
Parallelized Multi-Agent Bayesian Optimization in Lava
Shay Snyder

ssnyde9@gmu.edu
George Mason University
Fairfax, Virginia, USA

Derek Gobin
dgobin@gmu.edu

George Mason University
Fairfax, Virginia, USA

Victoria Clerico
mclerico@gmu.edu

George Mason University
Fairfax, Virginia, USA

Sumedh R. Risbud
sumedh.risbud@intel.com

Intel Labs
Santa Clara, California, USA

Maryam Parsa
mparsa@gmu.edu

George Mason University
Fairfax, Virginia, USA

ABSTRACT
In parallel with the continuously increasing parameter space di-
mensionality, search and optimization algorithms should support
distributed parameter evaluations to reduce cumulative runtime.
Intel’s neuromorphic optimization library, Lava-Optimization, was
introduced as an abstract optimization system compatible with
neuromorphic systems developed in the broader Lava software
framework. In this work, we introduce Lava Multi-Agent Optimiza-
tion (LMAO) with native support for distributed parameter evalua-
tions communicating with a central Bayesian optimization system.
LMAO provides an abstract framework for deploying distributed
optimization and search algorithms within the Lava software frame-
work. Moreover, LMAO introduces support for random and grid
search along with process connections across multiple levels of
mathematical precision. We evaluate the algorithmic performance
of LMAO with a traditional non-convex optimization problem, a
fixed-precision transductive spiking graph neural network for cita-
tion graph classification, and a neuromorphic satellite scheduling
problem. Our results highlight LMAO’s efficient scaling to multi-
ple processes, reducing cumulative runtime and minimizing the
likelihood of converging to local optima.

KEYWORDS
Bayesian optimization, neuromorphic computing, search algorithms,
multi-agent optimization

1 INTRODUCTION
Many of today’s most interesting problems require solutions to high
dimensional and non-linear systems that determine the optimal
parameter configuration. Multiple areas such as autonomous robot-
ics [13], graph neural networks [6], evolutionary algorithms [12],
and physics-informed neural networks [15] are limited by the time
expenditure from individual parameter evaluations. Rather than
traditional procedural approaches like random search [3] or grid
search [11], modern techniques employ heuristic algorithms mak-
ing informed decisions from prior knowledge, such as Bayesian
optimization (BO) [14] with roots in Bayesian statistics [2]. While
BO reduces the quantity of problem evaluations by orders of mag-
nitude, many problems still face runtime issues where the reduced
number of synchronous evaluations is not enough to compensate
for the immense time required by individual evaluations [5].

Intel’s neuromorphic software framework, Lava, was introduced
as an abstract software framework for developing neuromorphic

systems. In this work, we introduce LavaMulti-AgentOptimization
(LMAO), a novel framework for evaluating parameter configura-
tions across multiple asynchronous processes whose results are
aggregated into a single optimizer or search algorithm. This frame-
work is completely open-sourced through GitHub1. We evaluate
the performance improvements and operational characteristics of
LMAO with the Ackley function [1], a fixed-precision transductive
spiking neural network for citation graph classification [17], and a
satellite scheduling problem using quadratic unconstrained binary
optimization [10].

In summary, the major contributions of this paper are:
• We introduce Lava Multi-Agent Optimization (LMAO) with

support for distributed optimization.
• We demonstrate the performance of LMAO with the Ack-

ley function [1], a transductive spiking graph neural net-
work [17], and a QUBO optimization problem for satellite
scheduling [10].

2 ARCHITECTURE OF LMAOWITHIN THE
LAVA SOFTWARE FRAMEWORK

Intel’s neuromorphic software framework, Lava [10], provides an
abstract interface for building interconnected systems of event-
based computational elements. The lowest-level building blocks
are Processes which provide a blueprint of inputs, outputs, and
internal variables. Lava provides a base library of ports allowing
inter-process communication. In-Ports receive information from
other processes whereas Out-Ports transmit information to other
processes. Individual Process functionality is defined within Process
Models2. Moreover, Process Models are architecture specific so the
same Process can have multiple Process Models for execution on
different hardware platforms such as central processing units or
Loihi 2 neurocores.

