P;) we can find [z,b3] € B such that a < z < ag < by < b;
we can assume that b3 is maximum possible. Then m, ) 5 = mr p + 1. Since
[az, bo| Mz, bs], we must have x = a3. This process continues in this way and it
eventually stops. This proves (a). (The last statement of (a) is obvious.)

1.4. Let B € Sp. For I = [a,b] € B we have

(a) {I'e B;I'C I} =(b—a+2)/2.
See [L20, 1.3(d)]. We now write the various I € B such that m;p = 1 in a
sequence |aq, b1], [az,bs], ..., [ar, b.] where

1< <hh <Ka<bh K- - Ka, <b,.

From (a) we deduce

Bl = ) (bi—a;+2)/2

1€[1,7]
= —a1/2— ((CEQ —bl) + (CL3 —bg) + -+ (CLT —br_1)>/2+br/2+1“
< (b —a1)/2—(r—1)+7<(D=1)/2+1=(D+1)/2.

Since D € 2N it follows that |B| < D/2. We see that:
(b) the condition that |B| = D/2 is that either

-each of as — by, a3 —ba,...,a, —b._1 equals 2 except one of them which equals
3anday =1,b. =D, or

-each of ag — by,a3 — ba,...,a, —b._1 equals 2 and a1 = 1,b, =D — 1, or

-each of ag — by,a3 —ba,...,a, — b._1 equals 2 and a; = 2,b,. = D.

We set S0/% = {B € Sp;|B| = D/2}.
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1.5. Let 1Sp be the set of all B € Sp such that x(I) = 1 for any I € B with
mr B = 1.

Let B € Sp. Weset 'B=B—{I € B;x(I) =0,m; g =1} € R}. From the
definitions it is clear that !B € Sp. We show that

(a) 'B c 1SD.
Let I’ € B be such that my 15 = 1. We have either my p = 1,x(I') = 1 or else
mp g =2and I’ < I" for some I"” € B with my» p =1, K(I") = 0. In the second
case we have I’ € Xy g, so that from 1.3(a) we have x(I’) = 1. This proves (a).

Thus B — !B is a well defined map Sp — 'Sp.

1.6. Let B € 1Sp. We write the various I € B such that mr p = 1 in a sequence

[abb%]? [CL%, b%]? R [a71~17 b71~1]7
[a% b%]? [a%v b%]v AR [a72~2: b%z]’
[a1,b1], [a3, 03], ..., [ag , b7 ]

whose first r; terms form an admissible sequence I, the next ro terms form an
admissible sequence I, ..., and the last ry terms form an admissible sequence
I.s; we also assume that

ai > by +4,af > 07 +4,... 0] 205 +4.
Here we have
" 2 1,T2 2 1,---7T8 2 l,Szo,’i(I*l) :1’/{,(1*2) :1,...,/{;(1*5) :]_

Let Z(B) be the subset of Z}, consisting of:

all [a} —1,b. +1] (i € [1, s]) such that ai > 2 (this is automatic if i > 2);
all [u, u] with u even, b +1 <wu < a} —1 for some i € [2,s] (if s > 1);
all [u, u] with u even, 1 <u < aj —1 (if s > 0);

[u, u] with w even, by +1 <u < D (if s > 0);
all [u, u] with u even, 1 <u < D (if s =0).

For any subset U C Z(B) we set By = BUU; then By € Sp and U — By
defines a bijection from the set of subsets of Z(B) to the fibre at B of the map
Sp — 'Sp, B’ — 'B’. Note that By = B and By € SlD)/Q. Moreover,
B — Byz(p) is the bijection 1Sp = 53/2 whose inverse is the restriction to 53/2
of Sp = 1Sp, B' — 'B’. (We use 1.4(b).)
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1.7. A subset B of R} is said to be in 'Sp if it satisfies (Py) and if each I € B
satisfies k(I) = 1. For B € 1Sp we set B = {I € B;x(I) =1}. Then B+ Bis a
map

(a) ISD — ISD.
We show:

(b) The map (a) is a bijection.
Let C € 'Sp. For I € C we set 1y c = |{I' € C;1 C I'}|.

