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ON THE KAUFFMAN BRACKET SKEIN MODULE OF (S! x §?) # (S! x §?)
RHEA PALAK BAKSHI, SEONGJEONG KIM, AND XIAO WANG

ABSTRACT. Determining the structure of the Kauffman bracket skein module of all 3-manifolds
over the ring of Laurent polynomials Z[A*!] is a big open problem in skein theory. Very little is
known about the skein module of non-prime manifolds over this ring. In this paper, we compute
the Kauffman bracket skein module of the 3-manifold (S! x S?) # (S! x S?) over the ring Z[A*!].
We do this by analysing the submodule of handle sliding relations, for which we provide a suitable
basis. Along the way we also compute the Kauffman bracket skein module of (S! x $2) # (S! x D?).
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1. INTRODUCTION
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Skein modules are 3-manifold invariants that generalise the skein theory of polynomial link
invariants in S to any arbitrary 3-manifold. They were introduced independently by Przytycki
[Prz1] and Turaev [Tur] in the late 1980’s, and have since become indispensable in bridging the
fields of quantum topology, knot theory, algebraic geometry, hyperbolic geometry, and physics.
The Kauffman bracket skein module, which serves as a generalisation of the Kauffman bracket
polynomial to arbitrary 3-manifolds, is conceivably the best understood skein module of all. In
this paper, we determine the Kauffman bracket skein module of (S! x S?) # (S! x 5%). One mo-
tivation for our work comes from constructing traces, such as the Yang-Mills measure, on the
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Kauffman bracket skein module of a thickened surface. In [BFK], the Yang-Mills measure is de-
fined away from roots of unity using the Kauffman bracket skein module, henceforth known
simply as the skein module, of #,(S! x S?) over the field C. To construct other traces on the
skein module of a surface at roots of unity, it is imperative to know the structure of the skein
module of #;(S! x S?) over Z[A*!]. Knowing the traces on a skein module will aid us in the
construction of the 3-manifold invariants that may be defined as traces. For example, the Yang-
Mills measure may be used to define the Turaev-Viro invariant at roots of unity. We expect that
our computation of the skein module of (S!xS?) # (S!xS?) will prove to be effective in this regard.

From the perspective of algebraic geometry, it is known that, modulo the nilradical, the Kauff-
man bracket skein module of an oriented 3-manifold over C[A*!'] with A = —1 has an algebra
structure that is isomorphic to the coordinate ring of the SL(2,C) character variety of the fun-
damental group of that manifold [Bul, PS]. Furthermore, if the underlying algebraic set X (M)
of the SL(2, C) character variety of the fundamental group of a closed oriented 3-manifold M is
infinite, then the skein module of M is wild, that is, it is not tame [DKS].! For example, the under-
lying algebraic set X (M) of the SL(2, C) character variety of 71 (S! x S?) is infinite, and hence, the
Kauffman bracket skein module of S! X S? is not tame as has been proved by Hoste and Przytycki
in [HP2]. In fact, until now, S! x S? is the only closed 3-manifold with infinite X (M) whose skein
module has been computed. The manifold (S! x S?) # (S! x §?) is the next example of the skein
module of a closed 3-manifold with this property (see [GM]).

Furthermore, the resolution of Witten’s finiteness conjecture for Kauffman bracket skein mod-
ules in [G]S] implies that over Q(A), the Kauffman bracket skein module of any closed oriented
3-manifold is always finite dimensional. However, over Z[A*!], the structure of the skein mod-
ule is more complicated. For example, the skein module of S* X S? is infinitely generated over
Z[A*!] [HP2]. Recently, the first author [Bak] disproved a conjecture posited by Marché (see
[DW]), which stated that the skein module of any closed oriented 3-manifold can be decomposed
into free and torsion modules. The counterexample to this conjecture was given by the skein
module of the connected sum of two copies of the real projective space (see [Mro]). This em-
phasises the fact that save for a handful of manifolds, the structure of the skein module is not as
well understood over Z[A*!] as it is over Q(A). To better understand the structure of the skein
module of oriented 3-manifolds over Z[A*!], we study the skein module of the connected sums
of 3-manifolds. Thus, with these motivations, we compute the skein module of (S'x5?%) # (51 x5?).

The paper is organised as follows. In Section 2 we define absolute and relative Kauffman
bracket skein modules and discuss some of their properties. We include a description of the mod-
ule using generators and relations. We then compute the skein module of (S x %) # (S x §%) in
Section 3. Our technique employs the relative Kauffman bracket skein module in determining the
complete set of handle sliding relations. We include all our calculations towards this computa-
tion in the Appendix. Furthermore, in Section 4 we provide an obstruction for the decomposition
of the skein module of (S! x $%) # (S! x S?) into the direct sum of free and (AF — A™%)-torsion
modules, for each k > 1 and in Section 5, we discuss future directions.

[A*!']-module is said to be tame if it is a direct sum of cyclic Z[A*!]-modules and it does not contain
1

1
A
Z[A*']/(¢2n) as a submodule, for at least one odd N, where ¢,y is the 2N-th cyclotomic polynomial.
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2. BASIC DEFINITIONS AND PROPERTIES

We begin with introducing the Kauffman bracket skein module and the relative Kauffman
bracket skein module.

Definition 2.1. Let M be an oriented 3-manifold, R a commutative ring with unity, and A € R
a fixed invertible element. Consider the set of ambient isotopy classes of unoriented framed links
(including the empty link @) in M, which we denote by LT, and the free R-module with basis L1,
denoted by RLT. Let S;?‘Oﬁ be the submodule of RLT" generated by the following expressions:

(1) the Kauffman bracket skein expression: L, — ALy — A"' L, and

(2) the trivial component expression: L LI Q + (A% + A7?)L,
where O denotes the trivial framed knot in M and the skein triple (L, Ly, L») denotes three framed
links in M, which are identical except in a small 3-ball in M where they differ as illustrated in Figure

X X )

[S¢]

FIGURE 2.1. Skein triple for the Kauffman bracket skein module.

The Kauffman bracket skein module of M is defined as the quotient:
RLI

sub ’
Sz,oo

SZ,OO (M5 R) A) =

Computations of the Kauffman bracket skein module for various 3-manifolds have been carried
out over several rings, such as Z[A*'], Q(A), or a ring R in which A — 1 is invertible for all k. In
our paper, we work over Z[A*!] and use the notation S, (M) in this case. The existence of the
Kauffman bracket polynomial can be interpreted in the language of skein modules as follows.

Example 2.2. [Kau] S;(S®) = Z[A*!]@. More precisely, @ is the basis element of the module
andL = [L)@ = (—A? — A™%)( L )@, where [L] is the unreduced Kauffman bracket polynomial of a
framed link L. Moreover, Sy »(B®) = S, (R%) = Z[A*!]@.

