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Abstract

We construct nontrivial unbounded domains Ω in the hyperbolic space HN , N ∈ {2, 3, 4}, bifur-
cating from the complement of a ball, such that the overdetermined elliptic problem

−∆HNu+ u− up = 0 in Ω, u = 0, ∂νu = const on ∂Ω

has a positive bounded solution in C2,α (Ω) ∩ H1 (Ω). We also give a condition under which this

construction holds for larger dimensions N . This is linked to the Berestycki-Caffarelli-Nirenberg

conjecture on overdetermined elliptic problems, and, as far as we know, is the first nontrivial example

of solution to an overdetermined elliptic problem in the hyperbolic space.
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1 Introduction and main results

Introduction and state of the art. Let us consider the following overdetermined elliptic problem:
∆u+ f(u) = 0 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,
∂u
∂ν = const on ∂Ω,

(1.1)

where Ω ⊂ RN is a given domain, f is a Lipschitz function and ν is the unit outward normal vector

about ∂Ω. Serrin [41] proved that if Ω is bounded with boundary of class C2 and f is a C1 function,

the existence of a solution to (1.1) implies that Ω is a ball. The method used by Serrin to prove such

result is universally known as the moving plane method and holds also when f is only Lipschitz [31].

The case when Ω is supposed to be unbounded has been considered in 1997 by Berestycki, Caffarelli

and Nirenberg [5]. They obtained some rigidity results for epigraphs and stated the following conjecture:
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BCN Conjecture: If Ω is a smooth domain such that RN \ Ω is connected and problem (1.1) ad-

mits a bounded solution, then Ω is either a ball, a half-space, a generalized cylinder Bk × Rn−k where

Bk is a ball in Rk, or the complement of one of them.

The answer to the BNC conjecture, in its generality, is negative. In the class of domains diffeomorphic

to a cylinder, for N ≥ 3 the second author [42] found a periodic perturbation of the straight cylinder

BN−1 × R that supports a periodic solution to problem (1.1) with f(u) = λu, λ > 0. Such result holds

also in dimension N = 2 [39] (but in this case is not a counterexample to the conjecture). Generalizations

of this construction have been done in the Riemannian manifolds SN × R and HN × R [12, 29], and in

the Euclidean case for general functions f [37]. In the class of domains diffeomorphic to the half-space

the BCN conjecture has been proved to be true in dimension 2 by Ros, Ruiz and the second author [34]

(under the assumption that the Neumann data is not zero), while new solutions in perturbations of the

Bombieri-De Giorgi-Giusti epigraph have been built by Del Pino, Pacard and Wei in [13] in dimension

N ≥ 9 when f(u) is of Allen-Cahn type (i.e. f(u) = u−u3 or other nonlinearities with similar behavior).

In the class of domains diffeomorphic to the exterior of a ball the BCN conjecture is true when f is

of Allen-Cahn type (see [32, 34]), while new bounded solutions of (1.1) in perturbations of the exterior

of balls of large radius have been found by Ros, Ruiz and the second author [34] for the Schrödinger

equation (i.e. f(u) = up − u). These new solutions in perturbations of the exterior of a ball produce

automatically new solutions in perturbations of the complement of a straight cylinder just by adding

one or more empty variables.

Two natural Riemannian manifolds where one can consider Problem (1.1) and hope to obtain rigidity

results using the moving plane method and related tools are the round sphere SN and the hyperbolic

space HN (and in fact these two manifolds are the only where one can hope this, as explained in the

introduction of [38]). Hyperbolic geometry is very important in Physics: it is is closely related to the

Minkowski space that arises from the Einstein’s relativity and electromagnetic field theory [6–8] and

is also widely used in astrophysics, black hole theory and string theory. Of course, when we consider

a Riemannian manifold we replace the Laplacian operator in (1.1) by the Laplace-Beltrami operator

associated to the metric on the manifold.

Kumaresan and Prajapat [26] have proved that if Ω is a bounded domain of HN or of an hemisphere

of SN and (1.1) admits a solution, then Ω must be a geodesic ball. Such result is the parallel of Serrin’s

theorem, and the proof is again based on the moving plane method. Nevertheless in the all sphere SN

this statement turns to be false even for domains diffeomorphic to a geodesic ball: in [38] Ruiz, Wu

and the second author found a nontrivial contractible domain where problem (1.1) can be solved with

f(u) = u3 − u (up to a multiplicative constant). Such result shows that the nontrivial topology of SN

allows new phenomena and the situation in SN can be very different from RN concerning overdetermined

elliptic problems.

In HN the situation seems to be closer to the Euclidean one, but with some differences and the classes

of possible shapes where one can hope to solve problems of the form (1.1) are richer. For example,

beside the classical domains (i.e. geodesic balls, half-spaces, the exterior of a geodesic ball, cylinders,

the complement of a cylinder) there exists an other trivial shape where one can solve overdetermined

problems: the horoball (see below its definition). After the pionner work [26], overdetermined elliptic

problems in HN have been considered in a structural way in two very interesting papers: [15] by Espinar

ad Mao, and [14] by Espinar, Farina and Mazet. The hyperbolic space can be compactified by its ideal

boundary ∂∞HN , and domains where a problem as (1.1) admits solutions can be studied in terms of

their trace on ∂∞HN . In order to give a rigorous definition of ∂∞HN , we say that two geodesics γ1(t)

and γ2(t) are asymptotic if there exists a constant c such that d(γ1(t), γ2(t)) < c for all t ≥ 0 where d
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stands for the distance in HN and c is a positive constant. Asymptotic is an equivalence relation on the

set of unit-speed half geodesics (i.e. geodesics considered only for t ∈ [0,+∞)). Each equivalence class

is called a point at infinity and we denote by ∂∞HN the set of points at infinity. It is well known that

∂∞HN is bijective to a unit sphere, i.e., ∂∞HN ≡ SN−1. Given a geodesic γ, the function

Bγ(x) = lim
t→+∞

[d(γ(t), x)− t]

is called the Busemann function at γ. The level sets (respectively super-level sets) of such function are

called horospheres (respectively horoballs). The ideal boundary of a horosphere (and a horoball) is just

one point in ∂∞HN , given by γ(+∞).

The main result about HN contained in [15] is the following: if Problem (1.1) has a bounded solution

in a domain Ω ⊂ HN and the boundary at infinity of Ω stays in an equator of SN−1 = ∂∞HN then the

domain must be symmetric with respect to the hyperplane whose boundary at infinity is such equator.

In particular:

• If the boundary at infinity is done by exactly two different points (i.e. the domain has two ends)

then the domain must be rotationally symmetric with respect to the axis given by the geodesic

that joins the two points.

• If the boundary at infinity is done by exactly one point, then the domain is a horoball.

The result for the case with two different points at infinity can be seen as the analogous to a result in

RN by Ros and the second author [35].

In [14] the authors consider Problem (1.1) in the case of domains Ω of HN diffeomorphic to the

complement of a geodesic ball or the complement of a horoball. They assume the following hypothesis

on the solution u and on the function f :

(H) there exists a positive constant C such that u(p) → C when d(p, ∂Ω) → +∞, and f is non-

increasing in an interval (C − ϵ, C) for some (small) ϵ.

Under such hypothesis, the two main results proved in [14] are:

• If Ω is the complement of a bounded open region with regular boundary, and Problem (1.1) has a

solution, then the domain must be the complement of a geodesic ball.

• If Ω is the complement of an open domain with regular boundary and only one point at infinity,

and Problem (1.1) has a solution, then the domain must be the complement of a horoball.

In [14,15] the authors suggest implicitly the equivalent of the BCN Conjecture, that can be stated in the

following problem: prove that, under some additional hypothesis on the function f or on the geometry

of the domain Ω, the existence of a bounded solution to Problem (1.1) implies that Ω must be a geodesic

ball, a horoball, a cylinder (with base a geodesic ball or a horoball), a half-space, or the complement

of one of them. In this sense, in [15] Espinar and Mao prove the BCN Conjecture in HN under the

hypothesis that the boundary at infinity of the domain is empty or done by only one point, while in [14]

the authors prove the BCN conjecture in H2 with the additional hypothesis (H).

The aim of this paper is to show that hypothesis (H) in [14] for the rigidity result on domains that

are the complement of a geodesic ball cannot be eliminated. In fact, we construct nontrivial exterior

domains which support a positive bounded solution of Problem (1.1) when f is the nonlinear Schrödinger

function. That is, here we consider the following problem
−∆u+ u− up = 0, u > 0 in Ω,

u = 0 on ∂Ω,
∂u
∂ν = const on ∂Ω,

(1.2)
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where Ω ⊂ HN with N ≥ 2 and 1 < p < (N + 2)/(N − 2) if N > 2 and 1 < p < +∞ if N = 2. We

construct nontrivial exterior domains Ω, obtained as perturbations of the complement of a big geodesic

ball, that support solutions to (1.2) converging to 0 when the distance to ∂Ω tends to infinity.

