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Abstract. We study the emptiness formation probability (EFP) in the six-
vertex model with domain wall boundary conditions. We present a conjecture
according to which at the ice point, i.e., when all the Boltzmann weights are
equal, the known multiple integral representation (MIR) for the EFP can be
given as a finite-size matrix determinant of Fredholm type. Our conjecture is
based on the explicit evaluation of the MIR for particular values of geometric
parameters and on two kinds of identities for the boundary correlation function.
The obtained representation can be further written as the Fredholm determinant
of some linear integral operator. We show that as the geometric parameters of
the EFP are tuned to the vicinity of the arctic curve arising in the scaling limit,
the conjectured determinant turns into the GUE Tracy–Widom distribution.
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1. Introduction

A useful tool in study of the six-vertex model with domain wall boundary
conditions is the ‘emptiness formation probability’ (EFP), a non-local correlation
function describing the probability of obtaining a region of the lattice with all
vertices in the same state. It can be seen as a cumulative distribution function with
respect to the geometric parameters describing the size of the ‘frozen’ region. The
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name ‘EFP’ originated in the context of Heisenberg spin chains (equivalent to the
six-vertex model on a torus), where a similar correlation function deserved a lot of
attention, see, e.g., [1–7].

In [8], we have derived various representations for the EFP of the six-vertex
model with domain wall boundary conditions, in terms of determinants, orthogonal
polynomials, and multiple contour integrals. The multiple integral representation
(MIR) has turned out to be most useful, as it allowed us to derive the arctic curve of
the model [9, 10]. The proposed approach found later a simplified formulation with
the tangent method [11]. As a further development toward better understanding of
the structures arising in non-local correlation functions, an alternative derivation of
the known MIR based on certain antisymmetrization relation have been provided
[12]. Recently, it was been shown that this antisymmetrization relation can be
used to obtain a new, alternative, MIR for the EFP [13]. Furthermore, it appears
that the equivalence of the two MIRs implies for the boundary one-point function
entering these MIRs the existence of nontrivial relations, which can be viewed as
some sort of ‘sum rule’ identities.

In the present paper, to elaborate further on these results, we focus on a very
interesting special case, known as the ‘ice point’, where all the six-vertex model
Boltzmann weights are equal to each other. We find, that besides the sum rule
type identities, there exist one more type of relations for the one-point boundary
correlation function, that follows from the fact that at the ice point it can be
given in terms the Gauss hypergeometric function. Our main result is an explicit,
although conjectural expression for the EFP, as a finite-size matrix determinant of
the Fredholm type. Our conjecture is based on the direct evaluation of the contour
integrals in the first MIR, and the above mentioned two types of identities. Next
we investigate the Fredholm determinant of the corresponding integral operator.
We show that, as the system size becomes large, and the geometric parameters of
the EFP are tuned to the vicinity of the arctic curve, and appropriately scaled, the
kernel of this integral operator turns into the so-called Airy kernel.

It is well known that the Fredholm determinant of the Airy kernel determines
the celebrated Tracy–Widom distribution describing fluctuations of the largest
eigenvalue of the Gaussian unitary ensemble (GUE) [14, 15]. The Tracy–Widom
distribution has been observed to arise in a variety of models and it is commonly
believed to describe the crossover between weakly- and strongly-coupled phases in
various probabilistic problems, see, e.g., [16] and reference therein. In particular, it
has been shown to arise in the discrete random matrix model with Hahn polynomials
type measure [17] and in the closely related domino tilings of the Aztec diamond
[18, 19]. The quantity studied there can be viewed as the EFP of the six-vertex
model with domain wall boundary conditions and with Boltzmann weights restricted
by the free-fermion condition [20]. Appearance of the Tracy–Widom distribution
in the free-fermion six-vertex model context can also be derived by means of a
correspondence with non-intersecting paths [21] and from the theory of Painlevé
equations [22].

An important open problem actively addressed recently is how far this law
remains valid away from the free-fermionic case. Examples where it has been shown
to hold are the asymmetric simple exclusion process [23–25] and the six-vertex
model with Boltzmann weights restricted by the stochastic condition [26]. As for
the general six-vertex model, numerical simulations suggest a positive answer as
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well [27,28]. A significant analytical achievement is the proof that fluctuations for
the maximum of the top path in alternating-sign matrices, or, in other words, in the
six-vertex model at its ice point with domain wall boundary condition, are governed
by the Tracy–Widom distribution for the Gaussian orthogonal ensemble (GOE) [29]
(see Theorem 2.4 therein). As conjectured in that paper, this would suggest the
validity of the GUE Tracy–Widom distribution for the EFP (Conjecture 2.5 therein).
The present paper is strongly inspired by this observation. Our main result here
leads exactly to the same statement, i.e., that the behaviour of the EFP of the ice
model with domain wall boundary conditions, in the vicinity of the arctic curve, is
described by the GUE Tracy–Widom distribution.

The paper is organized as follows. In the next section we collect all necessary
ingredients for calculations from the previous studies and explain the origin of the
two types of identities for the boundary one-point function. In section 3, we explain
how we compute integrals and use these identities to simplify the expressions, and
provide the main result that the EFP is given by a Fredholm-type determinant of a
finite-size matrix, see Conjecture 3.1. In section 4, we rewrite the conjectured result
in the form of the Fredholm determinant of a linear integral operator, study it in
the limit of large system size, and show that when geometric parameters are tuned
to the vicinity of the arctic curve, and suitably rescaled, the kernel of the integral
operator turns into the Airy kernel, and thus the EFP into the GUE Tracy–Widom
distribution.

2. MIRs for EFP

In this section we collect all the necessary input information about the model:
configurations of the model, the one-point boundary correlation function, two types
of identities, and MIRs for the EFP.

2.1. The state sum. Configurations of the six-vertex model are usually de-
picted in terms of arrows aligned along edges of a square lattice (or a four-valent
graph). Allowed configurations are subject to the ‘ice rule’: the number of incoming
and outgoing arrows at each lattice vertex is equal. Sometimes it is more convenient
to use a description of states in terms of occupation number variables, namely, an
edge is considered ‘empty’ if it carries an up or right arrow, and ‘occupied’ if it
carries a left or down arrow. Graphically, it corresponds to drawing a solid lines
on the lattice. The ice rule guaranties that the lines flow from the top and right
to the down and left. The six typical vertices and their Boltzmann weights in the
arrow-reversal symmetric model are shown in Fig. 1.

We consider the six-vertex model with homogeneous (vertex position inde-
pendent) Boltzmann weights. The three weight functions a, b, and c denoting the
Boltzmann weights in the standard notation (see, e.g. [30], for a detailed description)
can be parameterized (modulo overall normalization) by two parameters

∆ = a2 + b2 − c2

2ab , t = b

a
.

The so-called “ice point” corresponds to all weights equal, a = b = c, that is
∆ = 1/2 and t = 1. Our main results will be obtained for this case, though some
considerations appear to be valid for arbitrary ∆ and t.

Domain wall boundary conditions [31–33] can be imposed for the six-vertex
model defined on a square domain of the square lattice, consisting of N horizontal
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a a b b c c

Figure 1. The six vertices of the six-vertex model in terms of lines
and their Boltzmann weights.

Figure 2. Domain wall boundary conditions (N = 7). Configura-
tions of the model are obtained by filling edges by thin or thick
lines.

and N vertical lines (the ‘N ×N lattice’). With these conditions, each of the four
boundaries has all its edges carrying the same states and these states are opposite
to each other on opposite boundaries.

