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Abstract

We optimize hierarchies of Time-to-Live (TTL) caches under random network delays. A TTL cache
assigns individual eviction timers to cached objects that are usually refreshed upon a hit where upon
a miss the object requires a random time to be fetched from a parent cache. Due to their object
decoupling property, TTL caches are of particular interest since the optimization of a per-object utility
enables service differentiation. However, state-of-the-art exact TTL cache optimization does not extend
beyond single TTL caches, especially under network delays.

In this paper, we leverage the object decoupling effect to formulate the non-linear utility maximization
problem for TTL cache hierarchies in terms of the exact object hit probability under random network
delays. We iteratively solve the utility maximization problem to find the optimal per-object TTLs.
Further, we show that the exact model suffers from tractability issues for large hierarchies and propose
a machine learning approach to estimate the optimal TTL values for large systems. Finally, we provide
numerical and data center trace-based evaluations for both methods showing the significant offloading
improvement due to TTL optimization considering the network delays.

1 Introduction

Caching has an essential role in reducing response times and bandwidth consumption by drawing frequently
requested data objects closer to the request origin [1,2]. As the demand for objects dynamically varies, service
differentiation becomes an integral building block of the caching system. This is achieved through a caching
utility abstraction [3] that gives rise to concepts such as caching fairness and cache resource allocation. A
key approach to fine-grained cache optimization lies in controlling the utility attained by individual objects.
This calls for systems built around independently tuning object-specific cache performance metrics.

Traditional and modern caches that use either fixed or data-driven, learned policies [4–7] usually run
one or more decision rules that couple the occupancy of all the objects in the cache. For example, Least-
recently-used (LRU) is a versatile and popular caching policy that is based on such coupling. In contrast,
TTL caching decouples the object occupancy in the cache by assigning independent expiry/eviction time
tags to the individual objects [8]. In a single TTL cache the aggregate utility of objects is maximized by
deriving the object-specific optimal TTL values [3]. While the work in [3] is seminal, it is limited to a single
cache within a set of restricting assumptions including, zero network delays and Poisson requests.

Caching systems usually consist of multiple caches connected to form a hierarchy [1]. We consider tree-
like hierarchies representing systems such as content delivery networks (CDN) and data center caching.
We note that optimizing cache hierarchies is hard as it involves jointly modeling and optimizing multiple
interconnected caches under random network delays. It is also known that optimizing caches in isolation
poorly utilizes the storage by allowing redundancy and ignoring the request process correlations [9].

Previous work on modeling and performance evaluation of TTL caching hierarchies offers computable
models that are either exact-but-slow [10, 11] or approximate-but-fast [12, 13]. For single TTL caches there
exist exact and computable models under the assumption of network delay randomness [13]. Additionally,
the work in [14] utilizes an approximate approach to simplify the TTL cache hierarchy and propose a
corresponding analytical optimization. The work in [10] was the first to provide an exact Markov arrival
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Figure 1: Impact of delays on the TTL caching performance: The aggregate utility1of a 3-cache
binary tree for increasing network delays and a fixed request rate at the leaves. The TTL caches are jointly
optimized under the state-of-the-art zero network delay assumption. The performance of the TTL caching
system deteriorates with network delays below delay-agnostic hierarchies built upon LRU, FIFO or random
caching.

process (MAP) model of a TTL caching tree under zero network latency. As empirically observed in [15],
for a wide set of caching systems, the network delay significantly impacts the caching performance. The
authors observe that the network delay ranges from being in the order of the inter-request times to being
multiple orders of magnitude larger. Fig. 1 shows the detrimental impact of ignoring the network delays
when optimizing the exact analytical model (denoted “idealized”). Here, a binary tree of three TTL caches
is optimized under the zero network latency assumption. It then performs significantly better than a size-
comparable, delay-agnostic2 LRU, Random or FIFO cache hierarchy. However, when this optimized TTL
cache hierarchy is driven under random network delays, its performance deteriorates significantly even below
the performance of the delay-agnostic counterparts. Fig. 1 shows the need for considering network delays
when optimizing TTL cache hierarchies.

In this paper, we optimize the aggregate utility of TTL caching hierarchies under random network delays.
With the trade-off between model complexity and accuracy in mind, we propose two approaches for utility
maximization. First, we propose an analytical closed-form approach based on the exact MAP model where
we solve the corresponding non-linear utility optimization problem using interior-point optimization. Second,
we propose a graph neural network (GNN) approach that models the caching hierarchy as a graph to predict
the optimal object TTLs after being iteratively learned using reinforcement learning. The rationale behind
showing two approaches lies in the observation that with increasing number of objects N and the number of
caches nc, the analytical closed-form solution becomes intractable. Hence, we empirically show this transition
from the exact closed-form solution to the approximate GNN-based solution with increasing system size. Our
contributions are:

• We formulate a utility maximization problem for optimizing TTL caching hierarchies under random
network delays to uniquely leverage the object decoupling effect of TTL caches. We provide an ana-
lytical solution to the non-linear utility maximization (Sect. 3-4).

• As analytical TTL models only use the expected cache storage utilization we propose a corresponding
TTL policy that reduces the loss in the aggregate utility. We show numerically in Sect. 7 that the
simulated aggregate utility is close to the analytically obtained one.

• We provide a GNN model to maximize the utility of the caching system for large hierarchies (Sect. 6).

• We provide numerical evaluations of the analytical and the GNN utility maximization methods (Sect. 7).

Before we delve into the contributions, we first give an overview of the related work on modeling TTL cache
hierarchies as well as cache utility maximization in the next section.