Let us mention that the study of the nonlinear Schrödinger equation in the hyperbolic space is mo-

tivated by the Grushin operators [3], Hardy-Sobolev-Mazy’s equations [10] and quantum mechanics [2].

There is a large amount of literature dealing with the study of existence, uniqueness and qualitative

properties of solutions to the nonlinear Schrödinger equation in the hyperbolic space, see for exam-

ple [2, 27–29] and references therein.

Statement of the results. In order to state precisely our result we need some notation. Fixing the

origin O in HN , we use the exponential map of HN centered at O, expO : RN → HN and given any

continuous function v : SN−1 → (0,∞), we define the domain

Bv = expO

({
x ∈ HN : 0 ≤ |x| < v

(
x

|x|

)})
.

and let Bcv be its complement in HN , where |x| is the geodesic distance of x to the origin (we will write

BR for the ball of radius R, i.e. Bv with v(x) ≡ R). We shall also use the coordinates in HN given by

the exponential map composed with polar coordinates in RN . In other words, we write:

X : [0,∞)× SN−1 → HN

X(r, θ) = expS(r θ).
(1.3)

Let G be a group of isometries acting on SN−1. We say that Ω ⊂ HN is G-symmetric if, working in

coordinates:

(r, θ) ∈ Ω ⇒ (r, g(θ)) ∈ Ω

for any g ∈ G. Through the paper we take α ∈ (0, 1) fixed. Define

H1
0,G(Ω) =

{
u ∈ H1

0 (Ω) : u(r, θ) = u(r, g(θ)), ∀g ∈ G
}
,

Ck,αG (Ω) =
{
u ∈ Ck,α(Ω) : u(r, θ) = u(r, g(θ)), ∀g ∈ G

}
Ck,αG (SN−1) =

{
u ∈ Ck,α(SN−1) : u = u ◦ g, ∀g ∈ G

}
.

Let Ck,αG,m
(
SN−1

)
be the set of functions in Ck,αG

(
SN−1

)
whose mean is 0. We assume that the group G

satisfies the following fundamental hypothesis:

(G1) Denoting by {µik}k∈N the eigenvalues of −∆SN−1 restricted to G-symmetric functions and by

mk their multiplicities, we require m1 odd and i1 >
(
2−N +

√
(N − 2)2 + 16

9 (N + 2)(N − 1)
)
/2.

We remark that when N = 2, 3 or 4 the condition is equivalent to i1 ≥ 2. So, in dimension 2 any

dihedral group satisfies (G1); while, in dimension 3, G can be taken as the group of isometries of the

tetrahedron, the octahedron or the icosahedron (see [34, Remark 2.2]). In dimension 4, G can be the

symmetry group of rotations of the hyper-icosahedron, for which i1 = 12 and m1 = 1 (see [36, Appendix

7.3]). For higher dimensions, we do not know if there exist groups satisfying (G1).

By the Krasnosel’skii Local Bifurcation Theorem [25], we obtain the following result.

Theorem 1.1. Let N ∈ N with N ≥ 2, 1 < p < (N + 2)/(N − 2) (p > 1 if N = 2). Let G be a

group of symmetries of SN−1 satisfying (G1). Then there exist R∗ > 0, a sequence of nonzero functions

vn ∈ C2,α
G,m

(
SN−1

)
converging to 0, and a sequence of positive real numbers Rn converging to R∗ such

4



that the overdetermined problem
−∆u+ u− up = 0, u > 0 in BcRn(1+vn)

,

u = 0 on ∂BRn(1+vn),
∂u
∂ν = const on ∂BRn(1+vn)

has a positive bounded solution u ∈ C2,α
G

(
BcRn(1+vn)

)
∩H1

0,G

(
BcRn(1+vn)

)
.

Theorem 1.1 is exactly the counterpart in HN of the homologous result in RN [34, Theorem 1.1],

but due to the hyperbolic space, we need a stronger condition for i1 than in the Euclidean space where

i1 ≥ 2 [34]. We will follow the same strategy of [34], but we will have to treat the aspects related to the

hyperbolic metric.

Organization of the paper. The outline of the paper is as follows. In Section 2 we study the

existence, uniqueness, non-degeneracy and asymptotic behavior of the radial solutions of the Dirichlet

problem with nonlinear Schrödinger equation in the exterior domain BcR ⊂ HN for N ≥ 2. After a

change of scale and considering the parameter λ = 1/R2, in Section 3 we introduce and study two

quadratic forms Qλ(ψ) and Q̃λ(ψ). In section 4, after solving the Dirichlet problem in domains of the

form BcR(1+v), we define the main operator of our problem, that turns to be the operator associating

to v the normal derivative at the boundary of the solution to the Dirichlet problem in BcR(1+v), and we

study the eigenvalues σk (Hλ) of its linearization Hλ. This will allow us to use the classical bifurcation

theory and in Section 5 we provide the proof of our main result.

2 The Dirichlet problem in the exterior of a ball in HN

For convenience of the reader, let’s first recall the fundamental definition of the hyperbolic space. For

x, y ∈ RN+1 with x = (x0, x1, . . . , xN ) and y = (y0, y1, . . . , yN ), define the Lorentz inner product on

RN+1 by

[x, y] = x0y0 −
N∑
i=1

xiyi.

The branch of hyperboloid given by{
x ∈ RN+1 : [x, x] = 1, x0 > 0

}
equipped with the metric induced by the Lorentz inner product on RN+1 is called the hyperbolic space

and denoted by HN . Fix the point O = (1, 0, ..., 0) as the origin of HN . We will use spherical coordinates

(r, ω) ∈ [0,+∞)×SN−1 centered at O. This means that if (x0, x
′) ∈ HN , x′ = (x1, x2, ..., xN ), we denote

by r the distance of (x0, x
′) to O and we will write

(x0, x
′) = (cosh r, ω sinh r) .

We see that

dx0 = sinh r dr, dx′ = ω cosh r dr + sinh r dω.

Then the metric induced on HN by the Lorenzian one on RN+1 is

dl2 = −dx20 + d(x′)2 = dr2 + sinh2 r dω2.

The Laplace-Beltrami operator ∆ on HN can then be written as

∂2r + (N − 1)
cosh r

sinh r
∂r +

1

sinh2 r
∆SN−1

5



where ∆SN−1 is the Laplace-Beltrami operator on SN−1. We refer the reader to the monographs [21,43]

for more details on the hyperbolic space.

The radial solution to the Dirichlet problem in the exterior of a ball. Consider the following

problem {
−∆w + w − wp = 0 in BcR,

w = 0 on ∂BR,
(2.1)

where p > 1. Our first task will be to show that there exists a unique radial solution w of (2.1), belonging

to H1(BcR), non degenerate among radial functions and with Morse index equal to 1. For this we will

use [28], where Morabito studies the existence, uniqueness and nondegeneracy of radial solutions of a

more general equation in annular domains of more general Riemannian manifolds. We observe that if w

is radial and belongs to H1(BcR) then it satisfies the following ODE:{
w′′ + (N − 1)C(r)

S(r)w
′ + wp − w = 0, r ∈ (R,+∞),

w(R) = 0 = limr→+∞ w(r),
(2.2)

where

S(r) = sinh(r) and C(r) = cosh(r).

In the notation of [28] this corresponds to R1 = R, R2 = +∞, ν = N − 1 and V (r) = −1. According

to [28], in order to obtain the existence, the uniqueness and the nondegeneracy of a solution w of (2.1)

we just need to study the derivative of the following function:

G(r) = −Sβ(r) + αSβ−2(r)
[
(α+ 2−N)S′2(r)− S′′(r)S(r)

]
,

where

α =
2(N − 1)

p+ 3
, β = α(p− 1).

A straightforward computation (that we do in detail) gives us the following:

Lemma 2.1. Assume that 1 < p < (N + 2)/(N − 2) (p > 1 if N = 2). Then either:

• G′(r) < 0 for r ∈ (R,+∞), or

• G′(R) > 0 and G′(r) changes sign only once on (R,+∞).

In both cases lim infr→+∞G′(r) < 0.

Proof. By the definition of G, we have that

G′(r) = −βSβ−1(r)S′(r) + α(β − 2)Sβ−3(r)S′(r)
[
(α+ 2−N)S′2(r)− S2(r)

]
+2αSβ−2(r) [(α+ 2−N)S′(r)S(r)− S′(r)S(r)]

= Sβ−1(r)S′(r)
[
2α(α+ 1−N)− β − α(β − 2) + α(β − 2)(α+ 2−N)S−2(r)S′2(r)

]
.