The partition function (the sum over states or ‘state sum’) is defined, as usual,
as the sum over all configurations consistent with the imposed boundary conditions,
each configuration being assigned its Boltzmann weight, given by the product of
the weights of all vertices. We will consider the partition function, normalized by
the factor aN(N−1)cN . We denote this quantity by SN . The chosen normalization
ensures that SN = SN (t,∆) is a polynomial in t and ∆. The first few values are:

S1 = 1,
S2 = 1 + t2,

S3 =
(
1 + t2

)3 − 2∆t3,

S4 =
(
1 + t2

)6 − 8∆
(
1 + 2t2 + 2t4 + t6

)
t3 + 4∆2 (1 + t4

)
t4.

At the ice point, t = 1 and ∆ = 1/2, SN is equal to the number of N × N
alternating-sign matrices, S1 = 1, S2 = 2, S3 = 7, S4 = 42, etc. In general,

SN (1, 1/2) = AN , AN =
N−1∏
j=0

(3j − 1)!
(2N − j)! .

On the connection with the alternating-sign matrices, see [34–38].

2.2. Boundary one-point function. A simple but important correlation
function in the model is the so-called boundary one-point function, originally
introduced in [39]. It is usually denoted by H

(r)
N , and gives the probability that

the rth vertical edge (e.g., from the right) in the first horizontal row of the N ×N
lattice contains an altered (e.g., empty vs occupied) state, see Fig. 3. Note that
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Figure 3. Boundary one-point correlation function (N = 7, r = 5).

because of the boundary conditions there is exactly one such a state in this row (in
general, the nth row from the boundary contains n altered states).

It is customary to deal with the related generating function of the boundary
one-point correlation function,

hN (z) =
N∑
r=1

H
(r)
N zr−1, hN (1) = 1. (2.1)

The function hN (z) admits an interpretation as the Izergin-Korepin partition function
[32,33] with just one inhomogeneity parameter [8, 40].

To write down a general formula for hN (z), we introduce a sequence of functions
ϕj(t), j = 0, 1, 2, . . ., defining them in a recursive way as follows [41]:

ϕj+1(t) = t∂t(t− 2∆ + t−1)ϕj(t), ϕ0 ≡ 1.

Then,

hN (z) = (N − 1)!
(

(t− 2∆ + t−1) z

z − 1

)N−1

×

det
[{

ϕi+j−2(t) j = 1, . . . , N − 1
ϕi−1(tz) j = N

]
i,j=1,...,N

det[ϕi+j−2(t)]i,j=1,...,N
.

The first few functions hN (z) are:

h1(z) = 1,

h2(z) = 1 + t2z

S2
,

h3(z) =
S2 + 2

(
1 + t2 − ∆t

)
t2z + S2t

4z2

S3
,

h4(z) = 1
S4

{
S3 +

[
3
(
1 + t2

)3
t2 − 2∆

(
3 + 6t2 + 2t4

)
t3 + 4∆2t4

]
z

+
(

3
(
1 + t2

)3
t2 − 2∆

(
2 + 6t2 + 3t4

)
t3 + 4∆2t4

)
t4z2 + S3t

6z3
}
.

Here, Si’s are the state sums given above.
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In some special cases the function hN (z) can be written explicitly for generic
N . For example, for ∆ = 0, known as the free-fermion point of the model, hN (z) =
[(1 + t2z)/(1 + t2)]N−1.

At the ice point, t = 1 and ∆ = 1/2, it reads [9]

hN (z) = 2F1

(
−N + 1, N

2N

∣∣∣∣1 − z

)
. (2.2)

or
hN (z) = (N)N−1

(2N)N−1
2F1

(
−N + 1, N
−2N + 2

∣∣∣∣z) . (2.3)

It can also be written explicitly at the ‘dual ice point’, t = 1 and ∆ = −1/2, though
the expressions are rather bulky, see [42] for details.

The coefficients H(r)
N in (2.1) in the ice-point case (t = 1,∆ = 1/2) can also be

represented as

H
(r)
N = AN,r

AN
.

Here, AN is number of alternating-sign matrices of size N ×N , and AN,r is their
refined enumeration, i.e., the number of such matrices with the sole ‘1’ entry in the
first row being at the rth position [37]. In a more explicit form,

H
(r)
N =

(
N + r − 2
N − 1

)(
2N − 1 − r

N − 1

)/(
3N − 2
N − 1

)
,

that can be seen as another form of writing (2.2) or (2.3).

2.3. Two types of identities. To shorten the formulas a bit, we will skip the
argument of functions whenever it is 0, e.g., writing hN for hN (0), h′

N for h′
N (0),

etc.
In the first type of identities the derivatives of hN (z) at the point z = 1 are

expressed in terms of the derivatives of hN (z) at the point z = 0. The first three
relations read:

h′
N−1(1) = 1

1 − 2∆t+ t2

{
h′
N

hN
− t2

}
,

h′′
N−2(1) = 1

(1 − 2∆t+ t2)2

{
− h′′

N

hN
+ 2

h′
N−1h

′
N

hN−1hN
− 2

(
1 − 2∆t+ 2t2

) h′
N−1
hN−1

+ 2h
′
N

hN
− 2t2 + 2t4

}
,

h′′′
N−3(1) = 1

(1 − 2∆t+ t2)2

{
h′′′
N

hN
− 3

h′
N−2h

′′
N

hN−2hN
− 3

h′′
N−1h

′
N

hN−1hN

+ 3
(
2 + 3t2 − 4t∆

) h′′
N−1
hN−1

− 6h
′′
N

hN
+ 6

h′
N−2h

′
N−1h

′
N

hN−2hN−1hN

− 6
(
2 + 3t2 − 4t∆

) h′
N−2h

′
N−1

hN−2hN−1
+ 6

h′
N−2h

′
N

hN−2hN
+ 6

h′
N−1h

′
N

hN−1hN

+ 6
(
1 + 2t2 + 3t4 − 4t∆ − 6t3∆ + 4t2∆2) h′

N−2
hN−2

− 6
(
2 + 3t2 − 4t∆

) h′
N−1
hN−1

+ 6h
′
N

hN
+ 18t4 − 6t6 − 12t3∆

}
.

(2.4)
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In view of (2.1), these identities express sums over the set of functions H(r)
N , r =

1, . . . , N , in terms of first few of them, i.e., they are sum rule identities. As explained
in the next section, these identities follows from the existence of two different MIRs
for the EFP.

Another sort of identities involves only higher derivatives at z = 0. It has to
be stressed, however, that we are able at the moment to establish them only for
the special case of the ice point, t = 1 and ∆ = 1/2. In this case one can use the
explicit expression (2.3).

For example, from (2.3) one can easily find for the first derivative of hN (z; 1, 1/2)
at z = 0:

h′
N

hN
= N

2 .

Hence, we have
h′
N

hN
−
h′
N−1
hN−1

− 1
2 = 0. (2.5)

Clearly, relation (2.5) shows that the identities in (2.4) at the ice point can be
somewhat simplified, e.g., by expressing h′

N−1/hN−1, h′
N−2/hN−2, etc, in terms of

h′
N/hN .

For the second derivative we get

h′′
N

hN
= (N − 2)N(N + 1)

2(2N − 3) .