1Utility captured through α-fairness [3], here, as
∑

i

∑
j λIij log(Pij) with λIij and Pij being the average request rate and

system hit probability of the Input request stream of object i arriving at leaf cache j, respectively.
2Delay-agnostic as these caching rules are fixed no matter the delay.
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Figure 2: Two level caching hierarchy tree consisting of nl leaves. The random variable di encodes the delay
for cache i to download the content from its parent. The server contains all objects. The request rate of
object i at leaf j is denoted λI,ij .

2 Background & Related Work

2.1 Approaches to TTL cache modelling and optimization

Utility functions that are widely used in the context of network resource allocation [16,17] have been recently
adopted to caching models as a means to achieve service differentiation [3]. As the TTL policy decouples
objects in the cache it is particularly well suited for utility maximization problems that control individual
object performance metrics such as object hit probability and occupancy. Note that capacity-driven caching
policies such as LRU or FIFO can be emulated using TTLs by linking the capacity to the expected cache
occupancy [5, 10, 18–20]. The authors of [21] study linear utility maximization for different caching policies,
while the authors in [22] consider the TTL utility maximization under heavy-tailed request processes and
the works [23, 24] consider utilizing hit rates instead of probabilities for utility maximization.

The authors of [15] draw attention to the impact of object retrieval delays in a single cache and develop
an algorithm similar to the clairvoyant Belady-Algorithm that provides an upper bound to the hit probability
under network delays. An exact analytical model for a single TTL cache under network delays is derived
in [13]. For hierarchies, the authors of [25–29] focus on optimizing the aggregate sum of the object utility
of each cache in terms of content placement and request routing. Using variants of the fixed strategy Move-
Copy-Down (MCD), the authors of [14] consider Poisson requests and use an approximation of the system
hit probability, that, however, cannot capture the aggregation of different request streams, to optimize
the overall utility of the hierarchy. Early works on TTL caching hierarchies use approximations to derive
performance metrics, e.g., the authors of [18] model the TTL caching hierarchies assuming a renewal request
process at the output of each cache. An exact model of TTL cache hierarchies has been first proposed in [10]
using a Markov Arrival Process (MAP) model under the zero network delay assumption. Recently, the work
in [11] extends this model to random network delays within the hierarchy. Fig. 2 depicts a two level cache
hierarchy tree showing the object request processes at the leaves and the random network delays.

In contrast to exact analytical models, learning-based approaches have been proposed for cache optimiza-
tions due to their lower computational complexity and ability to adapt to temporal changes. The authors
in [6] use a recurrent neural network with long short-term memory units to predict the future popularities of
the objects and optimize the single cache hit probability. In [30–32], reinforcement learning (RL) approaches
using feedforward neural networks are proposed for making content admission decisions for an individual
cache. Recently, the work in [33] proposed a deep RL (DRL)-based caching policy for distributed coded soft-
TTL caching scenario with the goal to minimize the network load. In addition, the authors of [34] proposed
a DRL online caching approach as an alternative to the analytical approach in [3] for a single utility-driven
TTL cache to achieve faster adaptation to changes of content popularities. In a TTL caching system that
allows elastic adjustment of the cache storage size, a DRL-based algorithm can be used to optimize the
system utility and the cost of storage together as outlined in [35].

Our work here differs fundamentally from the utility-driven caching in [3, 21–24, 34] as we consider the
joint utility maximization for multiple caches in a hierarchy under random network delays. In contrast to
these related works, we base our work on an exact model of TTL cache hierarchies under random network
delays. Further, in comparison, the work in [14] maximizes the system utility of a simplified hierarchy model
with decoupled paths and approximate system hit probability. In contrast, our work, first, takes random
network delays into the optimization, and second, we build on the exact object hit probability throughout the
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Figure 3: The MAP of a single cache object with parameters λ, µ and µF for the inter-request time, TTL and
delay distributions, respectively. States ”0”, ”1” and ”F” indicate that the object is in the cache, the object
is out of the cache and the object is being fetched, respectively. The TTL and the delay are exponentially
distributed. (a) represents a Poisson request process, while (b) represents an Erlang-2 request process. State
pairs Xa and Xb correspond to the object during each of the two Erlang-2 request phases.

hierarchy. Hence, instead of a fixed object placement such as MCD in [14] our optimization yields the optimal
object TTLs at every cache in the hierarchy. Finally, the main difference to the hit-driven optimizations for
a single cache [6, 7, 30] is that our main goal is to provide utility maximization for entire hierarchies.

2.2 Primer on exact TTL cache hierarchy modelling

Next, we provide a quick review of the exact analysis of TTL caching hierarchies given random network
link delays. A detailed treatment is found in [11]. We use bold symbols to denote vectors and matrices and
non-bold symbols for scalars. Since TTL caches decouple objects, the model expresses the object-specific hit
probability using a MAP that describes the state of an object of interest in the hierarchy. A MAP [36] is a
point process described by two transition matrices; a hidden one D0, and an active one D1. Let the states
associated with these matrices be denoted by the vector SSS. Transitions that only control the jump process
J(t) are in D0, while D1 contains transitions which control J(t) and also a counting process N(t). Here,
N(t) counts the request misses from the entire cache hierarchy (so called system misses) until time t. Fig. 3
depicts a state space model showing the state of the object in a single cache. The figure shows different
examples of the MAP of a single cache with Poisson and Erlang request processes while for simplicity TTLs
and delays are exponentially distributed.

In general, the state space model is given as a composed MAP that is constructed of the MAPs of
the request process, the TTL and delays, i.e., each of these three components can itself be described by a
Markov arrival process [11]. The MAP describing the state of object i is, thus, defined over the state vector
SiSiSi consisting of ns,i states. To obtain the MAP associated with the object state in a tree-like cache hierarchy,
the approach in [11] iteratively groups the individual cache MAPs using Kronecker superposition operations.
The operation builds an equivalent MAP for multiple cache MAPs under topological constraints.