Lava Multi-Agent Optimization (LMAO) introduces the general-
purpose Solver. Serving as the single point of entry into the LMAO
framework, the Solver is a contract between users and developers.
This utility provides an abstract interfacewhere users define various
parameters such as number of iterations, number of initial points,
parameter search spaces, and optimization algorithm types.

Rather than being limited to sequential parameter evaluations [18],
LMAO introduces support for multiple, parallel agents communi-
cating with a central optimization or search algorithm. A high-level

1Code available at https://github.com/Parsa-Research-Laboratory/lmao.
2See http://lava-nc.org for details about Lava concepts like Processes and Process Models

ar
X

iv
:2

40
5.

04
38

7v
1 

 [
cs

.D
C

] 
 7

 M
ay

 2
02

4

https://orcid.org/0000-0002-3369-3478
https://orcid.org/0009-0004-0396-4662
https://orcid.org/0009-0005-2383-0335
https://orcid.org/0000-0003-4777-1139
https://orcid.org/0000-0002-4855-4593
https://github.com/Parsa-Research-Laboratory/lmao
http://lava-nc.org


Snyder, et al.

Figure 1:Multiple independently operating agents processing
different hyperparameters from the central search algorithm
with LMAO.

flowchart of this process is presented in Figure 1. Controlled by the
numAgents parameter, users can distribute evaluations to multiple
asynchronous agents and increase the effective number of evalua-
tions per time step. The LMAO backend supports this functionality
by dynamically creating pairs of In-Ports and Out-Ports for each
process and using the Lava runtime framework to distribute agents
across multiple processes.

Algorithm 1 Agent Initialization & Initial Point Sampling

Require: numAgents = {numAgents ∈ N|numAgents ≥ 1}
Require: numIps = {numIps ∈ N|numIps ≥ 1}
Require: numIps ≥ numIterations

opt← getOptimizer()
ipQueue← opt.getInitialPoints(numIps)
completedIters← 0
for 𝑖 = 0 to numAgents - 1 do

outPort← getOutPort(i)
nextPoint← ipQueue.pop()
outPort.send(nextPoint)

end for
repeat
for 𝑖 = 0 to 𝑛𝑢𝑚𝐴𝑔𝑒𝑛𝑡𝑠 do

inPort← getInPort(i)
if inPort.probe() is false then

continue
end if
point← inPort.recv()
opt.update(point)
completedIters = completedIters + 1
if ipQueue.nonEmpty() then

outPort← getOutport(i)
nextPoint← ipQueue.pop()
outPort.send(nextPoint)

end if
end for

until completedIters ≥ numIps

As shown in Algorithm 1, the system is initialized by sending
a unique initial point to each agent. With agents executing asyn-
chronously, they evaluate the received parameters and return the
corresponding values on stochastic time intervals. Simultaneously,
the search algorithm probes each In-Port from each agent process. If
the port has received an evaluated parameter combination, the data
is decoded and used to update the search algorithm. This process is
repeated until all initial points have been evaluated.

Algorithm 2 Heuristic Search

Require: numAgents = {numAgents ∈ N|numAgents ≥ 1}
Require: 𝑛𝑢𝑚𝐼𝑝𝑠 = {numIps ∈ N|numIps ≥ 1}
Require: numIter = {numIter ∈ N|numIter > numIps}
opt← getOptimizer()
completedIters← numIps
repeat

numPoints← min(numIter - completedIters, numAgents)
if numPoints < 1 then
return

end if
unknownPoints← opt.ask(numPoints)
for 𝑖 = 0 to numPoints - 1 do

outPort← getOutPort(i)
nextPoint← unknownPoints.pop()
outPort.send(nextPoint)