We can also define a relative version of the Kauffman bracket skein module for oriented 3-
manifolds that have framed (or marked) points on their boundaries (see [Prz1, Prz3]).
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Definition 2.3. Let (M, dM) be an oriented 3-manifold, {x;}?" be a set of 2n oriented framed” points
on M, and R be a commutative ring with unity with a fixed invertible element A. Let LT (2n) be
the set of all relative framed links in (M, M) considered up to ambient isotopy keeping oM fixed,
such that L N dM = 0L = {x;}?". Consider the submodule S;’ff;(Zn) of the free R-module RLT (2n)
generated by the Kauffman bracket skein expressions. Then the relative Kauffman bracket skein
module, henceforth known as the relative skein module, of M is the quotient:

RLF(2n
S (M, {x;}"; R A) = ﬁb—()
S5 (2n)
We will use the notation S (M, {x;}5") when R = Z[A*!]. The following results about the
skein module and its relative version of the product of an oriented surface with the unit interval
are pertinent to our work.

Theorem 2.4. [Prz1, Prz3]

Let 3. be an oriented surface in which each link is equipped with blackboard framing and let I
denote the unit interval [0, 1]. Then Sz (2 X I; R, A) is a free R-module whose basis consists of the
empty link @ and simple closed curves in 3. that have no trivial components. This applies in particular
to handlebodies, since Hy, = Yo n41 X I, where Hy is a handlebody of genus n and Xy, denotes a genus
g surface with b boundary components.

The following example discusses the skein module of the thickened annulus.

Example 2.5. S;o(Z02 X I; R, A) is free and infinitely generated by the curves {x'}°, where x
denotes the homotopically nontrivial simple closed curve on the annulus and x° denotes the empty
link @. Note that, Sg)oo(sl X DZ;R, A) = 82,00(20,2 X I; R, A)

A result similar to Theorem 2.4 also holds for relative skein modules.

Theorem 2.6. [Prz3]

Let S be an oriented surface, where 9% # 0, and let {x;}*" be 2n oriented framed points centred at
9% X {%}. Then S 00(2 X I, {x;}2"; R, A) is a free R-module whose basis is composed of relative links®
in% X {%} without trivial components.

The skein module of a surface times an interval may be equipped with an algebra structure for
which the multiplication operation is defined as follows.

Definition 2.7. Consider two framed links L, and L, in X X 1. Define their product - by placing L,
overL, inX X1, thatis, L;-L, = Ly ULy such that L; C X X (%, 1) andL, € £x(0,1). The empty link
@ serves as the multiplicative identity. This multiplication endows the skein module of a thickened
surface X X I with a natural algebra structure. The Kauffman bracket skein module equipped with
this algebra structure is called the Kauffman bracket skein algebra.

We denote the Kauffman bracket skein algebra, henceforth known simply as the skein algebra,
by S¥(3;R, A). This new notation emphasises the fact that the skein algebra depends on the
surface and its product structure. For brevity, we use the notation S*2(X) when R = Z[A*!].

2A framed point in @M is an interval in M. Thus, a relative framed link intersects M at framed points.
SRelative links in ¥ are families of properly embedded arcs and closed curves in 3 x {%}
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Remark 2.8. Sz (2 X I, {x; f”; R, A) is a bimodule over the algebra Salg(Z; R, A), which contains
the ring R. Let Ly be a relative framed link in ¥ X I and L, be a framed link in ¥ X I. Then, L, - L,
is defined by placing Ly above Ly, that is, L; C X X (%, 1) and L, C X X (0, %) Similarly, L, - Ly is
defined by placing Ly over Ly, that is, L, C ¥ X (%, 1) andL; C 2 X (0,% )

We now state some properties of the skein module required for proving our main results.

Theorem 2.9. [Prz3]

(1) Leti : M < N be an orientation preserving embedding of 3-manifolds. This yields a ho-
momorphism i, : Sp0(M;R,A) — Sy00(N; R, A) of skein modules. This correspondence
leads to a functor from the category of 3-manifolds and orientation preserving embeddings
(up to ambient isotopy) to the category of R-modules with a specified invertible element A € R.

(2) Let M = M, U M, be the disjoint union of oriented 3-manifolds M; and M. Then

So00(M;R,A) = Sp00(Mi; R, A) ®R Spc0(Ma; R, A).

(3) (The Universal Coefficient Property) Let R and R’ be commutative rings with unity and
r : R — R’ be a homomorphism. Then the identity map on LI induces the following
isomorphism of R’ (and R) modules:

7: S0 (M;R,A) @R R — Sy (M; R, r(A)).

The following theorem determines how the Kauffman bracket skein module behaves under
handle addition, thereby giving its presentation in terms of generators and relations.

Theorem 2.10. [Prz3, HP1]

(1) If N is obtained from M by adding a 3-handle to M and i : M — N is the associated
embedding, then the induced homomorphism i, : Sy o (M; R, A) — S3.0(N; R, A) is an iso-
morphism.

(2) (Handle Sliding Lemma) Let (M, oM) be a 3-manifold with boundary and y be a simple
closed curve on 0M. Additionally, let N = M, be the 3-manifold obtained from M by adding
a 2-handle along y and i : M < N be the associated embedding. Then the induced homo-
morphism iy : Spe0(M; R, A) — S300(N; R, A) is an epimorphism. Furthermore, the kernel
of i, is generated by the relations yielded by 2-handle slidings. In particular, ifo;n is a set
of framed links in M that generates S, o (M; R, A), then Sy (N; R, A) = Sp o (M; R, A)/ T,
where J is the submodule of Sy o (M; R, A) generated by the expressions L — sl,(L). Here

Le .Egen and sl, (L) is obtained from L by sliding it along y.

The handle sliding lemma can be generalised to the case where a manifold is obtained by
attaching more than one 2-handle to the 3-manifold M. The following result by McLendon states
this precisely.

Proposition 2.11. [McL]

Let (M,oM) be a 3-manifold with boundary and f and n be disjoint simple closed curves in
oM. Glue two 2-handles to M, one each along the curves  and n, and denote the resultant 3-
manifold by N. If ; is the submodule of Sz (M;R, A) generated by handle slides along  and
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> is the submodule of Sz (M;R, A) generated by handle slides along n, then S;(N;R, A) =
So.00(M; R, A) [ (T1 + T2).

Thus, Theorem 2.10.1, the handle sliding lemma, and Proposition 2.11 together lead to the
following result.

Theorem 2.12. [Prz3]

Let M be a compact oriented 3-manifold. Then M is obtained from a genus m handlebody H,, by
adding 2- and 3-handles to it and the generators of Sz (M; R, A) are generators of Sy.co(Hm; R, A),
while the relations of Sy« (M; R, A) are yielded by 2-handle slidings.

The handle sliding lemma and Theorem 2.12 reduce the problem of computing the skein module
of any compact oriented 3-manifold to that of determining all the 2-handle sliding relations. We
now prove the following small result about how the Kauffman bracket skein module behaves
under 0-handle addition.

Proposition 2.13. Let N be a 3-manifold obtained by adding a 0-handle to M and i : M <— N be
the associated embedding. Then S; o (N; R, A) = Sz00(M; R, A) ®g R.

Proof. Gluing a 0-handle to oM is the same as taking the disjoint union of M with the 3-ball
B®. Thus, from Theorem 2.9.2, we get that Sy (N; R, A) = Sp0(M; R, A) ®r Sz.0(B* R, A). An
application of Example 2.2 gives us the result.