The steady state hit probability of an object i given the caching hierarchy MAP is expressed as [37]

Pi = 1−
λMi

∑nl

j=1 λIij
= 1−

πππiDi,1111
∑nl

j=1 πππ
{I}
ij D

{I}
ij,1111

, (1)

where λMi and λIij are the miss rate from the hierarchy, i.e. at the root, and the input request rate to the
j-th leaf, respectively. The number of leaves is denoted by nl. Here, Di,1 and πππi are the active transition

matrix and the steady state probability vector of the hierarchy MAP, respectively. Further, D
{I}
ij,1 and πππ

{I}
ij

are the active transition matrix and the steady state probability vector of the input request process at the
jth leaf cache. The vector 111 is an all-one column vector.

The steady state probability vector πππi is associated with the MAP describing the state of object i in the
hierarchy. Assuming stationary request processes, TTL sequences and delay processes, πππi is classically found
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as
πππi = bbbAAA−1

i , (2)

where b = [0, 0, ...., 1] and AAAi = [(Di,0 +Di,1):,ns,i−1|111]. Here, (.):,ns,i−1 represent the first ns,i − 1 columns,
i.e, all the columns except for the last one. The operation [XXX |111] concatenates the matrix XXX and the column
vector 111.

The expected object occupancy E[Oki ] of object i in cache k in the hierarchy is

E[Oki ] =
∑

j∈χk
i

πi,j , (3)

where πi,j is the jth element of πππi. Here, χki is the set of indices of states in SSSi where the object is stored
in cache k.

Finally, note that it is evident from (2) and as highlighted in [11] that obtaining πππi is computationally
intensive. With an increasing number of objects N and number of caches nc the closed-form solution
tractability is constrained by the matrix inversion AAA−1

i . Adopting the results from [11] a direct computation
shows that this solution scales as O(N · N ξnc

s ) with ξ being the typical exponent for matrix inversion (e.g.
from [38]) and Ns being the number of states of each individual cache MAP assuming homogeneity.

3 System model and Problem statement

In this section, we formulate the utility maximization problem for TTL cache hierarchies under random
delays and discuss different notions of utility functions. We consider a TTL caching tree with nc caches
of which nl are leaf caches and the number of equally-sized objects in the system is N . Exogenous object
requests are only received via leaf nodes. Object retrieval from one cache to a parent cache takes a non-
trivial, random download delay. We model each of the request processes, TTLs and the delays using a PH
distribution. We define a request to a leaf cache as a hit when the object is in any of the caches along the
path from that leaf to the root and as a miss otherwise. We use the approach outlined in the previous section
to derive the MAP of the hierarchy.

3.1 Key insight and approach to TTL optimization

Next, we introduce our key idea for formulating the object utility given a cache hierarchy. We aim at
maximizing the aggregate utility of objects in the cache hierarchy. This is achieved by controlling each
object’s overall hierarchy hit probability through tuning the corresponding object TTL parameters at every
cache in the hierarchy.

In a cache hierarchy, requests to the same object arrive at heterogeneous leaf caches, where heterogeneity
is in terms of leaf-specific object request processes as well as the object fetch delay distributions between
child-parent caches. Hence, requests of an object at different leaf caches contribute to the overall object
utility differently. The key idea of our formulation is to decompose the object utility into its per input stream
weighted utilities and express it as

Ui =
∑

j

λIijψ(Pij(µµµi)) , (4)

where Pij is the hierarchy hit probability of an object i considering only the hits collected from the request
stream to a leaf cache j, and the vector µµµi denotes the parameters of the given TTL distributions of object i
at all caches in the hierarchy. Here, ψ is a real-valued utility function, e.g. expressing α-fairness as considered
later on, and λIij is the request rate for object i at leaf cache j. We calculate Pij from the MAP of object i
as

Pij = 1−
λMij

λIij
= 1−

πππiDij,1111

πππ
{I}
ij D

{I}
ij,1111

, (5)

where only the miss rate λMij of the requests to leaf cache j is considered3. This is calculated using the
active transition matrix Dij,1 containing only the transitions from Di,1 that generate misses due to a request

3Note from the formulation that the hierarchy hit probabilities per-leaf request stream are not mutually independent.
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to leaf cache j. Note that Pij does not only depend on the object TTL parameters at the caches along the
request stream path to the root but also on the object TTL parameters at each cache of the hierarchy. This
is expressed in (5) by πππi which is a function of all the parameters of the MAP. Our formulation of the utility
function in (4) coincides with the utility definition in [3] in case of a single cache. However, our formulation
extends the utility calculation to tree-like cache hierarchies.

3.2 Utility maximization

We formulate the optimization of the object TTLs within the cache hierarchy given random network delays
as a utility maximization problem. We express the overall utility of the hierarchy as the sum of the object
utilities given in (4). We utilize the per-request stream decomposition formulation and the expected object
occupancy in a specific cache in the hierarchy from (3)-(5). Next, we formulate the following optimization
problem

maximize
µµµiµµµiµµµi

N
∑

i

nl
∑

j

λIijψ(Pij(µµµi)) , (6)

subject to

N
∑

i

E[Oki ] = Bk ∀k . (7)

Here, E[Oki ] is the expected occupancy of object i at cache k from (3) and Bk denotes the size of cache k
measured in the number of objects the cache can hold.

Standard TTL models such as [3,5,10,18] assume an infinite storage capacity and use the constraint (7)
on the expected occupancy to introduce a separate cache capacity constraint. In this basic formulation of the
optimization problem, we take the same approach. We note that this constraint is not sufficient to prevent
a storage capacity overflow or in other words a mismatch between the closed-form solution of (6) and an
algorithmic realization using any finite cache size. In Sect. 5 we illustrate the problem of cache storage
violation and propose an approach based on the chosen TTL policy.

