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Abstract—Out-of-system (OoS) interference is a potential lim-
itation for distributed networks that operate in unlicensed spec-
trum or in a spectrum sharing scenario. The OoS interference
differs from the in-system interference in that OoS signals and
their associated channels (or even their statistics) are completely
unknown. In this paper, we propose a novel distributed algorithm
that can mitigate OoS interference in the uplink and suppress
the signal transmission in the OoS direction in the downlink.
To estimate the OoS interference, each access point (AP), upon
receiving an estimate of OoS interference from a previous AP,
computes a better estimate of OoS interference by rotate-and-
average using Procrustes method and forwards the estimates to
the next AP. This process continues until the central processing
unit (CPU) receives the final estimate. Our method has com-
parable performance to that of a fully centralized interference
rejection combining algorithm and has much lower fronthaul
load requirements.

Index Terms—Out-of-system interference, cell-free massive
MIMO, distributed processing, Procrustes method

I. INTRODUCTION

As wireless standards are evolving, there is an increase

in demand for applications in unlicensed spectrum and also

employing distributed networks such as cell-free massive

multiple-input-multiple-output (MIMO). In such applications,

one major challenge is the presence of the presence of out-

of-system (OoS) interfering sources and need for efficient

methods to reject the OoS interference. In the literature, the

most commonly employed interference rejection method is to

perform decoloring of the received signal to prewhitening (by

obtaining a sample covariance of the interference plus noise).

Then the desired signals of the serving UEs are estimated

from the prewhitened received signal [1]–[5]. This approach is

commonly referred as interference rejection combining (IRC).

Most of the works either process all the signals centrally, or in

a decentralized manner at each AP locally without cooperation

among the APs. The former approach suffers from significant

fronthaul load; for instance with a stripe topology, to accumu-

late all signals at the central node. The latter approach does

not exploit the fact that the OoS interfering signal is the same

across all APs.

Motivation and Main Contributions of the Paper: For the

applications in unlicensed spectrum, e.g., WiFi, OoS may

be a significant interference source. Effectively suppressing

and managing OoS interference sources at the same time

as serving the users will be crucial in such applications.

Some challenges when dealing with OoS interference are:

no prior information about the OoS source is available; not

even its signal statistics; the interference affects different
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APs differently through different channels (yet, cancelling the

OoS interference requires phase-coherent processing among

the APs); and the interference-suppressing algorithms should

ensure that the fronthaul load on the links between the

APs remains constant irrespective of the number of APs.

The cell-free massive MIMO with in-system interference is

a well investigated problem [6]. However, the presence of

OoS interfering sources have not been adequately investigated

for cell-free massive MIMO. To the best of our knowledge,

existing literature did not address this problem except in the

case of single OoS source with daisy-chain topology [7].

In this paper, we first provide a novel distributed algorithm

to estimate the OoS interference. The specific contributions

of the paper are: we propose a novel distributed processing

algorithm using the orthogonal Procrustes problem to estimate

and suppress multiple OoS interference sources, we provide

a Gramian based algorithm to handle multiple OoS sources

with superior performance but also relatively large fronthaul

load. We demonstrate the effectiveness of the OoS interference

estimates in the uplink and downlink payload phase. In the

uplink, we treat OoS sources as additional fictitious UEs and

similarly in the downlink we nullify the signals in the direction

of the OoS sources. Moreover, the proposed methods do not

assume any specific properties of the channels; in particular,

the methods do not rely on channel hardening or favorable

propagation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cell-free massive MIMO network comprising

L APs each equipped with N antennas serving K UEs in

the presence of KI single-antenna OoS interference sources.1

We consider a block fading channel between the UEs (plus

OoS sources) and the APs. Further, we assume the system

operates in time-division duplex (TDD) mode, leveraging

channel reciprocity. This facilitates downlink beamforming

design based on uplink channel estimates.

During the channel estimation phase, we assume that there

are K orthogonal pilots of length τp ≥ K+KI . We denote the

pilot vector of UE k by φk, normalized such that ‖φk‖ = 1.