end for
numComplete← 0
repeat

inPort← getInPort(i)
if inPort.probe() is true then

point← inPort.recv()
opt.update(point)
completedIters = completedIters + 1

end if
until numComplete ≥ numPoints

until completedIters ≥ numIter

With all initial points evaluated, LMAO uses learned knowledge
to heuristically explore the parameter space. As shown in Algo-
rithm 2 and using the constant liar strategy [4], unique, unknown
points are sampled and transmitted to each agent for parallelized
evaluation. Upon completion, the evaluated points are used to up-
date the model. This process continues until the desired number of
iterations is reached wherein all processes are stopped and results
are returned to the user.

3 RESULTS & DISCUSSION
We evaluate the performance of Lava Multi-Agent Optimization
with a traditional non-convex optimization problem [1], a spiking
graph neural network for citation graph classification [17], and a
quadratic unconstrained binary optimization problem in the Lava-
Optimization library [10]. All experiments were conducted with a
desktop computer equipped with an AMD Ryzen 7 3700x processor
and 64GB of quad-channel DDR4 memory.



Parallelized Multi-Agent Bayesian Optimization in Lava

Figure 2: (A) The runtime latency of LMAO using BO on the Ackley function [1] with varying amounts of manually induced
delay. (B) The accuracy convergence of single andmulti-agent BO for citation graph classification [17]. (C) Grid search execution
times with satellite scheduling [10] across different numbers of processes.

3.1 Traditional Non-Convex Optimization
The Ackley [1] function is a classic non-convex optimization prob-
lemwithwidespread usage.We evaluate this functionwith Bayesian
Optimization (BO) across a varying quantity of agents. The search
space is continuous, real values across the range of each problem
dimension. For a total of 50 optimization iterations, we configure
the optimizer to sample 10 initial points before using BO to intelli-
gently explore based on prior knowledge. BO is able to successfully
learn each function and converge arbitrarily close to the global
minima. As shown in Figure 2A, we perform the same experiment
across a varying quantity of agents from 1 to 10. Given the low
computational complexity of individual function evaluations, the
overhead of spawning multiple processes and the latency of updat-
ing the Gaussian model outweigh the benefits of multiple agents
and doesn’t reduce the overall runtime. To evaluate the necessary
evaluation latency for LMAO’s multi-agent capabilities to be ef-
fective, we manually add delay to each function evaluation. As
shown in Figure 2A, we iterate over multiple delay values: 1s, 3s, 5s,
and 10s. These results highlight the positive correlation between
the performance benefits from multiple agents and the latency of
individual functional evaluations.

3.2 Transductive Spiking Graph Neural
Networks

In the second experiment, we demonstrate the performance of
LMAO with a fixed-precision spiking graph neural network. In-
troduced in [6], citation graph classification is performed with
transductive learning where the spiking neural network structure
is designed based on the citation graph itself. More recent works
such as [5] and [17] demonstrate the capability of this approach
with Bayesian optimization (BO) while intra-network computations
are limited to integer precision compatible with Loihi [7].

Using LMAO, our goal is to reduce the total optimization time
required by BO to select the optimal parameter set. As shown in
Table 1, our search space consists of 4 variables: paper to paper
weight, train to topic weight, val to topic 𝜏+/− and number of
simulation steps. We perform two BO experiments with 1 and 5
agents, with the results being averaged over 3 repetitions and 3
random seeds. Both experiments generate and evaluate 10 random

Table 1: The parameter search space for optimizing the fixed-
point spiking graph neural network [17] with LMAO.

Parameter Options
Paper to Paper Weight {100, 101, ..., 500}
Train to Topic Weight {1, 2, ..., 10}
Val. to Topic 𝜏+ & 𝜏− {20, 21, ..., 60}
Simulation Steps {5, 7, ..., 13}

Table 2: The parameter search space for optimizing the neu-
romorphic satellite scheduling problem [10] with LMAO. The
overall space contains 270 parameters.