As discussed in Sect. 1, TTL caching has the advantage of tuning the hit probability of each object
independently. Thus, we aim to find the object TTLs at each cache that maximize the overall utility of the
cache hierarchy.

3.3 Utility and fairness in cache hierarchies

Here, we adopt the α-fair utility function proposed in [39], which groups different notions of fairness for
resource allocation. We use the α-fair utility function

ψ(P ) =

{

P 1−α

1−α α ≥ 0, α 6= 1

logP, α = 1
(8)

where P is the hit probability. The α-fair utility function is used in the context of resource allocation to
unify different notions of fairness [17]. By letting α ∈ {0, 1} or α → ∞, the α-fair utility can represent the
notion of fairness ranging from throughout (also called offloading) maximization (no fairness, α = 0) and
proportional fairness (α = 1) to max-min fairness as α → ∞. By solving the optimization function (6), (7)
we obtain the TTL values that maximize the desired utility.

4 Interior point utility maximization for TTL cache hierarchies
under random Network Delays

In this section, we derive the solution to the utility maximization problem defined in Sect. 3. We first derive
a closed form solution for the optimal TTL values for a single cache before solving the utility maximization
problem for the cache hierarchy using the interior point method.

6



4.1 Straw man: Maximizing the utility of a single cache under exponential
distributions

Next, we derive a closed form solution to the utility maximization of a simple single cache where the mutually
independent inter-request times, the TTL and the fetching (network) delays are each independently and
identically distributed (iid), specifically, exponentially distributed, with parameters 1/λi, 1/µi and 1/µF ,
respectively. Fig. 3a shows the single cache MAP for an arbitrary object. The object hit probability and
occupancy are obtained from (1)-(3) as

Pi = E[Oi] =
λiµF

µi(µF + λi) + λiµF
(9)

Note that Pi = E[Oi] is only valid for memoryless inter-request time, TTL and delay distributions. Now,
achieving maximum utility is equivalent to optimizing Pi, hence, calculating the corresponding optimal TTL
parameter µi in (9). The optimization function (6)-(7) becomes

maximize
Pi

N
∑

i

λIiψ(Pi) , subject to

N
∑

i

Pi = B , (10)

with Pi as a decision variable for this cache and λIi = λi for the exponentially distributed inter-request
times. The optimization function as expressed in (10) coincides with the one proposed in [3] for a single
cache with delays. Note, however, that a difference exists in the relation between the hit probability and
TTL that depends in our single cache model on the delay as expressed within (10). The following result can
also be obtained from [3].

The optimal hit probability for the example above is Pi = ψ′−1(β/λi) with
∑

i ψ
′−1(β/λi) = B where

ψ′−1(β/λi) is the inverse function of the derivative of the utility with respect to Pi. Here, Pi is expressed in
terms of β which is implicitly given and numerically obtained when a given utility function is inserted above.
For example, in the case of proportional fairness utility (α = 1) the optimal hit probability is Pi =

λi∑
i
λi
B.

Consequently, the optimal TTL for this simple single cache with delay is calculated from (9) as

µ̂i =
1

µF + λi

(

µF
∑

i λi
B

− λiµF

)

.

4.2 Why maximizing the utility of a cache hierarchy is hard?

The approach illustrated above of finding the optimal object hit probabilities Pi that maximize the utility
and, hence, calculating the corresponding optimal TTL parameters µi is feasible under two conditions: (a)
the object hit probability is a bijective function of the TTL parameter (b) the object occupancy function is
a composite function g(Pi(µµµi)).

The first condition is only valid for a single cache while the second is only guaranteed in case of a single
cache with exponentially distributed iid inter-request times, TTL and delays. Extending this simple single
cache to PH distributed inter-request times, TTL and delays, condition (b) is not guaranteed to be fulfilled.
Moreover, for a caching tree model, the hit probability Pij is no longer a bijective function of the TTL
parameters as it is controlled by the TTL parameter vector representing multiple caches along a path from
a leaf j to the root of the hierarchy. Trivially, for a leaf cache connected to a parent, storing an object
permanently in either cache achieves an object hit probability of one.

Next, we illustrate our approach to the utility maximization problem using the optimal TTLs as decision
variables. Since the problem is a non-linear inequality constrained one, we build on the iterative interior-point
approach.

4.3 Non-linear inequality constrained optimization

The interior-point optimization method is used to solve non-linear optimization problems of the form of

minimize
xxx

f(xxx) , subject to c(xxx) = 0 , xxx > 0 ,

7



where f : Rn → R is the objective function, and the vector-valued function c : Rn → Rm contains m equality
constraints. The interior point approach uses barrier functions to embed the inequality constraints into the
objective function [40] such that the problem can be rewritten as

minimize
xxx

f(xxx)− η
∑

i

ln(xi) , subject to c(xxx) = 0 ,

where xi is the ith element of the vector xxx. The key idea behind the barrier function is to penalize the ob-
jective function when approaching the inequality constraint. Here, we show the logarithmic barrier function
where the penalty of xi approaching the constraint at 0 is −∞. In addition, the parameter η controls the
scale of the penalty, where the solution to the problem for a decreasing value of η approaches the original
problem. This requires solving the problem multiple times after reducing the value of η gradually. At each
optimization step (superscript (i)), the value of η is calculated for the next iteration ensuring a super-linear
convergence by [41]

η(i+1) = max
{ ǫtol
10

,min
{

κη(i), η(i)
θ
}}

,

where ǫtol is the user defined error tolerance, κ ∈ [0, 1] and θ ∈ [1, 2]. As a result, the value of η decreases
exponentially as the optimization gets closer to convergence.

