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We devise a calculation scheme for ab initio tight-binding Hamiltonians to evaluate the biquadratic spin
interaction. This scheme employs the spin cluster expansion with the disordered local moment method and
was originally developed within the Korringa-Kohn-Rostoker theory. By applying it to the two-orbital Hubbard
model, we show that the evaluated biquadratic interactions agree well with those in the effective quantum spin
model derived for the limit of strong correlation. This result suggests the broad applicability of the method to
various magnets with large local moments. We then apply it to the ab initio tight-binding models for bcc Fe and
fcc Ni and obtain consistent results with previous studies. The present scheme offers a convenient ab initio tool
for understanding or predicting magnetic properties arising from the biquadratic interaction.

I. INTRODUCTION

Recently, antiferromagnetic materials with nontrivial spin
arrangements have attracted broad interest due to their unique
properties, making them suitable for technological applica-
tions [1–3]. These complex spin configurations often arise
from spin interactions beyond what the standard Heisenberg
model accounts for. For instance, the Dzyaloshinskii-Moriya
(DM) interaction [4, 5], which originates from the spin-orbit
coupling, is well-known for inducing noncollinear spin struc-
tures. In addition, the biquadratic interaction, a direct exten-
sion of the bilinear Heisenberg interaction, is also essential
in stabilizing such complex spin arrangements. It can play
a crucial role even in the absence of the spin-orbit coupling
and its effects on various spin systems have been extensively
investigated from both theoretical and experimental perspec-
tives [6–12].

Deriving realistic spin Hamiltonians for magnetic materi-
als from first principles has been a longstanding challenge.
The Liechtenstein-Katsnelson-Antropov-Gubanov (LKAG)
method using the magnetic force theorem [13–15] has become
a staple in the field, and has been applied across diverse mate-
rials [16–20]. With this method, we can evaluate the bilinear
exchange interaction in the classical spin model by calculating
how infinitesimal spin rotations affect the total energy of the
quantum system under consideration. The asymptotic behav-
ior of the exchange interaction calculated by this method is
well-understood for both the strongly correlated and itinerant
limits.

However, it is important to note the following two points
for LKAG: The first is that the method yields only the bi-
linear interaction, incorporating contributions from all other
higher-order terms due to its mapping process using total en-
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ergy derivatives. Secondly, the method is based on a mag-
netically ordered reference state, which may lead to different
results depending on the chosen reference state. While alter-
native methods have been proposed to compute higher-order
or multi-spin interactions [21, 22], the issue of their depen-
dence on a specific reference state still remains.

Another possible approach is to determine the parameters
in the classical spin models by fitting the total energies of var-
ious spin configurations calculated by first-principles calcula-
tions. This method enables us to evaluate arbitrary spin inter-
actions. However, it needs large supercells to handle complex
spin structures, which can cause a problem of convergence
in the calculation. It also requires a lot of computational re-
sources, especially for large systems. Furthermore, the result
of this approach depends not only on the types of interactions
included in the spin Hamiltonian but also on which interac-
tions are given priority during the fitting process.

Thus, there is a demand for methods that can evaluate
higher-order or multi-spin interactions without assuming any
specific magnetic order and requiring large supercells. The
SCE-RDLM calculation scheme [23–28], which combines the
spin cluster expansion (SCE) [29, 30] and the relativistic dis-
ordered local moment (RDLM) method [31], is one of the ap-
proaches that have such features. In the SCE framework, the
energy surface of a classical spin system is systematically ex-
panded using a complete and orthogonal basis function of spin
clusters. Therefore, arbitrary interactions expressed by the ba-
sis functions are considered. Hence, we no longer need to as-
sume a specific spin Hamiltonian in advance. Furthermore,
since we consider a virtual paramagnetic state, i.e., the disor-
dered local moment state, this approach has less dependence
on the reference state than LKAG.

SCE-RDLM was originally formulated for the multiple
scattering theory based on the Green’s function and imple-
mented in the spin density functional theory (SDFT) calcula-
tions through the Korringa-Kohn-Rostoker (KKR) method. In
this study, we formulate the scheme for ab initio tight-binding
models. Our method can be widely applied to magnetic ma-
terials with large local moments and does not depend on the
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choice of the basis of first-principles calculations. It will be a
useful tool for understanding and predicting the physical prop-
erties of magnetic materials with complex spin configurations
that arise from higher-order spin interactions.