Taking into account that

hN−1

hN
= 3(3N − 2)(3N − 4)

4(2N − 1)(2N − 3)

one can find the following identity:

h′′
N

hN
−
h′′
N−1
hN−1

− h′
N

hN
− 2hN−2

hN−1
+ 7

2 = 0. (2.6)

Note that the coefficients are all independent of N .
For the third derivative we have

h′′′
N

hN
= (N − 3)N(N + 1)(N + 2)

4(2N − 3) .

In the similar manner, we get

h′′′
N

hN
−
h′′′
N−1
hN−1

− 3
2

(
h′
N

hN

)2
− 21

2

(
hN−2

hN−1
− 7

4

)
= 0.

Clearly, this game can be continued.
Note that the first type of identities make it possible to express h(s)

N−s(1) in
terms of the quantities h(j)

N−k, with j = 0, . . . , s and k = 0, . . . , s − 1, such that
0 ⩽ j + k ⩽ s. In turn, the second type of identities make it possible to express
these quantities in terms of hN−s+1, . . . , hN , h

′
N , . . . , h

(s)
N , thus reducing the number

of formally independent objects from s(s+ 3)/2 to 2s.
7
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Figure 4. Emptiness formation probability (N = 7, r = 4, s = 2).

2.4. EFP. The EFP, denoted as F (r,s)
N , can be defined as the probability of

obtaining a domain of size s× (N − r) attached to a corner of the N ×N lattice,
with all its horizontal and vertical edges having the same states as those at the
boundary. In other words, all vertices belonging to this s × (N − r) domain are
all a- or b-weight vertices; this domain can be regarded as an ‘empty’ region. The
vertices belonging to this domain can be removed, giving rise to so-called L-shaped
domain. The partition function of the model on this domain is exactly the EFP,
modulo the factor as(N−r) or bs(N−r) times the partition function of the model on
the original N ×N lattice.

A simple property of the EFP is that it vanishes identically whenever s > r.
This corresponds to a situation where the frozen rectangular domain entering the
definition of the EFP extends beyond the diagonal of the N ×N lattice. In terms
of the model in the L-shaped domain, it is clear that whenever s > r, the number
of allowed configurations vanishes.

Here, for definiteness we stick at the conventions used in Refs. [8, 10,13], and
define EFP such that the frozen domain is located at the top left corner of the
N ×N lattice, with all vertices of this domain to be a-weight vertices, see Fig. 4.
In [8], the following MIR have been derived:

F
(r,s)
N = (−1)s

∮
C0

· · ·
∮
C0

s∏
j=1

[(t2 − 2∆t)zj + 1]s−j

zrj (zj − 1)s−j+1

×
∏

1⩽j<k⩽s

zj − zk
t2zjzk − 2∆tzj + 1 hN,s(z1, . . . , zs)

dsz
(2πi)s . (2.7)

Here, C0 denotes a small simple anticlockwise oriented contour around the point
z = 0. The functions hN,s(z1, . . . , zs), s = 1, . . . , N , are symmetric polynomials of
the degree N − 1 in each of their variables and defined in terms of s single-variable
functions hN−s+1(z), . . . , hN (z) by the formula

hN,s(z1, . . . , zs) =
det
[
(zj − 1)s−izi−1

j hN−i+1(zj)
]
i,j=1,...,s∏

1⩽i<j⩽s(zi − zj)
. (2.8)

If, say, zs = 1, then

hN,s(z1, . . . , zs−1, 1) = hN,s−1(z1, . . . , zs−1).
8



If zs = 0, then

hN,s(z1, . . . , zs−1, 0) = hN (0)hN−1,s−1(z1, . . . , zs−1)

i.e., the degree in all the remaining variables decreases by one.
In [13], it was proven that for generic values of t and ∆, together with MIR

(2.7), EFP admits also the following MIR:

F
(r,s)
N = hN (0) · · ·hN−s+1(0)t(r−s)(r−s−1)

(r − s)!h1(0) · · ·hr(0)

∮
C1

· · ·
∮
C1

r−s∏
j=1

1
zj − 1

×
r−s∏
j,k=1
j ̸=k

zj − zk
t2zjzk − 2∆tzj + 1 hN−s,r−s (z1, . . . , zr−s)

× hr,r−s

(
t2z1 − 2∆t+ 1
t2(z1 − 1) , . . . ,

t2zr−s − 2∆t+ 1
t2(zr−s − 1)

)
dr−sz

(2πi)r−s , (2.9)

where C1 is a (small) contour encircling the point z = 1. In comparison with
(2.7), the number of integrations in (2.9) is r − s, that is the lattice distance of the
point (r, s) from the antidiagonal, rather than s, the lattice distance from the top
boundary.

As far as MIRs (2.7) and (2.9) describe the same quantity and both are valid
for all allowed values of the geometric parameters, they imply some relations for the
function hN (z). These relations are exactly the first type identities, (2.4). Indeed,
setting r = s+ 1, one gets for the second MIR just single integration around the
pole at the point z = 1, while the first MIR contains s integrations around the poles
at the points z1, . . . , zs = 0. Considering the cases s = 1, 2, 3, . . . one arrives at the
identities listed in (2.4).

3. Evaluation of the integrals

In this section we address the problem of evaluation of the MIR (2.7) for
s = 1, 2, 3, 4 and assuming that r = N−s, in the case of the ice point (t = 1,∆ = 1/2).
In principle, this calculation can be done for generic values of the Boltzmann weights,
but at the present moment we able to formulate a conjecture only for this special
case.

3.1. Deformation of the contours. We start with making a change of the
variables zj 7→ z−1

j , j = 1, . . . , s in (2.7), that gives

F
(r,s)
N =

∮
C∞

· · ·
∮
C∞

J
(r,s)
N (z1, . . . , zs) dsz,

where C∞ denotes a very large contour, anticlockwise oriented, and

J
(r,s)
N (z1, . . . , zs) = (2πi)−s

s∏
j=1

[t2 − 2∆t+ zj ]s−j

zN−r
j (zj − 1)s−j+1

∏
1⩽j<k⩽s

zj − zk
t2 − 2∆tzk + zjzk

× h̃N,s(z1, . . . , zs). (3.1)

Here,
h̃N,s(z1, . . . , zs) ≡ (z1 · · · zs)N−1hN,s(z−1

1 , . . . , z−1
s ).
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These functions can also be written as determinants, similarly to (2.8),

h̃N,s(z1, . . . , zs) =
det
[
(zj − 1)s−izi−1

j h̃N−i+1(zj)
]
i,j=1,...,s∏

1⩽i<j⩽s(zi − zj)
.

The function h̃N (z) is defined by
h̃N (z) ≡ zN−1hN (z−1)

and it can also be related to hN (z) by mapping t 7→ t−1,
h̃N (z; t) = hN (z; t−1).

Hence, in the symmetric case t = 1 the tildes over the functions can be lifted.
We continue transforming the expression by deforming the integration contours,

shrinking them down to encircle the sole poles at z = 0 and z = 1. An important
property of the integrand (3.1) is that in the deformation of the contours all terms
deriving from the evaluation of the residues at mutual poles (those due to the double
product in the denominator) vanish [13]. As a result, we have for the EFP

F
(r,s)
N =

∮
C1∪C0

· · ·
∮
C1∪C0

J
(r,s)
N (z1, . . . , zs) dsz. (3.2)

This formula implies that the EFP is essentially the sum of s+ 1 terms:

F
(r,s)
N =

s∑
k=0

Ik,

where Ik is the sum of integrals with k variables integrated over C0 and with the
remaining s − k variables integrated over C1. The following two simple lemmas
show that I0 = 1 and establish the value of Is in the case of our interest.