Since 1 < p < (N + 2)/(N − 2) (p > 1 if N = 2), we derive that

β − 2 = 2
(N − 2)p− (N + 2)

p+ 3
< 0.

When N = 2, we get that

G′(r) < Sβ−1(r)S′(r) [2α(α+ 1−N)− β − α(β − 2) + α(β − 2)(α+ 2−N)]

= Sβ−1(r)S′(r)β(α(α− 1)− 1) = −Sβ−1(r)S′(r)
2(p− 1)

p+ 3

(
1 +

2(p+ 1)

(p+ 3)2

)
< 0.
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Next we consider the case of N ≥ 3.

When N ≥ 3, we see that

α+ 2−N =
(2−N)(p+ 1) + 2

p+ 3
≤ 2− (p+ 1)

p+ 3
< 0.

Define

F (r) = 2α(α+ 1−N)− β − α(β − 2) + α(β − 2)(α+ 2−N)S−2(r)S′2(r).

Then we have that

F ′(r) = 2α(β − 2)(α+ 2−N)
C(r)

S(r)

(
1− C2(r)

S2(r)

)
< 0.

If G′(R) ≤ 0, we see that F (R) ≤ 0. Since F is strictly decreasing, F (r) < 0 on (R,+∞). Thus, we

have that G′(r) < 0 on (R,+∞). If G′(R) > 0, we have that F (R) > 0. We note that

lim
r→+∞

F (r) = β(α(α+ 1−N)− 1) = −2(N − 1)(p− 1)

p+ 3

(
2(N − 1)2(p+ 1)

(p+ 3)2
+ 1

)
< 0.

So F has at least one zero on (R,+∞). Since F is strictly decreasing, F has exactly one zero on (R,+∞).

Therefore, G′(r) changes sign only once on (R,+∞).

Finally, we study lim infr→+∞G′(r). We first study the limr→+∞ F (r). When N = 2, we have that

lim
r→+∞

F (r) = −2(p− 1)

p+ 3

(
1 +

2(p+ 1)

(p+ 3)2

)
< 0.

And for N ≥ 3, we have that

lim
r→+∞

F (r) = −2(N − 1)(p− 1)

p+ 3

(
2(N − 1)2(p+ 1)

(p+ 3)2
+ 1

)
< 0.

Note that

G′(r) = Sβ(r)
S′(r)

S(r)
F (r) and lim

r→+∞
Sβ(r)

S′(r)

S(r)
= +∞.

So, we reach that lim infr→+∞G′(r) = −∞ < 0, which is the desired conclusion.

In view of Lemma 2.1, by [28, Theorem 2.1], the problem (2.2) has a unique positive solution wR.

Considering wR as radial solution of the problem in BcR, we have that it is non-degenerate in the space

of H1
0,r (B

c
R), where

H1
0,r (B

c
R) =

{
z ∈ H1

0 (B
c
R) : z(x) = z(|x|) a.e. x ∈ BcR

}
.

We next derive a uniform decay rate of wR.

Lemma 2.2. Let γ =
(
N − 1 +

√
4 + (N − 1)2

)
/2. For any ε ∈ (0, γ), then there exists M > 0 such

that wR(r) ≤Me−r(γ−ε) for r large enough and limr→+∞ w′
R/wR = −γ.

Proof. Integrating the equation in (2.2) from r to +∞ and using the fact of wR ∈ H1(BcR), we obtain

that

SN−1(r)w′
R(r) =

∫ +∞

r

SN−1(τ) (wpR(τ)− wR(τ)) dτ.

Since wR(r) > 0 for any r > R, limr→+∞ wR(r) = 0 and p > 1, we can take r large enough such that∫ +∞

r

SN−1(τ) (wpR(τ)− wR(τ)) dτ ≤ 0.

7



It follows that w′
R(r) ≤ 0 for r large enough. Further, we have that

w′′
R(r) = −(N − 1)

S′(r)

S(r)
w′
R(r) + wR(r)− wpR(r) > 0

for r large enough. It follows that

w′
R(r) < 0

for r large enough. Indeed, if there exists some r0 large enough such that w′
R (r0) = 0, then we find that

0 ≥ lim
ε→0+

w′
R (r0 + ε)

ε
= w′′

R (r0) > 0,

which is a contradiction. We take R0 > R such that w′
R(r) < 0 for r > R0.

For any r > R0, set z = −w′
R/wR. Observe that z > 0. Let us prove that z is also bounded from

above.

We have:

z′ = −w
′′
R

wR
+
w′2
R

w2
R

= z2 − (N − 1)
S′

S
z + wp−1

R − 1.

Let us write:

z2 − (N − 1)
S′

S
z + wp−1

R − 1 =
z2

2
+ h(z),

where

h(z) :=
z2

2
− (N − 1)

S′

S
z + wp−1

R − 1.

We observe that

lim
r→+∞

(
(N − 1)2

S′2

S2
+ 2

(
1− wp−1

R

))
= 2 + (N − 1)2 > 0.

So there exists R1 ≥ R0 such that the discriminant of the second order polynome h is positive if r ≥ R1.

It follows that, if r > R1, the polynome h has exactly two zeros, and the larger one is

z0 := (N − 1)
S′

S
+

√
(N − 1)2

S′2

S2
+ 2

(
1− wp−1

R

)
,

which is clearly positive. Suppose now that z ≥ z0 for r in a certain interval of (R0,+∞). In this case

we have h(z) ≥ 0. It follows that

z′ ≥ z2

2
.

So z is stricly increasing and (
1

z(r)

)′

≤ −1

2
. (2.3)

Note that

lim
r→+∞

z0 = N − 1 +
√

2 + (N − 1)2 .

Thus, there exists R2 ≥ R1 such that

z0 < N +
√
2 + (N − 1)2 =: N∗

for r ≥ R2.

So, now suppose by contradiction that z is bigger than N∗ at some r ≥ R2. Since we can choose R2

larger, let us suppose that z(R2) ≥ N∗. Then, since z is strictly increasing in intervals where z ≥ z0, we

have that z is strictly increasing for r ≥ R2, so z ≥ N∗ for all r ≥ R2. Integrating (2.3) from R2 to r,

we find that ∫ r

R2

(
1

z(t)

)′

dt ≤ R2 − r

2
,

8



which means
1

z(r)
≤ 2− (r −R2) z (R2)

2z (R2)
.

Since z is positive for r ≥ R2, then it’s obvious that

z(r) ≥ 2z (R2)

2− (r −R2) z (R2)
,

which implies that z(r) would blow up as r → (2 +R2z (R2)) /z (R2), that is a value in (R2,+∞).

Due to the fact that z(r) is differentiable for any r > R0, this behavior is impossible and we have a

contradiction with our assumption z(R2) ≥ N∗.

It follows at once that 0 < z < N∗ for r ≥ R2 and then

0 ≤ lim inf
r→+∞

z ≤ lim sup
r→+∞

z ≤ N∗ .

Now, using the argument of [27, Lemma 3.4] with obvious changes, we can show that

lim inf
r→+∞

z = lim sup
r→+∞

z ,

and so z has a limit for r → +∞. Let γ = limr→+∞ z. Then by L’Hôspital’s rule, we have that

γ2 = lim
r→+∞

z2 = lim
r→+∞

w′′
R

wR
= lim
r→+∞

(
(N − 1)

S′

S
z + 1− wp−1

R

)
= 1 + (N − 1)γ.

It follows that

γ =
N − 1 +

√
4 + (N − 1)2

2
> 0.

For any ε ∈ (0, γ) and r large enough, we have that

−w
′
R

wR
≥ γ − ε.

It follows that

ln
1

wR
≥ (γ − ε)r + C

for some constant C and r large enough. Therefore, for some positive constant M , we obtain that

wR ≤Me−(γ−ε)r,

which is the desired conclusion.

Remark. In the previous proof we combine the methods of proving decay rate in RN of [30] and

HN [27]. In Euclidean space, if wR is bounded, wR/r → 0 which implies the existence of limr→+∞ z.

While, in the hyperbolic space, since S′/S → 1, the L’Hôspital rule used in the Euclidean space can not

be directly used here. This is also an essential difference between the hyperbolic space and the Euclidean

space. Of course, the existence of limr→+∞ z can also be obtained by using the method developed in [27].

Here we combine two methods to display the differences between two spaces.

Furthermore, the radial solution wR also has the following property.

Lemma 2.3. The function wR increases in the radius up to a certain maximum, and then it decreases

and converges to 0 at infinity.