O

We remark that there is no definitive result for the skein module under 1-handle addition. For
example, gluing a 1-handle to a 3-ball results in a solid torus. Their skein modules are discussed
in Examples 2.2 and 2.5 and should be compared. In the next section we compute the Kauffman
bracket skein module of (S x S?) # (S! x S?).

3. THE KAUFFMAN BRACKET SKEIN MODULE OF (S! X §%) # (S! x §?)

Let f and 1 be two simple closed curves in the boundary of the genus two handlebody, H,, as
illustrated in Figure 3.1. Glue a 2-handle along each of these curves and then cap off the holes
with two 3-handles. The resultant 3-manifold is (S* x S?) # (S! X $2). From Theorems 2.10.1 and
2.10.2, it follows that the natural embedding i : H, < (S xS?) # (S! x§?) yields the epimorphism
i 1 Spco(Hz) — Sp00((S? X §%) # (S! x 5%)) of skein modules. Let J; and J; be the submod-
ules of S, (H>) generated by the handle sliding relations obtained from 2-handle sliding along
B and 7, respectively. From Theorems 2.11 and 2.12 we get that Sy, ((S! X S?) # (5! x §?)) =
So.00(H2) [ (J1 + J2). Thus, our main problem reduces to determining the submodules 7 and %.

Note that, H, = %3X]I. Since all framed links in (S' x5?) # (S! X S?) have representatives in H,,
framed links in (S x $%) # (S! x $%) may be presented by link diagrams on 3 3; see Theorem 2.4.
We illustrate the curves  and 7 as line segments in X 3; see Figure 3.2b. Thus, we first describe
the skein module and algebra of 35 X I.

3.1. The skein module of X3 X I. From Theorem 2.4 we obtain the following result about the
skein module of X3 X I.
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2-handle

2-handle

(S x S?) # (S' x §?) =

H, = 20’3 X I

FIGURE 3.1. The 3-manifold (S! x $?) # (S! x $?) is obtained by gluing a 2-handle
each to 0H; along the curves f and 7.

Theorem 3.1. [Prz1, Prz3]
S2.00(203 X 1) is a free and infinitely generated Z[A*']-module whose standard basis consists of
monomials of the form {a} a]aé‘},]bo, where ay, a;, and as represent the homotopically nontrivial

0,00
curves on X3 as illustrated in Figure 3.2a. The empty link is represented by a;a,as.

Note that the set {S;(a1)S;(a2)Sk(a3)}; k>0 also forms a basis for Sy« (Z93xI). Here, S, denotes
the Chebyshev polynomials of the second kind, which satisfy the recurrence relation Sy (x) =
xS4(x) — Sq-1(x), with the initial conditions So(x) = 1 and S;(x) = x. We also have the following
result due to Bullock and Przytycki about the skein algebra of % .

Theorem 3.2. [BuPr]
S¥8(33) is a commutative algebra and is isomorphic to Z[A*'][ay, ay, a3].

(a) The generators of S%€% . (B) Projection of (S! x $?) # (S? X S?) onto %3.
FiGURE 3.2.

Henceforth, we will use the notation a;, a;, and as for the boundary parallel curves inter-
changeably with the boundary components they surround. We first compute the submodule 7,
of 82,00 (Hz). The submodule J; may be obtained symmetrically.

3.2. Handle sliding relations from relative skein modules. We appeal to relative Kauffman
bracket skein modules to compute the submodule J; of handle sliding relations. Consider the
two marked points u and v, such that they lie on the simple closed curve f in dH; and they divide

the curve f into two curves f; and f, (see Figure 3.3).
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FIGURE 3.3. Marked points u and v on the simple closed curve f in 0H, that
divide it into curves f; and f;.

Consider any relative curve a in (Hy;u,v). Now, handle slidings in (H;)g take place locally in
the neighbourhood of the curve . Consider fixed tangents at the points u and v and let the rela-
tive curve a approach these points along the tangents. For every relative curve «, handle sliding
in (H,)p replaces the curve a U ff; with the curve a U f;. This gives the handle sliding relation,
aUpB, = aUp;. By introducing the Z[ A*!]-linear homomorphism @ : Sy o (Hz; 4, 0) — Sy (Ha),
defined by w(a) = a U By — a U B, we see that (S, (Hz;u,0)) = J1. Hence, the image of any
basis of Sz (Haz;u,v) generates J;. See Figure 3.4 for a visual explanation. We note that this
method of describing 2-handle sliding relations was pioneered by Bullock and Lo Faro in [BuLo].
See also [BLP].

a VU fs aVU B

FIGURE 3.4. llustration of w(a).

We emphasise that the submodule 7, of handle sliding relations that correspond to the 2-handle
glued to 0H, along the curve 5 may be obtained in a symmetric manner. We now discuss a basis
of the relative skein module of (Ho; u, v).

3.3. Basis of the relative skein module of (H;u,v). Consider ¥,3 with marked points u and
v on its boundary as illustrated in Figure 3.5.

Proposition 3.3. Any relative curve connecting the pointsu and v is of the form c ,, k,m € Z. The
curves cx., for smallk and m are illustrated in Figure 3.6.*

4The mapping class group Mod"* of the twice punctured disc is isomorphic to the braid group on two strands, which
is isomorphic to Z. Furthermore, Mod*(2¢3) = PB, X Z X Z, where PB, is the pure braid group on two strands,
which is again isomorphic to Z. Hence, Mod* (2g3) = Z X Z x Z.
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Uu

© O

FIGURE 3.5. Marked points u and v on 9% 3, where u lies on the boundary
component as and v lies on the boundary component a;.

@@@
Goleo)

FIGURE 3.6. Relative curvesin (Zo3 X I;u,0).

Co,—2

C-11

Note that the boundary curve a; multiplicatively commutes with c ,,, for all k and m, while
the boundary curves a; and a3 do not commute with any c . Thus, from Theorem 2.6, Remark
2.8, and Proposition 3.3 we get the following result.

Corollary 3.4. The elements ck,Si(az), i € Z* U {0} form a basis for Sy o0 (Hz; u, ).

3.4. Generators of the submodule 7;. From Corollary 3.4 it follows that ; is generated by
w(cm,nalz‘) = a)(cm,n)alzc. To find the generators of 7, let us consider C(m, n) := w(cp,,) for all
m,n € Z. We have the following three cases:

(1) myn >0,

2)m=>1,n< -1,

(3) remaining cases.
Case I: C(m,n) form,n > 0.
For m,n > 0, C(m,n) = w(cmn) = ¢mn YU P2 — cmn U P1. As an example, C(2, 1) is illustrated in
Figure 3.7. Since cz; U f; has a negative kink and cz; U f; has a positive kink, we obtain two
diagrams without kinks with coefficients —A™> and —A3, respectively. Let us denote the resultant
diagrams without kinks by N (2, 1) and P(2, 1), respectively. In general, C(m,n) = w(cyn) can be
written as the linear combination

C(m,n) = —A>P(m,n) + A°N(m,n),m,n > 0,

9
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_A3 + A_3 .

P(2,1) N(2,1)
FiGURE 3.7. Illustration of C(2, 1).