Lemma 3.1. For arbitrary values of all parameters, a cumulative residue at
z = 1 in (3.1) is equal to one,

res
z1=1

. . . res
zs=1

J
(r,s)
N (z1, . . . , zs) = 1.

Proof. To prove this statement, evaluate the residues in the shown order. At
each step the pole in the corresponding variable at the point z = 1 is simple, and
the result follows due to hN,s(1, . . . , 1) = 1. □

Lemma 3.2. At the ice point, ∆ = 1/2, t = 1, and for N − r = s the cumulative
residue in (3.1) at the point z = 0 equals:

res
z1=0

. . . res
zs=0

J
(N−s,s)
N (z1, . . . , zs) = (−1)shN · · ·hN−s+1,

where hN ≡ hN (0), etc.

Proof. The proof is similar to that of the previous lemma. □

3.2. Determinant structures. Our strategy in computing the EFP is based
on the observation (see also [24,43]) that there exists an s× s matrix A such that

s∑
k=0

λkIk = dets(I − λA), (3.3)

where I is the s× s identity matrix and λ is a formal parameter. In the examples
below matrix A is such that by eliminating its last row and column, the reduction
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s 7→ s− 1, N 7→ N − 1 is made. As we shall see, this reduction is a key property of
the expressions for Ik’s computed from (3.2). We have also found that the matrix
A can be given explicitly in a factorized form

A = DLU, (3.4)

where D, L, and U is a diagonal, lower-triangle, and upper-triangle matrix, respec-
tively.

Representation (3.3) is not unique and one can also to try to find a similar
formula

s∑
k=0

λkIk = dets(I − λV ),

where the matrix V has entries independent of s. We find such a matrix and it is in
fact related to A. Matrix V can be given as a product of lower-triangle, diagonal,
and upper-triangle matrices:

V = L̃ D̃ Ũ . (3.5)

They appear to be related to L, D, and U by

L̃ = ΩLTΩ, D̃ = ΩDΩ, Ũ = ΩUTΩ, (3.6)

for s even, and
L̃ = ΩUΩ, D̃ = ΩDΩ, Ũ = ΩLΩ, (3.7)

for s odd. Here T denotes matrix transposition, and Ω is the s×s ‘unit anti-diagonal’
matrix,

Ωij = δi+j,s+1, ΩT = Ω, Ω2 = I.

The sum-rule relations (2.4) are essentially used in obtaining expressions for
quantities Ik in terms of the values of derivatives of the function hN (z) at z = 0.
To find the matrix A, starting from the s = 3 case, we need to use also relations
between these values. These are the second type of identities; by reducing the
number of formally independent quantities from s(s+ 1)/2 to 2s− 1, they play a
crucial role in the construction of our main conjecture about entries of the matrices
A and V .

To proceed with particular cases, we need some more notation. To shorten
formulas below, we denote

bi ≡ hN−i, i = 0, 1, 2, . . . , s− 1,

and (we limit ourselves below in writing explicitly terms with three derivatives)

κ′
i =

h′
N−i
hN−i

, κ′′
i =

h′′
N−i
hN−i

, κ′′′
i =

h′′′
N−i
hN−i

.

We recall that hN ≡ hN (0), h′
N ≡ h′

N (0), etc.

3.3. Particular cases of s = 1, . . . , 4. We now turn to evaluation of the
integrals in the case of s = 1, . . . , 4. These expressions appear to be very instructive
in our conjecture of the result for a generic s, considered next.
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3.3.1. Case s = 1. We start with the simplest but useful case of s = 1. Evaluat-
ing the integral for r = N − 1 and using that h̃N (1) = 1, we get for the EFP (for
generic ∆ and t) the expression

F
(N−1,1)
N = 1 − h̃N .

At t = 1 we have h̃N = hN ≡ b0 and so

I0 = 1, I1 = −b0. (3.8)

Hence,
A = V = b0. (3.9)

3.3.2. Case s = 2. This is very instructive example and so we will be able to
explain main ideas of further calculations. Evaluation of the integrals in (3.2) in
this case, using that h̃N (1) = 1, yields

I0 = 1,

I1 = − t4 − 2∆t3 + 4∆2t2 − 1
t4

h̃N − 2∆
t
h̃′
N − t2 − 2∆t+ 1

t2
h̃N−1

−
(

2∆t− 1
t2

h̃N + h̃′
N

)
t2 − 2∆t+ 1

t2
h̃′
N−1(1),

I2 = t2 − 4∆t+ 4∆2 + 1
t2

h̃N h̃N−1.

Now, setting t = 1 and ∆ = 1/2 (note that we must keep generic t or ∆, or both,
before evaluation of integrals, in order to avoid erroneous contributions from the
term t2 − 2∆tz2 + z1z2 when computing I1), and using the first identity from (2.4),
we get

I0 = 1, I1 = −b1 − b0(κ′
0)2, I2 = b0b1. (3.10)

Note that if we put here b0 = 0, then we get the s = 1 result (3.8) in which b0 is
replaced by b1, or N 7→ N − 1. This means that if an 2 × 2 matrix A exists such
that (3.3) holds, then it would be desirable that its top-left entry is b1. In turn,
this choice fixes the bottom-right entry from the relation trA = −I1 to be b0(κ′

0)2.
The off-diagonal entries must satisfy detA = I2, that modulo diagonal similarity
transformation (and up to matrix transposition) leads us to

A =

 b1 b1(κ′
0 − 1)

b0(κ′
0 + 1) b0(κ′

0)2

 .

Clearly, this matrix possesses the DLU-factorization (3.4), where

D =

b1 0

0 b0

 , L =

 1 0

κ′
0 + 1 1

 , U =

1 κ′
0 − 1

0 1

 .

Another way to write the result of integration in a determinant form is with
a matrix V such that s determines only its size, but not entries. For such a
matrix then, first from (3.9) follows V11 = b0, next from trV = −I1 follows
V22 = b0

(
(κ′

0)2 − 1
)
+b1, and finally from detV = I2 follows V12V21 = b2

0
(
(κ′

0)2 − 1
)
.
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Modulo diagonal transformation and matrix transposition,

V =

 b0 b0(κ′
0 − 1)

b0(κ′
0 + 1) b0

(
(κ′

0)2 − 1
)

+ b1

 .

This matrix admits LDU-factorization (3.5), where

L̃ =

 1 0

κ′
0 + 1 1

 , D̃ =

b0 0

0 b1

 , Ũ =

1 κ′
0 − 1

0 1

 .

These matrices are related to L, D, and U by (3.6).
3.3.3. Case s = 3. In this case, after evaluating the integrals in MIR (3.2),

using h̃N (1) = 1, applying the first two identities from (2.4), and putting t = 1,
∆ = 1/2, we get

I0 = 1,

I1 = −b2 − b1 (κ′
1)2 − b0

[(
κ′′

0
2 − κ′

0

)2
+ 2κ′

0 − 1
]
,

I2 = b1b2 + b0b2 (κ′
0)2 + b0b1

[
1 − κ′

0(1 + κ′
1) + κ′′

0
2

]2
,

I3 = −b0b1b2.

(3.11)

If we put b0 = 0 in (3.11) then we get (3.10) in which b0, b1, κ
′
0 7→ b1, b2, κ

′
1,

respectively, that is, N 7→ N − 1.
Thus, we can construct A by choosing its top-left 2 × 2 block as the matrix

A from the case s = 2, with b0, b1, κ
′
0 7→ b1, b2, κ

′
1, that also fixes A33 entry from

trA = −I1. We write A = DLU , where D = diag(b2, b1, b0), and for the matrices L
and U we take

L =


1 0 0

κ′
1 + 1 1 0

1
2κ

′′
0 − 2κ′

0 + 1 κ′
0 − 1 1

 , U =


1 κ′

1 − 1 1
2κ

′′
0 − 1

0 1 κ′
0 + 1

0 0 1

 .

