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BILTS: A novel bi-invariant local trajectory-shape
descriptor for rigid-body motion

Arno Verduyn1,2,†, Erwin Aertbeliën1,2,†, Glenn Maes1, Joris De Schutter1,2 and Maxim Vochten1,2

Abstract—Measuring the similarity between motions and es-
tablished motion models is crucial for motion analysis, recogni-
tion, generation, and adaptation. To enhance similarity measure-
ment across diverse contexts, invariant motion descriptors have
been proposed. However, for rigid-body motion, few invariant
descriptors exist that are bi-invariant, meaning invariant to
both the body and world reference frames used to describe the
motion. Moreover, their robustness to singularities is limited. This
paper introduces a novel Bi-Invariant Local Trajectory-Shape
descriptor (BILTS) and a corresponding dissimilarity measure.
Mathematical relationships between BILTS and existing descrip-
tors are derived, providing new insights into their properties. The
paper also includes an algorithm to reproduce the motion from
the BILTS descriptor, demonstrating its bidirectionality and use-
fulness for trajectory generation. Experimental validation using
datasets of daily-life activities shows the higher robustness of the
BILTS descriptor compared to the bi-invariant ISA descriptor.
This higher robustness supports the further application of bi-
invariant descriptors for motion recognition and generalization.

Index Terms—Invariance, Trajectory similarity, Screw theory,
Rigid-body motion, Recognition, Generation

I. INTRODUCTION

IN cognitive robotics and human-robot interaction there is
a need to measure the similarity between new motions

and previously established motion models to facilitate motion
analysis and recognition, as well as robot motion generation.
This paper focuses on rigid-body motion. Such motions are of
practical interest in robotics since they include the motions of
manipulated objects, end-effectors attached to robot manipu-
lators, and segments in a kinematic chain. In this paper, we
represent a rigid-body motion by its spatio-temporal trajectory,
resulting in a rich and complete representation of the motion.

In dynamic and diverse environments, assessing the simi-
larity between motion trajectories is challenging due to the
impact of diverse contexts. Diverse contexts include different
world frames in which the trajectory coordinates are ex-
pressed, different body frames to express the relative orien-
tation and location of the moving body, and different time
profiles of the performed motions. When the context is un-
known and differs between executions of the same motion, the
context can be considered as an undesired aspect (disturbance)
that negatively affects the effective recognition of motions and
the building of simple generic motion models.
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A. Research focus, approach and objectives

To address the challenge of dealing with unknown and di-
verse contexts when assessing the similarity between motions,
several approaches have been developed in the literature. We
divide them into three main categories: machine learning,
context alignment, and invariant descriptor approaches, of
which Section II-A provides a brief overview.

In this paper, we focus on the invariant descriptor approach.
This approach removes the context to obtain context-invariant
motion descriptors. Descriptors that describe motions in a local
way while being invariant to both the world and body reference
frames are referred to as local bi-invariant descriptors. The
advantage of leveraging such descriptors lies in their ability to
describe the motion in a bi-invariant way, thereby facilitating
superior generalization across diverse contexts, while still
preserving the local details of the motion.

To our knowledge, the ISA descriptor [1] is the only local
bi-invariant descriptor that has been applied for motion recog-
nition, reproduction and generalization applications. However,
its drawbacks include possibly unbounded values, sensitivity
to sensor noise near singularities in the motion trajectory,
and a limited descriptive richness, since it provides only a
partial trajectory-shape description. Hence, our objective was
to alleviate these drawbacks by introducing a novel local bi-
invariant descriptor with superior properties.

B. Paper contributions

The main contribution of this paper is the introduction of a
novel Bi-Invariant Local Trajectory Shape descriptor (BILTS)
for rigid-body motion and a corresponding dissimilarity mea-
sure. The BILTS descriptor is defined by combining the twelve
instantaneous invariants in [2] based on a local Taylor series
expansion of the trajectory and by introducing intuitive scaling
factors. Compared to the ISA descriptor, the advantages of the
BILTS descriptor include always-bounded numerical values,
reduced sensitivity to sensor noise near singularities in the
motion trajectory, and higher descriptive richness, since it
provides a complete trajectory-shape description up to third
order. Due to this richer description, ambiguity can be reduced
when assessing the similarity between motions.

As an additional contribution, mathematical relationships
are derived between the proposed BILTS descriptor and the
invariants in [1], [2], leading to new insights in the properties
of these existing descriptors. Lastly, this paper ensures that
the proposed descriptor is applicable to motion recognition
and reproduction. To this end, the proposed BILTS descriptor
and dissimilarity measure are validated in motion recognition

ar
X

iv
:2

40
5.

04
39

2v
1 

 [
cs

.R
O

] 
 7

 M
ay

 2
02

4



2

experiments based upon extensive datasets. It is shown how
the BILTS descriptor outperforms the recognition performance
of the ISA descriptor in [3], [4]. To prove bidirectionality, an
algorithm to reproduce the original motion is provided.

This paper is organized as follows. Section II-A provides
a brief literature review on the three main approaches to deal
with motion similarity measurement across diverse contexts.
Section II-B provides a more detailed review on local invariant
trajectory-shape descriptors. Section III reviews mathematical
preliminaries so that in Section IV the novel BILTS descriptor
and corresponding dissimilarity measure can be introduced.
Section V discusses properties and relations of the proposed
descriptor. Section VI proposes a method for calculating
the descriptor from trajectory coordinates and introduces an
algorithm to reproduce the trajectory from its descriptor. The
proposed descriptor and dissimilarity measure are experimen-
tally validated in recognition experiments in Section VII, while
Section VIII provides a discussion and conclusion.

II. RELATED WORK

A. Similarity measurement approaches

To deal with motion similarity measurement across diverse
contexts, several approaches have been developed in the liter-
ature. We divide them into three main categories.

1) Machine learning approaches aim to learn general mo-
tion models from different example motions, identifying con-
sistent salient features while disregarding variable contextual
features. In these approaches, a motion is deemed similar
to the learned model if it shares the same salient features.
Machine learning approaches are particularly effective when
abundant data is available. A drawback of these approaches
is the limited extrapolation capability of the learned models,
hindering generalization to contexts that are not represented
in the examples. This issue can be mitigated by providing the
learning algorithm with abundant motion examples in various
contexts. For example, generalization across different camera
viewpoints can be achieved using a multi-camera setup [5],
or by mimicking different viewpoints by artificially rotating
the motion examples [6]. Despite the potential, generating
abundant motion examples can be laborious, especially within
a robot Learning-from-Demonstration (LfD) framework, in
which a limited number of demonstrations is highly desired.

2) Context alignment approaches aim to learn motion
models by initially aligning the contexts of the example
motions and subsequently deriving models from these aligned
examples. The similarity between a new motion and the
learned model is assessed by first aligning the context of the
novel motion with that of the learned model and afterwards
comparing the aligned motions.

Common alignment methods include spatial alignments to
address different viewpoints and locations, and temporal align-
ments to handle different time scales and time profiles. Spatial
alignment often relies on finding an affine transformation that
optimally maps one motion onto another. For example, the
approach in [7] searches for projection matrices to align 2D
motion features, while the approach in [8] seeks orthogo-
nal transformations to align 3D motion features. Temporal

alignment involves finding the optimal time-warping path.
Common algorithms include Dynamic Time Warping (DTW),
Edit Distance, Longest Common Subsequence, and Fréchet
Distance, with recent overviews provided in [9] and [10].
DTW appears to be the most widely used option given its
implementation in many recent works [3], [4], [8], [11]–[17].

However, simultaneously aligning both spatial and temporal
features poses a complex problem. For example, [18] addresses
aligning two curves under scaling, Euclidean transformation,
and occlusion(s), with the proposed alignment method re-
quiring search space pruning and heuristic search methods
due to computational challenges. Another drawback is that
assessing the similarity of a motion with previously established
motion models requires pairwise context alignments with each
model. This results in long computation times, particularly
when dealing with a large number of motion models. Hence,
context alignment methods are particularly effective when only
a small amount of data is available and the total computation
cost to assess the similarity between motions is not prohibitive.

3) Invariant descriptor approaches remove the context
from the example motions to obtain context-invariant motion
descriptors from which an invariant motion model is derived.
The similarity between a new motion and the invariant model
is assessed by comparing the invariant description of the new
motion to this model. An important advantage of this approach
is that the invariant descriptor of one example motion can
already be considered as a general motion model. This allows
to significantly reduce the number of example motions to
learn a model that can generalize across diverse contexts.
For example, in [19], the reproduction of numerous motion
variants from one individual invariant descriptor is shown.

Invariant descriptor methods can be classified in global and
local approaches. The global approach aims to find a global
data-driven reference frame in which to express the motion
data in an invariant way, for example using a singular value
decomposition [17] or least-squares optimization [20]. Global
invariant approaches are particularly effective when only a
small amount of data is available, the available data is seg-
mented, and a low computation cost to evaluate the similarity
between motions is required. The local approach aims to find
a local invariant description of the trajectory by describing
its local shape. Local approaches are particularly effective
when only a small amount of data is available, the data is
unsegmented, and they offer versatility for handling occlusions
and performing segmentation tasks [21]. A downside of local
descriptors is their sensitivity to sensor noise and singularities
in the trajectory, such as a straight line part or an inflection
point, making them difficult to calculate in these situations.

Originally, invariant descriptors were proposed for motion
analysis and recognition applications [3], [4]. Recently, there
is more attention to their use for motion reproduction [15]
and adaptation applications. Descriptors that contain sufficient
information to reproduce of the original trajectory from the
invariant descriptor are also referred to as complete [1], gen-
erative [19], or bidirectional [22] descriptors. Their benefit lies
in the formulation of similarity measures that are applicable
to both motion recognition and generation applications.

The above three approaches to measure motion similarity



3

across diverse contexts are not mutually exclusive. A lot of
strategies in recent works combine above approaches to cope
with some of the mentioned downsides. As a first example,
the approaches in [23] and [24] use invariant descriptors to
decouple the context-alignment problem. That is, the temporal
alignment between the curves is first found using features
that are invariant to spatial transformations. Afterwards, based
on the found temporal correspondence, the spatial alignment
is found. As a second example, invariant descriptors are
also used for dataset augmentation [25] in machine learning,
such as in [19] and [26]. As a final example, the invariant
descriptor approach can also be used for feature engineering,
meaning the conversion of raw data into a feature vector
containing invariant and contextual features, providing a richer
description of the motion compared to raw data. The method in
[16] combined invariant and contextual features and showed an
increase in motion recognition performance, especially when
motions with similar invariant features had to be distinguished.