9



Proof. Define

E(r) =
w′2
R(r)

2
+

∫ wR(r)

0

(sp − s) ds,

then

E′(r) = −(N − 1)w′2
R(r)

S′(r)

S(r)
≤ 0.

Since wR(R) = 0 = limr→+∞ wR(r), wR has at least one critical point. Let c be any critical point of

wR. One see that

E(c) =

∫ wR(c)

0

(sp − s) ds =
wp+1
R (c)

p+ 1
− w2

R(c)

2
.

In view of Lemma 2.2, one may see that limr→+∞E(r) = 0. It follows that E(r) ≥ 0. In particular,

E(c) ≥ 0. It follows that

wR(c) ≥
(
p+ 1

2

) 1
p−1

> 1.

So, the critical values of wR is greater than 1. We claim that the maximum point of wR is unique as in

the following Figure 1.

Figure 1: The behavior of the radial solution wR.

Suppose, by contradiction, that there exist c, d with c < d such that wR(c) = wR(d) = max[R,+∞) wR(r).

Since w′
R(c) = w′

R(d) = 0, we have that

E(c) = E(d).

The monotonicity of E implies that E(r) ≡ E(c) on [c, d]. So E′(r) ≡ 0 on [c, d]. Further, w′
R(r) ≡ 0 on

[c, d]. It follows from (2.2) that wR(r) ≡ 1 on [c, d], which contradicts the fact of any critical values of

wR is greater than 1. Finally, we show that wR has exactly one critical point. If it was not, there would

exist a point e such that w′
R(e) = 0, w′′

R(e) ≥ 0. By (2.2), we have that

(wpR − wR) (e) ≤ 0.

This implies that wR(e) ≤ 1, which again contradicts the fact of any critical values of wR is greater than

1 (see the following Figure 2).

Therefore, wR increases in the radius up to a certain maximum, and then it decreases and converges

to 0 at infinity.

In addition, we get the exact Morse index of wR as follows.

Lemma 2.4. The function wR has Morse index equal to 1.

Proof. For u ∈ H1
0,r (B

c
R), define the functional

I(u) =
1

2

∫
Bc

R

(
|∇u|2 + u2

)
dx− 1

p+ 1

∫
Bc

R

up+1
+ dx,

10



Figure 2: The cases for multiple critical points of wR.

where u+ = max{u, 0}. The unique solution wR is a critical point of I. It is standard to verify that

I has mountain pass geometry and satisfies the Palais-Smale compactness condition. Since wR is the

unique non-zero critical point of I(u), wR is the mountain pass critical point. So the Morse index

i (I, wR) ≤ 1 [22] where i (I, wR) is defined by

max
{
dimH : H ⊆ H1

0,r (B
c
R) , I

′′ (wR) (h, h) < 0,∀h ∈ H \ {0}
}
.

Observe that

I ′′ (wR) (h, h) =

∫
Bc

R

(
|∇h|2 + h2 − pwp−1

R h2
)
dx.

Choosing h = wR and using I ′ (wR)wR = 0, we get

I ′′ (wR) (wR, ) = −(p− 1)

∫
Bc

R

wp+1
R dx < 0.

So we get i (I, wR) = 1.

For any x ∈ B
c

1 ⊂ HN , let u(x) = w(Rx). Then u satisfies{
−λ∆u+ u− up = 0 in Bc1,

u = 0 on ∂B1,
(2.4)

where λ = 1/R2. From the properties of wR, we have the following conclusion.

Proposition 2.5. For any λ > 0, problem (2.4) possesses a unique radially symmetric C∞ solution

uλ, which increases in the radius up to a certain maximum, and then it decreases and converges to 0 at

infinity. Moreover, uλ is non-degenerate in the space H1
0,r (B

c
1) and has Morse index 1.

We use u̇λ to denote its derivative with respect to λ. Then from the relations of w and uλ we have

that

u̇λ(r) = −u′λ(r)
r

2R
λ−

3
2 = −u′λ(r)

r

2λ
, (2.5)

which will be used later. We regard (uλ, B
c
1) as the trivial solution pair of problem (1.2).

3 A preliminar tool: study of two quadratic forms

The main goal of the present paper is to find a nontrivial exterior domain which supports a positive

bounded solution of problem (1.2) by deforming the complement of the ball. To this end, we divide this

11



process into two steps. The first step aims to find a solution of the problem (2.4) on a perturbation

domain. After that we impose the Neumann condition on this solution by solving an operator equation.

In order to solve (2.4) on a perturbation domain, we consider its linearized eigenvalue problem near

the radial solution uλ {
Lλz = τz in Bc1,

z = 0 on ∂B1,
(3.1)

where Lλ := −λ∆ + I − pup−1
λ . From Proposition 2.5 we know that in H1

0,r (B
c
1) there is a unique

negative eigenvalue τ0 to problem (3.1). Let zλ be the positive eigenfunction corresponding to τ0 with

∥zλ∥L2(Bc
1)

= 1.

Define the functional Qλ : H1
0,G (Bc1) → R associated to the above linearized eigenvalue problem

Qλ (ψ) =

∫
Bc

1

(
λ|∇ψ|2 + ψ2 − pup−1

λ ψ2
)
dx.

Then we have that

Proposition 3.1. If λ ≤ −τ0S2(1)/µi1 , there exists ψ ∈ H1
0,G (Bc1) such that

∫
Bc

1
ψzλ dx = 0 and

Qλ(ψ) ≤ 0.

Proof. Let ϕ be an eigenfunction corresponding to µi1 with ∥ϕ∥L2(SN−1) = 1. Set ψ := zλ(r)ϕ(θ).

Then there holds that
∫
Bc

1
ψzλ dx = 0. From the definition of Qλ we can obtain that

Qλ(ψ) =

∫
Bc

1

(
λ|∇ψ|2 + ψ2 − pup−1

λ ψ2
)
dx

=

∫
Bc

1

(
λ|∇z|2ϕ2 + λ

1

S2
|∇ϕ|2z2λ + ψ2 − pup−1

λ ψ2

)
dx

=

∫
Bc

1

(
λ|∇zλ|2 + z2λ − pup−1

λ z2λ

)
ϕ2 dx+

∫
Bc

1

(
λ

1

S2
|∇ϕ|2z2λ

)
dx

=

∫ +∞

1

SN−1(r)
(
λz′2λ + z2λ − pup−1

λ z2λ

)
dr

∫
SN−1

ϕ2 dθ

+λ

∫ +∞

1

SN−3(r)z2λ dr

∫
SN−1

|∇ϕ|2 dθ

= τ0 + λ

∫ +∞

1

SN−3(r)z2λ dr

∫
SN−1

|∇ϕ|2 dθ

≤ τ0 +
µi1λ

S2(1)
,

where µi1 = i1(i1 +N − 2). If λ ≤ −τ0S2(1)/µi1 , then we obtain that Qλ(ψ) ≤ 0.

Define

Λ0 = sup

{
λ > 0 : Qλ (ψ) ≤ 0 for some ψ ∈ H1

0,G (Bc1) \ {0},
∫
Bc

1

ψzλ dx = 0

}
.

It follows from Proposition 3.1 that Λ0 ≥ −τ0S2(1)/µi1 > 0 and Proposition 3.1 implies that Qλ can be

negative if λ is small. The next conclusion shows that Qλ must be positive if λ is large.

Proposition 3.2. There exists M > Λ0 such that for any λ > M , Qλ(ψ) > 0 for any ψ ∈ E0 \ {0}
where E0 =

{
ψ ∈ H1

0,G (Bc1) :
∫
Bc

1
ψzλ dx = 0

}
.

We will prove this result as a corollary of a stronger result that we will need to use also later in our

paper. More precisely, we consider the following more general functional on H1
G (Bc1)

Q̃λ (ψ) =

∫
Bc

1

(
λ|∇ψ|2 + ψ2 − pup−1

λ ψ2
)
dx− λ(N − 1)

e2 + 1

e2 − 1

∫
∂Bc

1

ψ2 dsx.

12



Observe that

Q̃λ
∣∣
H1

0,G(Bc
1)

= Qλ,

so Proposition 3.2 is a corollary of the following result:

Proposition 3.3. There exists M > Λ0 such that for any λ > M , Q̃λ(ψ) > 0 for any ψ ∈ E \{0} where

E =
{
ψ ∈ H1

G (Bc1) :
∫
∂B1

ψ dsx = 0,
∫
Bc

1
ψzλ dx = 0

}
.

The main objective of this section is to prove this Proposition 3.3. Although we adopt the idea

of [34, Proposition 5.3], there are some new difficulties related to the hyperbolic space.