C(2,1) = w(cz1)

where N(m, n) and P(m, n) are obtained from c,,, U f; and c,, U B2, respectively, by removing
kinks as described in Figure 3.8.

: Ag. " ‘

P(m, n) N(m,n)

C(mn) = o

FiGure 3.8. Illustration of C(m, n).

Our goal is to find closed formulae for P(m,n) and N(m,n), which we achieve through the
following series of lemmas and corollaries. Their proofs will be provided in the Appendix. Since
the diagram for N (m, n) is the mirror image of the diagram for P(m, n), it is sufficient to find the
formula for P(m, n). We obtain the following lemma for P(m, n).

Lemma 3.5. There exists a sequence PP(m,n), m,n > 0 such that
P(m,n) = A™" 1PP(m,n) — A™"°PP(m — 2, n),
satisfying the following relations:
PP(0,0) 1, PP(1,0) = ay, PP(0,1) = a3, PP(1,1) = ayas,
PP(m,0) = PP(m-—1,0)a; — PP(m—-2,0), m > 2,

10
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PP(m,1) = PP(m,0)as+A *PP(m —1,0)a, + A"*PP(m —2,1), m > 2, and
PP(m,n) = PP(m,n—1)az—PP(m,n—2),m > 0,n > 2.
Since N(m, n) is the mirror image of P(m, n), the equality N(m, n)(A) = P(m,n)(A™!) follows
and we obtain the following lemma.
Lemma 3.6. There exists a sequence NN (m,n), m,n > 0 such that
N(mn) =A™ "™ INN(m,n) — A" "™ NN(m - 2,n),

satisfying the following relations:
NN(0,0) = 1, NN(1,0) = a;, NN(0,1) = a3, NN(1,1) = ajas,
NN(m,0) = NN(m-1,0)a;— NN(m-2,0),m > 2,
NN(m,1) = NN(m,0)as + A2NN(m —1,0)ay + A*NN(m —-2,1),m > 2, and
NN(m,n) = NN(mn—-1)az— NN(m,n—2),m > 0,n > 2.

Therefore, we obtain

C(m,n) = A™™2pp(m,n) — A™"2PP(m —2,n) — A" " 2NN (m,n) + A" ™2NN(m — 2,n).

Notice that PP(m,n) and NN (m, n) satisfy the Chebyshev recurrence relation in the variable
as. From this observation we get the following lemma.

Lemma 3.7. The sequence PP(m, n) in Lemma 3.5 satisfies
PP(m,n) = PP(m, 1)Sp-1(as) — PP(m, 0)S,—2(as),

where Sy(as) is the Chebyshev polynomial of the second kind satisfying

S-2(az) = -1, 5_1(a3) = 0,8(as) = 1, Si(as) = as,

Sn(as) = Sp-1(as)as — Sy—z(as) forn > 2.

Analogously, the sequence NN (m, n) in Lemma 3.6 satisfies

NN(m,n) = NN(m,1)S,_1(a3) — NN(m,0)S,_»(as).

Since NN(m,0) and PP(m,0) have the same recurrence relation and initial conditions, we

obtain PP(m,0) = NN(m,0) = S,,(a;) for m > 0, where S,,(a;) is the Chebyshev polynomial of
the second kind in the variable a;. From the equalities

PP(m,1) = PP(m,0)as + A"*PP(m — 1,0)ay + A~*PP(m — 2,1),
&  PP(m,1) —A™*PP(m —2,1) = PP(m,0)as + A"2PP(m — 1,0)as, m > 2
and
NN(m,1) = NN(m,0)as + A’NN(m - 1,0)a, + A*NN(m - 2, 1),
& NN(m1)-A'NN(m-21)=NN(m,0)as + A’NN(m —1,0)az, m > 2,
we can prove the following statement.

Lemma 3.8. Form,n > 0,
C(m’ n) = (_Am+n+2 +A_m_n_2)sm(al)sn(a3) +
+(_Am+n + A_m_n)sm—l(al)sn—l(a?))az +

11
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+H(=A™TTE L AT S, 5(a1)Sn-2(a3),
where Sp,(ay) is the Chebyshev polynomial of the second kind satisfying

S2(a1) = -1, S.(a1) = 0,8 (a1) = 1, Si(a1) = ai,
Sm(a1) = Sm-1(a)ar — Sm-2(a1) form = 2,

and S, (as) is the Chebyshev polynomial of the second kind satisfying
S2(az) = -1, 5-4(a3) = 0,8(as) = 1, Si(as) = as,

Sn(as) = Sp-1(as)as — S,—z(as) forn > 2.

Case II: C(m, —n) for m,n > 1.

For mn > 1, C(m,—n) = w(cm-n) = Cm-n Y P2 — cm—n Y P1. Since ¢, U B1 and c;—p U P2
each have both a negative and a positive kink, we obtain two diagrams without any kinks and
coefficients. We denote them by N(m, —n) and P(m, —n), respectively. Hence, we obtain

C(m,—n) = P(m,—n) - N(m,—n),m,n > 1,

as illustrated in Figure 3.9.

C(m,—n) =

F1GURE 3.9. Illustration of C(m, —n).

Analogous to the previous case, we obtain the following series of lemmas.

Lemma 3.9. There exists a sequence {PP(m, —n)}, n>1 such that

P(m,—n) = A" " 1PP(m, —n) — A" " °PP(m — 2, —n),

satisfying
PP(1,-1) = 0,
PP(m,—1) = A*PP(m,1) — A’PP(m,0)as,m > 2,
PP(m,-2) = PP(m,—1)as+A*PP(m,0),m > 1, and

PP(m,-n) = PP(m,-n+1)as —PP(m,—n+2),m > 1,n > 3.

Since N(m, —n) is the mirror image of P(m, —n) we obtain the following lemma.

12
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Lemma 3.10. There exists a sequence {NN(m, —n)}n,>1 such that
NN(m,—n) = A”™™INN(m, —n) — A" NN (m — 2, —n),
satisfying
NN(1,-1) = 0,
NN(m,-1) = ANN(m,1) —ANN(m,0)as,m > 2,
NN(m,-2) = NN(m,—1)as+A>NN(m,0),m > 1, and
NN(m,-n) = NN(m,-n+1)az— NN(m,-n+2),m > 1,n > 3.
Lemma 3.11. The sequence PP(m, —n) in Lemma 3.9 satisfies
PP(m, —n) Sn—2(as)PP(m, =2) — Sp_3(a3)PP(m, —1)
= A’PP(m, 1)S,-1(as) — A’PP(m,0)S,(as),

where Sy, (as) is the Chebyshev polynomial of the second kind satisfying
So(as) = 1, Si(as) = as,
Sn(as) = Sn-1(as)as — Sn-2(as).
Analogously, the sequence NN (m, —n) in Lemma 3.10 satisfies
NN(m,n) = Sy(as)NN(m,-2) = Sy_3(as)NN(m, 1)
= ASNN(m, 1)S,—1(as) —ANN(m,0)S,(as).
Lemma 3.12. Forallm,n > 1,
C(m,—n) = —(=A"""+ A7""7)S, (a1)Sn-2(as)
—(=A""+ AT S 1 (a1)Sp-1(as)az
—(=ATTTE 4 AT S, 2(a1)Sn(as),
where S, (a1) is the Chebyshev polynomial of the second kind satisfying