For k € {1,2,3,...} weset Clk] ={I € C;m;c = k}.

Let I = [a,b] € C[k]. Asin 1.6 we can write the intervals {I' € C[k+1]; I’ < I}
in a sequence

[abb] [a27b2] . 'v[ rlvb}"l]
[abb ] [a27b2] v[ %27b%2]
[af, b3], [a3, 03], .., a7, b7 ]

whose first r; terms form an admissible sequence I, the next ro terms form an
admissible sequence I,o, ..., and the last ry terms form an admissible sequence
I.s; we also assume that

a1>b1 -|-4a1>b2 +4,. aizbi:l-l—él.
Here we have
Tl2177.2217"'77“82173207’6(1*1):17/{(1*2):17"'7"{(1*5):1‘

Moreover we have aj > a+ 2,b. < b—2 for all 4.
Let YI be the subset of 7}, consisting of:
all [ay —1,bL +1] (i € [1, ));
all [u, ul Wlthueven bil +1<wu<al—1forsomeic[2s] (if s>1);
all [u, u] with u even, a<u<a1—1 (if s > 0);
all [u,u] with v even, b) +1 <u <b (if s > 0);
all [u, u] with u even, a<u<b(1fs—0)
For [ > 1 weset B[2l—1] = C[l], B[2l] = UrccYr- Weset B = Ujeq1,2.3,...y Bll].
From the definition we see that B € 1Sp and that C' — B is an inverse of the map
1Sp — 'Sp, B — B. This proves (b).

We shall view any element C' € 'Sp as a tableau with columns indexed by
[1, D], with rows indexed by {1,2,3,...} and with entries in U;[a;, b;]. Any entry
in the s-column is equal to s; the k-th row consists of the elements in Urecpp!-



ALMOST SPECIAL REPRESENTATIONS OF WEYL GROUPS 7

1.8. Let C € 'Sp. Tt is an unordered set of intervals [a1, b1], [ag, ba], ..., [at, by].
We can order them by requiring that by < by < --- < b;. We view C' as a tableau
as in 1.7. We associate to C' a new tableau C' with columns indexed by [1, D],
with rows indexed by {1,2,3,...} and with entries in U;[a;, b;]. This is obtained
by moving the entry of C' in the s-column and row k to the same s-column and
to row k 4 j where j € [0,¢ — 1] is defined by b; < s < b;11 (with the convention
bo = 0); note that s < b; whenever the s-column of C' is nonempty.

For example, 1Sy consists of 5 tableaux: (0), (1); (3); (1 3); (123). The

corresponding tableaux C' are (0), (1); (3); 1 3); (123). Now !Sg consists
of 14 tableaux:

@; (1); 3); (5); (1 3): (3 5); (1 5); (13 5); (123);
(123 5): (345): (1 345): (12345); (1 2 g 4 5).

The corresponding tableaux C are

oo (U L) L) (Y ) L )

(123); (123 5); (345); <1 345); (12345); (1 i

Here are some further examples.

[\
w
=~
ot
S~—

1 2 3 4 5 - 1 2 3

IfC—( 3 )thenC’-( 3 4 5).
1 2 3 4 5 6 7 1 2 3

IfC = 3 then C = 3 45 6 7
1 2 3 45 6 7 1 2 3 4 5

ot
(=]
N |

/\/\/—\/—\
—_
b
W w
=~
o
\]
~ ~ N~

( )

( )
o= (12520 e

( )

|

5
3 5 .
123456 7 1 2 3 4 5
o= 3 4 5 then €' = 345 6 7
123456789
If C = 3 4 5 6 7 then
5
) 9 3 4 5
¢ = 3 45 6 7
56 7 8 9

We show: )
(a) Let j € [1,t]. Let k be such that [a;,b;] € C[k]. In row j of C, b; appears
and b; + 1 does not appear.
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Inrows j+1,5+2,...,5j+k—10f C, b;j and b; + 1 appear. In any other row of
C, bj and b; + 1 do not appear.