To conclude, the three approaches (machine learning, con-
text alignment, and invariant descriptor) have their respective
requirements, advantages, and drawbacks. In this paper, we
focus on the invariant descriptor approach and aim to alle-
viate some of its drawbacks. The benefit of alleviating the
drawbacks of the invariant descriptor approach is twofold.
It supports the further application of the invariant descriptor
approach for motion recognition and generation in diverse
contexts. Additionally, it supports the further combination with
other approaches (machine learning, context alignment) to
alleviate some of their mentioned drawbacks.

B. Local invariant trajectory-shape descriptors

Local trajectory-shape descriptors for point trajectories are
based on separating the spatio-temporal trajectory into a spatial
curve and a time profile along this curve. Fundamentals of
the description of spatial curves were established in the 19th

century by Frenet [27] and Serret [28], leading to the well-
known Frenet-Serret (FS) formulas. The FS formulas show
that a complete description of a curve up to congruence can
be found by defining a pair of functions, i.e., the curvature
and torsion, along the curve. These functions are obtained by
defining a moving reference frame, referred to as the FS frame,
along the curve. The curvature and torsion are then obtained
by differentiating this frame.

Based on the FS frame, Cartan [29] introduced the method
of the moving frame in differential geometry for the local
examination of submanifolds of various homogeneous spaces.
The aim of this method is to provide the submanifold and all its
geometrical objects with the most general moving frame. By
differentiating this frame, differential invariants are obtained
that characterize the submanifold apart from transformations
embedding it in the surrounding homogeneous space.

Bishop [30] defined another moving frame along a spatial
curve as a more robust alternative to the Frenet-Serret frame.
The resulting frame is referred to as the Bishop frame or
rotation-minimizing frame, since it minimizes the rotation of
the frame along the curve. However, the Bishop frame is not
a true local frame since it depends on the curve’s history.

The FS invariants are best known to describe the trajectory
of a moving point in Euclidean space. Nevertheless, similar
invariants can be derived for the description of the orientation
trajectory of a rotating body. This extension is proposed
in [13], where the extended FS invariants for rigid-body
motion are introduced. This extension consists of the definition
of two FS frames, one for rotation and one for translation.

The descriptor in [13] is a left-invariant descriptor [31].
That is, it is invariant to the viewpoint, but it still depends
on a user-selected reference point to define the translational
velocity of the body. This requires some knowledge of the
user about the type of motion and the points of interest on
the moving body. Another downside of this descriptor is that
a high dissimilarity might be detected between similar rigid-
body motions with different reference points.

The dependency on the reference point for translation can
be removed by making use of screw theory [32] such that the
descriptor becomes both left- and right-invariant, also referred
to as bi-invariant [31]. From the work of Chasles [33], it is
known that the first-order kinematics of a moving body can be
described in a bi-invariant way by its rotation and translation
along the instantaneous screw axis (ISA). The location and
orientation of the ISA in space can be represented in multiple
ways, including Plücker coordinates and dual numbers.

Based on dual numbers, the author of [34] derived a bi-
invariant moving frame for rigid-body motion. This moving
frame has the same orientation as the FS-frame for orientation
in [13], while its origin coincides with the striction point on the
ISA. Differentiating this moving frame results in a set of four
differential invariants. Two invariants describe the rotation of
the moving frame, while the other two describe its translation.

De Schutter [1] observed that above four differential invari-
ants can be augmented with two additional invariants, describ-
ing the rotation and translation of the body along the ISA, to
form the minimal and complete ISA descriptor for rigid-body
trajectories. The ISA descriptor is complete since it completely
describes the evolution of the moving frame and contains just
enough information to reproduce the original trajectory of the
rigid body up to congruence. In [4] and [3] it is shown how
the ISA descriptor can be used to define a similarity measure
for motion recognition applications. However, the recognition
performance of the ISA descriptor remained limited due to its
sensitivity to singularities [13].

Veldkamp [35] and Bottema and Roth [2] observed that
above moving frame can also be used as a local reference
frame to characterize the kinematics of any point on the
moving body in an invariant way. Modeling the kinematics
of these points up to first order requires two invariants, the
second order requires four additional invariants, and the third
require six additional invariants. These twelve invariants are
referred to as the instantaneous invariants for spatial motion
and provide a complete description of the trajectory shape up
to third order. However, in [35] and [2], no corresponding
similarity measures were devised and an approach to reproduce
the original motion from the invariants was not discussed.

Recent works [3], [4], [11]–[14], [19], [22], [36]–[39]
propose approaches based on local trajectory-shape descriptors
for the recognition and generation of trajectories in diverse
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contexts. Aimed at practical applications, multiple methods
have been developed to robustly calculate the differential
invariants in the presence of sensor noise and singularities.
In [11], [12], the calculation of higher-order derivatives is
avoided by approximating the differential invariants using
finite differences [40]. In [3], [4], [13] Kalman smoothers are
used to robustly estimate higher-order derivatives from noisy
measurement data. In [22], discretized invariants are intro-
duced as an alternative to differential invariants by describing
the relation between subsequent moving frames using Denavit-
Hartenberg parameters. In [14], [36], [37], integral invariants
are used to approximate the differential invariants for point
trajectories. Integral invariants are found by calculating area
integrals on the osculating and rectifying planes, which are
locally determined by the Frenet-Serret frame. The domain
of integration is restricted to a local region based on a ball
kernel centered at the moving point. In [38], [39], differen-
tial invariants are calculated by formulating an optimization
problem over a window of measurements. This approach
ensures a smooth solution for the moving frame by minimizing
corresponding regularization terms, and guarantees a driftless
trajectory reconstruction by additionally limiting the trajectory
reconstruction error.

To conclude, recent approaches apply invariant descriptors
for the recognition and generation of trajectories in diverse
contexts. However, the performance of these invariant descrip-
tors is typically limited due to their sensitivity to singularities.
Furthermore, to our knowledge, the ISA descriptor is the only
bi-invariant descriptor for rigid-body motion that has been
applied for trajectory recognition, reproduction and general-
ization applications.

III. MATHEMATICAL PRELIMINARIES AND NOTATION

A rigid body is an idealized object that cannot be deformed.
The body’s location in space is commonly described by the
relative position and orientation (together: pose) between two
Cartesian reference frames. One frame {b} is rigidly attached
to the body (body frame) while the other frame {w} is fixed
with respect to another body, e.g. the world (spatial frame).

From Lie group theory [41], it is known that the relative
pose in 3D of frame {b} with respect to frame {w} can be
written using a 4× 4 homogeneous transformation matrix Tbw
with the following structure:

Tbw =

[
Q p
0 1

]
, with

Q ∈ R3×3, p ∈ R3,
QTQ = I, det(Q) = 1.

(1)

Q is referred to as the rotation matrix while p is the position
vector. The set of all such homogeneous transformation matri-
ces T is referred to as the special Euclidean group SE(3) [41].

To describe rigid-body trajectories, we parameterize the
homogeneous transformation matrix T (s) in function of a
progress variable s. Often, the time t is chosen as the progress
s for the parameterization of T (s), resulting in a temporal
trajectory. Nevertheless, other measures of progress can be
chosen. For example, by expressing the trajectory in function
of a geometric progress, a geometric trajectory is obtained.
That is, the evolution along the trajectory only depends on the
geometry of the trajectory.

The derivative of T (s) is considered an element of the
tangent space to SE(3). The tangent space at group identity
is formally known as the Lie algebra of the Lie group. The
Lie algebra of SE(3), denoted as se(3), is characterized by
4× 4 matrices with the following structure:

[t×] =

[
[ω×] v
0 0

]
, with ω ∈ R3, v ∈ R3, (2)

having the matrix commutator as the Lie bracket.
The skew-symmetric matrix [ω×] is associated with the

rotational vector ω as follows:

[ω×] =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (3)

The matrix [t×] in se(3) is characterized by six independent
coordinates in the rotation vector ω and translation vector v.
We introduce the notation t =

(
ωT vT

)T
and refer to this

6× 1 vector as the screw twist. The notation bt represents the
body-fixed screw twist. It consists of the rotational velocity
of {b} and the translational velocity of the origin of {b},
both expressed in {b}. The notation wt represents the spatial
screw twist. It consists of the rotational velocity of {b} and the
translational velocity of a reference point rigidly attached to
{b} which instantaneously coincides with the origin of {w},
both expressed in {w}.

The derivative Tbw
′(s) = d

ds

(
Tbw (s)

)
can be written in

function of the body-fixed screw twist bt:

Tbw
′(s) = Tbw [bt×] . (4)

By pre-multiplying (4) with an arbitrary constant homoge-
neous transformation matrix Tw

v , it can be seen that bt is not
influenced by the choice of reference frame {w}:

Tw
v Tbw

′(s) = Tw
v Tbw [bt×] , (5)

Tbv
′(s) = Tbv [bt×] , (6)

The body-fixed screw twist bt is said to be a left-invariant
representation of the motion [41].

Similarly, the derivative Tbw
′(s) can be written in function

of the spatial screw twist wt:

Tbw
′(s) = [wt×] Tbw , (7)

By post-multiplying (7) with an arbitrary constant homoge-
neous transformation matrix Tcb , it can be seen that wt is not
influenced by the choice of frame {b}:

Tbw
′(s) Tcb = [wt×] Tbw Tcb , (8)
Tcw

′(s) = [wt×] Tcw , (9)

The spatial screw twist wt is referred to as a right-invariant
representation of the motion [41].

Using (4) and (7), the screw twist transformation from {b}
to {w} is written as the following adjoint action:

[wt×] = Tbw [bt×] Tbw
−1. (10)

Alternatively, this relation is directly written in function of the
screw twists:

wt = S( Tbw ) bt, (11)
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using the 6× 6 screw transformation matrix S(T ):

S(T ) =

[
Q 0

[p×]Q Q

]
, (12)

which is also referred to as the adjoint representation of Tbw .
By taking the derivative of the above and further algebraic
manipulation, the derivative S′( Tbw ) of a screw twist transfor-
mation S( Tbw ) can be written as:

S′( Tbw ) = S( Tbw ) [bt××] , (13)

with [bt××] defined as:

[bt××] =

[
[ω×] 0
[v×] [ω×]

]
. (14)

It can be proven that there exists a relationship for [bt××]
very similar to (10):

[wt××] = S
(

Tbw
)
[bt××]S

(
Tbw

−1
)
. (15)

IV. A NOVEL BI-INVARIANT LOCAL SHAPE DESCRIPTOR

This section introduces the BILTS descriptor, a novel de-
scriptor that completely describes the local shape of a rigid-
body trajectory up to third order in a bi-invariant way. First,
a right-invariant trajectory shape descriptor is derived based
on a Taylor series expansion expressed in the spatial frame.
Then, the BILTS descriptor is derived by transforming this
right-invariant descriptor to a moving bi-invariant frame.