Clearly, it can easily seen that this choice reproduces values I0, I1 and I3, but not
I2, with the difference of some complicated factor times κ′

1 −κ′
0 + 1

2 . But it vanishes
due to identity (2.5)!

The similar construction in the case of the matrix V , whose entries are required
to be independent of s, leads us to (3.5), where D̃ = diag(b0, b1, b2) and

L̃ =


1 0 0

κ′
0 + 1 1 0

1
2κ

′′
0 − 1 κ′

1 − 1 1

 , Ũ =


1 κ′

0 − 1 1
2κ

′′
0 − 2κ′

0 + 1

0 1 κ′
1 + 1

0 0 1

 .

These matrices are related to D, L, U by (3.7).
13



3.3.4. Case s = 4. In this case, we obtain

I0 = 1,

I1 = −b3 − b2 (κ′
2)2 + b1

[
1 − 2κ′

1 −
(
κ′

1 − κ′′
1

2

)2
]

+ b0

[
2 − 6κ′

0 + 3 (κ′
0)2 + (1 − κ′

0)κ′′
0 −

(
κ′

0 − κ′′
0 + κ′′′

0
6

)2
]
,

I2 = b2b3 + b1b3 (κ′
1)2 + b0b3

[
−1 + 2κ′

0 +
(
κ′

0 − κ′′
0

2

)2
]

+ b1b2

[
1 − κ′

1 (1 + κ′
2) + κ′′

1
2

]2

+ b0b2

{
− (5 + κ′

2) (1 + κ′
2) + 2κ′

0 (1 + κ′
2)2

+
[
1 + (2 + κ′

2)
(

−κ′
0 + κ′′

0
2

)
− κ′′′

0
6

]2
}

+ b0b1

{
4 − 2κ′

0 + κ′′′
0
3 +

(
1 − κ′

0 + κ′′
0

2

)2

+ 2κ′
1

[
2 +

(
2 − κ′

0 + κ′′
0

2

)(
1 − κ′

0 + κ′′
0

2 − κ′′′
0
6

)]
+ κ′′

1

[(
κ′

0 − κ′′
0

2

)2
− 3κ′

0 + 3κ′′
0

2 − κ′′′
0
6

]

+ (κ′
1)2
(

1 − κ′
0 + κ′′

0
2 − κ′′′

0
6

)2

+
(
κ′′

1
2

)2
[

−1 + 2κ′
0 +

(
κ′

0 − κ′′
0

2

)2
]

− κ′
1κ

′′
1

[
2 +

(
κ′

0 − κ′′
0

2

)(
1 − κ′

0 + κ′′
0

2 − κ′′′
0
6

)]}
,

I3 = −b1b2b3 − b0b2b3 (κ′
0)2 − b0b1b3

[
1 − κ′

0 (1 + κ′
1) + κ′′

0
2

]2

− b0b1b2

{
1 + κ′′

0 + κ′
2

(
1 + κ′′

0
2

)
− κ′

0

[
(1 + κ′

1) (1 + κ′
2) − κ′′

1
2

]
− κ′′′

0
6

}2
,

I4 = b0b1b2b3.

Repeating the procedure from the s = 2 and s = 3 cases, we write matrix A in the
form (3.4), with

D = diag(b3, b2, b1, b0),
14



L =


1 0 0 0

κ′
2 + 1 1 0 0

1
2κ

′′
1 − 2κ′

1 + 1 κ′
1 − 1 1 0

1
6κ

′′′
0 − 1

2κ
′′
0 − κ′

0 + 1 1
2κ

′′
0 − 1 κ′

0 + 1 1

 ,

U =


1 κ′

2 − 1 1
2κ

′′
1 − 1 1

6κ
′′′
0 − 3

2κ
′′
0 + 3κ′

0 − 1

0 1 κ′
1 + 1 1

2κ
′′
0 − 2κ′

0 + 1

0 0 1 κ′
0 − 1

0 0 0 1

 .

This choice indeed works, but one have to use the identity (2.5) to express now κ′
1

and κ′
2, for the latter twice, to get them both expressed in terms of κ′

0. Furthermore,
the identity (2.6) is also needed, to express κ′′

1 in terms of κ′′
0 , b2 and b1, which are

already involved.
As for the matrix V we get (3.5), where

L̃ =


1 0 0 0

κ′
0 + 1 1 0 0

1
2κ

′′
0 − 1 κ′

1 − 1 1 0
1
6κ

′′′
0 − 1

2κ
′′
0 − κ′

0 + 1 1
2κ

′′
1 − 2κ′

1 + 1 κ′
2 + 1 1

 ,

D̃ = diag(b0, b1, b2, b3),

Ũ =


1 κ′

0 − 1 1
2κ

′′
0 − 2κ′

0 + 1 1
6κ

′′′
0 − 3

2κ
′′
0 + 3κ′

0 − 1

0 1 κ′
1 + 1 1

2κ
′′
1 − 1

0 0 1 κ′
2 − 1

0 0 0 1

 .

These matrices are related to L, D, and U by (3.6).

3.4. Case of generic s. To formulate a conjecture about entries of the matrices
L and U (while this is not difficult for D), we recall a formula for generalized Laguerre
polynomials (see, e.g., [44])

L(α)
n (x) =

n∑
k=0

(
n+ α

n− k

)
(−x)k

k! , (3.12)

The special case Ln(x) ≡ L
(0)
n (x) is so familiar
L0(x) = 1,
L1(x) = −x+ 1,

L2(x) = x2

2 − 2x+ 1,

L3(x) = −x3

6 + 3x2

2 − 3x+ 1,
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that it is easy to recognize them in the basement of half of entries. The second
sequence appearing there, x+ 1, 1

2x
2 − 1, 1

6x
3 − x2

2 − x+ 1, seem at the first glance
not to fall into the Laguerre case. However, a simple observation shows that this
also the case:

L1(x) − 2L0(x) = −x− 1,

L2(x) − 2L1(x) = x2

2 − 1,

L3(x) − 2L2(x) = −x3

6 + x2

2 + x− 1.

To proceed, we recall that the generalized Laguerre polynomials are subject, among
many others, to the relation

L(α−1)
n (x) = L(α)

n (x) − L
(α)
n−1(x).

We thus meet in our case two linear combinations of the polynomials L(−1)
n (x) and

L
(0)
n−1(x), namely, they are L(−1)

n (x) ± L
(0)
n−1(x).

Our main result here is the following.

Conjecture 3.1. For t = 1 and ∆ = 1/2, and for r = N − s, the EFP can be
given as the determinant of the s× s matrix I −A, where A = DLU and

Dij = hr+i(0) δij ,

Lij = (−1)i−j

hr+i(0)

[
L

(−1)
i−j (∂z) + (−1)i−1L

(0)
i−j−1(∂z)

]
hr+i(z)

∣∣∣
z=0

,

Uij = (−1)i−j

hr+j(0)

[
L

(−1)
j−i (∂z) + (−1)jL(0)

j−i−1(∂z)
]
hr+j(z)

∣∣∣
z=0

.