Assume first that b; < D. Then in C, b; appears in rows 1,2,...,k and b; + 1
appears in rows 1,2,...,k — 1. Since b;_1 < b; < bj, b; < bj +1 < bj1 we see
that in C, b; appears in rows 14 (§ —1),2+ (j — 1),...,k+ (j — 1) and b; + 1
appears in rows 1 + 7,2+ j,...,(k — 1) + 7. This proves (a) in our case. Now
assume that b; = D (in this case j =t and k = 1). Then in C, b; appears in row
1 and in no other row. We have b;_1 < b; < b;. Hence in C’, b; appears in row
1+ (¢t —1) and in no other row. Thus (a) again holds.

We show:

(b) Let i € [1,t]. Let k be such that [a;,b;] € C[k]. Define j € [0,t — 1] by
bj <a; <bji1. Inrowk+j of C, a; appears and a; — 1 does not appear.

Inrows j+1,5+2,...,j+k—10f C, a; and a; — 1 appear. In any other row of
C, a; and a; — 1 do not appear.

Assume first that a; > 1. Then in C, a; appears in rows 1,2,...,k and a; — 1
appears in rows 1,2,...,k — 1. Then (since b;, a; are odd) we have b; < a; —1 <
bj+1. Hence in C, a; appears in rows 1+ 7,24 j,...,k+ j and a; — 1 appears in
rows 1+ 35,24+ 7,...,(k— 1)+ j. This proves (b) in our case. Now assume that
a; = 1 (in this case we have kK = 1). Then in C, a; appears in row 1 and in no
other row. We have by < a; < by. Hence in C, a; appears in row 1 and in no other
row. Thus (b) again holds.

Now let h € U,[aj, b;] be such that h # a;j, h # b; for all j € [1,t]. We show:

(¢) Any row of C that contains h must also contain h + 1.

(d) Any row of C that contains h must also contain h — 1.

There is a well defined j € [0,¢ — 1] such that b; < h < bj41.

We prove (c). Assume first that h +1 < b;11. Then in C, h appears in rows
1,2,...,k and h + 1 appears in rows 1,2,...,k (for some k). In C, h appears
inrows j+ 1,5+ 2,...,7+k and h + 1 appears in rows 7+ 1,5+ 2,...,7 + k.
Hence in this case (c) holds. Next we assume that h +1 = b;4;. Then in C, h
appears in rows 1,2,...,k and h + 1 appears in rows in rows 1,2,...,k + 1 (for
some k). In C, h appears in rows J+1,74+2,...,7+k and h+ 1 appears in rows
j+1,7+2,...,74+k+ 1. We see again that (c) holds.

We prove (d). Assume first that b; < h — 1. Then in C, h appears in rows
1,2,...,k and h — 1 appears in rows 1,2,..., k (for some k). In C, h appears in
rows j+1,74+2,...,7+kand h—1 appears inrows j+ 1,5+ 2,...,7+ k. Hence
in this case (d) holds.

Next we assume that b; = h — 1. Then in C, h appears in rows 1,2,...,k and
h — 1 appears in rows 1,2,...,k,k+ 1 (for some k). Moreover in C’, h appears in
rows j+1,7+2,...,7+kand h—1 appears inrows 5,5 +1,7+2,...,5+k. We
see again that (d) holds.

From (a)-(d) we deduce:

(e) For j € [1,t], the row j of C consists of ai;,ai; +1,a:;, +2,...,b; for a well
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defined i; € [1,t] such that a;; < bj. Moreover, j — i; is a permutation of [1,t].

We show:

(f) For u € [2,t] we have a;,_, < a;,.

We set i = 1,,.

Assume first that [a;,b;] € C[k],k > 2. By (b), one row of C' contains a; but
not a; — 1 (hence it is necessarily the row u) and the row just above it (that is
row u — 1) contains a; and a; — 1. (We use that k£ > 2.) Now that row consists of
@i, Qi, , +1,...,0y—1 —1,by—1. Thus we have a;, , <a; —1<a; <b,_;. In
particular, a;, , < a;.