A. A right-invariant descriptor for the local trajectory shape

In general, the local shape of a trajectory Tbw (s) at a certain
progress value s can be described by the derivative Tbw

′(s)
and higher-order derivatives of the trajectory. As indicated
by (4) and (7), the trajectory derivative at a certain pose
T is completely described by the screw twist t. We can
therefore also describe the local shape of the trajectory through
the screw twist t and its derivatives, instead of the pose
derivatives. This will lead to a simpler derivation of the
descriptor. In this subsection, we describe the local trajectory
shape through the spatial screw twist wt and its derivatives.

To describe the local shape of the trajectory at s, it is
necessary to define a local region [s− δs, s+ δs] in which
the shape will be described. The value of δs is a parameter
indicating the scale at which the trajectory shape is considered.
Such a choice of progress scale, either implicitly or explicitly,
is always necessary when comparing trajectory shapes, since
shapes can look similar at one scale, but can look quite
different on a smaller scale due to small local variations. The
progress scale δs can have different units, consistent with the
chosen progress variable s, i.e., [time] if progress corresponds
to [time], or [length] if a geometric progress is chosen.

To describe the local trajectory shape within the region
[s− δs, s+ δs], we consider the following three successive
twists: wt(s− δs), wt(s), and wt(s+ δs). The first and third
twist can be approximated using a second-order Taylor series
expansion involving the twist wt(s) at s and its first and
second order derivatives (see Figure 1a):

(a) (b)
Fig. 1. The local shape of a rigid-body trajectory at progress value s is
characterized in a region [s− δs, s+ δs] by a sequence of three screw twists,
which are approximated by a second-order Taylor series expansion. (a) The
right-invariant shape descriptor consisting of three spatial screw twists. (b) The
BILTS descriptor consisting of the same three twists but now transformed to
a moving frame based on the instantaneous screw axis.

wt(s− δs) = wt(s)− wt
′(s)δs+ wt

′′(s)
δs2

2
+O(δs3),

wt(s+ δs) = wt(s) + wt
′(s)δs+ wt

′′(s)
δs2

2
+O(δs3).

The three successive twists can be written more compactly by
stacking them into a 6× 3 matrix Ad:

Ad(s, δs) =
[
wt(s− δs) wt(s) wt(s+ δs)

]
. (16)

The Taylor series expansion of Ad can then be written as:

Ad(s, δs) = A(s) X(δs) +O(δs3), (17)

where A(s) contains the twist and its derivatives:

A(s) =
[
wt(s) wt

′(s) wt
′′(s)

]
, (18)

while X(δs) contains the discretization effect due to δs:

X(δs) =

 1 1 1
−δs 0 δs
δs2

2 0 δs2

2

 . (19)

The matrix Ad(s, δs) can be interpreted as a complete
description of the local shape of the trajectory up to O(δs3).
Since spatial screw twists were used, this local descriptor is
right-invariant, i.e., independent of the orientation and location
of the body frame {b}. However, the above descriptor is not
left-invariant, i.e., not invariant to changes in orientation and
location of the spatial frame {w}.

B. A bi-invariant local trajectory shape descriptor

To obtain a bi-invariant shape descriptor from the right-
invariant descriptor, we first consider again the matrix A(s)
in (18), which holds the screw twist, the screw acceleration
and the screw jerk at s. These screws can be transformed to
another reference frame using the screw transformation matrix
S in (11). We now aim to define a moving reference frame
{mf} with pose matrix T̃ (s) so that the screw matrix A(s)
can be related to a matrix R(s) as follows:

A(s) = S(T̃ (s)) R(s), (20)
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ISA

(a) (b) (c)

Fig. 2. Construction of the moving frame {mf} that is used to define
the BILTS descriptor. (a) The x-axis is chosen along the ISA so that the
rotational velocity vector ω and the translational velocity vector v are uniquely
represented by the invariants r11 and r41 along the x-axis. (b) The y-axis is
chosen such that the rotational acceleration vector ω′ is uniquely represented
by the invariants r12 and r22 in the xy-plane. (c) The origin p of {mf} is
chosen on the line of the ISA such that the translational acceleration vector
v′ is uniquely represented by the invariants r42 and r52 in the xy-plane. The
z-axis is defined by being orthogonal to the x- and y-axis.

where R(s) has the following canonical form:

R(s) =


r11 r12 r13
0 r22 r23
0 0 r33
r41 r42 r43
0 r52 r53
0 0 r63

 , with

{
r11 ≥ 0
r22 ≥ 0

. (21)

Equation (20) can be interpreted as a decomposition or fac-
torization of a matrix of screw twists A into the product of
a screw transformation matrix S(T̃ ) and a canonical matrix
R. The numbers rij of R(s) are also referred to as the
instantaneous invariants for spatial motion [2] which are bi-
invariant. The columns of R(s) can be interpreted as the screw
twist, the screw acceleration and the screw jerk at progress
s, but now expressed in the moving frame {mf} instead of
the spatial frame {w}. The homogeneous matrix T̃ (s) is a
shorthand notation for Tmf

w , where {mf} refers to moving
frame, since, in general, the reference frame is not fixed to the
spatial frame {w} or the body frame {b}. The canonical form
of R(s) is achieved by constructing the pose of the moving
frame T̃ (s) as follows [2]:

• Align the x-axis precisely with the Instantaneous Screw
Axis (ISA) of the motion. This alignment ensures that the
rotational and translational velocity vectors expressed in
T̃ (s) possess only non-zero x-components, with respec-
tive magnitudes r11 and r41 (see Figure 2a). The sign of
the x-axis is chosen such that r11 ≥ 0.

• Orient the y-axis perpendicular to the x-axis such that the
rotational acceleration vector ω′ possesses only non-zero
x- and y-components (see Figure 2b). The sign of the
y-axis is chosen such that r22 ≥ 0.

• Position the origin of T̃ (s) precisely at the striction
point [2] on the ISA. This positioning ensures that the
translational acceleration vector v′ possesses only non-
zero x- and y-components (see Figure 2c).

This procedure determines the complete frame T̃ (s) since the
z-axis follows from the x- and y-axis through orthogonality. To
calculate T̃ (s) from trajectory data, we introduce an extended
QR-decomposition algorithm in Section VI.

Applying the matrix decomposition (20) to the right-
invariant shape descriptor (17) results in:

Ad(s, δs) = S(T̃ (s)) R(s) X(δs) +O(δs3). (22)

From this decomposition, we define the BILTS matrix descrip-
tor B(s, δs) as the following 6× 3 matrix:

B(s, δs) = R(s)X(δs) =


ω−
x ωx ω+

x

ω−
y 0 ω+

y

ω−
z 0 ω+

z

v−x vx v+x
v−y 0 v+y
v−z 0 v+z

 , (23)

where the − and + superscripts indicate the evaluation at
s− δs and s+δs, respectively. The matrix B(s, δs) describes
the trajectory shape within the local region [s− δs, s+ δs] up
to third order in a bi-invariant way. Figure 1b visualizes the
BILTS descriptor in the moving frame.

C. Local trajectory-shape dissimilarity measure

The dissimilarity between the local shapes of two trajecto-
ries can now be defined in a bi-invariant way using the BILTS
descriptor B(s, δs), assuming the same progress scale δs for
both trajectory shapes.

Suppose that the first trajectory shape is described at
progress s1 using B1(s1, δs) and the second trajectory-shape is
described at s2 using B2(s2, δs). The dissimilarity d between
the two local trajectory-shapes at s1 and s2 is then defined as:

d
def
= ∥B1(s1, δs)−B2(s2, δs)∥W , (24)

where ∥...∥W represents a weighted Frobenius norm with
W = diag

(
L2, L2, L2, 1, 1, 1

)
, such that:

d
def
=

√
trace

{
(B1 −B2)

T
W (B1 −B2)

}
. (25)

The geometric scale L has units [length]. The value d quan-
tifies the dissimilarity between the local shapes of two rigid-
body trajectories and has units [length] per unit of progress.

D. Global trajectory dissimilarity measure

The previously defined local trajectory-shape dissimilarity
measure d can be used to calculate a global trajectory dis-
similarity measure between two rigid-body trajectories. We
assume the trajectories are represented using corresponding
descriptors B1(s, δs) and B2(s, δs), and both trajectories are
parameterized using the same definition for the progress s.

The global trajectory dissimilarity measure d̄ is defined by
calculating the mean of the local trajectory-shape dissimilarity
measure (24) over a given progress interval, starting from the
initial progress value s0 until the final progress value sf :

d̄
def
=

1

sf − s0

∫ sf

s0

∥B1(s, δs)−B2(s, δs)∥W ds. (26)

In practice however, the two trajectories are often not perfectly
aligned in progress s due to variations in the execution. In
that case, a trajectory alignment algorithm can be used. We
apply Dynamic Time Warping [42] here to compute this
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alignment efficiently, assuming that the descriptors B1 and
B2 are available in a discretely sampled form with N and M
samples respectively:

d̄ =
1

N +M
min
π∈Π

∑
(i,j)∈π

∥B1[i]−B2[j]∥W . (27)

Here, π is a sequence of pairs of monotonically increasing
indices (i, j) starting from (1, 1) and ending with (N,M),
and Π is the set of all possible sequences π.

The use of a trajectory shape descriptor inside the DTW
algorithm is also motivated by previous work on Dynamic
Time Warping [43]–[46] where it was observed that taking
derivatives (or other local shape information) of the time series
into consideration improves the DTW alignment and improves
the recognition rate during time series classification.

V. BILTS PROPERTIES AND RELATIONS

A. Properties

1) Degrees of freedom: All elements of the matrix Ad

in (17) can vary freely. Therefore, there are 18 degrees of
freedom (DOFs) on the left-hand side of (22). On the right-
hand side, these DOFs are split up into 6 DOFs for the screw
transformation S(T̃ ) and 12 DOFs for R. Therefore, even
though the BILTS descriptor B in (23) has 14 elements, it
has 12 DOFs.

2) Uniqueness: In the regular case where r11 and r22 are
strictly larger than zero, the decomposition in (20) is uniquely
determined by an extended QR-decomposition. This is shown
in Section VI-A2. Therefore, the moving frame T̃ , the matrix
descriptor R and the BILTS descriptor B (for a chosen δs)
are unique in the regular case.

3) Boundedness: The canonical matrix R is essentially the
twist t, acceleration twist t′, and jerk twist t′′ viewed from
another (instantaneous) frame on the ISA. Hence, if t, t′, and
t′′ are bounded, then the elements rij of R are also bounded,
and so is the BILTS matrix B(s, δs).

4) Completeness: The complete screw twist trajectory
wt(s) can be reconstructed from the BILTS descriptor
B(s, δs) for successive samples of s = [s1, · · · , sN ], if the
pose of the initial moving frame T̃ (s1) with respect to the
reference frame {w} is provided. This initial pose T̃ (s1) has
to be provided since B(s, δs) is invariant to changes of the
reference frame {w} in which the trajectory is expressed. More
details about this reconstruction can be found in Section VI-C.