For ψ ∈ H1
G (BcR), define the functional

Q̂R(ψ) =

∫
Bc

R

(
|∇ψ|2 + ψ2 − pup−1

R ψ2
)
dx− (N − 1)(e2 + 1)

R(e2 − 1)

∫
∂Bc

R

ψ2 dsx.

According to the relations of uR and uλ with λ = 1/R2, we can see that

Q̂R(ψ) = RN Q̃λ(ψ).

So it is sufficient to show Q̂R(ψ) is positive on ER for R is sufficiently small, where

ER =

{
ψ ∈ H1

G (BcR) :

∫
∂BR

ψ dsx = 0,

∫
∂Bc

R

ψzR dsx = 0

}

with zR(x) = zλ (x/R). For this purpose, we first introduce some important results [18] of the Schrödinger

equation on the whole space HN as follows.

Lemma 3.4. The following Schrödinger equation

−∆u+ u = up, u > 0 in HN ,

possesses a unique radially symmetric C∞ solution U , which decreases and exponentially decays. More-

over, U is non-degenerate in the space H1
r

(
HN
)
and has Morse index 1.

It’s worth noting that the nondegeneracy and radial Morse index one in Lemma 3.4 are available

in [18, Theorem 3.1, Theorem 3.3].

Lemma 3.5. Let un be the unique positive radial solution of (2.1) for R = Rn with limn→+∞Rn = 0,

and zn = zRn
/ ∥zRn

∥. Let us consider those functions extended to HN by 0. Then un → U and zn → Z

in H1
(
HN
)
, where U is the radial ground state solution of the problem

−∆U + U = Up, U > 0 in HN ,

and Z is the normalized positive eigenfunction corresponding to the negative eigenvalue of the linearized

problem.

Proof. Since the argument is the same as [34] except that using the compact embedding results

of [23, Theorem 1.1] or [4, Lemma 4.2] and the uniqueness of [2, 40,44], we omit it here.

Now we first give a useful inequality, which would be used later.

Lemma 3.6. For any g ∈ C∞
0 (R), N ≥ 2 and λ, r > 0,

SN−2(r)g2(r) ≤ 1

λ

∫ +∞

r

g′2(s)SN−1(s) ds+ (2−N + λ)

∫ +∞

r

g2(s)SN−3(s) ds,

where S(s) = sinh(s).
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Proof. Observe that

SN−2(r)g2(r) = (2−N)

∫ +∞

r

SN−3(s)S′(s)g2(s) ds− 2

∫ +∞

r

SN−2(s)g(s)g′(s) ds

≤ (2−N)

∫ +∞

r

SN−3(s)g2(s) ds− 2

∫ +∞

r

SN−2(s)g(s)g′(s) ds.

Using the Cauchy-Schwarz inequality as that of [34, Lemma 7.2] we can get that

2

∫ +∞

r

SN−2(s) |g(s)g′(s)| ds ≤ λ

∫ +∞

r

SN−3(s)g2(s) ds+
1

λ

∫ +∞

r

g′2(s)SN−1(s) ds,

which implies the desired conclusion.

We will need the previous Lemma with λ = 4(N−1)
3 , that is

4(N − 1)

3
S(r)N−2g2(r) ≤

∫ +∞

r

g′2(s)SN−1(s) ds+
4(N − 1)(N + 2)

9

∫ +∞

r

g2(s)SN−3(s) ds .

Using the above lemma we can get the following inequality.

Lemma 3.7. If the group of symmetries G satisfies (G1), then

1

S(R)

∫
∂BR

ψ2 dsx ≤ 3

4(N − 1)

∫
Bc

R

|∇ψ|2 dx

for any ψ ∈ H1
G (BcR) with

∫
∂BR

ψ dsx = 0 and
∫
Bc

R
ψzR dx = 0.

Proof. By the Fourier expansion we have that

ψ(r, θ) =

+∞∑
k=1

ψk(r)ϕk(θ),

where ϕk are eigenfunctions of −∆SN−1 with G-symmetry corresponding to the eigenvalues µik . Suppose

that G satisfies (G1). Then∫
Bc

R

|∇ (ψk(r)ϕk(θ))|2 drdθ =

∫ +∞

R

(
(ψ′
k)

2
SN−1(r) + µikψ

2
kS

N−3(r)
)
dr

∫
∂B1

ϕ2k dθ

≥
∫ +∞

R

(
(ψ′
k)

2
SN−1(r) + µi1ψ

2
kS

N−3(r)
)
dr

∫
∂B1

ϕ2k dθ

≥
∫ +∞

R

(
(ψ′
k)

2
SN−1(r) +

4(N + 2)(N − 1)

9
ψ2
kS

N−3(r)

)
dr

∫
∂B1

ϕ2k dθ

≥ 4(N − 1)

3
S(R)N−2ψ2

k(r)

∫
∂B1

ϕ2k dθ (3.2)

where we have used the assumption i1 >
2−N+

√
(N−2)2+ 16

9 (N+2)(N−1)

2 , which implies that

µi1 = i1 (i1 +N − 2) ≥ 4(N + 2)(N − 1)

9
,

and for the last inequality we used the previous Lemma. Note that∫
∂BR

|ψk(r)ϕk(θ)|2 dsx = SN−1(R)ψ2
k(R)

∫
∂B1

ϕ2k(θ) dθ.

This, combining with (3.2), gives that

1

S(R)

∫
∂BR

|ψk(r)ϕk(θ)|2 dsx ≤ 3

4(N − 1)

∫
Bc

R

|∇ (ψk(r)ϕk(θ))|2 drdθ,
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and the result is proved.

Now we are ready to present the argument of the proof of Proposition 3.3.

Proof of Proposition 3.3. Take Rn → 0, denote Bn = BRn , un = uRn and zn = zRn , and de-

fine:

χn = inf

{
Q̂Rn

(ψ,ψ) : ψ ∈ H1
G(B

c
n),

∫
∂Bn

ψdsx = 0,

∫
Bc

n

ψzn dx = 0,

∫
Bc

n

|ψ|2 dx = 1

}
.

Assume, by contradiction, that χn ≤ 0. Arguing as [34, Proposition 5.3], χn is attained. Let

χn = Q̂Rn
(ψn) .

Then we have that ψn is a solution of

−∆ψ + ψ − pup−1
n ψ = χnψ in Bcn.

We see that∫
Bc

n

(
|∇ψn|2 + ψ2

n − pup−1
n ψ2

n

)
dx = χn

∫
Bc

n

ψ2
n dx+

(N − 1)
(
e2 + 1

)
Rn (e2 − 1)

∫
∂Bn

ψ2
n dsx.

Since ψn is bounded, up to a subsequence, ψn ⇀ ψ0 ∈ H1
G (Bcr) for any r > 0, where ψ0 ∈ H1

(
HN
)
. By

Lemma 3.1 and the argument of [34, Proposition 5.3], we can derive that∫
Bc

n

pup−1
n ψ2

n dx→ p

∫
Hn

Up−1ψ2
0 dx.

Now we estimate 1
Rn

∫
∂Bn

ψ2
n dsx. Note that

1

Rn

∫
∂Bn

ψ2
n dsx =

1

S (Rn)

∫
∂Bn

ψ2
n dsx +

(
1

Rn
− 1

S (Rn)

)∫
∂Bn

ψ2
n dsx.

We have
(

1
Rn

− 1
S(Rn)

)
→ 0 when Rn → 0. Since ∥ψn∥ = 1 and the embedding H1 (Bcn) ↪→ L2 (∂Bn) is

continuous ( [23] or [1]), we see that
∫
∂Bn

ψ2
n dsx is bounded. Therefore, we have that

lim
n→+∞

(
1

Rn
− 1

S (Rn)

)∫
∂Bn

ψ2
n dsx = 0.

So, for any ε > 0, there exists an N0 > 0 such that

(N − 1)
(
e2 + 1

)
e2 − 1

(
1

Rn
− 1

S (Rn)

)∫
∂Bn

ψ2
n dsx < ε

for any n > N0. It follows from Lemma 3.7 that if G satisfies (G1) then

1

S (Rn)

∫
∂Bn

ψ2
n dsx ≤ 3

4(N − 1)

∫
Bc

n

|∇ψn(x)|2 dx ≤ 3

4(N − 1)
.

So ∫
Bc

n

(
|∇ψn|2 + ψ2

n − pup−1
n ψ2

n

)
dx− χn

∫
Bc

n

ψ2
n dx ≤

3
(
e2 + 1

)
4 (e2 − 1)

+ ε (3.3)

for n large enough. It follows from χn ≤ 0 that

1− p

∫
Bc

n

up−1
n ψ2

n dx ≤
3
(
e2 + 1

)
4 (e2 − 1)

+ ε < 1.
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if n is large enough. For the previous inequalities we used that e2 ∈ (7, 8). As Rn → 0, we find that

p

∫
Hn

Up−1ψ2
0 dx > 0,

which implies that ψ0 ̸≡ 0. It follows from (3.3) that

χn ≥
1− p

∫
Bc

n
up−1
n ψ2

n dx− 3(e2+1)
4(e2−1) − ε∫

Bc
n
ψ2
n dx

.