Next we assume that [a;, b;] € C[1]. Now [a, b,] is contained in the union of all
I € C[1] and consists of consecutive numbers. Hence it is contained in one such I
which is necessarily [a;, b;]. Thus we have [a;, b,] C [as, b;].

Assume that a; < b,—1. In row 1 of C' we have a; < b,_1 < b,. In row 2
of C, a; is missing. Since a; < b,_1 the unique entry a; in C' appears in a row
< u—1. In particular the row u of C' does not contain a;; but it contains b,. This
contradicts a; = a;,. We see that we must have b,_; < a;. But a;, , < by
hence a;, , < a;. This proves (f).

1.9. Let 'Sp be the set of tableaux with columns indexed by [1, D], with rows
indexed by {1,2,3,...} and with entries in [1, D] such that any entry in the s-
column is equal to s; for any k € [1,t] (some t), the row k consists of the elements
in some Iy, = [ck, dx] € Z}, with k() = 1; for k > ¢ the row k contains no entries;
we have ¢; < o < -+ < ¢, dp < do < -+ < dy.

For X,c1 < ¢y < -+ < ¢,dy < dy < --- < d; as above we define a tableau
X with columns indexed by [1, D], with rows indexed by {1,2,3,...} and with
entries in Uj|c;,d;]. This is obtained by moving the entry of X in the s-column
and row k to the same s-column and to row k — j where j € [0,¢ — 1] is defined
by d;j < s < dj;1 (with the convention dy = 0); note that we necessarily have
k > j. (Indeed, we have s < dj; if k < j then dj, < d;, hence s < d;, contradicting
dj < 8.)

From the definitions we see that X € 1Sp and that X — X is a bijection
18p — 1S inverse to C — é, 18 — 1Sp.

1.10. Let Up be the set of all tableaux

(Cl Co ... Ct)

dy dy ... d,

where ¢; < ¢g < -+ < ¢ are odd integers in [1, D], d| < dj) < --- < d} are even
integers in [1, D] and ¢; < d},co < db,...,c; < dj.

We have an obvious bijection 18 p = Up,

(X,aa<ca< - <cpydy <dg <+ <dy) —

C1 C2 Ct
di+1 do+1 ... di+1)/)"
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1.11. Let ¥p be the set of all symbols

A:<i'1 iz ... z'.(DH)/Q)
Ji o J2 - J(D42)/2

where

{iv i, .. yi(pg2)y 2y U{d1, J2s - -5 J(p42y/2) = [0, D + 1],
i1 <12 <. <ipt2)/2,J1 < J2 < < J(D+2)/2:

11 < J1,12 < J2,-- -, UD+2)/2 < J(D+2)/2-

We then have i1 = 0, j(py2)2 = D + 1.

For A as above let ¢; < cp < --- < ¢; be the odd numbers in {iy, 2, ...,9(p42)/2}
(in increasing order) and let di < dj < --- < d}, be the even numbers in
{1, J2, -+, J(p+2)/2} (in increasing order). We have necessarily ¢ = t'. We show:
(a) o1 <dj,eo <dy, ..., c; <dj.

Assume now that for some s € [0,t], s < t we already know that ¢; < d/,c2 <
dy,...,cs < d. We show that co11 < d, ;.
Assume that d, | < cspq. Let Z = {ig;k € [1, (D +2)/2];4, < d,,,}. Then

Z={0,2,4,....,d\.; —2}U{e1,co,. .. s} — {d), dy, ... d,}

(We use that ¢; < dj,co < dj,...,cs < d,. We also use that d, | < cs41.) We
have |Z| = [(0,2,4,...,d, ., —2)|. We have d,_ | = j,, for some m € [1, (D +2)/2]
and i,, < d, that is i, € Z. It follows that {i1,42,...,iy} C Z so that m < |Z].
Let

Z'={jrsk € [1,(D+2)/2);jr < di1}

We have |Z'| = m. Now
7' ={1,3,5,.. ... —1U{ddp,....d,dsy} —{c1,59 .. )

S

so that [Z'| = [(1,3,5,...,d,,; —1) + 1)|. Since |Z'| = m and m < Z we have
|Z'| < |Z] so that

(1,3,5,...o iy — 1)+ 1) < [(0,2,4,...,d,,, —2)].