S-2(a1) = -1, S-1(a1) = 0,5(as) = 1, Si(a1) = ay,
Sm(a1) = Sm-1(a1)ar — Sm-2(a1) form > 2,

and S, (as) is the Chebyshev polynomial of the second kind satisfying
S-2(as) = -1, S-1(as) = 0,5(as) = 1, Si(as) = as,

Sn(as) = Sp-1(as)as — Sp—2(as) forn > 2.
From Lemmas 3.8 and 3.12 we obtain the following theorem.
Theorem 3.13. Form e NU {0} andn € Z,
C(m,n)Sy(az) = (=A™ + A7 "2)S,,(a1)Sq(as)Sq(az)
+ (AT AT So1(a1) Sne1(a3) Sqrr (a2)
+ (=A™ + AT S 1(a1)Sn-1(a3)Sq-1(az)
+ (AT AT o (a1)Sn—2(a3)Sq(a2),
where Sp,(a1) and S, (ay) are the Chebyshev polynomials of the second kind satisfying
Soo(a) = -1 S-i(a) = 0,5(a;) = 1, Si(a) = a;

13
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Sm(ai) = Sm-1(ai)a; — Sm—2(a;) form > 2,
fori=1,2 and S,(as) is the Chebyshev polynomial of the second kind satisfying
S-1(as) = 0, So(as) = 1, Si(a3) = as,
Sn(as) Sn-1(as)as — Sp—2(as) forn > 2,
Sn(as) = —S_,—2(as) forn < -2.

Case III: C(m, n) in general.

In the previous cases we calculated C(m, n) for m,n € N U {0} and C(m, —n) for m,n € N. We
now consider C(—m, —n) = —A™3P(-m, —n)+A3>N(—m, —n) for m, n > 0, illustrated in Figure 3.10.
Note that P(—m, —n) is a diagram of a link L in 3¢5 X [0, 1] obtained by the projection of L onto

C(-m,—n)

= —AP(-m,—-n) + A°’N(-m, —n)
FiGure 3.10. Illustration of C(—m, —n).

303 X {0}. We see that the projection of L onto X3 X {1} is the mirror image of P(—m, —n), which
is N(m,n). This is illustrated in Figure 3.11. Similarly, the diagrams of N(—m, —n) and P(m, n)
are isotopic in X3 X [0, 1]. Therefore, we obtain

C(-m,—n) = —A73P(-m, —n) + AN(-m, —n) = —A>N(m, n) + A’P(m,n) = -C(m, n).

Analogously, one can show that C(—-m,n) = —C(m, —n), for m,n € N U {0}. We now obtain the
following lemma.

Lemma 3.14. Form,ne€ Z,
C(m,n) = —=C(-m, —n).

The results of this section lead to the following description of ;.

14
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@HH@
)&

FIGURE 3.11. P(—1,-2) and N(1, 2) are diagrams of isotopic links in X3 X [0, 1].

Corollary 3.15. The relations described in Theorem 3.13 generate the submodule ‘J; of handle slid-
ing relations of Sz .o (Hyz).

We also remark that Sy o (H,) /. is isomorphic to Sy ((S! X S?) # Hy).

3.5. Generators of the submodule ;. Analogous to the case of 7}, we find the exact descrip-
tion of the generators of the submodule .7, by using the relative Kauffman bracket skein module
of 8300 (Hy; t',0"). The manifold %3 with marked points u’ and o” on its boundary is illustrated
in Figure 3.12.

o O

FI1GURE 3.12. Marked points u” and v” on 9% 3, where v’ lies on the boundary
component as and v’ lies on the boundary component as.

Let ¢y, be a relative curve connecting the points u” and v’ such that ¢, rotates g-times along
a; and n-times along as in either the counterclockwise or clockwise directions depending on the
signs of g and n, respectively. See Figure 3.13 for an illustration.

Since Syc0(Ha,u/,v") is generated by ¢,,a™, its submodule %, is generated by C(g,n)a™ :=
w(cgn)al'. Analogous to the case of ;, we obtain the following two theorems.

Theorem 3.16. Forq € NU {0} andn € Z,
Clg.mSm(ar) = (=AT"?+A717"%)S,(a)Sy(a3)Sm(a1)
+ (ZATT+ ATTM)S, 1(a2)Sp-1(a3)Sme1(ar)
+ (ZATT+ ATTM)S, 1(a2)Sp-1(a3)Sm-1(a1)

15
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FIGURE 3.13. Relative curves in (2o3 X I; v/, 0").

+ (AT L ATITE) S, 5 (a2)Sn-2(a3)Sm(ar),
where Sp,(a1) and Sq(az) are the Chebyshev polynomials of the second kind satisfying
S2(ai) = -1 Sa(a) = 0,5 (ai) = 1, Siai) = a;,
Sm(ai) = Sm-1(ai)a;i — Su—2(a;) form > 2,
fori=1,2 and S,(as) is the Chebyshev polynomial of the second kind satisfying
—1(as) = 0, So(as) = 1, Si(as) = as,
Sn(as) = Sn-1(as)as — Su-2(a3) forn > 2,
Sn(as) = —S_,—z(a3) forn < -2.
Lemma 3.17. Forq,n € Z, B B
C(g,n) = =C(=¢,—n).

Combining Corollary 3.15 and Theorem 3.16 with Proposition 2.11 gives us the desired result
for the structure of Sy ((S! X $%) # (S x 5%)).

4. AN OBSTRUCTION TO MARCHE’S CONJECTURE

In [DW], the following conjecture due to Marché was stated for the the skein module of closed
oriented 3-manifolds over the ring Z[A*!].

Conjecture 4.1. [DW]
Let M be a closed oriented 3-manifold. Then there exists an integer d > 0 and finitely generated
Z[A*']-modules N} so that

Sowe(M) = 2[4 @ (D Ni,

where, furthermore, the module Ny. is a (Ak - A'k)-torsion module, for each integer k.

16
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We discuss the splitness of Sy ((S' x §?) # (S' x §%)) into free and (A¥ — A™%)-torsion parts
and obtain an obstruction for it. Note that the skein module of S! x S2, which was computed in
[HP2], satisfies Conjecture 4.1.

Lemma 4.2. The empty link @ € Sp00((S' X S?) # (S! x S?)) is not killed by (A¥ — A7) for all
integers k.

Proof. Let R be a ring with (AF — 1) invertible for any k. Then from the main result of [HP2],
we get that Sy o (S! X S%;R,A) = R. Combining this with the main result from [Prz4] gives us
that Sy ((S! X %) # (S! x S?); R, A) = R. Both these skein modules are all generated by empty
links. |

Proposition 4.3. Suppose that the skein module of (S! x S§%) # (S x S?) splits into the sum of free
and (AF — A™%)-torsion modules, for each k, as in Conjecture 4.1, over the ring Z[A*']. Then the
empty link can not serve as a generator of the free part in any such a decomposition.