5) Time-invariance of the moving frame: In Appendix A,
it is shown that the moving frame T̃ (s) at an instance s is
independent of the choice of progress function ṡ(t) as long as
we have a strictly monotonic progress, i.e., ṡ(t) > 0. In other
words, the configuration of the moving frame at an instance s
is independent of the local progress evolution ṡ(t).

6) Bi-invariance for spatial and body reference frames:
To verify left-invariance, consider transforming the spatial
screw twist wt(s) and its derivatives to another constant
spatial reference frame {u}, resulting in ut(s) using the screw
transformation matrix S( Tw

u ) in (11):

[ut(s) ut
′(s) ut

′′(s)] = S( Tw
u ) [wt(s) wt

′(s) wt
′′(s)] . (28)

Substituting wt(s) and its derivatives using (20) results in:

[ut(s) ut
′(s) ut

′′(s)] = S
(

Tw
u

)
S
(
T̃ (s)

)
R(s),

= S
(

Tw
u T̃ (s)

)
R(s). (29)

Equation (29) has the same form as the decomposition (20)
applied to ut(s). Therefore, due to the uniqueness property, the
matrix R(s) for ut(s) necessarily results in the same matrix
as given by (29). The matrix R(s) is therefore left-invariant.

Because the spatial screw twist wt(s) is by itself right-
invariant, it can be concluded that the matrix R(s) is bi-
invariant, and so is the BILTS matrix B(s, δs) = R(s)X(δs).

B. Relations
1) Viewpoint relations: A trajectory described by Tbw (s)

from a viewpoint attached to {w}, i.e., describing the motion
of {b} with respect to {w}, can also be described by Tw

b (s)
from a viewpoint attached to {b}, i.e., describing the motion of
{w} with respect to {b}. A simple relationship exists between
the BILTS descriptors for these two viewpoints.

Equation (20) can be written down for the two viewpoints:

[wt(s) wt
′(s) wt

′′(s)] = S( Tmf1
w )Rw(s), (30)[

bt̄(s) bt̄
′
(s) bt̄

′′
(s)

]
= S( Tmf2

b )Rb(s), (31)

where bt̄(s) and its derivatives are screws of the motion of {w}
with respect to {b}, expressed in the frame {b}, i.e., bt̄ = − bt.
Appendix B proves that the Rw matrix can be written in terms
of the elements rbij of the Rb matrix as follows:

Rw(s) =


rb11 rb12 rb13
0 rb22 rb23
0 0 −rb33 + rb11rb22

rb41 rb42 rb43
0 rb52 rb53
0 0 −rb63 + rb11rb52 + rb22rb41

 , (32)

and that the moving frames Tmf1
w and Tmf2

w are related by a
rotation of 180 degrees around the z-axis:

Tmf1
w = Rot(z, 180◦) Tmf2

w . (33)

The relation between the BILTS descriptors Bw and Bb is
obtained by right-multiplying both sides of (32) with X(δs).

2) Relation with the ISA invariant descriptor: Relations
exist between the elements of the canonical matrix R(s) and
the numbers within other local invariant descriptors, including
the ISA invariant descriptor [1], the FS invariant descriptor for
translation and rotation [13], and the Bishop frame [30] ap-
proach for point trajectories. All these descriptors are captured
by the following generalized model that splits up the motion
of the rigid body into a screw twist i of the moving frame T̃
expressed in the moving frame, and a screw twist r1 of the
body, also expressed in the moving frame [39]:

T̃ ′ = T̃ [i×] and wt = S(T̃ ) r1. (34)

Following the same convention for the axes of the moving
frame as explained in Section IV-B, the six ISA invariants
(ω1, ω2, ω3, v1, v2, v3) relate to the twists i and r1 as follows:

i =
[
ω3 0 ω2 v3 0 v2

]T
, (35)

r1 =
[
ω1 0 0 v1 0 0

]T
. (36)
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Remark that this definition of r1 is equivalent to the definition
of the first column of R in (21).

To establish the relation of the ISA invariants with the
BILTS descriptor, we first need to obtain the derivative of
the twist in (34) by using (13) and factoring out S(T̃ ):

wt
′ = S(T̃ ) ([i××] r1 + r′1) . (37)

Using the same procedure on (37) results in:

wt
′′ = S(T̃ )

(
[i××]

2
r1 + 2 [i××] r′1 +

[
i′××

]
r1 + r′′1

)
. (38)

Substituting i and r1 in equations (34), (37) and (38) leads to
A =

[
wt wt

′
wt

′′] being equal to:

A = S(T̃ )


ω1 ω′

1 −ω1ω
2
2 + ω′′

1

0 ω1ω2 ω1ω
′
2 + 2ω′

1ω2

0 0 ω1ω2ω3

v1 v′1 −2ω1ω2v2 − v1ω
2
2 + v′′1

0 ω1v2 + v1ω2 ω1v
′
2 + v1ω

′
2 + 2v′1ω2 + 2ω′

1v2
0 0 v1ω2ω3 + ω1v2ω3 + ω1ω2v3

. (39)

Hence, the screw transformation S(T̃ ) transforms
[wt wt

′
wt

′′] into a twice upper-triangular form. By taking
an appropriate choice of the sign of the ISA invariants, the
decomposition satisfies the conditions of Section IV-B, and is
therefore unique and equal to the decomposition in (20)-(21).

The relation (39) can be used to write the ISA invariants in
terms of the elements rij of the canonical matrix R:

ω1 = r11 v1 = r41 (40)

ω2 =
r22
r11

v2 =
r52
r11

− r22r41
r211

(41)

ω3 =
r33
r22

v3 =
r63
r22

− r33r52
r222

(42)

Similar relationships exist for the Frenet-Serret invariant
descriptor for translation and orientation [13], and for the
Bishop frame for point trajectories [30]. The appendices C,
D and E elaborate on these relationships.

From (39) it also becomes clear that the ISA-invariants for
a single value of the progress s are a poor description of
the trajectory shape. They provide only a constant approxi-
mation of the twist in the neighborhood of s. The derivatives
ω′
1, ω

′′
1 , ω

′
2, v

′
1, v

′′
1 and v′2 are needed to obtain an approxima-

tion of the twist in the neighborhood of s up to O(δs3). Hence,
we conclude that the BILTS descriptor provides a richer and
more complete description of the trajectory shape compared
to the ISA descriptor.

The ISA descriptor explicitly describes the motion of the
moving frame. This motion i is described using ω2, ω3, v2 and
v3 and (35). Of course, i can be computed from the BILTS
descriptor using the inverse relationship (40)-(42).

As explained in Section V, the elements rij of R(s) are
always bounded. However, the same cannot be said of the
ISA invariants since from (40)-(42), it can be seen that the
invariants ω2, v2, ω3, and v3 can become very large when
ω1 and/or ω2 are small. This explains why the ISA descriptor
behaves less “smoothly” compared to the BILTS descriptor.

VI. BILTS COMPUTATION AND MOTION REPRODUCTION

A. BILTS numerical computation

This subsection details a three-step procedure for the calcu-
lation of the BILTS descriptor B(s, δs) starting from a rigid-
body trajectory. This trajectory is assumed to be available
as an equidistantly sampled sequence of poses Tbw (sk) with
sk = k∆s, ∆s the progress step, and k ranging from zero to
the total number of progress samples N .

1) Twist and twist-derivatives estimation: The screw twist
wt(sk) and its derivatives wt

′(sk) and wt
′′(sk) along the

trajectory are estimated from the rigid-body trajectory Tbw (sk).
One option is to compute the spatial screw twist wt(sk)

from subsequent poses Tbw (sk) and Tbw (sk+1) using the
matrix logarithm [47] on SE(3):

[wt(sk)×] =
1

∆s
log

(
Tbw (sk+1) Tbw

−1(sk)
)
. (43)

The twist derivatives wt
′(sk) and wt

′′(sk) then directly cor-
respond to the first- and second-order numerical derivatives of
the spatial screw twist wt(sk).

Another option is to decouple rotation and translation by
calculating the rotational velocity wω(sk) from the orientation
trajectory b

wQ(sk) and the translational velocity wv
b(sk) from

the position trajectory wp
b(sk) of the origin of the body frame

{b} with coordinates expressed in the world frame {w}. The
spatial screw twist wt(sk) is then found by transforming the
reference point for translation to the world frame {w} using:

wt(sk) =

[
I3×3 03×3[

wp
b(sk)×

]
I3×3

] (
wω(sk)

wv
b(sk)

)
. (44)

The twist derivatives wt
′(sk) and wt

′′(sk) are found by
applying the product differentiation rule to (44).

In case of noise on the measurement data, a state estimator
such as a Kalman Filter should be used in both options to
improve the estimation of the twist derivatives.

The resulting twist wt(sk) and its derivatives wt
′(sk) and

wt
′′(sk) are then stacked into the 6× 3 matrix A(sk).

2) Calculation of R(sk) from A(sk): This section explains
the calculation of the canonical matrix R and moving frame T̃
from the A matrix in equations (20) and (21) using an extended
QR-decomposition.

Expanding the screw transformation matrix in (20) us-
ing (12), the decomposition of matrix A becomes:

A =

[
A1

A2

]
=

[
Q 0

[p×]Q Q

] [
R1

R2

]
. (45)

The first three rows of this equation are:

A1 = QR1, (46)

where the orthonormal matrix Q and upper triangular matrix
R1 can be found using a standard QR-decomposition [48].

We first consider a regular descriptor, i.e., the case where
the diagonal elements r11 and r22 are non-zero. Note that
this is a less restrictive definition than the commonly used
definition for regular matrices, since r33 is still allowed to
be zero. Furthermore, we impose that r11 > 0 and r22 >
0. This can always be achieved by flipping the sign of the
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diagonal element and the corresponding column of Q. The
sign of the third diagonal element r33 and the third column
of Q is determined by imposing that det(Q) = 1, so that the
resulting orthonormal matrix Q is always a rotation matrix. In
this case, this choice of Q is unique. After pre-multiplication
with QT , the last three rows of (45) can be written as:

QTA2 =
(
QT [p×]Q

)
R1 +R2, (47)

=
([
QT p×

])
R1 +R2, (48)

= [p∗×]R1 +R2. (49)

where p∗ = QT p represents the position vector from the origin
of the spatial frame to the origin of the moving frame, with
coordinates (x y z)T expressed in the moving frame. From the
below-diagonal elements in (49) and by imposing an upper-
triangular matrix R2, three scalar equations can be obtained
that do not depend on the unknown upper-triangular R2:

(QTA2)21 = r11z, (50)

(QTA2)31 = −r11y, (51)

(QTA2)32 = r22x− r12y, (52)

out of which the coordinates x, y, z of p∗ can be uniquely de-
termined for a regular descriptor where the diagonal elements
r11 > 0 and r22 > 0. Now that Q and R1 are known from
the QR-decomposition (46) and p∗ is solved from (50)–(52),
the moving frame T̃ is determined by Q and p = Qp∗, while
R2 is then solved from (49):

T̃ =

[
Q Qp∗

0 1

]
, (53)

R2 = QTA2 − [p∗×]R1. (54)

The matrix R(sk) =
[
RT

1 RT
2

]T
is now fully determined.