The organization of the paper is as follows. In Section II,
we formulate SCE-DLM, the nonrelativistic version of SCE-
RDLM, for ab initio tight-binding models. While we can ap-
ply the approach to arbitrary spin interactions, our primary
emphasis lies on the biquadratic exchange interaction which
is crucial for stabilizing nontrivial spin textures in antiferro-
magnets, even in the absence of the relativistic spin-orbit cou-
pling. We present computational details in Section III. We
conduct benchmark calculations in Section IV to validate our
approach. Specifically, we apply it to the one-dimensional
two-orbital Hubbard model and two prototypical magnets, bcc
Fe and fcc Ni. In the former, we analyze the asymptotic be-
havior of the bilinear and biquadratic interactions calculated
for the limit of strong correlation and confirm that the inter-
actions evaluated by our approach align with those evaluated
for the effective quantum spin model. In the latter, we show
the results for the ab initio tight-binding models for bcc Fe
and fcc Ni. Based on these results, we discuss the difference
among several previous theoretical results of the biquadratic
interaction for these materials in Section V. In Section VI, we
provide our conclusion.

II. FORMULATION

A. Spin Cluster Expansion

The spin cluster expansion (SCE) developed by Drautz and
Fähnle [29, 30] provides a tool to expand systematically the
energy surface of the many-body classical spin system by in-
troducing clusters consisting of several spins. We employ a
complete orthonormal basis set, namely the real spherical har-
monics YL=(l,m)(e) for a unit vector e of a classical spin, as
the basis function of each spin. We then take the basis func-
tions of clusters as a multiplication of the basis functions of
each spin as follows:

Φ
{L}
C ({e}) = 1

(4π)(N−n)/2

∏
i∈C

YLi
(ei) (1)

where N refers to the number of all spins in the system, C to
the cluster, n to the size of the cluster, {e} to an array repre-
senting the spin directions, and {L} to an array of the degrees
of freedom of the basis function of each spin in the cluster,
specifically L = (l,m) for the real spherical harmonics, re-
spectively.

We then can expand the energy surface in terms of a cluster
basis. The expansion coefficients of each cluster are defined

as

Ω({e}) =Ω0 +
∑
C

∑
{L}

J
{L}
C Φ

{L}
C ({e}) (2)

J
{L}
C =

〈
Φ

{L}
C

∣∣∣Ω〉 (3)

⟨f |g⟩ =
∫

· · ·
∫ [

N∏
i=1

(
d2ei

)]
f({e})g({e}) (4)

where Ω0 and
∫
d2e stand for an inessential constant offset

independent of the spin configuration and integration over the
surface of a unit sphere, respectively. In Eq. (3), we use the
useful Dirac bra-ket notation, and the inner product in this
notation is defined in Eq. (4).

Hereafter, we consider the energy surface expanded up to
the two-spin clusters. Note that we can perform the expansion
for clusters consisting of more than two spins in a similar way.

Ω({e}) =Ω0 +
∑
i

∑
L̸=(0,0)

JL
i YL(ei)

+
1

2

∑
i ̸=j

∑
L,L′ ̸=(0,0)

JLL′

ij YL(ei)YL′(ej) (5)

Each expanding coefficient for one/two spin clusters can be
evaluated using the inner product in Eqs. (3) and (4).

JL
i =

∫
d2ei⟨Ω⟩eiYL(ei) (6)

JLL′

ij =

∫∫
d2eid

2ej⟨Ω⟩eiej
YL(ei)YL′(ej) (7)

⟨Ω⟩C =
1

(4π)N−n

∫
· · ·

∫ [∏
i/∈C

(
d2ei

)]
Ω({e}) (8)

where ⟨Ω⟩C stands for the expectation value calculated by in-
tegrating all solid angles except for spins in the cluster C.
Since we can not straightforwardly calculate Eq. (8) for many-
body systems, we use the disordered local moment state which
is discussed in Sec. II B.

B. Disordered Local Moment

The coherent potential approximation (CPA) was intro-
duced to handle the electronic structure of systems with ran-
dom potentials, such as those found in alloys with random
atomic species. Within the CPA, this randomness is addressed
through the single-site approximation, which divides the over-
all potential into contributions from each on-site potential.
Similarly, the disordered local moment (DLM) approach deals
with randomness, where it focuses on the orientation of mag-
netic spins. It models a virtual paramagnetic state with ran-
domly oriented spins, providing a way to consider a magnet-
ically disordered state. While it was originally developed for
the Korringa-Kohn-Rostoker (KKR) method, it can be formu-
lated for the tight-binding Hamiltonian [32].
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We consider the tight-binding Hamiltonian defined as

H =
∑

iℓσ,jmσ′

(
Hiℓσ,jmσ′ ĉ†iℓσ ĉjmσ′ + h.c.

)
, (9)

where (i, j), (ℓ,m), and (σ, σ′) are the indices of sites, or-
bitals, and spins, respectively. The operator ĉiℓσ/ĉ

†
iℓσ stands

for the annihilation/creation operator of an electron specified
with the degrees of freedom (iℓσ). We divide each component
of the Hamiltonian into the spin-independent off-site hopping
t and the on-site magnetic potential term v,

Hiℓσ,jmσ′ = tiℓ,jmδσ,σ′ + δijv
i
ℓ,m[ei · σ]σσ′ , (10)

where ei,σ is the direction of a spin at the site i and the Pauli
matrix, respectively. Here, we assume that there are no spin-
dependent hopping terms and that the spin-dependent poten-
tials v’s are a local quantity. Although there could be non-
local spin-dependent potentials in the tight-binding Hamilto-
nian constructed from first principles, we ignore them to re-
duce the computational cost. We denote the former term of
Eq. (10) as H0 and the latter as V such that H = H0 + V .