The signal received at AP l ∈ [L] , {1, . . . , L} during the

pilot phase of τp channel uses is

Yl =
√
ρτpHlΦ

H +GlS
H +Nl, (1)

where ρ is the transmit signal-to-noise ratio (SNR) of UEs,

Hl = [h1l, . . . ,hKl], where hkl ∈ CN×1 is the channel

1Alternatively, a single OoS source with KI antennas. Thus, our model (1)
naturally extends to multiple OoS sources with multiple antennas (say M ) by

replacing GlS
H to

∑KI

j=1
GljS

H
j , where Sj ∈ Cτp×M and Glj are OoS

j transmit signal and its channel to the AP l, respectively.
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between UE k and AP l, Gl = [g1l, . . . ,gKIl] where

gjl ∈ C
N×1 is the channel between OoS source j to AP l,

S = [s1, . . . , sKI
] where sj ∈ Cτp×1 is the signal from

OoS source j ∈ [J ], pilot matrix Φ = [φ1, . . . ,φK ] and

Nl ∈ CN×τp is the noise matrix at AP l where all entries

are i.i.d. CN (0, 1).

A. Uplink Payload Model

In the uplink payload phase, in each symbol period AP l
receives the signal

yul
l = Hlx

ul +Gls+ nul
l =

[
Hl Gl

] [xul

s

]
+ nul

l , (2)

where xul ∈ CK×1 is the signal collectively transmitted by the

K UEs, s ∈ CKI×1 is the signal from the KI OoS sources

and nul
l ∼ CN (0, IN ) is the noise vector at AP l, where IN

is the identity matrix of dimension N ×N .

B. Downlink Payload Model

The downlink signal collectively received by all the UEs in

a symbol period is given by

ydl =
L∑

l=1

HH
l Wlx

dl + ndl, (3)

where xdl ∈ CK×1 contains the signals destined to the UEs.

Specifically, the kth entry of xdl and ydl are the transmit and

received signal of UE k. Further, Wl is the precoding matrix

at AP l. We assume ndl ∼ CN (0, IK).

C. Motivation and Problem Statement

Our primary goal is to suppress the OoS interference while

providing services in the uplink and the downlink. To do

that, we want to estimate {Gl}, l ∈ [L] which then can

be used for uplink receive combining phase and downlink

precoding. To make a good estimate of {Gl}, l ∈ [L], we

need a good estimate of the interfering signal S, which is

the same across all the APs. In the subsequent sections, we

propose a methodology to estimate OoS interference which is

applicable to any distributed topology such as a tree, mesh or

daisy-chain. However, to keep the exposition of the proposed

algorithms simpler, we will consider a daisy-chain topology

as the underlying topology for the discussion to follow in the

rest of the paper.

III. CHANNEL AND OOS INTERFERENCE ESTIMATION

Channel estimation is done locally at each AP. We assume

that each AP employs least-squares (LS) estimation and ac-

cordingly the estimate of the channel at AP l in a coherence

interval is given by

Ĥl =
1

√
pτp

YlΦ = Hl +
1

√
pτp

(
GlS

H +Nl

)
Φ. (4)

Having estimated the UEs channels using (4) at all APs,

we now focus on estimating the channels and signals of the

OoS sources. As a first step, each AP obtains the following

residual signal that effectively captures the OoS interference

plus noise at AP l:

Zl = Yl −√
pτpĤlΦ

H =
(
GlS

H +Nl

)
Π⊥

Φ, (5)

where Π⊥
Φ = Iτp − ΦΦH is the projection matrix onto the

orthogonal complement of Φ. To obtain a reasonable estimate

of the interfering signal S from the residual matrices, we

require τp ≥ K + KI , otherwise no degrees of freedom

are left in Π⊥
Φ i.e., the projection matrix would be a zero

matrix. Further, note that we can estimate S up to τp − K
dimensions and this is because Π⊥

Φ is a projection matrix

with rank τp −K . Therefore, we instead focus on estimating

the projected component of S. For that we first decompose

the projection matrix using the economy-size singular value

decomposition as

Π⊥
Φ = ΨΨH , (6)

where Ψ ∈ Cτp×(τp−K) satisfies ΨHΨ = Iτp−K . We denote

the signal we aim to estimate by S̄ = ΨHS, which contains

the coordinates of S in the basis given by Ψ.