For a fixed η, the optimization problem is solved by applying Newton’s method to the Lagrangian

L = f(xxx) + c(xxx)Tννν − xxxTzzz .

Given the Lagrangian multipliers for the equality and inequality constraints, i.e., ννν and zzz, respectively, the
method solves the problem iteratively for the steps to the minimum δxδxδx

(m), δνδνδν
(m) and δzδzδz

(m) at iteration m
to update the value of the decision variables and the Lagrangian multipliers [41] according to

xxx(m+1) = xxx(m) + α(m)δxδxδx
(m)

ννν(m+1) = ννν(m) + α(m)δνδνδν
(m)

zzz(m+1) = zzz(m) + α(m)
z δzδzδz

(m) .

where, the step sizes α and αz ∈ [0, 1]. Note that for a more flexible and less restrictive update of the
variables, different step sizes are chosen for zzz than xxx. In addition, in order to ensure that the values of xxx and

zzz are positive at each iteration [41], α(m) and α
(m)
z are calculated with respect to a fraction to the boundary

value ε(i) := max{εmin, 1− η(i)} as

α(m) ≤ max{α ∈ [0, 1] : xxx(m) + αδxδxδx
(m) ≥ (1− ε)xxx(m)}

α(m)
z = max{α ∈ [0, 1] : zzz(m) + αδzδzδz

(m) ≥ (1 − ε)zzz(m)} , (11)

where εmin ∈ [0, 1]. Furthermore, choosing a specific value of α(m) ∈ [0, α
(m)
max] from (11) by applying a

backtracking line search method ensures sufficient progress towards the optimal solution. Using a variant of
Fletcher and Leyffer’s filter method [42], the authors of [43] proved under mild conditions that the interior
point achieves global convergence.

The optimal steps δxδxδx
(m), δνδνδν

(m) and δzδzδz
(m) at iteration m are calculated by solving







H
(m)

J
(m)

−I

J
(m)T 000 000

Z
(m) 000 X

(m)











δxδxδx
(m)

δνδνδν
(m)

δzδzδz
(m)



 = −





Γ

c(xxx(m))

X
(m)

Z
(m)111− η111



 , (12)

where H is the Hessian of the Lagrangian L defined as

H := ∇2
xxL = ∇xxf(xxx) +

∑

k

νk∇xxck(xxx)

and using the shorthand matrix Γ := ∇f(xxx(m))+J(m)ννν(m)−zzz(m), where J := ∇c(xxx) is the Jacobian matrix
of the equality constraints. Here, X(m) and Z(m) are diagonal matrices of xxx(m) and zzz(m), respectively.
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4.4 Utility maximization for TTL cache hierarchies

Next, we first apply the interior point optimization to solve the TTL cache utility maximization (6)-(7). We
express the objective function f(xxx) and the constraints ck(xxx) as

f(xxx) = −
∑

i

∑

j

λIijψ(Pij(µµµi))

ck(xxx) =
∑

i

E[Oki ]−Bk, ∀k ∈ {0, .., nc} (13)

The decision column vector xxx contains the TTL parameters of each object at each cache and controls the
aggregate utility of the hierarchy. We express xxx in terms of the TTL parameters of each object as

xxx = [µµµT1 , µµµ
T
2 , . . . ,µµµ

T
N ]T

Next, we derive the gradients ∇xxf(xxx) , ∇f(xxx), ∇xxc(xxx) and ∇c(xxx) for the cache utility maximization
problem to calculate H, J and Γ from (12), to obtain the optimal search directions. We formulate the
gradient and Hessian of f(xxx) with respect to the TTL parameters of each object µµµi. The key to using
interior point optimization is that TTL caching decouples the objects in the cache, i.e, the hit probability
of an object i only depends on its TTL parameters µµµi, and thus we can express ∇f(xxx) and ∇xxf(xxx) as

∇f(xxx) =
[

∇T
µµµ1
f(xxx) ∇T

µµµ2
f(xxx) . . . ∇T

µµµN
f(xxx)

]T
(14)

∇xxf(xxx) =







∇µµµ1µµµ1
f(xxx) 000 000

000
. . . 000

000 000 ∇µµµNµµµN
f(xxx)






(15)

Similarly, ∇c(xxx) and ∇xxc(xxx) are represented as in (14) and (15), which we do not show here for space
reasons.

Recall that the object hit probability (5) and the expected occupancy (3) are calculated using the steady
state probabilities πππi, which in turn depend on the transition matrices of the hierarchy MAP. Therefore, we
next derive ∇f(xxx), ∇xxf(xxx), ∇c(xxx) and ∇xxc(xxx) in terms of the derivatives of the steady state vector of
each object i with respect to its TTL parameters.

Given the TTL parameters a, b each representing any of the TTL parameters in µµµi of an object i. From

(2) the derivatives πππa
′

i := ∂πππi

∂a
and πππa

′b′

i := ∂2πππi

∂a∂b
are given as

πππa
′

i = −bbbA−1
i Aa′

i A
−1
i

πππa
′b′

i = πππi[A
a′

i A−1
i Ab′

i +Ab′

i A
−1
i Aa′

i ]A−1
i (16)

Theorem 1. The derivatives fa
′

:= ∂f(xxx)
∂a

and fa
′b′ := ∂2f(xxx)

∂a∂b
associated with the TTL cache objective

function (6) are given in terms of the derivatives of the steady state vector πππa
′

i and πππa
′b′

i from (16) as

fa
′

=
∑

j

ψ′πππa
′

i Dij,1111 , (17)

fa
′b′ =

∑

j

[

λIijψ
′πππa

′b′

i − ψ′′πππb
′

i Dij,1111πππ
a′

i

] Dij,1111

λIij
(18)

where ψ′ is the derivative of ψ with respect to Pij .