In the DLM method, we consider the virtual state with ran-
domly oriented spins and introduce the self-energy Σ, instead
of the spin-dependent potential V , corresponding to the effec-
tive potential of such a disordered state as follows:

Hc = H0 +Σ (11)
H = Hc + (V − Σ), (12)

where Hc indicates the Hamiltonian of the DLM state.
Note that the introduced self-energy Σ is a local and spin-
independent quantity so that Σiℓσ,jmσ′ = δijΣ̃

i
ℓσ,mσ′ . The

Green’s functions in the real space are given as follows:

G(z) = [z −Hc]
−1 (13)

G(z) = [z −H]
−1

= G
[
1 +G(V − Σ)

]−1
, (14)

We also introduce the scattering matrix T as follows:

Ti(ei) =
(
Vi(ei)− Σ̃i

)[
1−Gii

[
Vi(ei)− Σ̃i

]]−1

(15)

where Vi(ei) stands for the magnetic potential of the spin
at site i with the orientation ei, namely [Vi(ei)]ℓσ,mσ′ =
viℓ,m[ei · σ]σσ′ , and the scattering matrix Ti(ei) has the same
degrees of freedom with those of Vi(ei). We then can formu-
late the CPA condition for the tight-binding Hamiltonian with
the single-site approximation [32],

1

4π

∫
d2eiTi(ei) = 0. (16)

In the cases without the relativistic spin-orbit coupling (SOC),
the CPA condition in Eq.(16) is expressed as follows:

Ti(ẑ) + Ti(−ẑ)

2
= 0, (17)

where ẑ is a unit vector along the z-axis.
In the numerical calculation, we determine the self-energy

and the chemical potential in a self-consistent manner [32].
We have to set the chemical potential µc of the DLM state by
the conservation condition for the number of electrons below,

N = − 1

π

∫
dϵf(ϵ) ImTrG(ϵ) (18)

f(ϵ) =
1

1 + eβ(ϵ−µc)
(19)

where Tr stands for taking a trace about all indices of the sites,
orbitals, and spins, and f(ϵ) is the Fermi distribution function.

C. SCE-DLM scheme

By using Lloyd’s formula [33, 34] for the reference state,
i.e., the DLM state, we obtain the expression for ⟨Ω⟩eiej [23],

⟨Ω⟩eiej
=Ω0 −

1

π
Im

∫ ϵF

dϵ

[
ln det

[
1 + Ti(ei)Gii

]
+ ln det

[
1 + Tj(ej)Gjj

]
+

∑
l ̸=i,j

∫
d2el ln det

[
1 + Tl(el)Gll

]
+

∞∑
k=1

Tr
[(
Ti(ei)GijTj(ej)Gji

)k]]
(20)

where Ω0 stands for the energy of the DLM state. By follow-
ing Eq. (7), the integration with the spherical harmonics yields
the expansion coefficients for the two-spin clusters [23],

JLL′

ij = − 1

π
Im

∫
dϵf(ϵ)

∫∫
d2eid

2ejYL(ei)YL′(ej)

× ln det
[
1− Ti(ei)GijTj(ej)Gji

]
. (21)

To map the energy expanded with the one/two-spin clusters
in Eq. (2) to the following classical spin Hamiltonian,

H = −2
∑
⟨i,j⟩

[
Jij(ei · ej) +Bij(ei · ej)2

]
, (22)

we use the sum rule for the spherical harmonics below,

4π

2l + 1

∑
m

Y m
l (ei)Y

m
l (ej) = Pl(ei · ej) (23)

where Pl(x) is the Legendre polynomial. Here, we consider a
SOC-free case, so that the Hamiltonian has the SU(2) symme-
try. Hence, the expansion coefficients JLL′

ij do not depend on
m, i.e., the spin interactions are isotropic. Given that the bilin-
ear and biquadratic interactions in the Hamiltonian in Eq. (22)
correspond to l = 1 and 2, respectively, we can obtain these
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parameters from the expansion coefficients JLL′

ij as follows:

Jij =
1

8π

1∑
m=−1

J
(1,m)(1,m)
ij =

3

8π
J
(1,0)(1,0)
ij (24)

Bij =
3

16π

2∑
m=−2

J
(2,m)(2,m)
ij =

15

16π
J
(2,0)(2,0)
ij (25)

III. COMPUTATIONAL DETAILS

A. SCE-DLM scheme

In the calculation, the inverse temperature β was set to
500 eV−1. To evaluate the Green’s function in the recipro-
cal space, we use 256×1×1 and 24×24×24 k-point grid for
the one-dimensional Hubbard model and 3d transition met-
als, respectively. We employ the efficient Lebedev quadrature
scheme [35] in the integration over solid angles.