To obtain an estimate ̂̄S of S̄, we work on a lower dimen-

sional residual signal instead, which is as follows:

ZlΨ =
(
GlS

H +Nl

)
Ψ = GlS̄

H +N
′

l, (7)

where N
′

l = NlΨ ∈ C
N×(τp−K) is a noise matrix whose

entries are i.i.d. because Ψ is a unitary matrix. In the following

subsection, we present two methods, with different fronthaul-

performance trade-off, to estimate the OoS signals S̄ and their

corresponding channels {Gl} using locally obtained processed

residual signals {ZlΨ}.

In both methods, we give a decentralized solution to the

following centralized LS problem of estimating S̄:

minimize
G,S̄

∥∥ZΨ−GS̄H
∥∥
F
, (8)

where Z = [ZT
1 , . . . ,Z

T
L]

T , G = [GT
1 , . . . ,G

T
L]

T and ‖·‖F
is the Frobenius norm. The cost of solving (8) using the

SVD is approximately O(KINLτp) floating-point operations

(flops) [8].
A. Method 1: Sequential Unitary Rotation and Averaging

In this method, we exploit the fact that S̄ is the same at

all APs. In the first step, each AP makes a local estimate of

S̄, which we denote by ̂̄S
◦

l , l ∈ [L]. This local estimate is

obtained by solving the following local LS problem

minimize
Gl,S̄

∥∥ZlΨ−GlS̄
H
∥∥
F
. (9)

One way to obtain a global solution of (9) is to take the

best rank-KI approximation of ZlΨ using SVD, where the

estimate of S̄, ̂̄S
◦

l , is the right singular matrix, and the estimate

of Gl is the left singular matrix scaled by the diagonal matrix

containing singular values.

Although S̄ is the same across all APs, the SVD estimates of

it at all APs need not be the same and can be ambiguous up to

an arbitrary unitary rotation. Therefore, simply averaging the

estimates APs is not a wise approach. To address this problem,

we propose that AP l upon receiving the estimate, ̂̄Sl−1, from

AP l − 1 should compute its estimate as follows:2

̂̄Sl = 0.5
(̂̄Sl−1 +

̂̄S
◦

lQ
H
l

)
, (10)

2The connection order of the APs impacts performance, making the choice
of the initiating AP, for a given interconnection topology, an intriguing open
problem.
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where Ql ∈ CKI×KI is a unitary matrix that rotates ̂̄S
◦

l to

minimize its distance to ̂̄Sl−1. Then, the AP l forwards the

estimate, (10) to AP l+1. In (10), the matrix Ql is the rotation

matrix that aligns the estimates ̂̄Sl−1 and ̂̄S
◦

l in the LS sense.

Mathematically we obtain {Ql} as a solution to the following

orthogonal Procrustes problem [9]:

minimize
Ql

∥∥∥̂̄S
◦

lQ
H
l − ̂̄Sl−1

∥∥∥
F
. (11)

Fortunately, we can obtain Ql in semi-closed form. To do

that, first we obtain the SVD of ̂̄S
◦H

l
̂̄Sl−1 = UlΛlV

H
l , where

we denote Vl, Ul and Λl to be its right singular matrix,

left singular matrix and diagonal matrix with singular values,

respectively. Then, we obtain the optimal solution to (11) as

follows:
minimize
Ql:QH

l
Ql=I

∥∥∥̂̄S
◦

lQ
H
l − ̂̄Sl−1

∥∥∥
F

=⇒ maximize
Ql:QH

l
Ql=I

R
{
Tr

(
Ql

̂̄S
◦H

l
̂̄Sl−1

)}
,

=⇒ maximize
{Q̃l[i,i]}

KI∑

i=1

R
{
Q̃l[i, i]

}
Λl[i, i],

(a)
=⇒ Q̃l = IKI

,

=⇒ Ql = VlU
H
l ,

(12)

where Q̃l , VH
l QlUl, (a) follows from observation that Q̃l

is unitary, implying that its elements are bounded by unity and

thus the maximum is achieved when diagonal entries are equal

to one. For the special case KI = 1, Ql = eiθl(scalar), θl ∈
[0, 2π] and the problem reduces to that discussed in [7]:

minimize
θl

∥∥∥̂̄s◦l e−iθl − ̂̄sl−1

∥∥∥
2
. (13)