(3.13)

Equivalently, the EFP is given by the determinant of the s× s matrix I − V , where
V = L̃D̃Ũ , and

L̃ij = (−1)i−j

hN−i+1(0)

[
L

(−1)
i−j (∂z) + (−1)jL(0)

i−j−1(∂z)
]
hN−i+1(z)

∣∣∣
z=0

,

D̃ij = hN−i+1(0) δij ,

Ũij = (−1)i−j

hN−j+1(0)

[
L

(−1)
j−i (∂z) + (−1)i−1L

(0)
j−i−1(∂z)

]
hN−j+1(z)

∣∣∣
z=0

.

(3.14)

Function hN (z) is the Gauss hypergeometric function given in (2.2) or (2.3).

Note that the entries of the matrix A are independent of s, if one takes r = N−s
as an independent geometric parameter.

To verify our conjecture, we have also performed exact evaluation (with the
help of symbolic manipulation software) of the MIR (2.7) in the case of s = 5 for
N ⩽ 13. The results are given in terms of ratios of integers and we find that the
conjectural determinant representation for the EFP reproduces them exactly.

4. EFP as a Fredholm determinant

In this section our aim is to proceed with the determinant formulas for the
EFP and obtain some other representations, specifically, in the form of Fredholm
determinants of linear integral operators. We also show that in the scaling limit
(r, s → ∞ with their ratio fixed) some expressions simplify, and, moreover, at the
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critical value of s/r corresponding to the arctic curve, there exists local scaling
where the Fredholm determinant turns into the celebrated formula in terms of the
Airy kernel for the Tracy–Widom distribution.

4.1. Integral form of the matrices. We start with the explicit formula for
the Laguerre polynomials, see (3.12). It can be easily seen that for a trial function
f(z), regular at the point z = 0, the following holds:∮

C0

(1 − z)n+α

zn+1 f(z) dz
2πi = (−1)nL(α)

n (∂z)f(z)
∣∣
z=0. (4.1)

We are interested in the special cases α = 0 and α = −1.
Reading formula (4.1) in the reverse order, for the entries of the matrices L and

U given in (3.13) we can write

Lij = 1
hr+i(0)

∮
C0

(
(1 − z)i−j−1

zi−j+1 + (−1)i (1 − z)i−j−1

zi−j

)
hr+i(z)

dz
2πi ,

Uij = 1
hr+j(0)

∮
C0

(
(1 − z)j−i−1

zj−i+1 + (−1)j+1 (1 − z)j−i−1

zj−i

)
hr+j(z)

dz
2πi .

Let us consider now the matrix A = DLU , where Dij = δijhr+j(0), see (3.13).
Slightly simplifying expressions, we get

Aij =
min(i,j)∑
l=1

1
hr+j(0)

∮
C0

(1 − z)i−l−1

zi−l+1

(
1 + (−1)iz

)
hr+i(z)

dz
2πi

×
∮
C0

(1 − w)j−l−1

wj−l+1

(
1 + (−1)j+1w

)
hr+j(w) dw

2πi . (4.2)

Let us now transform expression (4.2). First, we note that the sum over l in
(4.2) can be extended to infinity without altering the result, since the actual value
of the upper limit is controlled by the integrals with the respect to z and w. Next,
we evaluate this sum, that yields

∞∑
l=1

(
zw

(1 − z)(1 − w)

)l
= zw

1 − z − w
.

Finally, introducing the functions

eLi (z) = (1 − z)i−1

zi
(
1 + (−1)iz

)
hr+i(z),

eUj (w) = (1 − w)j−1

hr+j(0)wj
(
1 + (−1)j+1w

)
hr+j(w),

(4.3)

for entries of the matrix A we arrive at the formula

Aij =
∮
C0

∮
C0

eLi (z)eUj (w)
1 − z − w

dzdw
(2πi)2 . (4.4)

We will use this formula as the main input for what follows.
As for the matrix V , see (3.14), one can easily obtain a formula similar to (4.4).
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4.2. Fredholm determinants. Let K̂Γ denote a linear integral operator with
the kernel K(z, w) acting on functions on the contour Γ ,(

K̂Γ f
)
(z) =

∫
Γ

K(z, w)f(w) dw.

The Fredholm determinant of this operator is usually defined as

det
(
1 − K̂Γ

)
= 1 +

∞∑
n=1

(−1)n

n!

∫
Γ

· · ·
∫
Γ

det
1⩽i,j⩽n

[K(wi, wj)] dw1 · · · dwn.

Another way is to use the identity

det
(
1 − K̂Γ

)
= exp

{
tr log

(
1 − K̂Γ

)}
and defining the function log

(
1 − K̂Γ

)
by its power series expansion in powers of

K̂Γ , one can also write

det
(
1 − K̂Γ

)
= exp

{
−

∞∑
n=1

1
n

tr
(
K̂Γ

)n}
,

where
tr
(
K̂Γ

)n =
∫
Γ

· · ·
∫
Γ

K(w1, w2) · · ·K(wn, w1) dw1 · · · dwn.

One can say that the Fredholm determinants of an s×s matrix A and linear integral
operator K̂Γ are equal to each other,

dets(I −A) = det
(
1 − K̂Γ

)
, (4.5)

where the dependence on s is somehow encoded into K̂Γ , when

trsAn = tr
(
K̂Γ

)n
, n = 1, 2, . . . .

Here, the subscript s recalls that the matrix A is taken to be s× s.
Let us now consider our matrix A given by (4.4). We can immediately claim

that we have the identity (4.5), where Γ = C0 and the kernel is given by

K(z1, z2) =
s∑
j=1

1
(2πi)2

∮
C0

eUj (w)eLj (z2)
1 − z1 − w

dw, z1, z2 ∈ C0. (4.6)

Another choice could be with the functions eUj and eLj being exchanged. Note that
the dependence on s is encoded into the kernel in the sum over j.

To make our considerations below slightly simpler, we find it useful at this stage
to introduce an integral operator acting on functions on the real half-axis, [0,∞).
Since z and w lie on the contour C0, they can be chosen such that |z|, |w| ≪ 1, and
we can use the formula

1
1 − z − w

=
∫ ∞

0
e(z+w−1)t dt, Re (z + w) < 1. (4.7)

We can rewrite entries of the matrix A in the form

Aij =
∫ ∞

0
e−tELi (t)EUj (t) dt,

where we have introduced the functions

EL,Uj (t) =
∮
C0

ewteL,Uj (w) dw
2πi .
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As a result, the EFP can be given as the Fredholm determinant

F
(N−s,s)
N = det

(
1 − K̂E

[0,∞)
)
,

where the kernel is

KE(t1, t2) = e− 1
2 (t1+t2)

s∑
j=1

ELj (t1)EUj (t2).

More explicitly,

KE(t1, t2) =
∮
C0

∮
C0

e(z− 1
2 )t1+(w− 1

2 )t2
s∑
j=1

eLj (z)eUj (w) dzdw
(2πi)2 . (4.8)

Clearly, the kernel KE(t1, t2) can get a simplified form when the saddle-point
analysis is applied to the contour integrals. This is what we address below.

4.3. Scaling limit. Let us now consider the situation where the size of the
system, N , is large. To have an interesting picture, r and s have to be taken large
as well. We recall that we consider here only the ‘symmetric’ case, where r = N − s.

An important ingredient for subsequent considerations is the following asymp-
totic result for the function hN (z).