Integrations of real energy in Eqs. (18) and (21) can be
transformed to the summation over the fermionic Matsubara
poles by analytical continuation. We use the intermediate rep-
resentation of the Green’s function [36, 37] to reduce the com-
putational cost.

B. Construction of Wannier-based tight-binding model

We performed SDFT calculations for the 3d metals with
the QUANTUM ESPRESSO package [38, 39] with non-
relativistic pseudopotentials in PSlibrary [40]. We used the
projector augmented wave method [41, 42] and the Perdew-
Burke-Ernzerhof exchange-correlation functional [43].

The energy cut-off for the plane-wave basis was set to 50
Ry, and a 16×16×16 k-point grid was used. We set the lattice
constant as the experimental value of a = 2.866 Å for bcc Fe
and a = 3.524 Å for fcc Ni.

The Wannier functions were constructed using the Wan-
nier90 code [44–47]. The inner window to reproduce the low
energy band dispersion of the DFT calculations was set from
EF − 10 to EF + 10 eV, with EF being the Fermi energy.
We constructed a nine-orbital model containing one 4s, five
3d, and three 4p atomic orbitals per atom. In constructing the
Wannier functions, 8×8×8 sampling k-point grid was used.

While the present calculation employs the plane-wave ba-
sis, it should be noted that the construction of the tight-binding
model does not depend on the choice of the basis functions of
the SDFT calculation.

IV. RESULTS

A. Two-Orbital Hubbard model

We first study the one-dimensional two-orbital Hubbard
model with the nearest-neighbor hopping and intra-orbital
Coulomb repulsion U considered in Ref. [48]. This model

offers one of the simplest cases that exhibit the biquadratic in-
teraction when deriving an effective quantum spin model. The
Hamiltonian is defined as

H = −
∑

⟨iℓ,jm⟩,σ
(tiℓ,jmĉ†iℓσ ĉjmσ + h.c.) +

∑
i

Un̂i↑n̂i↓

(26)

where (i, j), (ℓ,m) and σ are the degrees of freedom of sites,
orbitals, and spin, respectively. The bracket ⟨⟩ stands for
the summation of the combinations between nearest-neighbor
sites. ĉiℓσ/ĉ

†
iℓσ and n̂iσ are the annihilation/creation and num-

ber operator of an electron. We show the schematic picture of
the model in Fig. 1.

<latexit sha1_base64="nA+Arw6B5+ucbmdyFkA+bcCyJxs="></latexit>
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FIG. 1. One-dimensional two-orbital Hubbard model with the near-
est neighbor hopping. The Hamiltonian has two types of transfer
integrals, t and t′, defined for the pairs of orbitals shown with the
solid and dashed lines, respectively.

While this Hamiltonian is defined using the spin-1/2 degree
of freedom for each orbital, in the limit of strong correlation,
we can derive an effective quantum spin model using the spin-
1 degree of freedom for each site [48]:

Heff = −2

∑
⟨i,j⟩

JQ
ij (Ŝi · Ŝj) +

∑
⟨i,j⟩

BQ
ij(Ŝi · Ŝj)

2

, (27)

where the superscript Q denotes the interactions in the quan-
tum spin model. The bilinear and biquadratic interactions can
be obtained perturbatively as follows[48]:

JQ
ij = − t2 + t′2

U
, BQ

ij = −20t2t′2

U3
. (28)

Next, to compare the interactions in the quantum spin
model with those in the classical spin model evaluated from
SCE-DLM, denoted as JC

ij and BC
ij , respectively, we take the

classical limit of the quantum spin [49]. For a S-spin case, the
interactions need to be rescaled as follows [50]:

JQ
ij (Ŝi · Ŝj) → S2JC

ij(ei · ej) (29)

BQ
ij(Ŝi · Ŝj)

2 → S4BC
ij(ei · ej)2. (30)

Hence, we compare JC
ij with JQ

ij , and likewise, BC
ij with BQ

ij ,
given that we are currently examining the spin-1 case, where
S = 1.

To apply SCE-DLM to this model, we first construct a tight-
binding Hamiltonian including both the hopping parameter t
and spin splitting B, which can be obtained via the mean-
field approximation for the half-filled state of the Hamiltonian
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Eq. (26):

HMF =−
∑

⟨iℓ,jm⟩,σ
(tiℓ,jmĉ†iℓσ ĉjmσ + h.c.)−Bi · m̂i (31)

Bi =
U

2
⟨m̂i⟩, m̂i =

∑
ℓ,σ,σ′

ĉ†iℓσσĉiℓσ′ (32)

For the half-filled case with t ≪ U , the magnetization op-
erator m̂i becomes σzẑ. Consequently, we can obtain the
Hubbard parameter U from the magnitude of the spin split-
ting B = |B|, i.e., U = 2B.