In the singular case, either one or both of the first two diag-
onal elements of R1 are zero, while the orthonormal matrix Q
is only unique up to one or more rotations. With an appropriate
choice of Q, equations (50)-(52) still have a solution for p∗.
However, without further imposing regularizing constraints on
R, the solution for R is not unique. A discussion on a possible
way to handle singular cases is provided in Section VIII.

3) Calculation of the BILTS descriptor: the BILTS descrip-
tor is found by computing B(sk, δs) = R(sk)X(δs) using
(19). The BILTS descriptor at successive progress samples
sk = s1 · · · sN is then concatenated into a 6× 3×N matrix.

B. Numerical examples

The outcome of the BILTS computation procedure is illus-
trated for two synthetic rigid-body trajectories: a screw motion
about a fixed axis (Figure 3) and a general motion (Figure 5).

The progress s along the trajectories was chosen to corre-
spond to time t, resulting in time-based BILTS descriptors.
The screw twist wt and its derivatives were calculated from
subsequent poses Tbw (sk) using the matrix logarithm on SE(3),
as explained in Sec. VI-A. To avoid the occurrence of exact
singularities (r11 = 0 or r22 = 0), noise with negligible
amplitude was added to the synthetic trajectory data. The
calculated BILTS descriptors are shown in Figures 4 and 6.

Fig. 3. Example screw motion (rotation + translation) about a fixed axis. The
xyz-axes of the body frame are depicted in red, green, blue, respectively.

Fig. 4. Calculated time-based BILTS descriptor for the screw motion shown
in Figure 3, for different values of δs.

To illustrate the effect of the progress scale δs in the BILTS
descriptor B(s, δs), different choices for δs were evaluated,
shown in Figures 4 and 6. A smaller or larger value for δs
can be interpreted as a “zoom in” or “zoom out” on the
local trajectory shape, respectively. For example, choosing
δs = 0 results in an infinite zoom in, such that it seems that
the tangent along the trajectory does not change in direction
and the magnitude of the velocity remains constant. This is
why for δs = 0 in Figures 4 and 6, ω−

x = ωx = ω+
x and

v−x = vx = v+x , while the other elements are zero.
The BILTS descriptor of the screw motion about a fixed

axis, shown in Figure 4, has only non-zero components in its
first and fourth row. This means that the tangent along the
trajectory does not change in direction, which corresponds to
the screw axis being fixed. Remark that all the elements of
the BILTS descriptor remain well-defined and bounded for
this motion. On the contrary, the ISA descriptor suffers from
a singularity in this case. That is, the two ISA invariants ω2

and v2 that quantify the rotational and translational velocity
of the screw axis are zero for this motion. Because of this, the
invariants ω3 and v3 are ill-defined.

C. Trajectory reconstruction

The complete trajectory Tbw (sk) can be reconstructed
from the BILTS descriptor B(sk, δs) for successive samples
s = [s1, · · · , sN ], if an initial moving frame T̃ (s1) and body
frame Tbw (s1) are provided.
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First, R(sk) is retrieved by inverting X(δs):

R(sk) = B(sk, δs)X
−1(δs) (55)

= B(sk, δs)

0 −δs−1

2 δs−2

1 0 −2δs−2

0 δs−1

2 δs−2

 . (56)

Subsequently, the initial screw twist wt(s1) and its derivatives
can be retrieved using (20) and the initial moving frame T̃ (s1):[

wt(s1) wt
′(s1) wt

′′(s1)
]
= S(T̃ (s1)) R(s1). (57)

The complete screw twist trajectory can then be retrieved by
iterating in the following way, where k refers to the iteration
step. The first two columns of A(sk+1) can be found by
integrating one progress step ahead:

wt(sk+1) = wt(sk) + ∆swt
′(sk) +

1

2
∆s2 wt

′′(sk), (58)

wt
′(sk+1) = wt

′(sk) + ∆swt
′′(sk). (59)

The procedure described in equation (46) to (54) can then
be applied to obtain the next moving frame T̃ (sk+1) because
the orthonormal matrix Q in the QR-decomposition (46) only
depends on the first two columns of A1, and (50) to (52) also
only depend on the first two columns of A2.

With T̃ (sk+1) found and R(sk+1) retrieved from applying
(55) to the known B(sk+1, δs), enough information is then
available to find the third column of A(sk+1) from (57) and
to start the next iteration step from (58). Using this procedure
the whole screw twist trajectory can be reconstructed. This
trajectory reconstruction procedure also shows that choosing
the Taylor expansion (17) up to the second order of wt(s)
gives us just enough information to reconstruct the screw twist
trajectory from the BILTS descriptor.

Using the reconstructed twist trajectory and an initial value
for the body frame Tbw (s1), the rigid-body trajectory can be
reconstructed by integration using the exponential map [41]:

Tbw (sk+1) = Tbw (sk) exp ([wt(sk)×] ∆sk) . (60)

Using the explained reconstruction procedure, the two syn-
thetic trajectories shown in figures 3 and 5 were reconstructed
from their respective BILTS descriptors given the initial mov-
ing frame T̃ (s1) and object frame Tbw (s1). Exactly the same
trajectories were obtained up to the precision of MATLAB.

D. Trajectory prediction

The BILTS descriptor has particular advantages for trajec-
tory prediction thanks to its local and bi-invariant properties.
These advantages are illustrated with an example. We take
the initial part of the general motion in Fig. 5 and apply
transformations to the trajectory by changing the location and
orientation of both the world frame and the body frame. The
result is shown in Fig. 7a. The goal is to predict the remainder
of this trajectory given the BILTS descriptor of the complete
original trajectory, without knowing which transformations
were applied and how much progress s has already elapsed.

Thanks to the independence to both the world frame and
body frame, the BILTS descriptor of the initial part of the

Fig. 5. Example general motion. The position trajectory is depicted in black.
The xyz-axes of the body frame are depicted in red, green, blue, respectively.

Fig. 6. Calculated time-based BILTS descriptor for the general motion shown
in Figure 5, for different values of δs.

transfromed trajectory can be directly matched with the BILTS
descriptor of the original trajectory. This matching can be
performed using, for example, the DTW algorithm as ex-
plained in Section IV-D. The resulting warping path aligns
the progress along both trajectories, and is visualized in Fig. 8.
Once the progress alignment is found, the BILTS descriptor
of the original trajectory can be used to predict the remainder
of the transformed trajectory using the previously explained
reconstruction procedure. To start this prediction, the initial
pose of the moving frame T̃ (s1) has to be known, but this can
be calculated from the transformed trajectory. The calculated
pose of the moving frame at the end of the transformed
trajectory is visualized in Fig. 7a. The predicted trajectory
is shown in Fig. 7b. Comparison of the predicted trajectory
with the original trajectory, on which the same transformations
of world and body frame were applied, confirmed that this
prediction was accurate up to the precision of MATLAB.

This application shows the benefit of local invariant de-
scriptors since the prediction succeeds when only part of the
trajectory is available and works when there are unknown
transformations on the trajectory. Doing the same with a non-
invariant descriptor would result in a complex problem involv-
ing simultaneous progress alignment and spatial alignment.
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(a) (b)
Fig. 7. Example of trajectory prediction for the general motion of Fig. 5
under unknown transformations. (a) Observed first part of the trajectory after
transforming the position and orientation of both the world frame and body
frame. The moving frame at the end of this part is depicted in magenta. (b)
Prediction of the remaining part of the trajectory.

Fig. 8. Dynamic time warping path between the original trajectory (blue)
shown in Fig. 5 and the first part of the trajectory (red) shown in Fig. 7a.
Only three elements of the BILTS descriptor are depicted. The vertical offset
between the red and blue curves has no physical meaning, but aims to visualize
the DTW alignment between the samples along the trajectory.

VII. EXPERIMENTAL VALIDATION AND COMPARISON

This section compares the proposed BILTS descriptor to
other trajectory descriptors for the application of motion
recognition. Since the aim is to compare descriptors, the same
standard recognition algorithm was used for all descriptors,
consisting of a 1-Nearest Neighbor (1-NN) classifier [49] with
Dynamic Time Warping (DTW) [42] alignment.

We employ two datasets: the Daily Life Activities (DLA)
dataset1 and the Daily Interactive Manipulation (DIM) dataset
[50]. Both the DLA and DIM datasets consist of object
manipulation tasks in daily life activities, such as scooping,
pouring, or cutting. We used the DLA dataset to validate
the BILTS descriptor and determine its scale factors L and
δs. This dataset was purposefully designed to have a large
variation in the context, including changes in viewpoint, time
duration, velocity profile, and spatial scale. Therefore, this
dataset poses the challenge of dealing with diverse contexts. In
the DIM dataset, no variations in the context were introduced.
Hence, the DIM dataset does not pose the same challenge to
the descriptors. Nevertheless, we used this dataset to test and
compare the performance of the descriptors on unseen data.

A. Trajectory descriptors and dissimilarity measures

We validated and compared the recognition rates of four
different trajectory descriptors.

The first two trajectory descriptors consist of the spatial
screw twist wt and the body-fixed screw twist bt as a function

1We made the Daily Life Activities (DLA) dataset publicly available:
https://doi.org/10.5281/zenodo.10940364

of time along the trajectory and serve as baselines. It is impor-
tant to note that these twists are not bi-invariant descriptors of
the trajectory. More specifically, the spatial screw twist is not
left-invariant, and the body-fixed twist is not right-invariant.

For these twist descriptors, a local dissimilarity measure d
based on a direct comparison of twists was used:

d = ∥t1(s1)− t2(s2)∥W , (61)

where ∥...∥W now represents a weighted Euclidean norm with
weighting matrix W = diag

(
L2, L2, L2, 1, 1, 1

)
.

The third trajectory descriptor is the bi-invariant ISA de-
scriptor [1] with geometric progress s as defined in [51].
A local trajectory-shape dissimilarity measure dISA was
used based on a direct comparison of the ISA-invariants
x = (ω1, ω2, ω3, v1, v2, v3):

dISA = ∥x1(s1)− x2(s2)∥W , (62)

with W the same as in (61) so that every invariant has the
same weight after scaling.

The fourth trajectory descriptor is the BILTS descriptor
with geometric progress s as defined in [51]. The trajectory-
shape dissimilarity measure introduced in (24) was used.