The proof of Thm. 1 is in the appendix.
Now, the equality constraint is expressed in terms of the steady state vector according to (3). Therefore,

we calculate its first and double differentiation as

ca
′

k (xxx) =
∂E[Oki ]

∂a
=

∑

l∈χk
i

πa
′

i,l ,

ca
′b′

k (xxx) =
∂2E[Oki ]

∂a∂b
=

∑

l∈χk
i

πa
′b′

i,l , (19)
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where πa
′

i,l and π
a′b′

i,l are the l-th elements of πππa
′

i and πππa
′b′

i , respectively. We can now use (16) and Thm. 1 to
calculate ∇xf(xxx) and ∇xxf(xxx). Similarly, we use (16), (19) to calculate ∇xxc(xxx) and ∇xc(xxx). As a result,
we obtain H, J and Γ.

5 Storage considerations for TTL optimization

Next, we discuss the practical limitations of using the expected occupancy in the constraint (7) and propose
an empirical extension to circumvent these limitations.

5.1 Cache storage size violation

Given abundant cache storage, TTL assignment and TTL-based eviction treat objects independently. This
allows the TTL policy to imitate different caching policies by tuning the TTLs to generate the same expected
object occupancy and average performance as under other policies such as LRU [5,18].

The constraint (7) links the average occupancy of the objects to the cache size, which guarantees the full
utilization of the cache storage on average as the average number of cached objects equals the (hypothetical)
cache size Bk. The drawback of this consideration is that the number of cached objects is randomly dis-
tributed while centered around Bk [44]. Any caching system has a finite storage capacity, hence, the cache k
will use a hard eviction policy to evict an object when Bk objects are present upon object insertion. Hence,
we require a decision rule in addition to the optimal TTLs obtained from the closed-form result from Sect. 4
to evict an object when the cache is full and an object has to be admitted. To this end, we propose that
when an object miss occurs at a cache k which already includes Bk objects, we use the minimum TTL policy
(denoted TTLmin) to evict the object which has the minimum remaining lifetime (TTL). Consequently, the
object will not be admitted if its fresh TTL is smaller than the remaining lifetime of all the objects in the
cache. As a result of the eviction of objects prior to their optimal TTL values, this extension achieves a
lower utility than the one obtained through analytical optimization.

For a single cache, [3] shows that the storage size violation probability approaches zero in a scaling limit.
For a finite size system, the achieved utility is, however, not optimal.

5.2 Heuristic: Minimum extended Time-to-Live (TTLmin,extnd)

In order to counteract the decrease in utility due to finite storage size we additionally propose a heuristic
TTL-based policy, which we denote as minimum extended Time-to-Live (TTLmin,extnd). TTLmin,extnd leaves
the object in the cache despite TTL expiry when the cache is not full which reduces the utility loss from
underutilizing the cache storage.

We calculate the TTL-based timestamp of eviction of an object i in the cache at time t as

τi(t) := τ̂i − t+ t′i, τi, t, t
′
i ∈ R, t ≥ t′i , (20)

where t′i is the latest TTL resetting time of object i either from a hit or a new admission to the cache.
We denote τ̂i as the analytically optimized TTL value, thus initially τi(t

′
i) = τ̂i. A negative value of τi(t)

represents the extended time to live of a delayed eviction.
In steady state, using TTLmin,extnd we evict an object only upon admission of another object to a full

cache. In addition, this heuristic maintains the desired utility by evicting the objects based on the optimally
calculated TTL values. Upon a request to a full cache at time t, TTLmin,extnd evicts the object with minimum

TTL τi(t) from (20) expressed as î = argmin
i∈O(t)

τi(t), where î is the tag of the object with minimum TTL and

O(t) is the set containing all the objects in the cache at t including the object to be admitted. Note that
the rule above will let the fresh object only be admitted if its TTL is at larger than that of an object in the
cache. This rule implies that, on the one hand, the early eviction of an object with τi(t) > 0, i.e., before
the expiry of the optimized TTL, is possible. On the other hand, the rule implies that a delayed eviction of
an object with negative τi, i.e. an object with the earliest expired TTL preserves the ordering specified by
the optimal TTL values. We show by simulations in Sect. 7 that the utility of TTLmin,extnd approaches the
analytical one.
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6 Learning on Graph transformations of TTL Cache hierarchies

In contrast to the closed-form solution presented in Sect. 4, we propose next a learning-based approach to
predict the optimal TTLs. Our rationale for using GNNs is that these can process graphs of large sizes,
circumventing the scaling limitation of the closed-form optimization. We evaluate the execution time of both
methods in Sect. 7.

Next, we present our neural network architecture and data transformation used for optimizing the TTL
configuration of the caching hierarchy. The goal is to enable an agent to process the caching hierarchy and
its properties (e.g. structure, cache capacities, request arrival rates) and predict the optimal TTL to use for
each object at each cache. Our approach is based on a transformation of the caching hierarchy into a graph
data structure, which is then processed using a GNN.

6.1 A GNN approach

We use the framework of GNNs introduced in [45, 46]. These are a special class of neural networks (NNs)
for processing graphs and predicting values for nodes or edges depending on the connections between nodes
and their properties. Fundamentally, GNNs utilize message passing where messages are updated and passed
between neighboring nodes. Essentially, these messages are vectors hv ∈ Rk (here k = 27) that are propagated
throughout the graph over multiple iterations. We refer to [47] for a formalization of GNN concepts.

We select gated graph neural network (GGNN) [48] as GNN model, with the addition of edge attention.