After the CPU obtains the final estimate ̂̄S = ̂̄SL, it forwards

the estimate to all the APs. Then, each AP makes a local

channel estimate by solving

minimize
Gl

∥∥∥∥ZlΨ−Gl
̂̄S
H
∥∥∥∥
F

, (14)

which is given by

Ĝl = ZlΨ
̂̄S(̂̄S

H ̂̄S)−1. (15)

The fronthaul load in each link between the APs is

2KI(τp −K) real symbols per link. The cost of solving (10)

is approximately O(τpNKI + τpK
2
I) flops. The calculation

includes the cost of computing the SVD, ̂̄Sl−1 and Ql, the

products (̂̄S
◦

l and QH
l ), and the addition of the matrices (̂̄Sl−1

and ̂̄S
◦

lQ
H
l ) in (10).

B. Method 2: Sequential Accumulation of Gramians

This method is based on accumulation of Gramians of the

residual signal and was also proposed in [7] (for a single

OoS source). First observe that the columns of ̂̄S are the KI

dominant eigen-vectors of the Gramian of ZΨ i.e.,

ΨHZHZΨ =
L∑

l=1

(ZlΨ)H(ZlΨ). (16)

We accumulate the Gramians in (16) sequentially in the net-

work by add-and-forward through APs. Specifically, each AP

computes the sum of its local Gramian and the accumulated

Gramian received from previous APs and forwards to the next

AP. Finally, AP L forwards the final Gramian to the CPU,

and then the CPU computes the estimate of S̄ by taking

the KI dominant eigen-vectors of the Gramian in (16) and

forwards the estimate to all APs. Then all APs compute the

estimate of the OoS source channels, Gl, using (15).3 The

fronthaul load with this method is (τp − K)2 real symbols

independent of the number of OoS sources. The cost of this

approach is approximately O((N + KI)τ
2
p ) flops. The cost

includes: computing the Gramian, addition of two Gramians,

and computing KI dominant eigenvectors.

IV. UPLINK/DOWNLINK PAYLOAD TRANSMISSION

In this section, we use the OoS interference estimates we

described in the previous section for uplink and downlink

processing in the presence of OoS sources.

A. Uplink: Suppression of OoS Interference

In the uplink, we provide two ways of estimating the serving

users in the presence of multiple OoS users. The first one is

sequential least squares and the second one is distributed zero-

forcing (ZF).

To begin, consider the signal that AP l receives in a symbol

period, given in (2). The APs use the channel estimates and

the estimates of the OoS interference to suppress the OoS

interference and also estimate the data of the UEs. During the

uplink phase, the APs treat the OoS sources as extra fictitious

users and eventually discard the corresponding detected ”data

symbols”.

1) Sequential LS: For a sequential setup, methods that

involve each AP forwarding local estimate to the consecutive

AP which then computes a improved version of the estimate

based on its local data are suitable as they keep fronthaul

signaling in the links between APs constant. One such method

is a sequential LS. We can implement sequential LS combining

of the desired signal and the interfering signal at AP l as
[
x̂ul
l

ŝl

]
=

[
x̂ul
l−1

ŝl−1

]
+Tl

(
yul
l − Âl

[
x̂ul
l−1

ŝl−1

])
, l ∈ [L], (17)

where Âl =
[
Ĥl Ĝl

]
, Tl = Cl−1Â

H
l

(
σ
2I+ ÂlCl−1Â

H
l

)
−1

and Cl =

(
I−TlÂl

)
Cl−1 and initial values

[
x̂ul
0

ŝ0

]
= 0,

C0 = αI with α being some large positive constant, this is

to avoid biasing the estimator towards the initial estimate Ŝ0.

Note that the matrices {Cl} are positive semi-definite as these

are error covariance matrices [10].