In Fig. 2, we plot JC
ij , J

Q
ij , B

C
ij , B

Q
ij for the half-filled case

as a function of t/U . It is worth noting that the chemical po-
tential µc of the DLM state is always zero for the half-filled
state. We can see that the interactions evaluated perturbatively
for the quantum spin model align closely with those derived
from SCE-DLM in the limit of t/U → 0. This result sug-
gests that the present method is applicable to a wide variety of
strongly correlated magnetic compounds.

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

 0.01  0.1

t'/t = 1

JQij = -(t2+t'2)/U

BQij = -20t2t'2/U3

|J
ij|
, 
|B
ij|

 
(e
V
)

t/U

JCij

JQij

BCij

BQij

FIG. 2. Bilinear (JC
ij/J

Q
ij ) and biquadratic (BC

ij/B
Q
ij) interactions

in the classical/quantum spin Hamiltonian for t = t′ in the limit of
strong correlation t ≪ U . JC

ij (solid red line) and BC
ij (solid blue

line) are evaluated by SCE-DLM, and JQ
ij (dashed red line) and BQ

ij

(dashed blue line) are evaluated perturbatively (see Eq. (28)).

B. 3d transition metals

We then applied our scheme to the ab initio tight-binding
models for the prototypical magnetic metals, bcc Fe and fcc
Ni. In Fig. 3, we present the band structures of bcc Fe and
fcc Ni obtained by SDFT calculations and those fitted by the
Wannier-based tight-binding model.

In Fig. 4, we show the density of states (DOS) and in-
tegrated DOS along with the calibrated chemical potential
µc for the DLM state. Let us now compare the chemical
potential (µ) and magnetic moment of the DLM and ferro-
magnetic (FM) state. Following the procedure outlined in

(a)

(b)

FIG. 3. Band structure of (a) bcc Fe and (b) fcc Ni. Blue and red
lines are those for the up and down spin components obtained by
SDFT calculation, and green and orange lines are those obtained by
Wannier interpolation.

Refs. [32, 51], we calculated the DOS for each spin compo-
nent of the DLM state by calculating the Green’s function:

G
σσ

ii = Gii +GiiTi(σẑ)Gii. (33)

µc, the chemical potential of the DLM state measured from
that of the FM state, is 0.55 eV for bcc Fe and -0.15 eV for
fcc Ni. Namely, µ of bcc Fe depends more sensitively on
the changes in the electronic/magnetic structure compared to
fcc Ni. Regarding the magnetic moment, which is defined
as the difference in the number of the spin-up and spin-down
electrons up to the chemical potential, for bcc Fe, it is 2.27
(2.28) µB for the FM (DLM) state. For fcc Ni, it is 0.66 (0.48)
µB for the FM (DLM) state.

We then evaluate the nearest-neighbor (NN) bilinear (J)
and biquadratic (B) interactions by SCE-DLM. In Fig. 5, we
plot J and B as a function of µ. For J , we compare the re-
sult with that obtained by LKAG. We see that these methods
give a similar µ dependence. It should be noted that this µ
dependence qualitatively explains the magnetism observed in
3d transition metals [16]. Another point to note in the calcu-
lation of J and B is that we should take the values at µ = µc

(µ = 0) in the SCE-DLM (LKAG) method. Since µc for Fe
is quite large (0.55eV), J calculated by SCE-DLM is quite
different from (much larger than) that obtained by LKAG. For
Ni, these methods give similar J . Regarding B, we see that its
energy scale is much smaller than that of J . While B shows
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FIG. 4. Density of states (DOS) for the spin-up and spin-down components (panels (a) and (b)) and the integrated DOS (panels (c) and (d)).
Panels (a) and (c) are the results for bcc Fe, while panels (b) and (d) are those for fcc Ni. In panels (a) and (b), blue lines represent the DOS
for the ferromagnetic (FM) state, and red lines for the disordered local moment (DLM) state. The spin-up and spin-down components of both
the FM and DLM states are plotted on the positive and negative sides, respectively. In panels (c) and (d), the vertical black lines indicate the
chemical potential of the FM state (µ = 0), and the vertical red lines indicate the chemical potential µc for the DLM state. The horizontal line
indicates the number of electrons at µ = 0 in the ab initio tight-binding Hamiltonian.