Parameter Options
Turning Rate {1.0, 1.25, ..., 3.0}
View Height {0.25, 0.50, ..., 1.5}

Number of Satellites {2, 3, 4, 5, 6}

points to initialize the underlying Gaussian process (GP). For the
experiment with one agent, the acquisition function is used to
select a point to evaluate next. This point is evaluated with the
results incorporated into the GP. This process is repeated 20 times
for 30 total iterations. Conversely, the experiment with 5 agents
takes the initialized model and selects 5 unknown points using the
constant liar strategy [4]. These 5 points are evaluated in parallel
with the results returned and used to update the GP. Distributing
the optimization across multiple agents reduces the total number
of GP model updates and expands the variety of evaluated points.
As shown in Figure 2B, this allows the experiment with 5 agents
to explore a wider area of the search space and avoid converging
to local optima as in the case with 1 agent. Moreover, expanding
the search across multiple agents reduces the overall optimization
time by 2.2x.

3.3 Satellite Scheduling with Quadratic
Unconstrained Binary Optimization

In our last experiment, we highlight the performance impact of
multi-agent optimization for traditional grid search applied to a



Snyder, et al.

novel satellite scheduling algorithm within the Lava-Optimization
library [10]. Using the 270 parameter search space shown in Table 2,
we perform grid search with varying numbers of agents, ranging
from 1 to 50. As shown in Figure 2C, LMAO’s multi-agent architec-
ture efficiently scales where there is an inverse correlation between
the number of agents and total search time. Specifically, increasing
the number of agents from 1 to 50 reduced cumulative runtime by
5.57x.

4 CONCLUSION
In this work, we introduce LavaMulti-AgentOptimization (LMAO),
a novel framework for parallelized optimization and search algo-
rithms within the Lava software framework. Our results demon-
strate the scalability of this system applied to a variety of application
spaces with multiple optimization and search algorithms. Using the
abstract framework provided by LMAO, we are planning to include
more algorithms such as: evolutionary algorithms [8], hyperdimen-
sional Gaussian process regression [9] and distributed Bayesian
search [19]. Moreover, we will expand the application space for
LMAO in areas such as automated neural network design [12] and
robotic control [16].

5 ACKNOWLEDGEMENTS
This work is supported by a generous gift from Intel Corporation.

REFERENCES
[1] David H Ackley. 1987. The model. In A Connectionist Machine for Genetic

Hillclimbing. Springer, 29–70.
[2] Thomas Bayes. 1763. LII. An essay towards solving a problem in the doctrine of

chances. By the late Rev. Mr. Bayes, FRS communicated by Mr. Price, in a letter
to John Canton, AMFR S. Philosophical transactions of the Royal Society of London
53 (1763), 370–418.

[3] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. J. Mach. Learn. Res. 13, null (feb 2012), 281–305.

[4] Clément Chevalier and David Ginsbourger. 2013. Fast Computation of the
Multi-Points Expected Improvement with Applications in Batch Selection. In
Learning and Intelligent Optimization, Giuseppe Nicosia and Panos Pardalos
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 59–69.

[5] Guojing Cong, Shruti Kulkarni, Seung-Hwan Lim, Prasanna Date, Shay Snyder,
Maryam Parsa, Dominic Kennedy, and Catherine Schuman. 2023. Hyperparame-
ter Optimization and Feature Inclusion in Graph Neural Networks for Spiking
Implementation. In 2023 International Conference on Machine Learning and Ap-
plications (ICMLA). IEEE, 1541–1546.

[6] Guojing Cong, Seung-Hwan Lim, Shruti Kulkarni, Prasanna Date, Thomas Potok,
Shay Snyder, Maryam Parsa, and Catherine Schuman. 2022. Semi-supervised
graph structure learning on neuromorphic computers. In Proceedings of the
International Conference on Neuromorphic Systems 2022. 1–4.