This is obviously not true. This proves (a).
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From (a) we see that

C1 Co Ct
AH(dg d ... d;)

(as described above) defines a map

(b) ED — UD.
We show:
(¢) The map (b) is injective.
To any
o C1 C2 . Ct
p= <d’1 dy ... d;) €Up

we associate a sequence
, . . .
% :(217227"'77'(174—2)/2)

and a sequence
1 = (J1, 42, - - > J(D+2)/2)

as follows.
p' consists of the elements in {ci,co,...,¢;} and those in {0,2,4,...,D} —
{d},d},...,d;} (in increasing order).

w1 consists of the elements in {d},d5,...,d,} and those in {1,3,5,..., D+ 1} —
{c1,¢2,...,¢:} (in increasing order). )
From the definition we see that if A € Xp has image p € Up under (b) then

/
A= (5,, ) From this it is clear that the map (b) is injective. This proves (c).

1.12. We show:

(a) The injective map Sp — Up in 1.11(b) is a bijection.
Note that ¥ can be viewed as the set of standard Young tableaux attached to
a partition with two equal parts of size (D + 2)/2. The number of such standard
tableaux can be computed from the hook length formula so that it is equal to
(D +2)!/((D + 2)/2)/(D + 4)/2)!) that is to the Catalan number Cat(pis)/2-
(This interpretation of Catalan numbers in terms of standard Young tableaux has
been known before.)

From the bijections

UD — ISD — ISD — 1SD — 53/2

(see 1.10,1.9,1.7,1.6) we see that |[Up| = |S]]‘3)/2\. By [LS], \Sg/2| is equal to the
Catalan number Cat(pyoy/2. We see that the map in (a) satisfies |[Xp| = |Up| =
Cat(pz)/2- It follows that this map is a bijection.
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(It is likely that (a) has a more direct proof which does not rely on [LS].)
We show:

/ .o
(b) If uw € Up and if p/',p”" are as in the proof of 1.11(c), then (ZL,,) € Xp.

/

Moreover p — <5,,) is the inverse of the map Sp — Up in 1.11.

If 1 € Up, then by (a) we can find A € 3p whose image under the map 1.11(b) is

/

/ ..
. By the proof of 1.11(c) we have A = (5,,). It follows that (5,,) € Xp.

1.13. Let Vp be the F-vector space with basis eq,es,...,ep and with the sym-
plectic form (,) : V x V. — F given by (e;,e;) = 1if i — j = £1, (e;,¢5) = 0,
otherwise. For any subset J of [1, D] we set e; =3, ;e; € Vp.
For B € Sp let < B > be the subspace of Vp spanned by {e;; I € B}. (This is
actually a basis of < B >, see [L19].)
For j € [1,D] and B € Sp we set B; ={I € B;j € I} and
¢;(B) = [Bjl(|Bj| +1)/2 € F
. For B € Sp we set
e(B)= Y €j(Be; € Vp.
j€[1,D]
We show:
(a) e(B) = > er.
IeBymy, p€2N+1

An equivalent statement is:

If j € [1,D] then |[{I € Bj,m; g € 2N + 1}| is even if |B;| € (4Z) U (4Z + 3)
and is odd if |Bj| € (4Z + 1) U (4Z + 2).
This follows immediately from the following statement (which holds by the defini-
tion of Sp):

B; consists of intervals I, < Iy < --- < Iy in Ill) such that mr, p =
k,m]k_l,B': k‘ — 1,. . .,thB =1.
For C € 'Sp we define
(b) (C)=> er
IeC