many sign changes as a function of µ, B is negative at µ = µc

for both bcc Fe and fcc Ni.
In Fig. 6, we plot the bilinear (Jij) and biquadratic (Bij)

interactions as a function of the distance (R) between the i-th
and j-th site for the range of −0.1 ≤ µ ≤ 0.1 (LKAG) and
µc − 0.1 ≤ µ ≤ µc + 0.1 (SCE-DLM). From Fig. 6(a), (b),
(d) and (e), we see that the µ dependence around µ = 0(µc)
of the NN interaction J is significant for bcc Fe (fcc Ni) in
the LKAG (SCE-DLM) calculation, which could cause siz-
able computational errors in the evaluation of J . In addition,
what we observe from Fig. 6 are: (a) For bcc Fe, the second
NN Jij calculated by LKAG is as large as the NN interaction
J , which aligns with the previous study based on the KKR
method [52]. (c) For bcc Fe, the size of the second NN Bij

is as large as that of the NN interaction B, which also aligns
with the results of the fitting approach [52]. The µ dependence
of the NN interaction B (the second NN Bij) is insignificant
(significant). (d) For fcc Ni, while the NN interaction B has
a considerable µ dependence, the distant interactions Bij are
all negligibly small.

V. DISCUSSION

Since it is difficult to determine the biquadratic interaction
directly from experiments, a variety of methods to calculate

the biquadratic interaction from first principles have been pro-
posed. So far, theoretical calculations for bcc Fe have yielded
both positive[22, 53] and negative values[21, 52, 54–56] for
the biquadratic interaction. Though all results for fcc Ni con-
sistently show negative values[21, 22], there are fewer studies
compared to bcc Fe.

Except for Refs. [52, 53], these works are based on LKAG
and rely on the ferromagnetic reference state to evaluate the
biquadratic interaction. Our SCE-DLM approach differs from
such approaches in that we need no ordered reference state.
As is outlined in Ref. [57], approaches with a magnetically
ordered state are valid for calculating physical properties re-
lated to the specific ordered state, such as the magnon spec-
trum [21]. In contrast, approaches without an ordered state are
better suited for exploring properties of states far from such
ordered states, e.g., constructing a phase diagram of the sys-
tem.

While both of Refs. [52, 53] are based on the fitting ap-
proach, the details of these methods are different from each
other. In Ref. [52], they fit the spin Hamiltonian to the ab
initio energies for a number of spin spiral states with random
wave vectors. Though they confine the spin Hamiltonian up
to the biquadratic interaction and a four-spin interaction, they
do not prioritize interactions between specific pairs during the
fitting. On the other hand, in Ref. [53], while considering
arbitrary spin interactions in the spin cluster expansion, they
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and (f)). We also plot the values when we change µ.

estimate the nearest-neighbor biquadratic interaction after the
nearest-neighbor bilinear interaction. These differences lead
to the difference in the sign of the calculated biquadratic in-
teractions.

On top of that, as illustrated in Figs. 6 (a)-(f), the chemical
potential dependence of the spin interactions could introduce
ambiguity in theoretical results. Our approach is similar to the
approach employed in Ref. [52] regarding the accessibility to
various spin configurations, and our results are consistent with
their result.

VI. CONCLUSION

We developed SCE-DLM for the tight-binding Hamiltonian
by combining the spin cluster expansion and the disordered lo-
cal moment method. We first applied the scheme to the two-
orbital Hubbard model and examined its validity. We found
that the calculated biquadratic interactions closely align with
those for the effective quantum spin model. This alignment
suggests the broad applicability of the scheme to a wide va-
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riety of strongly correlated compounds with large local mag-
netic moments. We subsequently applied this scheme to two
prototypical magnets, bcc Fe and fcc Ni. Our results are con-
sistent with previous research, affirming the reliability of the
method. Our approach has the advantage of not requiring a
reference state and being independent of the the basis func-
tions of first-principles calculations. It will be a convenient
tool for understanding or predicting nontrivial magnetic prop-
erties induced by higher order spin interactions.
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Appendix A: Asymptotic form for single-orbital tight-binding
model

In Section IV A, a tight-binding Hamiltonian with a spin
splitting was derived from the two-orbital Hubbard Hamil-
tonian. Here, let us look into a simpler case, i.e., a one-
dimensional single-orbital model with the mean-field approx-
imation:

H =−
∑

⟨i,j⟩,σ
(t c†iσcjσ + h.c.)−Bσz. (A1)

We can analytically obtain the on-site component of the
Green’s function of the DLM state for this model as follows:

Gii(ϵ) =

{
sgn

(
Re(ϵ− Σ̃i)

)√
(ϵ− Σ̃i)

2 − 4t2
}−1

. (A2)

By substituting this expression of Gii to Eqs. (15) and (16)
with V (±ẑ) = ∓B for the up and down spins, the CPA con-
dition yields the equation for the self-energy Σ as follows:

0 = 2ϵΣ̃3 − (2B2 − 4t2 + ϵ2)Σ̃2 +B4 (A3)