[7] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang
Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain,
et al. 2018. Loihi: A neuromorphic manycore processor with on-chip learning.
Ieee Micro 38, 1 (2018), 82–99.

[8] Kenneth A De Jong. 2016. Evolutionary computation. Bradford Books, Cambridge,
MA.

[9] P Michael Furlong, Terrence C Stewart, and Chris Eliasmith. [n. d.]. Fractional
binding in vector symbolic representations for efficient mutual information
exploration.

[10] Intel Labs. 2024. Lava Software Framework. https://lava-nc.org Accessed:
2024-3-16.

[11] Petro Liashchynskyi and Pavlo Liashchynskyi. 2019. Grid Search, Random Search,
Genetic Algorithm: A Big Comparison for NAS. arXiv:1912.06059 [cs.LG]

[12] Maryam Parsa, Catherine Schuman, Nitin Rathi, Amir Ziabari, Derek Rose,
J ParkerMitchell, J Travis Johnston, Bill Kay, Steven Young, and Kaushik Roy. 2021.
Accurate and accelerated neuromorphic network design leveraging a Bayesian
hyperparameter pareto optimization approach. In International Conference on
Neuromorphic Systems 2021. 1–8.

[13] Robert Patton, Catherine Schuman, Shruti Kulkarni, Maryam Parsa, J Parker
Mitchell, N Quentin Haas, Christopher Stahl, Spencer Paulissen, Prasanna Date,

Thomas Potok, et al. 2021. Neuromorphic computing for autonomous racing. In
International conference on neuromorphic systems 2021. 1–5.

[14] C.E. Rasmussen and C.K.I. Williams. 2006. Gaussian Processes for Machine Learn-
ing. University Press Group Limited. https://books.google.com/books?id=
vWtwQgAACAAJ

[15] Cody Scharzenberger and Joe Hays. 2021. Learning To Estimate Regions Of
Attraction Of Autonomous Dynamical Systems Using Physics-Informed Neural
Networks. arXiv preprint arXiv:2111.09930 (2021).

[16] Catherine Schuman, Robert Patton, Shruti Kulkarni, Maryam Parsa, Christopher
Stahl, N Quentin Haas, J Parker Mitchell, Shay Snyder, Amelie Nagle, Alexandra
Shanafield, et al. 2022. Evolutionary vs imitation learning for neuromorphic
control at the edge. Neuromorphic Computing and Engineering 2, 1 (2022), 014002.

[17] Shay Snyder, Victoria Clerico, Guojing Cong, Shruti Kulkarni, Catherine Schu-
man, Sumedh R. Risbud, and Maryam Parsa. 2024. Transductive Spiking Graph
Neural Networks for Loihi. arXiv:2404.17048 [cs.ET]

[18] Shay Snyder, Sumedh R Risbud, andMaryam Parsa. 2023. Neuromorphic bayesian
optimization in lava. In Proceedings of the 2023 International Conference on Neu-
romorphic Systems. 1–5.

[19] M. Todd Young, Jacob D. Hinkle, Ramakrishnan Kannan, and Arvind Ra-
manathan. 2020. Distributed Bayesian optimization of deep reinforcement
learning algorithms. J. Parallel Distrib. Comput. 139, C (may 2020), 43–52.
https://doi.org/10.1016/j.jpdc.2019.07.008

https://lava-nc.org
https://arxiv.org/abs/1912.06059
https://books.google.com/books?id=vWtwQgAACAAJ
https://books.google.com/books?id=vWtwQgAACAAJ
https://arxiv.org/abs/2404.17048
https://doi.org/10.1016/j.jpdc.2019.07.008

	Abstract
	1 Introduction
	2 Architecture of LMAO within the Lava software framework
	3 Results & Discussion
	3.1 Traditional Non-Convex Optimization
	3.2 Transductive Spiking Graph Neural Networks
	3.3 Satellite Scheduling with Quadratic Unconstrained Binary Optimization

	4 Conclusion
	5 Acknowledgements
	References