Since

lim inf
n→+∞

∫
Bc

n

ψ2
n dx ≥

∫
Hn

ψ2
0 dx > 0,

it’s obvious that

χn ≥ −
p
∫
Hn U

p−1ψ2
0 dx∫

Hn ψ2
0 dx

.

Thus χn is bounded and there exists χ0 ≤ 0 such that limn→+∞ χn = χ0. Observe that ψn is the weak

solution

−∆ψ + ψ − pup−1
n ψ = χnψ in Bcn.

So ψ0 is a nontrivial weak solution of

−∆ψ + ψ − pUp−1ψ = χ0ψ in HN \ {0}.

Since ψ0 ∈ H1
(
HN
)
, the singularity is removable. So, it is a weak solution in the whole HN . Hence, we

get that

∥ψ0∥2 = p

∫
HN

Up−1ψ2
0 dx+

∫
HN

χ0ψ
2
0 dx.

Let ψ̃0(r) =
∫
SN−1 ψ0 dθ. Then we have that

−∆ψ̃0 + ψ̃0 − pUp−1ψ̃0 = χ0ψ̃0 in (0,+∞).

The only possibility is ψ̃0 = kZ, k ̸= 0. By the same arguments as in Step 3 of [34, Proposition 5.3], we

conclude that

0 =

∫
Bc

n

ψnzn dx→
∫
HN

ψ0Z dx =

∫ +∞

0

SN−1ψ̃0Z dr = k

∫
HN

Z2 dx ̸= 0.

which yields the desired contradiction.

Remark. From the above argument we understand that the condition of i1 of hypothesis (G1) is to

guarantee the inequality in the form of Lemma 3.7, that is to show

3
(
e2 + 1

)
4 (e2 − 1)

< 1

in the previous proof. This is a difference with respect to the Euclidean space and is due to the nature

of the hyperbolic space.

In addition, the behavior of the functional Q̃λ(ψ) near Λ0 can be also established as follows.

Proposition 3.8. Q̃Λ0
(ψ) < 0 for some ψ ∈ E.

Proof. Since the proof is the same as that of [34, Lemma 5.4] with obvious changes, we omit it here.

Combining Proposition 3.3 with Proposition 3.8, we have that Q̃λ can be negative for λ near Λ0, but

is positive if λ is large enough. This provides a possibility for finding the zero point of Q̃λ with respect

to λ. We end this section by showing an existence result which will be used later.
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Lemma 3.9. For λ > Λ0, Lλ is an isomorphism. Given v ∈ H
1/2
G

(
SN−1

)
, there exists a unique solution

ψv ∈ H1
G (Bc1) of the problem {

−λ∆ψ + ψ − pup−1
λ ψ = 0 in Bc1,

ψ = v on ∂B1.
(3.4)

In addition,
∫
Bc

1
ψvzλ dx = 0 and

∫
∂B1

ψv

∂ν dsx = 0.

Proof. Since the proof is the same as that of [34, Lemma 3.5, Lemma 4.2] with obvious changes, we

omit it here.

Remark. Using the spherical coordinates (r, ω) ∈ [0,+∞) × SN−1, the equation (3.4) can be writ-

ten as {
−λ
(
∂2r + (N − 1) cosh rsinh r ∂r +

1
sinh2 r

∆SN−1

)
ψ + ψ − pup−1

λ ψ = 0 in Ω,

ψ = v on ∂Ω,

where Ω = (0,+∞)× SN−1 ⊂ RN . Hence the standard Schauder elliptic estimates [19] is valid for (3.4).

In particular, if v ∈ C2,α
G,m (∂B1), one has ψv ∈ C2,α

G (Bc1).

4 Normal derivative operator and its linearization.

For λ > Λ0 and each v ∈ C2,α
G,m

(
SN−1

)
whose norm is sufficient small, we consider the following

perturbation problem {
−λ∆u+ u− up = 0 in Bc1+v,

u = 0 on ∂Bc1+v.
(4.1)

By the nondegeneracy of Lλ, using an argument similar to that of [34, Proposition 4.1], we have the

following existence of a solution to problem (4.1).

Proposition 4.1. For any λ > Λ0 and all v ∈ C2,α
G,m

(
SN−1

)
whose norm is sufficiently small, there

exists a unique positive solution u = u(λ, v) ∈ C2,α
(
Bc1+v

)
∩H1

0,G

(
Bc1+v

)
to (4.1). Moreover, u depends

smoothly on v, λ (in the sense that considering a regular diffeomorphism mapping Bc1 into Bc1+v and

considering the pullback of u on Bc1, then the map (λ, v) → u is smooth). In particular, u = uλ when

v ≡ 0.

We introduce the operator F : (Λ0,+∞)× C2,α
G,m

(
SN−1

)
→ C1,α

G,m

(
SN−1

)
defined by

F (λ, v) =
1

Vol (∂B1+v)

∫
∂B1+v

∂u(λ, v)

∂ν
dvol− ∂u(λ, v)

∂ν
,

where ν denotes the unit normal vector field to ∂B1+v pointing to the interior of B1+v. Since ∂ruλ(1) is

a constant, then F (λ, 0) = 0 for any λ > Λ0. Therefore, finding the nontrivial domains emanating from

Bc1 ⊂ HN such that problem (1.1) has a bounded solution is equivalent to study the nontrivial solutions

of F (λ, v) = 0 bifurcating from F (λ, 0) = 0. It follows from the properties of u(λ, v) that F is C1.

We introduce the operator

Hλ(v) =
∂ψv
∂ν

∣∣∣∣
∂B1

− (N − 1)
e2 + 1

e2 − 1
v, (4.2)

where ψv is given by Lemma 3.9. As in [34, Proposition 4.3] we can show that the linearization of the

operator F with respect to v at point (λ, 0) is CHλ where C = u′λ(1) ̸= 0. The only difference is that

here

u′′λ(1) = −(N − 1)
C(1)

S(1)
u′λ(1) .
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By Schauder elliptic estimates [19, Theorem 8.16, Theorem 8.13, Theorem 6.6], we can obtain that

supBc
1
|ψv| ≤ sup∂Bc

1
|v| and ∥ψ∥C2,α

G (Bc
1)

≤M∥v∥C2,α
G,m(SN−1) for some M > 0. It follows that

∥Hλ(v)∥C1,α
G,m(SN−1) ≤M1∥v∥C2,α

G,m(SN−1)

for some M1 > 0. So, the operator

Hλ : C2,α
G,m

(
SN−1

)
−→ C1,α

G,m

(
SN−1

)
is bounded. Furthermore, we also have the:

Proposition 4.2. The operator Hλ : C2,α
G,m

(
SN−1

)
−→ C1,α

G,m

(
SN−1

)
is a self-adjoint, first order elliptic

operator.

Proof. Since Hλ is the sum of the Dirichlet-to-Neumann operator for −λ∆+1−pup−1
λ and a constant

times the identity, Hλ is a first order elliptic operator. So it is enough to prove it is self-adjoint. Let ψ1

and ψ2 be the solution of problem (3.4) with v = v1 and v = v2. Then we have that∫
SN−1

(Hλ (v1) v2 −Hλ (v2) v1) dθ =

∫
SN−1

(
∂ψ1

∂ν
v2 −

∂ψ2

∂ν
v1

)
dθ.

We multiply the equation of ψ1 by ψ2 and the equation of ψ2 by ψ1, integrating by parts, we obtain that∫
SN−1

(
∂ψ1

∂ν
v2 −

∂ψ2

∂ν
v1

)
dθ = 0.

So ∫
SN−1

(Hλ (v1) v2 −Hλ (v2) v1) dθ = 0,

which verifies Hλ is self-adjoint.

The necessary condition to bifurcate is that Hλ degenerates. So we will find the value of λ such that

Hλ is degenerate. For any v ∈ C2,α
G,m

(
SN−1

)
, by virtue of the Fourier expansion with respect to spherical

harmonics [20, Theorem 3.2.11], v can be written as

v =

∞∑
k=1

mk∑
j=1

aik,jζik,j(θ),

where ζik,j (normalized to 1 in the L2-norm) is an eigenfunction corresponding to µik , being

span {ζik,1, . . . , ζik,mk
}

the associate eigenspace. We need now to study the eigenvalues of Hλ.