For each descriptor, the corresponding trajectory-shape dis-
similarity measures were implemented within DTW algo-
rithms to determine the global dissimilarity between two
trajectories, similar to what was done for BILTS in Sec. IV-D.

To evaluate the effect of using only lower-order shape fea-
tures to assess the similarity between motions, we introduced
additional “reduced” forms of the ISA and BILTS descriptors.
For example, for the BILTS descriptor, this was done by using
only the first column r1 of the canonical matrix R (first order),
the first and second column r1 and r2 (second order), or all
columns r1, r2 and r3 (third order).

The four different descriptors (wt, bt, ISA, and BILTS),
with their respective progress domains and reduced forms, are
listed in the first column of Table I.

Given that the input data consists of discrete time-based
pose trajectories Tbw (t) with time step ∆t, we reparameterized
these input pose trajectories to geometric pose trajectories
Tbw (s) prior to computing the geometric ISA and BILTS

descriptors. To do this, the traveled rotation angle along the
trajectory was chosen as the geometric progress, such as
in [51]. This progress can be defined in terms of its time-
derivative, i.e. the progress rate ṡ(t) as follows:

ṡ(t) = ∥ω(t)∥ . (63)

This progress rate is bi-invariant and is closely related to the
Killing form on se(3) [52].

Numerically, the progress at each time sample k was deter-
mined by: s(tk) =

∑k
j=0 ∥ω(tj)∥∆t. The rotational velocity

ωk at each time sample k was obtained from the twist wtk
that was calculated from subsequent poses Tbw k and Tbw k+1

using the matrix logarithm on SE(3), such as in (43).
Given the geometric progress s(tk), an interpolating func-

tion was defined that maps each sample Tbw (tk) to Tbw (s(tk))
using screw linear interpolation (ScLERP) [53], a generaliza-
tion of SLERP to SE(3). This interpolation function was then
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TABLE I
TOTAL AND PER-CONTEXT RECOGNITION RATE (%) OF EACH TRAJECTORY DESCRIPTOR FOR THE DLA DATASET.

Descriptors parameters recognition rates (%) for different contexts total ± σ (%)
normal larger spatial scale diff. vel. profile longer duration

L ∆s VP1 VP2 VP3 VP1 VP2 VP3 VP1 VP2 VP3 VP1 VP2 VP3

Time based
spatial screw twist wt 0.5m 0.05s 20.2 - 74.5 15.8 97.0 80.0 13.3 98.6 60.8 11.0 83.2 56.0 55.5± 34.5
body-fixed screw twist bt 0.5m 0.05s 69.7 - 79.8 51.6 71.2 75.8 42.2 68.1 72.2 37.0 77.9 58.0 63.9± 14.6

Geometric
ISA descriptor
(ω1, v1) 2.0m 2° 83.8 - 97.9 90.5 95.5 93.7 88.9 92.8 84.8 93.0 90.5 84.0 90.5± 4.7
(ω1, ω2, v1, v2) 2.0m 2° 77.8 - 85.1 81.1 87.9 91.6 68.9 69.6 78.5 83.0 77.9 79.0 80.0± 6.9
(ω1, ω2, ω3, v1, v2, v3) 2.5m 2° 50.5 - 52.1 49.5 51.5 50.5 45.6 47.8 46.8 47.0 52.6 48.0 49.3± 2.4

BILTS descriptor
(r1) 2.0m 2° 83.8 - 97.9 90.5 95.5 93.7 88.9 92.8 84.8 93.0 90.5 84.0 90.5± 4.7
(r1, r2) 1.0m 4° 87.9 - 97.9 94.7 97.0 97.9 92.2 97.1 84.8 94.0 92.6 91.0 93.4± 4.3
(r1, r2, r3) 1.0m 4° 89.9 - 97.9 95.8 97.0 96.8 92.2 97.1 86.1 95.0 92.6 91.0 93.8± 3.7

sampled to obtain the discrete trajectory Tbw (si) at equidis-
tant geometric progress samples si = i∆s, with i ranging
from zero to the total number of geometric samples M .
We considered the progress step ∆s as a parameter to be
determined during classification, signifying the resolution of
the considered geometric trajectory.

The BILTS descriptor allows to additionally tune the
progress scale δs. To more fairly compare the BILTS descrip-
tor to the ISA descriptor, we chose the unknown progress scale
δs of the BILTS descriptor in (23) to be equal to the progress
step ∆s since it has a similar meaning.

The geometric screw twist wt(si) and its derivatives wt
′(si)

and wt
′′(si) were estimated as explained in (44) while using a

linear Kalman smoother with a constant jerk-derivative model
to deal with measurement noise. Given the screw twist and its
derivatives, the ISA and BILTS descriptors were calculated.
The ISA descriptor was calculated using the analytical for-
mulas in [1]. The BILTS descriptor was calculated using the
numerical computation method as explained in Section VI.

B. Descriptor validation and parameter tuning

We used the DLA dataset to validate the different descrip-
tors and finetune the parameters L and ∆s. This dataset
was previously used in [3] and consists of ten classes of
activities. During the recordings, variations in the context were
introduced. That is, the activities were repeatedly executed
with respect to three different viewpoints2, and, for every
viewpoint, the demonstrator was instructed to perform the
motion using four different execution styles: (1) normal; (2)
with a larger spatial scale; (3) with a different time profile;
and (4) with a longer duration. This resulted in 3 × 4 = 12
different contexts. Using this dataset, classification results
were obtained in three steps:

1) Selection of the training set: To showcase the ability
of the trajectory descriptors to generalize across different
contexts, we selected training examples from only a single
context. For every motion class, all the trials from the context
normal: viewpoint 2 were selected as the training examples,
constituting the training set of the motion class.

2We additionally reversed the directions of the y- and z-axis for the first
viewpoint to showcase the impact of variations in the viewpoint even more.

2) Classification: All other trials from the remaining 11
contexts were classified based on their distance to the training
examples using a 1-NN classifier using the above defined
similarity measures with DTW. The classification results were
used to calculate the total recognition rate.

3) Variation of the parameters L and ∆s: The classification
was repeated over a 5× 5 uniform grid for different values of
L and ∆s. The geometric scale L ranged from 0.5 m to 2.5 m.
The progress step ∆s ranged from 2° to 10°. The parameters
corresponding to the best classification results were retained.

C. Results for the DLA dataset

Table I reports the highest total recognition rate for each
descriptor and the corresponding values for the obtained
parameters L and ∆s. It also reports the recognition rate per
context and the standard deviation σ over the contexts. No
recognition results are reported for the trials in the context
normal: viewpoint 2 since these trials were in the training set.

1) Evaluation of the baseline twist descriptors: As ex-
pected, the time-based twist descriptors showed poor perfor-
mance on the DLA dataset due to contextual variations. While
the spatial screw twist descriptor generally performed well in
contexts with viewpoint 2 (corresponding to the viewpoint of
the training data), it dropped off significantly in the other two
viewpoints due to its lack of left-invariance.

Although the body-fixed twist is left-invariant, its recogni-
tion performance also remained limited. The reason for this
is more nuanced and can be explained as follows. Within
the DLA dataset, trials were recorded using a Krypton K600
camera from NIKON Metrology by tracking up to nine LED
markers attached to the manipulated object. For each trial,
a body frame was extracted from three LED markers that
remained visible during motion execution, with their average
position serving as the frame’s origin. The body frame’s
orientation was extracted from the LED markers using a
Gram-Schmidt orthonormalization algorithm. However, due to
changes in the sensor viewpoint and varying LED occlusions,
different body frames were extracted across trials, leading to
significant variations in the body frame across trials. Since the
body-fixed screw twist lacks right-invariance, these variations
in the body frame limited its overall recognition rate.
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Fig. 9. Confusion matrix for the DLA dataset obtained with the ISA descriptor
using only first-order trajectory invariants. The parameters L and ∆s were
set to 2 m and 2°, respectively.
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Fig. 10. Confusion matrix for the DLA dataset obtained with the BILTS
descriptor using the complete third-order trajectory-shape descriptor. The
parameters L and ∆s were set to 1 m and 4°, respectively.

This lack of invariant properties explains the overall low
recognition rates of 55.5% and 63.9% for the spatial screw
twist and body-fixed twist, respectively. Hence, neither a left-
nor a right-invariant descriptor achieved satisfying results,
showcasing the need for a descriptor with more invariant
properties for this dataset.

2) Evaluation of the bi-invariant descriptors: The ISA
descriptor achieved its highest recognition rate (90.5%) when
using only the first-order shape features (with parameters
L = 2 m and ∆s = 2°). The corresponding confusion matrix
is shown in Figure 9. The BILTS descriptor performed better,
achieving the highest overall recognition rate of 93.8% when
using the complete third-order trajectory-shape features (with
parameters L = 1 m and ∆s = δs = 4°). The corresponding
confusion matrix is shown in Figure 10.

As expected, the geometric bi-invariant descriptors are more
robust to changes in the viewpoint and time profile along the
trajectory compared to the time-based twist descriptors. This
is reflected by the higher recognition accuracies and lower
standard deviations shown in the last column of Table I.

Remark that the recognition rates in Table I for the first-
order ISA descriptor (ω1, v1) are exactly the same as those
for the first-order BILTS descriptor (r1). This is unsurprising

because, as explained in Section V-B2, the definitions of r1
for both descriptors are the same.

3) Third-order versus lower-order descriptors: Including
higher-order shape features was detrimental in case of the
ISA descriptor. The results in Table I indicate that including
second-order shape features next to first-order features resulted
in a decrease from 90.5% to 80.0%. Including third-order
features resulted in an additional decrease to only 49.3%.

In contrast, the BILTS descriptor benefited from including
higher-order shape features. Including up to third-order fea-
tures resulted in a consistent increase in recognition rate from
90.5% to 93.8%, and a decrease in standard deviation σ from
4.7% to 3.7%. These results confirm our expectation that the
BILTS descriptor provides a more robust description of the
trajectory shape compared to the ISA descriptor.

The BILTS descriptor is more robust since its elements
are always bounded, as explained in Section V-B2. The ISA
descriptor lacks this property. In addition, the use of the
progress scale δs allows to appropriately weight the influence
of higher-order trajectory features versus lower-order features.

Although including up to third-order shape features resulted
in an increase of recognition rate from 90.5% to 93.8%, the
increase remained limited. This is likely because the DLA
dataset consists of relatively simple motions, were the object
rotates primarily in a single plane. We expect that for more
complex motions, the added value of including third-order
trajectory-shape features will be more significant.

4) Influence of scaling parameters: For the ISA descriptor,
the highest recognition rate was obtained for a relatively
large value of L = 2 m and for the smallest value of
∆s = 2°. A larger value for L increases the weight on
the rotational components ω1, ω2 and ω3 with respect to the
translational components v1, v2 and v3 in the ISA descriptor.
From the closed-form expressions in [1], it is known that the
translational components v2 and v3 have a higher sensitivity
to singularities in the trajectory compared to the rotational
components ω2 and ω3. This explains why for the ISA
descriptor choosing a larger value for L was beneficial.