2) Distributed Uplink ZF: To implement ZF uplink com-

bining, AP l combines the received signal in (2) with ÂH
l and

then adds it to the processed received signal from the previous

AP as

ȳul
l = ȳul

l−1 + ÂH
l yul

l ; ȳul
0 = 0, (18)

3The Gramian-accumulation method is equivalent to the centralized algo-
rithm. Analyzing the Procrustes algorithm theoretically is challenging, and we
have to leave that for potential future work.
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where yul
l is the received signal and ȳul

l is the processed

received signal in the uplink at AP l. This process continues

until the last AP. The CPU receives ȳul = ȳul
L and it makes

the signal estimates as follows:

[
x̂ul

ŝ

]
= Γ̂

−1
ȳul; Γ̂ , ÂHÂ, (19)

where x̂ul is the estimate of the transmit signal from all

UEs, and ŝ is the estimate of signals from OoS sources

(which are discarded) and Â = [ÂT
1 , . . . , Â

T
L]

T . We note

that this Gramian accumulation can be used for both uplink

and downlink processing. In this method, each AP needs

the Gramian of the all the channels. To accomplish this in

a sequential network, AP l computes the Gramian of the

effective channel estimate Âl and then adds it to the effective

Gramian it receives from the previous AP as follows:

Γ̂l = Γ̂l−1 + ÂH
l Âl, Γ̂0 = 0, (20)

and then forwards this to the next AP. The final AP forwards

the final Gramian, Γ̂ = Γ̂l to the CPU.

3) Centralized ZF (Baseline): For reference, the centralized

ZF/LS is given by

[
x̂ul

ŝ

]
= Â†yul, (21)

where x̂ and ŝ are the estimates of x and s, respectively, yul =
[yulT

1 , . . . ,yulT
L ]T is the augmented received signal from all

APs, and (·)† is the pseudoinverse.

Among the above three methods, centralized ZF (21) will

have superior performance, distributed ZF (19) have an equiva-

lent performance as centralized ZF. Sequential LS in (17) may

have suboptimal performance compared to other two methods.

However, sequential LS does not need to compute Gramians

of the channel estimates given in (19).

B. Downlink: Nullify the Signal in the OoS Direction

In applications where we intend to protect the OoS sources

or nullify the signal in the direction to them, we can use the

estimate of the OoS sources channels to transmit the serving

UEs signal in the nullspace of the OoS channel.

The process of nullifying the signal in a particular direction

can be accomplished with the ZF precoder. But, it is chal-

lenging to implement ZF precoding exactly in a decentralized

network [11]. We will now provide one way to implement

centralized ZF on a stripe topology. To do this, we start by

considering ZF precoding of a centralized cell-free network

W = Â
(
ÂHÂ

)−1

, (22)

where W = [W
T

1 , . . . ,W
T

L ]
T is the centralized precoder with

Wl being the precoder at AP l. Then, we can write the local

precoding at AP l as Wl = ÂlΓ̂
−1

, where the Gramian of

the channel estimates Γ̂ obtained at the CPU in (20) can be

used. Note that the first K columns of Wl forms the effective

transmit precoder Wl defined in (3).

Fig. 1. Overall flow of processing in pilot and data phase

Let xdl ∈ CK×1 be the signal vector that we intend to
transmit in downlink, whose kth entry is the signal component
for UE k ∈ [K]. Then, the downlink signal model is given by

y
dl

=

L∑

l=1

H
H
l Wl

[
xdl

0KI

]
+ n

dl

l

=

L∑

l=1

H
H
l Âl Γ̂

−1

[
xdl

0KI

]

︸ ︷︷ ︸
q

+n
dl
.

(23)

Note that we do not send any signal in the direction of OoS

sources. An important observation from (23) is that the part

of precoded signal component, q, is independent of the AP

index. Further, the Gramian can be accumulated at the CPU

sequentially by adding and forwarding the local Gramians as

in (20). Then, in the downlink, the CPU forms the partially

precoded signal, q and forwards to all APs. In this way, we

accomplish centralized ZF on a stripe topology and effectively

achieve nulling of the signal in the direction of the OoS

sources.

A flowchart of the overall processing is shown in Fig. 1. The

first step involves estimating the OoS interfering signal (note

that the order of the processing is reversed, i.e., from L to 1
to reduce latency). The second step involves computing local

OoS channel estimates and forwarding accumulated Gramians.

In the third step, we perform (18) and in the final step we

compute q given in (23).