Proposition 4.3. For any λ > Λ0, Hλ possesses a sequence of eigenvalues {σik(λ)}k∈N such that

σi1(λ) < · · · < σik(λ) < · · · .

The eigenfunction corresponding to σik(λ) is
∑mk

j=1 aik,jζik,j(θ) with
∑mk

j=1 a
2
ik,j

̸= 0.

Proof. Let ϕ0(r, θ) = u′λ(r)v (θ) with r = |x|. We can verify that

∆u′λ = (N − 1)

(
S′2

S2
− 1

)
u′λ +

u′λ − pup−1
λ u′λ

λ
.
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So we have that

∆ϕ0 = v∆u′λ + u′λ∆v

=

(
(N − 1)

(
S′2

S2
− 1

)
u′λ +

u′λ − pup−1
λ u′λ

λ

)
v + u′λ∆v

=

∞∑
k=1

mk∑
j=1

aik,jζik,j(θ)

(
(N − 1)

(
S′2

S2
− 1

)
u′λ +

u′λ − pup−1
λ u′λ

λ

)

− 1

S2

∞∑
k=1

mk∑
j=1

aik,jµikζik,j(θ)u
′
λ

=

∞∑
k=1

mk∑
j=1

aik,ju
′
λζik,j(θ)

(
(N − 1)

(
S′2

S2
− 1

)
+

1− pup−1
λ

λ
− µik
S2

)
.

It follows that

−λ∆ϕ0 + ϕ0 − pup−1
λ ϕ0 =

∞∑
k=1

mk∑
j=1

aik,ju
′
λζik,j(θ)λ

(
µik
S2

− (N − 1)

(
S′2

S2
− 1

))
.

Consider the following problem −λ∆Ψ+Ψ− pup−1
λ Ψ =

∞∑
k=1

mk∑
j=1

aik,ju
′
λζik,j(θ)λ

(
µik
S2

− (N − 1)

(
S′2

S2
− 1

))
in Bc1,

Ψ = 0 on ∂B1.

By the Riesz Theorem, the above problem has a unique solution Ψ in H1(Bc1). Then we see that

Ψ(r, θ) = ϕ0(r, θ)− ψvu
′
λ(1). (4.3)

Moreover, we have that

∂rΨ(1, θ) = u′′λ(1)v − u′λ(1)∂rψv(1, θ).

Note that u′′λ(1) = −(N − 1)u′λ(1)C(1)/S(1). We have that

∂rΨ(1, θ) = −(N − 1)
e2 + 1

e2 − 1
u′λ(1)v−u′λ(1)∂rψv(1, θ) = u′λ(1)

[
∂νψv|∂B1

− (N − 1)
e2 + 1

e2 − 1
v

]
= u′λ(1)Hλv

because on ∂B1 we have ∂ν = −∂r. Let Vk be the space spanned by the functions ζik,1(θ), . . ., ζik,mk
(θ).

Since

Hλv =
∂rΨ(1, θ)

u′λ(1)
,

we deduce that Hλ preserves Vk for any k. It follows that

Hλ

mk∑
j=1

aik,jζik,j(θ)

 = σik(λ)

mk∑
j=1

aik,jζik,j(θ),

where σik(λ) are the eigenvalues of Hλ, and
∑mk

j=1 aik,jζik,j(θ) with
∑mk

j=1 a
2
ik,j

̸= 0 are the eigenfunctions

associated to σik(λ). So we have that

Hλ

 n∑
k=1

mk∑
j=1

aik,jζik,j(θ)

 =

n∑
k=1

σik(λ)

mk∑
j=1

aik,jζik,j(θ).

Since Hλ is bounded, we have that

Hλ(v) = lim
n→+∞

Hλ

 n∑
k=1

mk∑
j=1

aik,jζik,j(θ)

 =

+∞∑
k=1

σik(λ)

mk∑
j=1

aik,jζik,j(θ). (4.4)
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Next we study the properties of σik(λ). With the help of (4.3), we can write Ψ(r, θ) as

Ψ(r, θ) =

∞∑
k=1

mk∑
j=1

bik(r)aik,jζik,j(θ),

where bk is the continuous solution on [1,+∞) of

−λ
(
∂2r + (N − 1)

C(r)

S(r)
∂r

)
b+ λ

µik
S2(r)

b+
(
1− pup−1

λ

)
b = λu′λ

(
µik
S2

− (N − 1)

(
S′2

S2
− 1

))
with bik(1) = 0 and limr→+∞ bik(r) = 0. Hence, we conclude that

u′λ(1)σik(λ) = ∂rbik(1)

for any k ∈ N. Combining (3.4), (4.2) with (4.4) we derive that

ψv =

∞∑
k=1

mk∑
j=1

cik(r)aik,jζik,j(θ),

where cik is the continuous solution on [1,+∞) of

−λ
(
∂2r + (N − 1)

C(r)

S(r)
∂r

)
c+ λ

µik
S2(r)

c+
(
1− pup−1

λ

)
c = 0 (4.5)

with cik(1) = 1 and limr→+∞ cik(r) = 0. This implies that

σik(λ) = −
(
c′ik(1) + (N − 1)

e2 + 1

e2 − 1

)
for k ≥ 1.

When k = 1, let c̃(r, θ) = ci1(r)ϕ(θ) with θ ∈ SN−1, where ϕ is a normalized eigenfunction corre-

sponding to µi1 . So, using (4.5), we have that

∆c̃ = S1−N (r)
(
SN−1(r)c′i1

)′
ϕ(θ) +

ci1
S2

∆ϕ(θ) =
1− pup−1

λ

λ
c̃,

where the first equal sign is obtained by applying [11, Formala (31) in Chapter II]. Multiplying c̃ on

both sides and integrating it by part, we get that

−
∫
∂B1

c∇c̃ · ν dsx +
∫
Bc

1

|∇c̃|2 dx+

∫
Bc

1

1− pup−1
λ

λ
c̃2 dx = 0.

It follows that

−c′i1(1) =
∫ ∞

1

SN−1

(
c′2i1 +

1− pup−1
λ

λ
c2i1

)
dr + µi1

∫ ∞

1

SN−3c2i1 dr.

By definition, it’s known that

Q̃λ (ψ) = Qλ (ψ)− λ(N − 1)
e2 + 1

e2 − 1

∫
∂B1

ψ2 dsx

and we define

E =

{
ϕ ∈ H1

G (Bc1) :

∫
∂B1

ϕdsx = 0,

∫
Bc

1

ϕzλ dx = 0

}
with

H1
G (Bc1) =

{
u ∈ H1 (Bc1) : u = u ◦ g,∀g ∈ G

}
.
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For any ψ ∈ E with
∫
∂B1

ψ2 dsx = 1, there exist ψk (k ≥ 1) and aik,j (j ∈ {1, . . . ,mk}) with
∑mk

j=1 a
2
ik,j

=

1 for any k such that

ψ(r, θ) =

+∞∑
k=1

ψk(r)

mk∑
j=1

aik,jζik,j(θ).

Then we have that

1

λ
Q̃λ (ψ) =

+∞∑
k=1

∫ ∞

1

SN−1

(
ψ′2
ik
+

1− pup−1
λ

λ
ψ2
ik

)
dr +

+∞∑
k=1

µik

∫ ∞

1

SN−3ψ2
ik
dr

−(N − 1)
e2 + 1

e2 − 1

≥
+∞∑
k=1

∫ ∞

1

SN−1

(
ψ′2
ik
+

1− pup−1
λ

λ
ψ2
ik

)
dr + µi1

+∞∑
k=1

∫ ∞

1

SN−3ψ2
ik
dr

−(N − 1)
e2 + 1

e2 − 1

≥ 1

λ
Q̃λ

(
ϕ̃
)
,

where

ϕ̃(r, θ) =

+∞∑
k=1

ψk(r)

m1∑
j=1

ai1,jζi1,j(θ)

and
∫
∂B1

ϕ̃2 dsx = 1. Therefore, the infimum of Q̃λ(ϕ)/λ in E with
∫
∂B1

ϕ2 dsx = 1 is attained. Define

σ1 (Hλ) := inf

{
1

λ
Q̃λ(ϕ) : ϕ ∈ E,

∫
∂B1

ϕ2 dsx = 1

}
.

We next to investigate the relations of σ1 (Hλ) and σi1(λ).

The above argument implies that there exists ϕ(r, θ) = υ(r)
∑m1

j=1 ai1,jζi1,j(θ) with
∑m1

j=1 a
2
i1,j

= 1

such that ϕ ∈ E,
∫
∂B1

ϕ2 dsx = 1 and

σ1 (Hλ) =
1

λ
Q̃λ(ϕ).