For C € 1§D we define

(c) éC) =) e € Vb
k
where ¢, ¢, + 1,¢5 + 2,....,dj, are the entries in the k-th row of C. From the
definitions we have
(d) €(C) =€C)

if C, C correspond to each other under the bijection in 1.9.
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1.14. By [L19, 1.16], B + €(B) is an injective map € : Sp — Vp. By 1.13(a),
for B € 'Sp we have e(B) = é(B) (¢ as in 1.13(b)). Hence the restriction of € to
1S5 can be identified with ¢ : 1.Sp — Vp via the bijection 1.7(b). In particular,
¢ is injective. Using 1.13(d) we see that via the bijection in 1.9, ¢ : 1.Sp — Vp
becomes ¢ : 1Sp — Vp. In particular, € is injective.

1.15. Let Xp be the set of all unordered pairs

that [0,D+ 1] = AU B, |A| = |B| mod 4.
There is a unique bijection f : Vp — ¥ p such that

é) of subsets of [0, D + 1] such

024 ... D
f<0):<1 35 ... D—l—l)

and such that if z € Vp, f(x) = (é) and i € [1, D] then

v (a1

where f is the symmetric difference; it follows that for 1 <i < 57 < D we have

flx+e+er1+--+e) = (gag:;i}&)

1.16. We can regard i}D as a subset of Xp. If C e ISD corresponds to u €

/

Up under 1.10 then from the definitions we have f(¢(C')) = (5,,) (notation of

1.12(b)). In particular we have
(a) f(E(C)) € p
and (using 1.12(b)) we see that
(b) C — f(E(C)) is a bijection 'Sp = Sp.

1.17. Wehave Vp = V3@V where V] is the subspace spanned by {ez, €4, ..., ep }|j
and V} is the subspace spanned by {ei,es,...,ep_1}. For I € I} we have
I=1°0UTI" where I = IN{2,4,...,D}, I* =In{1,3,...,D —1}. As shown in
[L19], for B € Sp we have < B >=< B >3 & < B >; where

< B>y=<B>nV},<B>=<B>nV};
moreover,

(a) < B >1 has basis {eq1;I € B,k(I) =1},
< B > has basis {ejo; I € B,x(I) = 0}.
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1.18. If £ is a subspace of V5 (6§ € {0,1}) we set
L' ={xeV'? (2,L) =0}

Let C(V5) be the set of subspaces of V3 of the form < B >; for some B € Sp.
If £ € C(VJ) we have £' € C(VA™%); see [L19, §2]. Let A(V}) be the set of all
(L, L) € C(VE) x C(V}) such that £ C L' and LB L" =< B > for some B € Sp.

(a) If B € Sp then B+ (< B >1,< B >}) is a bijection ® : Sp — A(V});
see [L19, §2]. Let A.(V3) be the set of all (£,£’) € C(VA) x C(V}) such that £ =
L. In [L19,§2] it is shown that A.(V}) € A(V}); more precisely if £ € C(V}) then
L® L' =< B > for a well defined B € 53/2. Moreover B + (< B >1,< B >}) is
a bijection 53/2 — A (V3) and (£,L') — L = L is a bijection A.(V}) — C(V}).
The composition of these bijections is a bijection B +—< B >1,

(b) 5% =5 C(Vh).
Next we note that B —< B > is also a bijection

(C) 1SD l) C(VDI)

This follows from (b) since the bijection (b) is a composition
Sp/? S 18p — C(V)

where the fist map is the bijection B +— !B and the second map is the map in (c).
Here we use that
(d) < B>1=< !B > for any B € Sp,
which follows from definitions.
We show:
(e) For any L € C(V}), the set

{£"eC(Vp); (L, L) € A(Vp)}

contains a unique L with |L'| mazimal.
An equivalent statement is:

(f) For any L € C(V}) the set {B’' € Sp;< B’ >1= L} contains a unique B’
with | < B' >{ | mazimal (that is dim(< B’ >q)| minimal).
By (b) we have £L =< B >; for a well defined B € 53/2. The condition that
< B’ >1=< B > is equivalent to < !B’ >1=< 'B >; (see (d)) and this is
equivalent to !B’ = !B (see (c)). Hence the set in (f) is equal to

{B' € Sp;'B' = 'BY.
By the results in 1.6 this is the same as {(! B)y;U € Z(!B)}. By 1.17(a), for
U € Z(' B) we have

dim((* B)p)o = dim(* B)o + |U].