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the pro-

posed methods through numerical simulations. We consider a

500× 500 square meter area with APs equally spaced on the

border. We deploy UEs uniformly within the concentric square

area with 10m gap from the border. We consider the standard

Rayleigh fading channel model i.e., hkl ∼ CN (0, βklI) where

βkl is the large-scale fading coefficient and we take it to be

βkl [dB] = −30.5 − 36.7 log10(dkl/1m), where dkl is the

distance between AP l and UE k. We consider that APs

are at vertical height of 5 m. At each AP, we consider a

uniform linear array with half-wavelength antenna spacing.

We consider the number of APs to be L = 4, the number

of antennas per AP N = 4, and the number of UEs K = 5.

We consider τp = 50 and τc = 200 channel uses.

For the performance analysis we consider the uplink pay-

load phase and we use QPSK modulated data symbols. We

employ a nearest-point detector on the estimated signals i.e.,
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for (21) for centralized processing and (19) or (17) for the

sequential network. The OoS sources signals are drawn from

a Gaussian distribution and assume have transmit SNR of

−3 dB. Methods that are compared are:

• No interference suppression: Use (21) to estimate data

of serving UEs without suppressing OoS interference.

• Local processing: Estimate UEs payload signal using

only local estimates of the OoS interference. The cost

of this method is approximately O(NKIτp) flops.

• Sequential Procrustes method: This is the proposed

distributed OoS suppression method using the orthogonal

Procrustes algorithm in (11).

• Sequential Gramians based method: This is the ac-

cumulation of Gramians method to estimate OoS inter-

ference as in (16), which has identical performance to

centralized processing.

• Centralized genie detector: This is the baseline method

with perfect knowledge of all channels (both serving UEs

and OoS sources) i.e., {Hl,Gl; l ∈ [L]}.

Fig. 2 shows the results. There is a notable degradation in

performance if the network do not suppress the interference.

The Gramian-based method has superior performance among

the distributed algorithms as it has equivalent performance to

that of centralized processing (also to that of distributed ZF up-

link combining). Local processing have the worst performance

although it has the lowest fronthaul load requirement. From

the simulation, we note that the proposed sequential Procrustes

method offers very good trade-off in terms of performance

and fronthaul load requirements. However, when KI > N ,

the performance of the Procrustes method degrades and in

this situation the Gramian-based method should be preferred.

The curves in green represent the scenarios where we employ

minimum-mean-square-error (MMSE) channel estimation and

uplink combining, considering the Rayleigh fading priors on

the channels while not relying on any statistical information

on the OoS interferer channels or signals. The relative per-

formance of the different methods remains substantially the

same when MMSE is used. Besides the UEs performance,

the proposed sequential Procrustes algorithm exhibits a com-

plexity that is in between that of centralized processing and

local processing, with the latter being the least complex. In

the downlink, two possible metrics of performance could be:

the QoS of the serving users, and the received signal energy

(which should be minimal) at the OoS sources. Due to space

limitations, we include the performance evaluation only for

the uplink scenario.

VI. CONCLUSION

This paper proposed decentralized algorithms to estimate

the OoS interference. We presented two applications where the

estimate of OoS interference is used to cancel the interference

in the uplink and to suppress the transmit signal in the

direction of OoS in the downlink. The proposed distributed

Procrustes method leverages the fact that OoS interference

is the same across all the APs. We demonstrated through

simulation results that the proposed algorithm has performance

close to that of centralized implementation but less fronthaul

−10 −8 −6 −4 −2 0
10

−3

10
−2

10
−1

Uplink power (normalized) [dB]

B
E

R

No Int. Suppression

Local Processing

Seq. Procrustes (proposed)

Seq. Procrustes (MMSE)

Seq. Gramian Based (proposed)

Seq. Gramian Based (MMSE)

Cent. Genie

Cent. Genie (MMSE)

Fig. 2. Performance of the proposed algorithm with KI = 2

load. Specifically, the proposed Procrustes based method has a

fronthaul load that is linear in the number of UEs, in contrast to

the quadratic proportionality with a centralized approach. As a

possible topic for future work, one could explore suppression

of OoS interference when over-the-air computation is used for

the communication among APs or between the APs and the

CPU [12], [13].
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