Proof. Supposed there is such a decomposition, then d must be 1 by argument in Lemma 4.2.
Assume the free part is generated by @ denoted by yy. Let {yi’“ }?;:1 denote the set of generators

of Ni. From the relations C(1, 1)a; and C(2, 0), we get the following equations.
(1) (-A* + A Hajazas = (A — A™%)as.

(2) (—A*+ A™)S3(az) = 0

Consider the equation:

X = (A+AH[(-A*+ A Yajama3 + (A" + A7) ¢]
(A2 + A7) [(A® - A7%)a; — (A - A7)¢]

= (A*—AHS,(a) Do
On the other hand,

0=X = (-A* + AH[(A + A D) araa3 + 0] = (A" + AT [(A2 + A7) Zpsg @yl + 2],

k
where " € Z[A*'].
From Lemma 4.2, @ is not a torsion element nor 0, and we have (A*+A™)Skz24 j, a]{k yi" +@ =0.

In particular, (A% + A™?)a + 1 = 0, which leads to a contradiction.
O

We conjecture the following.

Conjecture 4.4.

(1) The empty link is a generator of the free part of S .o ((S' x S%) # (S X S?)). In particular, the
skein module of (S* x S?) # (S' x S?) does not split into the sum of free and (AF — A™%)-torsion
modules.

(2) Let M and N be closed oriented 3-manifolds. Then Sz (M # N) does not split into the sum
of free and (AF — A™%)-torsion modules.

17
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5. FUTURE DIRECTIONS

Keeping our motivation of constructing traces on skein modules in mind, as a next step it would
be beneficial to compute that of #;(S! x S?) over the ring Z[ A*!]. To understand the skein module
of connected sums of arbitrary 3-manifolds, knowing the skein module of H, # H,,, would also be
beneficial. We note that a result to this end was published in [Prz4] but later proved to be false
in [BP]. Characterising the complete set of handle sliding relations is the hardest problem for
this manifold. Furthermore, computing the skein module of RP? # L(p, q), (p,q) # (2,1) would
be another interesting project because this is one of the few examples of connected sums of 3-
manifolds for which it is unknown whether the skein module has torsion or not. See Theorem
4.2 in [Prz3].

6. APPENDIX

In this section we will provide the details for the proof of Theorem 3.13.

6.1. Calculation of formulas for C(m,n) for m,n > 0. In this section we will prove Lem-
mas 3.5, 3.7, and 3.8. As described in Figure 3.8, we obtain C(m,n) = —A*P(m,n) + AN (m, n).
First, in the following lemma we describe the recurrence relations for P(m, n).

Lemma A. The sequence P(m,n) form,n € N U {0} satisfies the following relation:

P(0,0) = —A(-A*-A7%), P(1,0) = ay,

P(0,1) = as, P(1,1) = Aajas + A" 'ay,

P(m,0) = AP(m—1,0)a; — A°P(m—2,0),m > 2,

P(m,1) = AP(m,0)as+P(m—1,0)a;+A*P(m—2,1),m > 2,

P(m,n) = AP(m,n—1)as— A*P(m,n—2),m > 0,n > 2.
Proof. The initial condition P(0, 0) is determined from the fact that C(0, 0) = 0. The initial condi-
tions for P(1,0), P(0,1), and P(1, 1) are determined from their diagrams. From a direct calculation

on the diagram of P(m, n) in %3 we obtain the relations. See Figures 6.1, 6.2, and 6.3.
O

Our strategy is to find another sequence PP(m, n) with Chebyshev recurrence relations in the
variables a; and a; so that the sequence P(m, n) can be presented by a combination of PP(m, n).
We first define a sequence {Q(m, n)}mneNuqo} as follows:

Q(0,0) = —A7% 0(1,0) =0,
Q(O’ 1) = 0’ Q(L 1) = _A_laZ:
Q(m,0) = AQ(m-—1,0)a; — A*’Q(m —2,0),m > 2,

Q0(m,1) = AQ(m,0)as+Q(m—1,0)a, + A2Q(m—2,1),m > 2,
Q(m,n) = AQ(m,n—1)as—A*Q(mn—2),m>0,n> 2,
and define {PP(m, n)}mneNufoy by
PP(m,n) = A" ™Y (P(m, n) + Q(m, n)).
Lemma 3.5.A. The sequence {PP(m, n)}, neNujo) Satisfies
PP(0,0) = 1, PP(1,0) = aj,
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PP(0, 1)

as, PP(1,1) = ayas,

PP(m,0) = PP(m—1,0)a; — PP(m—2,0),m > 2,
PP(m,1) = PP(m,0)as+A2PP(m —1,0)a, + A"*PP(m —2,1),m > 2,
PP(m,n) = PP(m,n—1)az—PP(m,n—2),m>0,n > 2.

Proof. We can prove the statement by the following direct calculations:

PP(0,0)

PP(1,0)

PP(m,0)

PP(m, 1)

PP(m, n)

= A(P(0,0) + Q(0,0)) PP(0,1) = P(0,1)+0Q(0,1)

= AAT+AT A7) = as.

= 1. PP(1,1) = A(P(1,1)+0Q(1,1))

= P(1,0) +Q(1,0) = A ' (Aajas+ A 'ay — Alay)
= a. = ai1das.

AT (P(m, 0) + Q(m,0))

AT AP(m - 1,0)a; — A*P(m —2,0) + AQ(m — 1,0)a; — A’Q(m — 2,0))
AT (A(P(m —1,0) + Q(m —1,0))a; — A2 (P(m —2,0) + Q(m — 2,0)))
AT (P(m = 1,0) + Q(m —1,0))a; — A7 (P(m - 2,0) + Q(m — 2,0))
PP(m —1,0)a; — PP(m - 2,0).

A™™(P(m,1) +Q(m, 1))

AT™(AP(m,0)as + P(m —1,0)a; + A"2P(m — 2,1)

+AQ(m,0)as + Q(m —1,0)a, + A72Q(m — 2,1))

AT™L(P(m, 0) + Q(m,0))as + A"™(P(m —1,0) + Q(m — 1,0))ay
+AT™2(P(m-2,1) +Q(m —2,1))

PP(m,0)as + A2A™™2(P(m - 1,0) + Q(m — 1,0))ay

+AT AT (P(m - 2,1) + Q(m — 2,1))

PP(m,0)as + A"PP(m — 1,0)a, + A™*PP(m — 2,1).

AT (P(m, n) + Q(m, n))

AT AP(m,n — 1)as — A°P(m,n — 2) + AQ(m,n — 1)as — A>’Q(m,n — 2))
AT A(P(m = 1,0) + Q(m — 1,0))as — A2(P(m — 2,0) + Q(m — 2,0)))
AT (P —1,0) + Q(m — 1,0))as — A-™ 2" H(P(m = 2,0) + Q(m — 2,0))
PP(m,n —1)as — PP(m,n — 2).

O

Lemma 3.5.B. The sequence Q(m, n) satisfies Q(m,n) = A™">PP(m — 2,n), form > 2,n > 0.
Hence, it follows that

P(m,n) = A™"1PP(m,n) — A™"°PP(m — 2, n),

form>2,n2>0.