Let us now consider deriving the asymptotic expression of
the exchange interaction for the limit of strong and weak cor-
relation based on SCE-DLM. Starting with Eq. (21), we ex-
pand it as follows:

JLL′

ij ∼ 1

π
Im

∫
dϵf(ϵ)

∫∫
d2eid

2ejYL(ei)YL′(ej)

×
[
Ti(ei)GijTj(ej)Gji+

1

2
Ti(ei)GijTj(ej)GjiTi(ei)GijTj(ej)Gji

]
,

(A4)

Here, we utilize the Taylor expansion, log(1− x) ∼ −x −
x2/2. Though there are other higher-order terms in the ex-
pansion, these terms are sufficient to obtain leading-order
terms of the bilinear and biquadratic interactions in the strong
and itinerant limits. We also derive the expression of the
scattering operator Ti(ei) by applying the CPA condition in
Eq.(A3) and introducing the inverse of the Green’s function
as A = 1/Gii(ϵ),

Ti(ei) = − BA2

(A+ Σ̃)
2 −B2

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)
. (A5)

1. Itinerant limit

In the limit of B ≪ t, the CPA condition becomes 0 =
2ϵΣ̃3 + (4t2 − ϵ2)Σ̃2 and the solutions of this equation are:

Σ̃(ϵ) = 0,
ϵ

2
+

2t2

ϵ
(A6)

As the latter solution is unphysical in the limit of ϵ → ±∞,
the solution of the CPA condition approaches Σ̃(ϵ) → 0. By
substituting this self-energy solution to Eq. (A5), the scatter-
ing operator becomes

Ti(ei) → −B

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)
. (A7)

We here use that A →
√
ϵ2 − 4t2. The first term of the right-

hand side in Eq. (A4) remains finite only for l = 1. This cor-
responds to the fact that higher-order interactions (l ≥ 2) re-
quire perturbations higher than the second order. It is also im-
portant to note again that J (l,m)(l,m)

ij depends solely on l and is
independent of m in the absence of SOC. Then, we can easily
show that the bilinear interaction in SCE-DLM (Eq. (A4)) be-
comes equivalent to that of LKAG in this limit, hence yielding
the RKKY interaction [58–60] as follows:

Jij =
3

8π
J
(1,0)(1,0)
ij

→ B2

πN2

∑
k,q

Im

∫
dϵf(ϵ)G0

k+qG
0
ke

iqRij

=
B2

πN

∑
q

χ(q)eiqRij , (A8)

where N,G0
k = (ϵ− ϵk + iδ)−1, χ(q) is the number of sites,

the retarded Green’s function, and the spin susceptibility of
non-interacting electrons, respectively. Here we use an in-
finitesimally small value δ, and χ(q) is defined as follows:

χ(q) =
1

πN

∑
k

Im

∫
dϵf(ϵ)G0

k+qG
0
k (A9)

=
1

N

∑
k

f(ϵk)− f(ϵk+q)

ϵk+q − ϵk + iδ
. (A10)

With SCE-DLM, we can obtain higher-order interactions
such as the biquadratic interaction. Indeed, we can derive the
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biquadratic interaction by considering higher order terms in
Eq. (A4). The asymptotic expression of the biquadratic inter-
action becomes:

Bij =
15

16π
J
(2,0)(2,0)
ij

→ − B4

πN2

∑
k,q

Im

∫
dϵf(ϵ)

(
G0

k+qG
0
k

)2
eiqRij . (A11)

This always yields a negative biquadratic interaction between
any sites and causes instability of the collinear spin structures,
as discussed in Ref. [6].

2. Strongly correlated limit

In the limit of strong correlation U ∼ B ≫ t, the CPA
condition becomes to 2ϵΣ̃3 − (2B2 + ϵ2)Σ̃2 + B4 = 0 and
the solutions are given as:

Σ̃(ϵ) =
B2

ϵ
,
ϵ±

√
ϵ2 + 8B2

4
. (A12)

Similarly to the itinerant case, the solution of the self-energy
is Σ̃(ϵ) → B2/ϵ.

We start from the DLM state without the hopping term t.
The retarded Green’s function for this non-perturbed state is
provided as:

G
(0)

ii (ϵ) =
δij

ϵ− Σ+ iδ
, (A13)

where the superscript (0) stands for the non-perturbed term.
By treating the hopping term as the perturbation, we can de-
rive the expression for the Green’s function, considering terms
up to the first order perturbation:

G
(1)

ij (ϵ) =
1

ϵ− Σ̃ + iδ
t

1

ϵ− Σ̃ + iδ

=
t

(ϵ− Σ̃ + iδ)
2 , (A14)

where the superscript (1) stands for the first order perturbation
term and j is the nearest-neighbor sites of site i.