For each node v in the graph, its message h
(t)
v is updated at iteration t as

h(t=0)
v = FFNN init (ιv) (21)

h(t)
v = GRU

(

h(t−1)
v ,

∑

u∈q(v)

λ
(t−1)
(u,v) h

(t−1)
u

)

(22)

λ
(t)
(u,v) = σ

(

FFNN edge

({

h(t)
u ,h(t)

v

}))

(23)

o = FFNN out (h
(d)
v ) (24)

with ιv and o being the input at node v and the output, respectively. Also σ(x) = 1/(1 + e−x) denotes
the sigmoid function, q(v) the set of neighbors of node v, {a, b} the concatenation operator of vectors a
and b, GRU a gated recurrent unit (GRU) cell, FFNN (·) are feed-forward neural networks (FFNNs), and
λ(u,v) ∈ (0, 1) being the weight for the edge (u, v). We obtain the final prediction for each node by a FFNN
(24) after applying (22) for d iterations, with d corresponding to the diameter of the analyzed graph.

6.2 Graph transformation

Next, we use the graph induced through the hierarchy, where nodes are caches and edges are links, as an
undirected graph data-structure that is processed using the GNN. Each node has an input vector of fixed
size describing its features. Specifically, we use the (i) cache type, i.e. leaf or non-leaf node, (ii) average
network delay to the parent cache, and (iii) cache capacity. Additionally, the following features are used
for the leaves: (iv) sum of expected inter-arrival time for all the objects, (v) expected inter-arrival time of
requests for the top-M objects, and (vi) expected inter-arrival time for the remaining M + i objects. For
each node, an output vector of fixed size is predicted, with the following features: (a) M TTL values to use
for the top-M objects, (b) A default TTL value for the remaining M + i objects, (c) the index of the node
where each object should be cached in the hierarchy. The last restriction stems from the efficiency goal to
cache an object only at a single cache along each leaf-root path.

6.3 Training approach

In order to train the GNN, we use reinforcement learning (RL) using the REINFORCE policy gradient al-
gorithm [49] where we use a basic training loop, where the TTL configuration and the object locations
predicted by the GNN are used as input configuration for a cache simulator. At the end of a simulation run,
the empirical object hit probabilities are computed and fed back to the training loop as reward.
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Figure 4: Single cache results: TTL optimization under random network delay vs. the idealized zero-delay
assumption where ρd denotes the ratio of the expected network delay to the expected inter-request time of
the hottest object. (a) Significant Improvement of origin offloading, i.e. traffic served by the cache, due to
optimizing under delays (OPT|delay) vs. idealization (OPT|ideal) increases with the delay. (b) The optimal
TTL values are larger for OPT|delay especially for hottest objects. Object IDs sorted in descending arrival
rate.

The reward function depends on the chosen fairness utility function from Sect. 3.3. Note that we enrich
the reward vector with the utility for each object in the cache and in the case of the log utility function
in (8) we obtain its value close to zero using its Taylor approximation of order 30.

7 Evaluations and Lessons learned

Next, we show numerical performance evaluations of the proposed cache utility maximization approaches.
If not stated otherwise we consider the two-level caching tree in Fig. 2 and use the proportional fairness
parametrization (α = 1) of the utility function (8). The request rates at the leaf caches follow a Zipf
distribution, i.e., the rate of index j is λj =

1
js

and s = 0.8 as observed in [44]. Note that for a given object
the request rates are inhomogeneous across the leaves, i.e., an object i is assigned an index j at each leaf
uniformly at random. Homogeneity follows accordingly. Empirical values stem from long enough emulations
of at least 5×105 requests to generate enough events for cold objects. For illustration, we let the inter-request
times, network delays and TTLs to be exponentially distributed and illustrate the impact of the network
delays on the optimal utility. As noted in Sect. 2.2 it is simple to include these three model components as
MAPs into Thm. 1. We use Pytorch [50] to train the GNN and the evaluations run on a 24-core machine
with 64GB RAM.

7.1 Single cache optimization under random network delays

First, we consider a single cache under random network delays to the origin server. We use N = 100 objects
under Zipf-popularity and capacity B = 10. Fig. 4a shows a strong improvement in a classical cache metric,
i.e., the origin offloading, when optimizing the object TTLs considering the random network delay compared
to ignoring it. The origin offloading is the fraction of request traffic served by the cache and it is obtained
from the utility (8) by α = 0. Here, we vary the ratio ρd of the expected network delay to the expected
inter-request time of the hottest object based on the arguments in [11,15]. One manifestation of the observed
improvement are the per-object optimal TTLs that are higher when accounting for the random delays as
shown in Fig. 4b. Observe that the possible loss in hit probability, consequently utility, due to misses during
the object fetch delay is compensated by the longer TTLs.

7.2 Hierarchy optimization under random network delays

Next, we return to the example in Fig. 1 and show the influence of optimizing the hierarchy caches together
compared to using traditional algorithms such as LRU throughout the hierarchy. We parameterized the
hierarchy with N = 100 objects and a storage of B = 5 per cache. Fig. 5a shows that in contrast to the
detrimental impact of the increasing delay on the utility of OPT|ideal we can maintain the optimal utility
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Figure 5: Two-level binary tree: (a) Aggregate utility of OPT|delay vs.OPT|ideal vs. LRU hierarchy.
(b) Utility loss under strict cache capacity constraint with respect to the optimal utility without strict
capacity restriction (7). TTLmin has a 10% deviation due to the cache storage violation while the heuristic
TTLmin,extnd approaches the optimal utility.

for varying ρd using the optimization from Sec. 4.4 (denoted OPT|delay). Observe that the aggregate utility
remains higher than that of LRU which is utility agnostic.