This is > dim(!B)¢ with equality if and only if U = (). This proves (f) and hence
(e).
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For £ € C(V}) we denote by £™ the element £’ in (e) with |£’| maximal. Let
A*(V3) be the set of all (£,L£') € C(V}) x C(V}) such that L = L™, We have
A*(V3) C A(V}) and

(g) (L, L") — L is a bijection A*(VJ) — C(V}).

From (c),(g) we see (using the proof of (f)) that
(h) B+ (< B >1,< B >})) is a bijection 1Sp — A*(V}).

1.19. In this subsection we assume that D € {2,4,6}. In each case we give a
table with rows of the form «....3....7y where a € 53/2, B € 1Sp corresponds to o
and v € Xp. We write an interval [a,b] as a,a+1,a+2,...,b (without commas).

D =

(2,4} {0} (? : 451)
(1,4} {1}, <g ; ;1)
{3,234}..{3}..... (fl) ’

{2,123}....{2,123} ... (g g)

D=

(2,4,6}....{0}..... (2 3 ;1 (;)

(1,4,6}. {1}...... (g ; ‘51 (;’)

(3,234,6}...{3}..... (? Z g (;’)

(2,5,456)...{5}..... (2 ?, ‘61 ?)

{1,3,6}...{1,3}.... (g 111 g g)

{1,5,456}...{1,5}...... (g L ?)

1 4

~
w
o
o)
W
o~
ot
=)
—~
—~
w
ot
—
VRS
o
\G)
w
-3
~_
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01 35
{1,3,5}...{1,3,5}.... (2 L6 7)

012 6
{2,123,6}““{2,123}“.(3 L5 7)
0

{2,4,12345}...{2,4,12345}.... (g é
01 3 4
{1,4,345}...{1,4,345}...... (2 s 6 7)
01 25
{2,123,5}...{2,123,5}...... s 46 7)
01 2 3
{3,234,12345}....{3,234,12345}...... (4 - 7)

2. EXCEPTIONAL TYPES

2.1. Let W,¢,T'. be as in 0.1. We must show that 0.2(c),0.2(d) hold.

If W is of type A,,n > 1 we have |c| = 1,I'. = S;. In this case, 0.2(c), 0.2(d)
are trivial.

If W is of type By, or Cp, n > 2 or D,,n > 4, we can identify T'. = V} for
some D € 2N. We can identify M(I'.) = Vp as in [L19, 2.8(i)]. In these cases,
0.2(c), 0.2(d) follow from 1.18(e) and the proof of 1.18(f). Now A, is the same as
>p (see 1.11) in the symbol notation [L84] for objects of W (assuming that W is
of type D and c is a cuspidal family).

2.2. In the remainder of this section we assume that W is of exceptional type.
Then we are in one of the following cases.

le| =1,T,. = Sq;
le| =2,T. = 55
|C| = 3,FC = SQ;
le| =4,T. = S5;
le| =5,T. = Ss;
le| = 11,T, = S;
|C| = 17, FC = S5

Here S5 (resp. S3) is another copy of Sy (resp. S3).
For the elements (I'",T") € Xr, we use the notation of [L23]. Following [L.23]
we give for each I'y € X the list

L(Th) = {I"; (I',T") € X} ).
Assume that |¢| = 1. Then L(S7) = {51}.
Assume that |¢| € {2,3}. Then
L(51) = {52, 81}, L(S2) = {52}
Assume that |c| € {4,5}. Then
L(S51) ={53,52, 51}, L(S2) = {S2}, L(S3) = {53}
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Assume that |c| = 11. Then

L(Sy) = {854, 53,5252, 52,51}, L(S2) = {5252, 52},

L(5252) = {As, 5252}, L(S3) = {Ss}, L(As) = {As}, L(S4) = {S4}.