Proof. Forn =0

0(2,0) A3 = A73PP(0,0),
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0(3,0) = AQ(2,0)a; — A720Q(1,0) = A %a; = A>*°°PP(1,0).

Form>4andn=20
Q(m,0) = AQ(m—1,0)a; — A’Q(m — 2,0)
= A-A™"°PP(m —1,0)a; — A® - A™"'PP(m — 2,0)
= A™"(PP(m—-1,0)a; — PP(m —2,0))
= A™7"SPp(m,0).

Forn=1
0(2,1) = AQ(2,0)a3+Q(1,0)az +Q(0,1)
= A-A3a3 = A"7°PP(0,1),
Q(3,1) = AQ(3,0)as +Q(2,0)a; + A7Q(1,1)

A-Alajas + A3a, + A2 (-Aay)
A lajas = A>T1°PP(1,1).

Form>4andn=1
Q(m,1) AQ(m,0)as + Q(m —1,0)a, + A72Q(m — 2,1)
A-A™PPP(m —2,0)as + A" PP(m — 3,0)a, + A% - A" *"175Pp(m — 4, 1)
= A™*(PP(m—2,0)as + A"2PP(m —3,0)a, + A"*PP(m — 4,1))
= A™1pPpP(m—2,1).

Form,n > 2

Q(m,n)

AQ(m,n —1)as — A’Q(m,n — 2)
A-A™TISPP(m — 2,0 — 1)as — A2 - A™TEOPP(m - 2,n — 2)
A™"S(PP(m —2,n — 1)as — PP(m — 2,n — 2))
= A™"PP(m -2 n).
By the definition of PP(m, n) we obtain
P(m,n) = A™"1PP(m, n) — A™"°PP(m — 2,n).

Since PP(m,n) and NN (m, n) satisfy the recurrence relation for Chebyshev polynomials, we
obtain Lemma 3.7.

Lemma 3.7. Form,n € NU {0}
PP(m,n) = PP(m, 1)S,-1(as) — PP(m, 0)Sy—2(as)
where Sy,(as) is the Chebyshev polynomial satisfying
S-2(as) = =1,5-1(as) = 0,S0(as) = 1, S1(as) = a3, Sp(as) = Sp-1(az)as — Sp-2(as).
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Analogously,
NN(m,n) = NN(m,1)S,_1(as) — NN(m,0)S,_>(as).

Proof. We will prove the lemma by mathematical induction on n. Since S_,(a3) = —1, S_1(a3) = 0,
and Sp(as) = 1, the lemma holds for n = 0 and 1:

PP(m,1)S_1(a3z) — PP(m,0)S_5(as3) PP(m,0),
PP(m,1)Sy(as) — PP(m,0)S_1(a3) = PP(m,1).
Let us assume that the result holds for n = k. Then
PP(m,k+1) = PP(m,k)as — PP(m,k — 1)
MU (PP(m, 1)Sk-1(as) — PP(m, 0)Sg—2(as))as
—(PP(m, 1)Sx-2(as) — PP(m,0)Sk-3(as))
= (PP(m,1)S_1(as)as — PP(m,1)Sk_5(as))
—(PP(m,0)Sk_z(as)as — PP(m, 0)Sk_3(as))
= PP(m,1)(Sk-1(as)as — Sx-2(as)) — PP(m, 0)(Sx-2(as)as — Sx-3(as))
= PP(m,1)Sk(as) — PP(m, 0)Sk_1(as).

From Lemmas 3.5 and 3.6 we obtain the following equality
(3) C(m,n) = A™"™2PP(m, n)—A™" 2PP(m—2,n)—A ™" "2 NN (m,n)+A "™ "™ 2NN (m-2,n).
Lemma 3.8. Forallm,n € NU {0},
Clm,n) = (-A™"+A™""7)S,(a1)S(as)
+(=A™" + AT Sy 1(a1)Sn-1(a3) a
+H(=ATTE L AT S, 5 (a1)Sh-2(as).
Proof. From the equality (3) the following equalities are obtained
C(m, n) = —A™"2PP(m, n) + AT""2NN (m, n)
+A™2PP(m — 2,n) — ATINN (m — 2, n)
—A™"2(Sy-1(as)PP(m, 1) = Sp-2(a3)PP(m, 0))
+AT" "2 (S,-1 (as) NN (m, 1) — Sp-2(a3) PP(m, 0))
+A™"2(S,_1(az)PP(m — 2,1) — Sp—z(a3)PP(m — 2,0))
—AT"(Sy-1(a3)NN (m = 2,1) = Sy (as) PP(m = 2,0))
= —A™"*28  (a3)(PP(m,1) — A™*PP(m — 2,1))
+AT 728, 1 (a3)(NN(m, 1) — A*'NN(m - 2,1))
—(=A™E L A0S, o (a3)PP(m, 0)
(=A™ L AT G (as)PP(m — 2,0)
= —A™M28  (a3)(PP(m,0)as + A"2PP(m — 1,0)ay)
+AT 28, 1 (a3)(NN(m, 0)as + A NN(m —1,0)ay)

Lemma 3.7
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— (=A™ 4 AT)S, 5 (a3)PP(m, 0)
+(=A™E p AT G o (a3)PP(m —2,0)
= (—A™E 4 AT)S, 1 (a3)PP(m, 0)as
(=A™ + A™™ ™S, _1(a3)PP(m —1,0)a;
—(=A™2 4 AT)S, o (a3)PP(m, 0)
+(=A™E p AT G o (a3)PP(m — 2,0)
= (=A™ L AT, (a1)Sn(as) +
+(=A™" + AT Sy 1(a1)Sn-1(as)ag +
+H(—ATE L AT S 5 (a1)Sh-2(as).
The fourth equality above is obtained from the following equalities:
PP(m, 1) = PP(m,0)as + A"2PP(m — 1,0)a, + A"*PP(m — 2,1)
& PP(m,1) —A™*PP(m —2,1) = PP(m,0)as + A"2PP(m — 1,0)a,

and
NN(m,1) = NN(m,0)as + A’NN(m — 1,0)a, + A*NN(m — 2,1)
& NN(m,1) —+A*NN(m—-2,1) = NN(m,0)as + A°’NN(m — 1, 0)a,.
Since PP(m, 0) = S;,(a1), the last equality follows. O

6.2. Calculation of formulas for C(m, —n) for m,n > 1. In this section we will prove Lem-

mas 3.9, 3.11, and 3.12. As described in Figure 3.9, we obtain C(m, —n) = P(m,—n) — N(m, —n).
We first describe the recurrence relations for P(m, —n).
Lemma B. Form,n > 1, P(m, —n) satisfies the following:
P(1,-1) = ay,
P(m,—1) = AP(m-1,0)a;+A'P(m—1,1) = AP(m,1) — A*P(m,0)as,m > 2,
P(m,—2) = AP(m,0)+ A 'P(m,—1)as,
P(m,—n) = A 'P(m,—n+1)as —A°P(m,—n+2),n > 3.
Proof. The initial condition P(1,—1) is determined from the diagram of P(1,—1). From a direct
calculation on the diagram of P(m, —n) on X3, we obtain the relations. See Figures 6.4, 6.5, and