7.3 Cache size restrictions and empirical TTL policies

Next, we consider emulations of the cache hierarchy under the same parameterization as above where we
use the closed-form optimized TTLs obtained under the average occupancy constraint (7) as in Sect. 4.
In Fig. 5b, we compare the relative utility loss of using these optimized TTLs derived using (7), when
used together with the policies TTLmin, TTLmin,extnd from Sect. 5 under a strict capacity constraint for
an increasing delay ratio ρd. This utility loss is with respect to the analytical optimal aggregate utility,
i.e. OPT|delay, that uses (7). The figure shows an almost 10% deviation from the analytically obtained
optimal utility when applying the TTLmin policy (i.e. evicting the object with the minimum TTL upon
exhausting the cache capacity) highlighting the effect of the cache storage violation. Further, by allowing
the TTL extension when the cache is not full, TTLmin,extnd remarkably shows less than 1% deviation from
the optimal utility. We note, however, that this policy is hard to evaluate analytically.

7.4 Scaling with the hierarchy size: A GNN to the rescue

As we increase the number of leaf caches in the two level caching tree (cf. Fig. 2) we observe in Fig. 6
that the computation time of the optimal TTLs increases exponentially in the number of caches (cf. the
discussion in Sect. 2.2). We, hence, show that utilizing the GNN-based approach from Sect. 6 we obtain
very good results while maintaining a constantly minuscule execution time.

Fig. 6 compares the performance of cache hierarchy emulations using the GNN approach and using the
analytical TTL optimization, specifically TTLmin for N = 30 number of objects and a capacity of B = 4
for each cache. Note that this comparison is consistent as the GNN is trained on the same cache hierarchy.
We increase the total number of caches nc, where nc = 1 represents a single cache and nc = 2 denotes
one parent and one child cache. This explains the non-monotonic behavior of the aggregate utility with an
increasing number of caches. The figure shows that the GNN is able to deliver good performance (albeit not
analytically proven) at a constantly small execution time.

7.5 Trace-based evaluation

Next, we describe a trace-based evaluation of the presented TTL optimization procedure. We use a data
center trace [51] having 106 requests to more than 8 × 104 objects as input to a single cache. We optimize
the TTL cache proportional fairness utility (α = 1). As the trace contains cold transient objects, we only
consider for the TTL optimization the most frequent objects receiving each at least 15 requests (overall
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Figure 7: Trace-based evaluation: Origin offloading of the optimal TTL under strict capacity constraint
(TTL|min) relative to LRU, FIFO and Random caching for increasing delay.

580 objects) using the analytical method in Sect. 4 and do not cache the colder objects (set their TTLs
to zero). We estimate and verify the mean request rates of each object assuming exponentially distributed
inter-request times. As the objects may, however, receive requests only for a certain duration within the
trace, we use the average number of requests per object ωi to gauge (10) as

∑N
i

∑nl

j ωiψ(Pi(µµµi)). We run
simulations using the optimal TTLs vs. vanilla LRU, FIFO and Random caching for a fixed cache size of
50 objects and vary the expected network delay relative to the mean inter-request time. Fig. 7 shows the
strong improvement in the amount of traffic served by the cache (origin offloading) due to optimizing the
object TTLs under random network delays compared to vanilla LRU, FIFO and Random caching.

8 Conclusion

We study the optimization of TTL cache hierarchies under random network delays. By leveraging object de-
coupling in the exact TTL cache model we analytically solve the non-linear utility maximization problem for
cache hierarchies and find the optimal per-object TTL values. As the optimal solution inherits tractability
issues from the exact model, we propose a GNN-based approach that scales with the hierarchy size. Nu-
merical and trace-based evaluations of both methods show strong caching performance improvements when
incorporating the network delay into the cache hierarchy optimization.
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Appendix

8.1 Proof of Theorem 1

First, we prove (17). Let a represent any of the TTL parameters in µµµk of object k. The partial derivative of
f with respect to a is represented as

fa
′

= −
∂

∂a

( N
∑

i

nl
∑

j

λIijψ(Pij)

)

. (25)

All the terms of the first summation do not depend on µk except for the term at i = k. Therefore,

fa
′

= −

nl
∑

j

λIkj
∂ψ(Pkj)

∂a
= −

nl
∑

j

λIkj
∂ψ

∂Pkj

∂Pkj
∂a

. (26)

ψ′ := ∂ψ
∂Pkj

is calculated depending on the chosen utility notion, e.g., for proportional fairness utility,

ψ′ = [ln(10) log(Pkj)]
−1. Using (5), we obtain

∂Pkj

∂a
in terms of πππa

′

k = ∂πππk

∂a
as

∂Pkj

∂a
= − 1

λIkj
πππa

′

k Dkj,1111.

Note that Dkj,1 only depends on the request process. Using
∂Pkj

∂a
in (26), we obtain (17). Next, we prove

(18). We derive

fa
′b′ =

∂fa
′

∂b
=

∑

j

∂(ψ′πππa
′

k )

∂b
Dkj,1111

=
∑

j

[

ψ′πππa
′b′

k + ψ′′ ∂Pkj
∂b

πππa
′

k

]

Dkj,1111 .

Inserting the expression of
∂Pkj

∂b
from above we obtain

fa
′b′ =

∑

j

[

λIkjψ
′πππa

′b′

k − ψ′′πππb
′

kDkj,1111πππ
a′

k

]Dkj,1111

λIkj
.

References

[1] B. M. Maggs and R. K. Sitaraman, “Algorithmic nuggets in content delivery,”ACM SIGCOMM Comput.
Commun. Rev., vol. 45, no. 3, p. 52–66, 2015.

[2] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for content distribution networks,”
in Proc. of IEEE INFOCOM, 2010.
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