A smaller value for ∆s during reparameterization preserves
higher-frequency components within the trajectories, which
were apparently important for this recognition experiment.
However, since the computation cost of the DTW algorithm for
similarity assessment grows quadratically with the sequence
length [54], halving the stepsize would result in a four times
longer computation time. Hence, given the average length of
the trajectories, we considered 2° as a practical lower bound.

For the BILTS descriptor, the optimal parameters are
L = 1 m and ∆s = 4°. Unlike the ISA descriptor, the BILTS
descriptor uses ∆s as the progress scale within B(s, δs)
since δs = ∆s. A larger value for δs emphasizes more the
higher-order shape features, which explains why the highest
recognition rate was obtained for ∆s = 4° > 2°. It can again
be concluded that including the higher-order shape features
was beneficial. Interestingly, the complete BILTS descriptor
shows limited sensitivity to parameter tuning. The recognition
rate across the 5× 5 grid for values of L and ∆s varied from
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a minimum of 89.9% to a maximum of 93.8%, resulting in a
small range of only 3.9%.

5) Confusion between classes: The confusion matrices in
Figures 9 and 10 show that there is a lot of confusion between
the invariant descriptors of the scooping and pouring and
the scooping food motion classes. This confusion happens
because both classes consist of scooping motions. Further
analysis revealed that the confusion between the classes mainly
happened for trials of the first context (normal: viewpoint 1).
After inspecting the plots of the invariant descriptors, it was
discovered there was a lot more variation in the invariant
descriptors in the first context compared to the other con-
texts. This means that the scooping motions performed in the
other contexts, which were recorded later in time, were more
consistent. Probably this was due to the habituation of the
demonstrator to performing these motions.

6) Choice of training set: Having more than one example
in the training set allows to capture (human) variability in
the execution of the motions. For the experiments, we chose
to use all the trials from the context normal: viewpoint 2
as the training examples. However, we can also perform the
same recognition experiment using fewer training examples.
We did such an additional experiment by using only five, three
and one trial(s) from the context normal: viewpoint 2 as the
training examples for each motion class. As expected, the total
recognition rate for the BILTS descriptor then decreased, from
93.8% to 92.7%, 90.9% and 88.7%, respectively. Nevertheless,
it is remarkable that using only one example from one context
for each motion class (≈ 1% of the total dataset) still results
in a relatively high total recognition rate of 88.7%.

D. Results for the DIM dataset

We used the DIM dataset [50] to test how well the ISA and
BILTS descriptors generalize towards unseen data using the
parameters learned from the DLA dataset.

The DIM dataset contains a total of 32 motion classes but
the number of trials per class varies significantly. Additionally,
some motions were performed by multiple subjects while
others only by one. To create a more balanced dataset where
every class is equally represented in the results, we proceeded
as follows. We first selected motion classes that contained
at least ten trials performed by the first subject. From these
selected motion classes, the last ten trials performed by the
first subject were selected. This resulted in a dataset with 28
different motion classes, each containing 10 trials. For each
motion class, the first five trials were selected as the training
set to model the class in the NN-classifier, while the last five
trials were considered as the test set to be classified.

Table II reports the classification results for the BILTS
descriptor and the first-order ISA descriptor using the same
parameters L and ∆s as in Table I. The BILTS descriptor ob-
tained a recognition rate of 81.4%, an improvement of 14.3%
compared to the first-order ISA descriptor (67.1%). These
test results confirm that the BILTS descriptor outperforms the
existing ISA descriptor.

Interestingly, this 14.3% improvement is much larger than
the 3.3% improvement reported in Table I. This supports

TABLE II
RECOGNITION RATES (%) FOR THE DIM DATASET.

Descriptors parameters total (%)
L ∆s

ISA descriptor (ω1, v1) 2m 2° 67.1

BILTS descriptor (r1, r2, r3) 1m 4° 81.4

our earlier claim that higher-order trajectory-shape features
become more valuable for recognizing more complex motions.

VIII. DISCUSSION AND CONCLUSION

This paper introduces the novel Bi-Invariant Local Trajec-
tory Shape descriptor (BILTS) for rigid-body motion together
with a corresponding dissimilarity measure to evaluate sim-
ilarity between trajectories. The BILTS descriptor is defined
by first representing the local shape of the trajectory using
a Taylor series approximation of the spatial screw twist, and
then transforming this representation to a local moving frame
based on the instantaneous screw axis.

Relations were derived between the BILTS descriptor and
existing invariant descriptors from the literature. Compared to
the ISA descriptor [1], which is also bi-invariant, the BILTS
descriptor offers a richer representation. It consists of fourteen
numbers that completely describe the local trajectory shape
up to third order. It can be interpreted as a combination of
twelve instantaneous invariants, also described in [2], and two
intuitive scale factors. In contrast, the ISA descriptor consists
of six numbers that describe the local trajectory only partially
up to third order. By providing a richer description, the BILTS
descriptor reduces ambiguity when assessing the similarity
between motions.

The BILTS descriptor is also more robust against singu-
larities than the ISA descriptor. In singular cases, when the
rotational velocity is zero or constant, both the BILTS and
ISA descriptors lose their uniqueness property. However, the
BILTS descriptor is always bounded, which is not the case for
the ISA descriptor.

The dissimilarity measure based on the BILTS descriptor
enables us to evaluate the similarity between trajectories in
a bi-invariant manner. However, it is important to note that,
while this measure is bi-invariant, it should not be interpreted
as a bi-invariant distance metric on SE(3). Such a metric is
known not to exist [31], [55]. Instead, our measure focuses on
comparing the shapes of rigid-body trajectories.

We achieved the bi-invariant similarity measure by repre-
senting the object’s trajectory in a bi-invariant moving frame
that is uniquely defined by the object’s kinematics. A practical
advantage of this approach is that it does not require calibra-
tion of the spatial or body frame when comparing motions.
In addition, the trajectory representation generalizes beyond
the type of object that is being used. This means that the
similarity between motions performed with different objects
(such as pouring with a cup, jug, or kettle) can be detected.

Alternatively, we could have defined an invariant frame
based on the object’s shape or inertial properties, though this
would have required body frame calibration. This approach is
inspired by [56], where it is shown that the kinetic energy is
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a frame-invariant metric when calculated from the body-fixed
twist, where a mass density function serves as a weight for
each point of the body. However, this frame depends on the
type of object used and is not unique for objects with rotational
symmetry. Additionally, using this frame, a high dissimilarity
might be detected between similar motions performed with
different objects.

We validated the BILTS descriptor and dissimilarity mea-
sure in motion recognition experiments using extensive
datasets, showing that the BILTS descriptor outperformed the
existing ISA descriptor in [3] and [4]. The results also demon-
strated that bi-invariant trajectory-shape descriptors exhibit
robustness with respect to variations in the context.

However, it is possible that these shape descriptors may
not always contain sufficient information to distinguish similar
motion classes. For instance, in Section VII-C, confusion
occurred between the scooping food and scooping and pouring
motions due to their similar trajectory shapes. To address this,
including additional context information beyond the trajectory
shape becomes necessary.

When distinguishing motions with similar trajectory shape
but different motion profiles, it is obvious that the motion
profile contains useful information. However, in the DLA
dataset, there was a large variation in the motion profile by
design. This is why we chose to remove the motion profile
from the demonstrations by expressing the trajectories in
function of a geometric progress. In other datasets, such as the
DIM dataset, the motion profile can be more consistent within
each motion class, and hence contains useful information to
distinguish the classes. In such cases, it might be beneficial
to use time as the progress. In general, when choosing an
invariant description, it is a good idea to only remove context,
such as the motion profile, so far as is required for the
envisioned application.

A downside of the local BILTS descriptor is its dependency
on higher-order trajectory derivatives. Hence, care has to be
taken when applying the descriptor in practical applications.
For the experiments, a Kalman smoother with a constant jerk-
derivative model was used to robustly estimate higher-order
twist derivatives in the presence of sensor noise.

Alternatively, the explicit estimation of higher-order
twist derivatives and the Taylor series expansion in
(17) can be avoided. It is possible to approximate the
BILTS descriptor by directly applying the matrix decom-
position (20) to a matrix with three successive twists
Ad = [wt(s−∆s) wt(s) wt(s+∆s)], where ∆s is the
sampling interval (or progress step size):

Ad(s,∆s) = S(T̃d(s)) Rd(s,∆s), (64)

Rd(s,∆s) is an approximation of the BILTS descriptor
B(s, δs), if δs is chosen equal to ∆s. The columns of
Rd(s,∆s) represent the three twists expressed in a moving
frame T̃d. This frame bears a strong relation with the moving
frame T̃ of the BILTS descriptor. That is, the moving frame
T̃d is an approximation of T̃ when delayed with the sampling
interval ∆s, as shown in Appendix F. Since T̃d is just an
approximation of T̃ , in the experiments, we chose to only
show the performance of the BILTS descriptor based on T̃ .

The numerical computation of the BILTS descriptor as-
sumes rigid-body trajectories that are regular, i.e., the rota-
tional velocity vector is not zero or constant. This assumption
was not a problem for the motions within the DLA and DIM
datasets since they were performed by humans and sensor
noise was present, meaning that exact singularities in the
trajectories never occurred. Dealing with irregular trajectories
and exact singularities is part of future work. Since the moving
frame becomes undefined instantaneously, a possible approach
is calculate the descriptor in a window along the trajectory
using geometric optimal control while minimizing the motion
of the moving frame in the window, such as in [39].

Finally, since the BILTS descriptor is bidirectional, it is also
applicable to trajectory generation applications, such as motion
reconstruction and prediction. To prove this, an algorithm to
reconstruct the original trajectory from the BILTS descriptor
was introduced in Section VI-C. For trajectory reconstruction,
the initial pose of the object and the moving frame have to
be provided. However, for trajectory prediction, no additional
information has to be provided since the necessary frames can
be calculated from the already available trajectory data.

In conclusion, we introduced a novel bi-invariant local
trajectory-shape descriptor (BILTS) and a corresponding dis-
similarity measure for rigid-body motion. Mathematical re-
lationships between this descriptor and existing invariant de-
scriptors were derived. The BILTS descriptor is richer and
more robust to singularities than the existing bi-invariant ISA
descriptor. The performance of the BILTS descriptor was
experimentally validated in motion recognition experiments.
Bidirectionality of the BILTS descriptor was proven by pro-
viding an algorithm for exact reconstruction.