Proposition 4.1. As r → ∞,

hr+1(z) = [ρ(z)]rC(z)
(
1 +O(r−1)

)
, (4.9)

where

ρ(z) = 4
(1 − 2z)(2 − z)(1 + z) + 2

(
1 − z + z2)3/2

27(1 − z)2 (4.10)

and

C(z) = 2z√
2(1 − z + z2)2 − (2 − z)(1 − 2z)(1 + z)

√
1 − z + z2

. (4.11)

We give a proof of this result in Appendix.
Consider now the sum over j in (4.8) or in (4.6). From (4.3) we have

s∑
j=1

eLj (z)eUj (w) =
s∑
j=1

[1 − zw + (−1)j(z − w)]

× [(1 − z)(1 − w)]j−1

(zw)j
hr+j(z)hr+j(w)

hr+j(0) .

For r large, we can use (4.9). Denoting

ψ(z, w) = ρ(z)ρ(w)
ρ(0) ,
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we get
s∑
j=1

eLj (z)eUj (w) ∼ C(z)C(w) [(1 − z)(1 − w)]s−1 [ψ(z, w)]r+s−1

C(0)(zw)s

×

(1 − zw)
1 −

(
zw

(1−z)(1−w)ψ(z,w)

)s
1 − zw

(1−z)(1−w)ψ(z,w)

+(−1)s(w − z)
1 −

(
− zw

(1−z)(1−w)ψ(z,w)

)s
1 + zw

(1−z)(1−w)ψ(z,w)

 . (4.12)

By symbol ∼ we denote that the two expressions are equal as s, r → ∞ up to terms
which vanish in the limit; more exactly, f ∼ g means that f/g → 1.

The expression (4.12) can be simplified by noting that z and w are integrated
around the origin in (4.8) and in (4.6). Since ψ(z, w) is regular at the points z = 0
and w = 0, from (4.8) we get

KE(t1, t2) ∼
∮
C0

∮
C0

e(z− 1
2 )t1+(w− 1

2 )t2

× C(z)C(w) [(1 − z)(1 − w)]s−1 [ψ(z, w)]r+s−1

C(0)(zw)s

×

{
1 − zw

1 − zw
(1−z)(1−w)ψ(z,w)

+ (−1)s(w − z)
1 + zw

(1−z)(1−w)ψ(z,w)

}
dzdw
(2πi)2 . (4.13)

When r and s are large, the integrals over z and w can be approximated by the
saddle-point method. Moreover, both integrals in (4.13) contain as the main factors
in their integrands the same function,(

1 − w

w

)s [
ρ(w)√
ρ(0)

]N
=: exp{Ng(w)}, (4.14)

where we have used that r + s = N and included the factor
√
ρ(0) = 4/3

√
3 for a

later convenience (it simplifies a constant term in g(w)).
Let us find the saddle points of the function g(w). Denoting

y = s

N
,

y ∈ (0, 1/2], we have

g(w) = y log 1 − w

w
+ log

(1 − 2w)(2 − w)(1 + w) + 2
(
1 − w + w2)3/2

3
√

3(1 − w)2
.

We get

g′(w) = y

w(w − 1) − 1 −
√

1 − w + w2

w(w − 1) ,

and hence the saddle point equation g′(w) = 0 possesses two solutions w = w±,
where

w± = 1 ±
√

1 − 8y + 4y2

2 .
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The two solutions collide if 1 − 8y + 4y2 = 0, and choosing the root of this equation
that lies in the interval (0, 1/2], we find that w+ = w− when y = yc, where

yc = 1 −
√

3
2 . (4.15)

The critical value yc separating two asymptotic regimes has a very clear meaning
in terms of the so-called arctic curve. This curve describes spatial separation between
the ordered and disordered phases of the model in the thermodynamic limit. In
the language of dimer models, it is the frozen boundary of the limit shape. For
the six-vertex model with domain wall boundary conditions (with a generic choice
of weights corresponding to ∆ < 1), it is a curve inscribed into the unit square,
consisting of four portions joining the four contact points (see [10] for more details).
All the four portions are related to each other by simple symmetry transformations.
They are described in general by a non-algebraic equation given in a parametric
form. For the ice point (∆ = 1/2 and t = 1) this equation appear to be algebraic,
and, moreover, quadratic [9, 45],

4x(1 − x) + 4y(1 − y) + 4xy = 1, x, y ∈ [0, 1/2]. (4.16)

The arctic curve in the ice-point case is constructed by taking the arc between the
points (x, y) = (0, 1/2) and (x, y) = (1/2, 0), given by (4.16), and applying to it the
maps (x, y) 7→ (x, 1 − y), (x, y) 7→ (1 − x, y), and (x, y) 7→ (1 − x, 1 − y). This yields
all four portions of the arctic curve.

In the context of the EFP, we need only the arc (4.16). Recalling that in the
scaling limit the geometric parameters of the EFP scales as (N − r)/N =: x and
s/N =: y, we find that the case r = N−s which we consider here, means simply that
x = y. Setting x = y in (4.16) we immediately get the equation 4y2 −8y+1 = 0, i.e.,
we get y = yc where yc is given by (4.15). Thus the coincidence of the two roots w±
corresponds to the situation where the frozen region of the EFP touches the arctic
curve. The case y ∈ (0, yc) corresponds to the frozen region of the EFP fully lying in
the ordered region, outside the arctic curve, while the case y ∈ (yc, 1/2] corresponds
to the frozen region of the EFP partially overlapping with the disordered region,
inside the arctic curve.

The two regimes y ∈ (0, yc) and y ∈ (yc, 1/2] correspond to two different
behaviours of the EFP. The values y ∈ (0, yc) correspond to w± real. In this
case one finds an exponentially decaying asymptotic behaviour of the integrals.
Among the two points, only the closest to origin, w−, is relevant in the saddle-point
approximation. The values y ∈ (yc, 1/2] correspond to w± complex, w− = w∗

+. In
this case both saddle points are relevant and the leading term in the asymptotic
expansion of the integrals is oscillatory, giving non-vanishing contribution in the
limit of large N (and s). Analogous behaviours occur in the context of dimer models
[46].

4.4. Tracy–Widom distribution. Let us now focus on the vicinity of the
point y = yc. We introduce a new temporary geometric parameter η,

y = yc − η.

As N is large, η is assumed to be small, below we find that η ∝ N−2/3.
Let us consider the behaviour of the function g(w) in the vicinity of the double

saddle point w+ = w− = 1/2. Setting w = 1/2 + λ, and expanding in the Taylor
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w

Figure 5. Deformation of the integration contour in the w-complex
plane; shaded area is a vicinity of the saddle point at w = 1/2.

series in λ, we find

g(w)
∣∣∣
w= 1

2 +λ
= 4ηλ− 4

3
√

3
λ3 +O(λ4).

Absence of a constant term here is due to the factor
√
ρ(0) in (4.14).

Hence, setting

λ̃ = qλ, q = 22/3

31/6N
1/3, (4.17)

and
σ = 4N

q
η = 24/331/6N2/3η,

we get

Ng(w)
∣∣∣
w= 1

2 +λ
= σλ̃− 1

3 λ̃
3 +O(N−1/3), (4.18)

where we write the O-term assuming that σ and λ̃ are both of O(1) as N → ∞. This
means that in the saddle-point approximation we are considering here η ∝ N−2/3

and λ ∝ N−1/3. Moreover, expression (4.18) fixes the location of the contour of
integration along the steepest descent directions.