It follows that

σ1 (Hλ) =

∫ ∞

1

SN−1

(
υ′2 +

1− pup−1
λ

λ
υ2

)
dr + µi1

∫ ∞

1

SN−3υ2 dr − (N − 1)
e2 + 1

e2 − 1
,

which is the functional of{
−λ
(
∂2r +

(N−1)C(r)
S(r) ∂r

)
υ + λ

µi1

S2(r)υ +
(
1− pup−1

λ

)
υ = 0,

υ(1) = 1.
(4.6)

So υ is a weak solution of (4.6). By Schauder elliptic estimates, υ is also the classical solution of (4.6).

By Lemma 2.5 we deduce that υ(r) ≡ ci1(r). So we get that

σ1 (Hλ) = −c′i1(1)− (N − 1)
e2 + 1

e2 − 1
= σi1(λ).

Therefore, we obtain that σi1(λ) is the same as σ1 (Hλ). So the eigenspace corresponding to σi1(λ) is

just V1. We next study the high eigenvalues.

For ψ ∈ E, we call ψ ∈ Ek if there exist ψik and aik,j such that

ψ(r, θ) = ψik(r)

mk∑
j=1

aik,jζik,j(θ).
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Set

Eck−1 := E \ ∪k−1
i=1Ei.

We will explore the infimum of Q̃λ(ϕ)/λ in Eck−1 with
∫
∂B1

ϕ2 dS = 1. For a function ϕ on [1,+∞) we

define

Qλ,k(ϕ) =

∫ ∞

1

SN−1

(
ϕ′2 +

1− pup−1
λ

λ
ϕ2

)
dr + µik

∫ ∞

1

SN−3ϕ2 dr − (N − 1)
e2 + 1

e2 − 1
.

Since µik is increasing with respect to k, Qλ,k(ϕ) is increasing with respect to k. For any ψ ∈ Eck−1 with∫
∂B1

ψ2 dsx = 1, there exist ψl (l ≥ k) and ail,j (j ∈ {1, . . . ,ml}) with
∑ml

j=1 a
2
il,j

= 1 for any l ≥ k such

that

ψ(r, θ) =

+∞∑
l=k

ψl(r)

ml∑
j=1

ail,jζil,j(θ).

Then we have that

1

λ
Q̃λ (ψ) =

+∞∑
l=k

∫ ∞

1

SN−1

(
ψ′2
l +

1− pup−1
λ

λ
ψ2
l

)
dr +

+∞∑
l=k

µil

∫ ∞

1

SN−3ψ2
il
dr

−(N − 1)
e2 + 1

e2 − 1

≥
+∞∑
l=k

∫ ∞

1

SN−1

(
ψ′2
l +

1− pup−1
λ

λ
ψ2
l

)
dr + µik

+∞∑
i=l

∫ ∞

1

SN−3ψ2
l dr

−(N − 1)
e2 + 1

e2 − 1

≥ 1

λ
Q̃λ

(
ϕ̃
)
,

where

ϕ̃(r, θ) =

+∞∑
l=k

ψl(r)

mk∑
j=1

aik,jζik,j(θ) ∈ Ek

and
∫
∂B1

ϕ̃2 dsx = 1. Therefore, the infimum is attained in Ek. Hence we can set

σk (Hλ) := inf

{
1

λ
Q̃λ(ϕ) : ϕ ∈ Eck−1,

∫
∂B1

ϕ2 dsx = 1

}
.

There exists ϕ(r, θ) = υ(r)
∑mk

j=1 aik,jζik,j(θ) with
∑mk

j=1 a
2
ik,j

= 1 such that ϕ ∈ Eck−1,
∫
∂B1

ϕ2 dsx = 1

and

σk (Hλ) =
1

λ
Q̃λ(ϕ).

It follows that

σk (Hλ) =

∫ ∞

1

SN−1

(
υ′2 +

1− pup−1
λ

λ
υ2

)
dr + µik

∫ ∞

1

SN−3υ2 dr − (N − 1)
e2 + 1

e2 − 1
,

which is the functional of the following problem{
−λ
(
∂2r +

(N−1)S′

S ∂r

)
υ + λ

µik

S2(r)υ +
(
1− pup−1

λ

)
υ = 0,

υ(1) = 1.

By the uniqueness we deduce that υ(r) ≡ cik(r). So we get that

σk (Hλ) = −c′ik(1)− (N − 1)
e2 + 1

e2 − 1
= σik(λ).
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Since E ⊋ Ec1 ⊋ · · · ⊋ Eck ⊋ · · · and σk (Hλ) is is attained in Ek, we have that

σ1 (Hλ) < σ2 (Hλ) < · · · < σk (Hλ) < · · · .

It follows that

σi1 (λ) < σi2 (λ) < · · · < σik (λ) < · · · ,

which is the desired conclusion.

We write σ(λ) as σi1(λ) for simplicity. Proposition 3.3 implies that σ(λ) is positive for λ large enough

and Proposition 3.8 implies that σ (Λ0) < 0. It follows from (2.5) that uλ is continuous with respect to

λ. Then the definitions of Q̃λ and Qλ imply that σ(λ) is continuous. So, σ(λ) has at least one zero. We

use Λ∗ to denote the biggest zero of σ(λ) such that σ is negative in a small neighborhood on the left.

Clearly, one see that Λ∗ > Λ0. Take Λ2 > Λ∗ such that σ(λ) > 0 for any λ ≥ Λ2.

In view of Proposition 4.3, we have that σik (Λ
∗) > 0 for any k > 1. Further we obtain the following

result.

Proposition 4.4. For any λ > Λ0 and k ∈ N, σik(λ) is continuous and possesses at least one zero Λ∗
k

with Λ∗ := Λ∗
1 > Λ∗

2 > · · · > Λ∗
k > · · · > Λ0.

Proof. The case k = 1 has been done. For k > 1, let ϕ(θ) be a normalized eigenfunction corresponding

to µik and ψ(r, θ) = uλ(r)ϕ(θ). Similar to Proposition 3.1, we get that

Qλ(ψ) ≤ 0

for λ ≤ −τ0S2(1)/µik ≤ −τ0S2(1)/µi1 . Then as that of [34, Lemma 5.4] with obvious changes we have

that σik (Λ0) < 0. Similar to the case of k = 1, σik(λ) is also continuous. Since σik (Λ
∗) > 0 for any

k > 1, σik(λ) has at least one zero. We use Λ∗
k the maximum zero of σik such that σik is negative in the

small neighborhood on the left of Λ∗
k. The monotonicity of zeros with respect k can be deduced from

Proposition 4.3.

Remark 4.5. From Proposition 4.4 we see that σik(λ) with any k ≥ 2 is nonnegative in a small

neighborhood on the left of Λ∗. Thus, Hλ has a unique negative eigenvalue in a small neighborhood on

the left of Λ∗.

5 Bifurcation and proof the main result

Then similar to [34, Lemma 6.1], there exists ε > 0 such that for any λ ∈ (Λ∗ − ε,+∞), the

operator Hλ + Id is invertible.

Proof of Theorem 1.1. Take Λ1 ∈ (Λ∗ − ε,Λ∗) and define G : [Λ1,Λ2]× V → W by

G(λ, v) =
F (λ, v)

u′λ(1)
+ v,

where V ⊂ C2,α
G,m

(
SN−1

)
and W ⊂ C1,α

G,m

(
SN−1

)
are open neighborhoods of the 0 function. Since the

operator Hλ + Id is invertible for λ ∈ (Λ∗ − ε,+∞), DvG(λ, 0) is an isomorphism for all λ ∈ [Λ1,Λ2].

By using the Inverse Function Theorem, we can further restrict V and W so that G(λ, ·) is invertible for
all λ ∈ [Λ1,Λ2]. Let R(λ,w) = w − w̃, where w̃ is such that G(λ, w̃) = w. Then R : [Λ1,Λ2]×W → W
has the form of identity plus a compact operator. Clearly F (λ, v) = 0 is equivalent to R(λ, v) = 0

for all λ ∈ [Λ1,Λ2]. We see that DwR(λ, 0)w = µw is equivalent to Hλ(w) = µw/(1 − µ) and for

λ > Λ1 we have µ < 1. It follows that DwR(Λ
∗, 0) and HΛ∗ have the same kernel space. Since m1 is

odd, the dimension of the kernel space of DwR (Λ∗, 0) is odd. Then, in view of Remark 4.5, as that

of [34, Theorem 6.2], applying the Krasnosel’skii Local Bifurcation Theorem [25] or [24, Theorem 3.2 in

Chapter II] to F (λ, v) = 0 , we can conclude the desired bifurcation result.
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