APPENDIX

A. Invariance of moving frame for the motion profile: proof

In regular cases, the moving frame T̃ at a given time instant
t is independent of the choice of progress function s(t) as long
as there is a strictly monotonic progress, i.e., ṡ(t) > 0. The
moving frame then only depends on the shape of the trajectory.

This property is proven as follows. The time-evolution of a
rigid-body trajectory Tbw (s(t)) can be written using (7):

d

dt

(
Tbw (s(t))

)
=

d

ds

(
Tbw (s)

) ds
dt

= Tbw
′(s(t))ṡ,

= [wt(s) ṡ×] Tbw (s(t)). (65)

The resulting spatial screw twist wt(s)ṡ in the time domain is
differentiated twice:

d

dt
(wt(s)ṡ) = wt

′(s)ṡ2 + wt(s)s̈, (66)

d2

dt2
(wt(s)ṡ) = wt

′′(s)ṡ3 + 3wt
′(s)ṡs̈+ wt(s)

...
s . (67)

From (66) and (67) it follows that the relations between the
twist wt(s)ṡ and its derivatives in the time domain, on the one
hand, and the twist wt(s) and its derivatives in the geometric
domain, on the other hand, are given by:[

wt(s)ṡ
d
dt (wt(s)ṡ)

d2

dt2 (wt(s)ṡ)
]
=

[
wt wt

′
wt

′′]M,

(68)
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where M is an upper-triangular matrix:

M =

ṡ s̈
...
s

0 ṡ2 3ṡs̈
0 0 ṡ3

 . (69)

Applying this relation in (20) by post-multiplying the left- and
right-hand side by M leads to:

AM = S(T̃ )RM. (70)

Since a product of upper-triangular matrices is also
upper-triangular, and the canonical matrix R is regular and
det(M) ̸= 0, (70) represents a unique decomposition in the
form of (20), with the same moving frame T̃ . Because all
diagonal elements of (69) are strictly positive due to ṡ > 0,
the signs of the diagonal elements of RM are not influenced
by the motion profile. Therefore, using the uniqueness property
in Section V-A2 , it can be concluded that the motion profile
by which the progress s is evolving does not influence the
obtained moving frame T̃ .

B. Changing the viewpoint of a BILTS descriptor: proof

This appendix proves the relationship between the BILTS
descriptor from the viewpoint attached to the spatial frame
{w} in (30) and the BILTS descriptor from the viewpoint
attached to the body frame {b}. The screw twists wt from
the viewpoint attached to {w} relate to the screw twists bt̄
from the viewpoint attached to {b} as:

wt = S( Tbw ) bt = −S( Tbw ) bt̄. (71)

Substituting the definition of the canonical matrices Rw and
Rb of (30) and (31) into (71) gives:

S( Tmf1
w )rw1 = −S( Tbw )S( Tmf2

b ) rb1,

S( Tmf1
w )rw1 = −S( Tmf2

w ) rb1, (72)

where the notation rwi and rbi indicates the i-th column of
Rw and Rb. Taking the derivative of both the left- and right-
hand side of (71) and using (13) to compute the derivative
of the screw transformation matrix while simplifying using
[bt××] bt = 0 gives:

wt
′ = S( Tbw )

(
− bt̄

′). (73)

Substituting the definition of Rw and Rb into (73) gives:

S( Tmf1
w )rw2 = S( Tmf2

w )
(
− rb2

)
(74)

Similarly, deriving (73) again using (13) gives:

wt
′′ = S( Tbw )

(
[bt̄××] bt̄

′ − bt̄
′′); (75)

and substituting the definition of Rw and Rb into (75) gives:

S( Tmf1
w )rw3 = S( Tmf2

w )
(
[rb1××] rb2 − rb3

)
. (76)

Combining (72), (74), and (76) while exploiting the twice
upper-triangular structure of Rb gives:

S( Tmf1
w )Rw(s) = S( Tmf2

w )R̄b(s), (77)

with R̄b(s) equal to:
−rb11 −rb12 −rb13
0 −rb22 −rb23
0 0 −rb33 + rb11rb22

−rb41 −rb42 −rb43
0 −rb52 −rb53
0 0 −rb63 + rb11rb52 + rb22rb41

 . (78)

The definition of the BILTS descriptor in Section IV.B
requires that rb11 > 0 and rb22 > 0. R̄b(s) does not satisfy
this requirement, therefore we rotate the moving frame {mf2}
180◦ around its z-axis, such that the first, second, fourth and
fifth row of R̄b change sign. The redefined R̄b(s) becomes:

rb11 rb12 rb13
0 rb22 rb23
0 0 −rb33 + rb11rb22

rb41 rb42 rb43
0 rb52 rb53
0 0 −rb63 + rb11rb52 + rb22rb41

 . (79)

Noticing that R̄b has a twice upper-triangular structure with
the first two diagonal elements of Rb strictly positive, we
conclude that the decompositions on the left- and right-hand
side of (77) are unique according to the uniqueness property
in Section V-A2, such that:

Tmf1
w = Rot(z, 180◦) Tmf2

w , (80)
Rw(s) = R̄b(s), (81)

which proves the viewpoint relations in (32) and (33).

C. Relation with FS invariant descriptor for orientation

For orientation trajectories, the Frenet-Serret invariants de-
scribe rotational velocities, and i and r1 are defined by:

i =
[
ω3 0 ω2 0 0 0

]T
, (82)

r1 =
[
ω1 0 0 0 0 0

]T
. (83)

Substituting i and r1 in equations (34), (37) and (38) leads to
A =

[
wt wt

′
wt

′′] equal to:

A = S(T )


ω1 ω′

1 −ω1ω
2
2 + ω′′

1

0 ω1ω2 ω1ω
′
2 + 2ω′

1ω2

0 0 ω1ω2ω3

0 0 0
0 0 0
0 0 0

 . (84)

Comparing the above equation with (39) shows that the mov-
ing frame of the rotational Frenet-Serret invariants corresponds
to the moving frame of the descriptor in (20) when applied to
screw twists with no translational velocity component.

The inverse relationship between the FS invariant descriptor
for orientation and the elements of the canonical matrix in (21)
is given by:

ω1 = r11, ω2 =
r22
r11

, and ω3 =
r33
r22

. (85)



17

D. Relation with FS invariant descriptor for translation

For point trajectories, the Frenet-Serret invariants describe
translational velocities, and i and r1 are defined by:

i =
[
ω3 0 ω2 0 0 0

]T
, (86)

r1 =
[
0 0 0 v1 0 0

]T
. (87)

Substituting i and r1 in equations (34), (37), and (38) leads
to A =

[
wt wt

′
wt

′′] equal to:

A = S(T )


0 0 0
0 0 0
0 0 0
v1 v′1 − v1 ω

2
2 + v′′1

0 v1 ω2 2 v′1 ω2 + v1 ω
′
2

0 0 ω2ω3 v1

. (88)

As can be seen in the above equation, this decomposition also
results in the twice upper-triangular form of Section IV-B.
However, when considering twists with zero rotational veloc-
ity, (45) is not regular and does not result in a unique de-
composition without making additional assumptions. Because
in the absence of rotational velocity, the only valid choice
for R1 in (45) is zero, the choice for p in (49) is arbitrary.
The orientation of this frame corresponds to the orientation
of the very well-known Frenet-Serret frame. Q can still be
determined using a QR-decomposition of A2:

A2 = QR2, (89)

which is unique when the first two upper-triangular elements
of R2 are non-zero.

The inverse relationship between the FS invariant descriptor
for point trajectories and the elements of the canonical matrix
in (21) is given by:

v1 = r41 , ω2 =
r22
r11

, and ω3 =
r33
r22

. (90)

Similarly to the ISA-invariants, it can also be concluded
that the FS descriptors for translation and rotation are a poor
description of trajectory shape when only considered at a
single value of the progress. They only provide a constant
approximation of the translational or rotational velocity. How-
ever, they can still be used when considering these invariants
over a continuous interval of progress values.

E. Relation with Bishop frames for point curves

Bishop [30] proposed another way to associate a frame
with a point curve. The resulting frame is referred to as a
Bishop frame or also as a rotation-minimizing frame, since
it minimizes the rotation of the moving frame over the whole
trajectory. Bishop’s approach can be represented in the general
model of (34) using the following values for i and r1:

i =
[
0 ω2 ω3 0 0 0

]T
, (91)

r1 =
[
0 0 0 v1 0 0

]T
. (92)

Substituting i and r1 in equations (34), (37), and (38) leads
to

[
wt wt

′
wt

′′] equal to:

S(T )


0 0 0
0 0 0
0 0 0
v1 v′1 −ω2

2 v1 −ω2
3 v1 +v′′1

0 ω3 v1 2ω3 v
′
1 +v1 ω

′
3

0 −ω2 v1 −2ω2 v
′
1 − v1 ω

′
2

 . (93)

Clearly, this does not result in an upper-triangular matrix for
R2. This is expected because Bishop’s frame is not unique
and depends on initial conditions [30].

F. Relation with BILTS descriptor based on successive twists

Similarly to (17), the columns of Ad in (64) can be
approximated from the columns of A in (17) at instance s−∆s
using the second-order forward integration scheme Xd(∆s):

Ad(s,∆s) ≈ A(s−∆s)Xd(∆s), (94)

with Xd(∆s) the following upper-triangular matrix:

Xd(∆s) =

1 1 1
0 ∆s 2∆s
0 0 2∆s2

 . (95)

such that:

A(s−∆s)Xd(∆s) ≈ S(T̃d(s)) Rd(s). (96)

Right multiplication with X−1
d (∆s) gives:

A(s−∆s) ≈ S(T̃d(s)) Rd(s) X
−1
d (∆s). (97)

Since Xd(∆s) is an upper-triangular matrix with strictly
positive diagonal elements, its inverse exists and is also upper-
triangular. Since the product of upper-triangular matrices is
also upper-triangular, the uniqueness property in Sec. V-A2
can be applied. Hence, the moving frame T̃d(s) is an approx-
imation of the moving frame T̃ (s−∆s).
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[28] J. Serret, “Mémoire sur une classe d’équations différentielles simultanées
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Différentielle, Traitées Par La Méthode Du Repère Mobile. Gauthier-
Villars, 1937.

[30] R. L. Bishop, “There is more than one way to frame a curve,” The
American Mathematical Monthly, vol. 82, no. 3, pp. 246–251, 1975.

[31] F. C. Park, “Distance Metrics on the Rigid-Body Motions with Applica-
tions to Mechanism Design,” Journal of Mechanical Design, vol. 117,
no. 1, pp. 48–54, 03 1995.

[32] J. K. Davidson, K. H. Hunt, and G. R. Pennock, “Robots and screw
theory: applications of kinematics and statics to robotics,” J. Mech. Des.,
vol. 126, no. 4, pp. 763–764, 2004.

[33] M. Chasles, “Note sur les propriétés génerales du système de deux corps
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