We recall that the initial contour of integration is around the point w = 0. One
can deform the contour such that it arrives at the point w = 1/2 from direction
−2π/3 and departs from it in the direction 2π/3, see Fig. 5. The main contribution
to the integral comes from that part of the deformed contour lying in the vicinity of
the double saddle point w = 1/2. Let us denote it by γ and let the vicinity of the
saddle point be a disk of some radius a (shown in light grey in the picture). Then,

γ = (e−2iπ/3a, 0) ∪ (0, e2iπ/3a).

From (4.17) it follows that for the scaled variable λ̃ the contour of integration is
γ, but scaled by the factor of q. Let us denote this contour by γ̃. Since q → ∞ as
N → ∞, the end-points of γ̃ tend to infinity, and therefore, as it can be shown that
up to exponentially small corrections to the resulting integral,

γ̃ = (e−2iπ/3∞, 0) ∪ (0, e2iπ/3∞). (4.19)
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Similar considerations hold for the integration variable z. We set z = 1/2 + µ,
and introduce the scaled variable µ̃ related to µ by µ = qµ̃, see (4.17). The contour
of integration for µ̃ is γ̃.

Let us now inspect the expression in the braces in (4.13). Since λ and µ scale
as N−1/3, we have

zw

(1 − z)(1 − w)ψ(z, w)

∣∣∣∣
w= 1

2 +λ,z= 1
2 +µ

= 1 + 2
√

3(λ+ µ) +O(N−2/3).

The first term in the braces in (4.13) behaves as 1/(λ + µ) = O(N1/3), and the
second term is just of O(N−1/3) thus contributing only to sub-leading terms. As
for the first term, taking also into account the prefactor in the integrand for which
we can use

C(1/2) = 2
√

2
3 , C(0) = 4

3
√

3
, ψ(1/2, 1/2) = 1,

we get

C(w)C(z)
C(0)(1 − z)(1 − w)ψ(z, w)

1 − wz

1 − zw
(1−z)(1−w)ψ(z,w)

∣∣∣∣∣
w= 1

2 +λ,z= 1
2 +µ

= − 1
λ+ µ

+O(1).

As an intermediate result, we thus have in the leading order

KE(t1, t2) = −
∫
γ

∫
γ

eµt1+λt2+σ(λ̃+µ̃)−(λ̃3+µ̃3)/3

λ+ µ

dλdµ
(2πi)2 .

To turn to the scaled integration variables λ̃ and µ̃, we change the variables of
the kernel, t1 7→ qt1, t2 7→ qt2 and introduce the new kernel

K̃E(t1, t2) = qKE(qt1, qt2), q > 0, t1, t2 ∈ [0,∞).

Note that the Fredholm determinants for the kernels K̃E(t1, t2) and KE(t1, t2) are
equal to each other, because this holds for the traces of arbitrary positive integer
powers of the corresponding integral operators. We have

K̃E(t1, t2) = −
∫
γ̃

∫
γ̃

eµ̃t1+λ̃t2+σ(λ̃+µ̃)−(λ̃3+µ̃3)/3

λ̃+ µ̃

dλ̃dµ̃
(2πi)2 .

Summing up, we may write

lim
N→∞

(
F

(N−s,s)
N

∣∣∣
s=N

(
1−

√
3

2

)
− N1/3

24/331/6 σ

)
= det

(
1 − ˆ̃

KE
[0,∞)

)
.

From this point we shall work with these Fredholm determinant and kernel.
We transform the expression for K̃E(t1, t2) by noting that the contour γ̃, see

(4.19), can be slightly deformed such that it passes near the origin (λ̃ = 0, i.e.,
w = 1

2 ) from the left, so that it can be made to lie entirely in the left half-plane.
Note that this is in agreement also with the condition in (4.7). Then, we can use∫ ∞

σ

e(λ̃+µ̃)t dt = −e(λ̃+µ̃)σ

λ̃+ µ̃
, Re (λ̃+ µ̃) < 0,
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that is valid since Re λ̃ < 0 and Re µ̃ < 0 along the contour γ̃. We also use the fact
that ∫

γ̃

etλ̃−λ̃3/3 dλ̃
2πi = Ai(t),

where Ai(t) is the Airy function, that follows from the well-known contour integral
definition of the Airy function in which the change λ̃ 7→ −λ̃ has been made. As a
result, for the kernel K̃E(t1, t2) we obtain the expression

K̃E(t1, t2) =
∫ ∞

σ

Ai(t1 + t) Ai(t2 + t) dt.

As a final step, we note that

det
(

1 − ˆ̃
KE

[0,∞)

)
= det

(
1 − K̂Ai

[σ,∞)

)
=: F2(σ),

where the kernel KAi(t1, t2) is given by

KAi(t1, t2) =
∫ ∞

0
Ai(t1 + t) Ai(t2 + t) dt, (4.20)

and the function F2(σ) is the celebrated GUE Tracy–Widom distribution (for the
Gaussian unitary ensemble, β = 2). The kernel (4.20) is also known in the form

KAi(t1, t2) = Ai(t1) Ai′(t2) − Ai′(t1) Ai(t2)
t1 − t2

.

The proof of equivalence of the two expressions for KAi(t1, t2) can be found, e.g., in
[15].

Summarizing, we conclude that representation (3.13) for the EFP in the six-
vertex model with domain wall boundary condition at the ice point (∆ = 1/2 and
t = 1) implies that

lim
N→∞

(
F

(N−s,s)
N

∣∣∣
s=N

(
1−

√
3

2

)
− N1/3

24/331/6 σ

)
= F2(σ).

This result is in a full agreement with the one proposed in [29] (see Conjecture 2.5
therein) and with the numerical simulations in [27,28].
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Appendix A. Asymptotic expansion of hr+1(z) as r → ∞

We have the following expression [9]:

hr+1(z) = Γ(2r + 2)
[Γ(r + 1)]2

∫ 1

0
{t(1 − t) [1 − (1 − z)t]}r dt. (A.1)

Consider first the prefactor in this representation. From the Stirling formula

log Γ(z + a) =
(
z + a− 1

2

)
log z − z + log

√
2π +O(1/z)
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we have, as r → ∞,

Γ(2r + 2)
[Γ(r + 1)]2

= 4r
√

4r
π

(
1 +O(r−1)

)
.

Consider now the integral in (A.1). The standard saddle-point analysis yields∫ 1

0
{t(1 − t) [1 − (1 − z)t]}r dt = erf(t0)

√
2π

|f ′′(t0)|r
(
1 +O(r−1)

)
,

where we have denoted
f(t) = log

(
t(1 − t) [1 − (1 − z)t]

)
,

and t0 = t0(z) is the saddle point, f ′(t0) = 0, given by

t0 = 2 − z −
√

1 − z + z2

3(1 − z) . (A.2)

Note that t0 lies on the interval of integration in (A.1) for broad values of z, including
the interval [0, 1]. We also have

f ′′(t0) = −22(1 − z + z2)2 − (2 − z)(1 − 2z)(1 + z)
√

1 − z + z2

z2 . (A.3)

It is easy to see that f ′′(t0) is negative, and so the original contour goes along the
steepest descent directions. Note that there exists another solution of the equation
f ′(t) = 0, but it is not relevant (both for analytical and topological reasons).

Collecting things together, we obtain
hr+1(z) = [ρ(z)]rC(z)

(
1 +O(r−1)

)
,

where
ρ(z) = 4ef(t0) = 4t0(1 − t0) [1 − (1 − z)t0]

and

C(z) =

√
8

|f ′′(t0)| .

Substitution of (A.2) yields the expression (4.10) for the function ρ(z), and (A.3)
leads to (4.11) for C(z).
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