Subsequently, we evaluate the scattering operator as fol-
lows:

Ti(ei) →− (ϵ− Σ̃)
2

ϵ2 −B2
B

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)
, (A15)

where we use A → ϵ− Σ̃ in this limit. By substituting Eqs.
(A14) and (A15) into the first term of Eq. (A4), we obtain
the following asymptotic expression for the l = 1 interaction

between nearest neighbor sites:

J
(1,m)(1,m)
ij ∼ − 2

π

4π

3
Im

∫ ϵF

dϵ
t2B2

(ϵ− Σ+ iδ)
4

(ϵ− Σ)
4

(ϵ2 −B2)
2

= − 4

3i

∫
C

dz
t2B2

(z −B)
2
(z +B)

2 . (A16)
<latexit sha1_base64="rer1Jj/FP1kE9CdAmS9xAa8GDYY="></latexit>

Re[z]

Im[z]

0

�R

RB

Ri

�Ri

FIG. 7. Integration contour of Eq. (A16). We take the R → ∞ limit
in the integration.

We illustrate an integration contour in Eq. (A16) in Fig. 7.
We subsequently derive an asymptotic expression for the

bilinear interaction.

Jij =
3

8π
J
(1,0)(1,0)
ij → − t2

4B
∼ − t2

2U
(A17)

We can obtain the expression for the biquadratic interaction
by following the same process.

Bij =
15

16π
J
(2,0)(2,0)
ij → −5

4

t4

U3
. (A18)

These asymptotic expressions for the bilinear and bi-
quadratic interactions are equivalent to those obtained by the
conventional LKAG method and its extensions[22] in both the
strongly correlated and the itinerant limits. However, it is cru-
cial to recognize that the initial magnetic state in SCE-DLM,
the DLM state, differs from the ferromagnetic state used in
these methods. Furthermore, it is noteworthy that when us-
ing SCE-DLM and the method described in Ref. [22], the
biquadratic interaction remains finite even in a single-orbital
system, in contrast to the effective quantum spin model where
this term inevitably vanishes. In the quantum spin model of
a S = 1/2 system, this term corresponding to a fourth-order
perturbation is merely a correction to the bilinear interaction.
However, the classical treatment of spins in electron systems
ensures that these higher-order interactions remain finite even
in a single-orbital system. Therefore, it is not appropriate to
simply compare this expression with Eq. (28).
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S. Blügel, L. Szunyogh, and S. Lounis, Reply to “comment on
‘proper and improper chiral magnetic interactions’ ”, Phys. Rev.
B 105, 026402 (2022).

[58] M. A. Ruderman and C. Kittel, Indirect exchange coupling of
nuclear magnetic moments by conduction electrons, Phys. Rev.
96, 99 (1954).

[59] T. Kasuya, A theory of metallic ferro- and antiferromagnetism
on zener’s model, Progr. Theoret. Phys. 16, 45 (1956).

[60] K. Yosida, Magnetic properties of Cu-Mn alloys, Phys. Rev.
106, 893 (1957).

https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/10.1088/1361-648X/aa8f79
https://doi.org/https://doi.org/10.1016/j.commatsci.2014.07.043
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.56.12847
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/10.1103/PhysRevB.65.035109
https://doi.org/https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/https://doi.org/10.1016/j.cpc.2007.11.016
https://doi.org/10.1088/1361-648x/ab51ff
https://doi.org/10.1088/1361-648x/ab51ff
https://doi.org/10.7566/JPSJ.87.023702
https://doi.org/10.7566/JPSJ.87.023702
https://arxiv.org/abs/https://doi.org/10.7566/JPSJ.87.023702
https://doi.org/10.1007/978-3-662-10018-9_26
https://doi.org/10.1103/PhysRevB.81.134425
https://doi.org/10.1103/PhysRevB.5.2382
https://doi.org/10.1038/s41598-022-20311-7
https://doi.org/10.1038/s41598-022-20311-7
https://doi.org/10.1103/PhysRevLett.107.017204
https://doi.org/10.1103/PhysRevLett.107.017204
https://doi.org/10.1016/0921-5107(94)08019-4
https://doi.org/10.1016/S0304-8853(96)00700-7
https://doi.org/10.1016/S0304-8853(96)00700-7
https://doi.org/https://doi.org/10.1016/j.cpc.2021.107938
https://doi.org/10.1103/PhysRevB.105.026402
https://doi.org/10.1103/PhysRevB.105.026402
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRev.106.893

	Calculation of the biquadratic spin interactions based on the spin cluster expansion for ab initio tight-binding models
	Abstract
	Introduction
	Formulation
	Spin Cluster Expansion
	Disordered Local Moment
	SCE-DLM scheme

	Computational Details
	SCE-DLM scheme
	Construction of Wannier-based tight-binding model

	Results
	Two-Orbital Hubbard model
	3d transition metals

	Discussion
	Conclusion
	Acknowledgements
	Asymptotic form for single-orbital tight-binding model
	Itinerant limit
	Strongly correlated limit

	References