Assume that |¢| = 17. Then

L(Sy) = {S5, S4, 5352, 53,5259, 52, S1}, L(S2) = {5353, 5252, Sa},

L(S5282) = {As, 5252}, L(S3) = {5352, 53}, L(As) = {As}, L(S5352) = {5352}

L(Sy) = {Sa}, L(S5) = {Ss}.

In each case we see that L(I'}) contains a unique term with || maximum. (It is
the first term of L(I'})).) We see that 0.2(c) holds in each case. Now 0.2(d) can be
easily verified using the tables in [L.20,§3].

2.3. Applying € to s(I",T") for each I'” in the list L(T')) (recall that (I'V,T") €

X’gé) we obtain a list L'(I') of elements in M (T'.); we write in the same order as
the elements of L(I'}). (The notation for elements in M (I'.) is taken from [L84].)
Assume that |c¢| = 1. Then L'(S7) = {(1,1)}.
Assume that |¢| € {2,3}. Then L'(S1) = {(1,1),(1,€)}, L'(S2) = {(g2,1)}.
Assume that |c| € {4,5}. Then
L/(Sl) = {(17 1>7 (17T>7 (17 E>}7 L/(S2> = {(92: 1>}7 L/(S3) = {(93: 1>}

Assume that |c¢| = 11. Then

L/(Sl) = {(17 1>7 (17 /\1>7 (17 0)7 (17 )‘2)7 (17 )‘3)}7 L/(S2) = {(927 1>7 (927 E//)}7

L'(5253) = {(g2,1), (g5, €")}, L'(S3) = {(g3, 1)}, L'(As) = {(g3,€)}, L'(54) =
{9 1)},

Assume that |¢| = 17. Then

L/(Sh) = {(1,1), (1,A1), (1,0), (1,22), (1,07), (1, A%), (1, A)},

L/(82) = {(92: 1), (92,7), (92, )}, L'(525) = {(gh. 1). (g ")},

L'(S3) = {(g3,1), (93,€)}, L'(As) = {(g2,€)}, L'(5352) = {(g6,1)},

L/(84) = {(ga: )}, L'(S5) = {(95, 1)}-

The almost special representations in ¢ are represented by the first term in each
list. They are as follows.

If || = 1 we have Ap, = {(1,1)

If |e| € {2,3} we have Ap, = {(

If || € {4,5} we have Ap, = {(

1

) ) (.927 ) (9371)}'
It |C| = 11 we have AFC = { L, 7( g2, ) (927 ) (937 1)7 (gév E/)7 (947 1)}
If |¢| = 17 we have

Al"c = {<1? 1)7 (.927 1)7 (géa 1)7 (937 1)7 (géa 6/)7 (967 1)7 <g47 1)7 <g57 1)}

2.4. In the case where |¢| = 17 we have that W must of type Fg. An element
of each list L'(T'y) can be identified with an element of ¢ (under the imbedding
¢ C M(T,)) represented by its dimension (with the single exception of (1,A%)).
Then the lists L'(T';) become:
L’(Sl) — {4480, 5670, 4536, 1680, 1400, 70, 7},

L'(S2) = {7168, 5600, 448},

L'(S252) = {4200, 2688},

L'(Ss) = {3150, 1134},

}-
1,1), (92, 1)}-
1
)



18

G. LUSZTIG

L'(Ag) = {168}, L'(S3S53) = {2016},

L'(S4) = {1344}, L' (S5) = {420}.
Note that the first representation in a given list L'(T')) has the b-invariant (see [L84,
(4,1,2)]) strictly smaller than the b-invariant of any subsequent representation in
the list. (We expect that this property holds for any ¢.) This property is similar
to the defining property of special representations [L79a] and justifies the name of
“almost special” representations.

[L79]

[L79a]
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