6.6.
O

Our strategy is the same as that in the previous subsection. Let us define {Q(m, —n) };,neN by
Q(L-1) = -ay,
Q(m,-1) = AQ(m—1,0)a; + A 'Q(m—1,1) = AQ(m,1) — A’Q(m,0)as, m > 2,
Q(m,—-2) = AQ(m,0)+A™'Q(m,~1)as,
O(m,—n) = A'Q(m,—n+1)as—A2Q(m,—n+2),n > 3,
and define {PP(m, —n)},n>1 by
PP(m,n) = A7™™"1(P(m,n) + Q(m, n)).
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Lemma 3.9.A. {PP(m, —n)}m,.>1 satisfies

PP(1,-1) = 0,
PP(m,—1) = A3PP(m,1)— A*PP(m,0)as, m > 2,
PP(m,—2) = PP(m,—1)as+ A*PP(m,0),
PP(m,—n) = pp(m,—n+1)as — PP(m,—n+2),n > 3.
Proof. We prove the statement from the following direct calculations:
PP(1,-1) = A™"M"™(P(1,-1)+Q(1,-1)) = A(ay — a) = 0.
PP(m,—1) = A ™?2(P(m,—1)+Q(m,-1))
= AT™Z(AP(m,1) — A°P(m,0)as + AQ(m, 1) — A2Q(m, 0)as)
= A3 (P(m,1) + Q(m, 1)) + A™*(P(m, 0) + Q(m, 0))as
= AP AT™(P(m,1) +Q(m, 1)) + A* - A7™(P(m, 0) + Q(m, 0))as
= A’PP(m,1) + A*PP(m,0).
PP(m,-2) = A™3(P(m,—-2)+Q(m,-2))

AT (AP(m, 1) + A'P(m, —1)as + AQ(m, 1) + A7'Q(m, —1)as)
AT (P(m, 1) + Q(m, 1)) + A™2(P(m, 1) + Q(m, —1))as

A% - AT (P(m, 1) + Q(m, 1)) + PP(m, —1)as

A3PP(m, 1) + PP(m, —1)as.

PP(m,—n) = A™"Y(P(m,—n)+Q(m,—n))
= AT ATIP(m, —n+ 1)as — A"2P(m, —n + 2)
+A71Q(m,—n+ 1)as — A~2Q(m, —n + 2))
= AT(P(m,—n+1)+Q(m,—n+1))as + A" Y (P(m,—n+2) + Q(m, —n + 2))
= PP(m,—-n+ 1)as — PP(m,—n + 2).

O

Lemma 3.9.B. The sequence Q(m, —n) satisfies Q(m, —n) = A™ " °PP(m — 2,-n), form > 2. It

follows that

P(m,—n) = A™ " 1PP(m, —n) — A" " °PP(m — 2, —n),

form,n > 1.

Proof. When n = 1,
Q(z’_l)
Q(m,-1)

= AQ(2,1) — A*Q(2,0)as

= A7'PP(0,1) — A7'PP(0,0)as = 0 = A**172PP(0, -1).
= AQ(m,1)A’Q(m,0)as

= A-A™'PP(m—21) - A*- A" PP(m — 2,0)as3

= A™3(PP(m-2,1) — PP(m — 2,0)as)

= A" S(A’PP(m—21) — A*PP(m — 2,0)as).

= A™°PP(m,-1).
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Q(m,-2) = AQ(m,0)+A"'Q(m,~1)as
= A-A"PP(m—-2,0)+A"1- A" PP(m —2,—1)as
= A™*PP(m—2,0) + A" 'PP(m —2,—1)as
= A™7(A’PP(m - 2,0) + PP(m — 2,-1)as) = A™ 'PP(m, —2).
QO(m,—n) = A'Q(m,—n+1)as—A™*Q(m,—n+2)
= ATV A™ISPP(m -2, —n+ 1)as — ATPA"TEPP(m - 2, —n + 2)
= A™">(PP(m—2,—-n+1)as — PP(m —2,—-n+2))
= A™"SPP(m - 2,-n).
By definition of PP(m, —n) we obtain
P(m,—n) = A™ " 1PP(m, —n) — A™ " °PP(m — 2, —n),

form,n > 1. m|

Since PP(m,—n) and NN (m, —n) satisfy the recurrence relation for Chebyshev polynomials,
we obtain Lemma 3.11.

Lemma 3.11. Form,n > 1

PP(m,—n)

Sn-2(asz)PP(m, —2) — Sy—3(a3)PP(m, —1)
A*PP(m, 1)S,-1(as) — A’PP(m, 0)S,(as),

where S, (as) is the Chebyshev polynomial of the second kind satisfying
So(as) = 1,S1(as) = as, Sp(as) = Sp-1(as)as — Sp—2(as).
Analogously,
NN(m,n) = Sp(as)NN(m,—2) = Sp-3(as)NN(m,-1)
= ANN(m, 1)S,-1(as) — A>NN(m,0)S,(as).

Proof. The proof of the first equality is analogous to the proof of Lemma 3.7. The second equality
can be obtained as follows:

PP(m, —n) Sn-2(a3)PP(m, —2) = S,_3(as3)PP(m, —1)
= Sp-2(as)(A’PP(m,0) + PP(m,~1)as) — Sy-3(as)PP(m, 1)
= A’PP(m,0)S,—2(as) + PP(m,—1)S,_1(as)
= A’PP(m,0)S,_2(as) + (A*PP(m, 1) — A*PP(m,0))S,_1(as)as
= A’PP(m,0)S,_s(as) + A*PP(m,1)S,_1(as) — A*PP(m, 0)S,_;(as)as
= A*PP(m, 1)S,_1(as) — A>PP(m,0)S,(as).

From Lemmas 3.9 and 3.10 we obtain the following equality
C(m,—n) = A™"1PP(m,—n) — A" " °PP(m - 2, —n)
(4) —AT™MHINN (m, —n) + AT NN (m - 2, —n).
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Theorem 3.13.
C(m,—n) = —(=A""2 4 A7) (a1)S,_z(a3)
—(—A™T 4+ AT™MYS,_1(a1)Sp-1(as)ay
—(=A™TE p ATMENG, o (a1)Sa(as),
forallm,n > 1.
Proof. From equality (4), we obtain the following equalities.
Clm,—n) = A™"'PP(m,—n) = A""PP(m -2 -n)
_ATHINN (m, —n) + AT NN (m - 2, —n)
A" H(APPP(m, 1)Sy-1(as) — A’PP(m, 0)S,(as))
—A™ S (APPP(m - 2,1)S,-1(as) — A*PP(m — 2,0)S,(a3))
—ATMY A NN (m, 1)S,-1(a3) = ANN(m, 0)S,(as))
+ATHS(ASNN(m = 2,1)S,-1(a3) = A2NN(m, 0)S,(as))
_ Am_”+2(PP(m, 1) _ A—4Pp(m -2, 1))Sn—1(613)
—AT™2(NN(m, 1) — A'NN(m = 2,1))Ss-1(as)
+(—A™2 4 ATMEYPP(m, 0)S, (as)
— (=A™ 4 AT™MIPP(m — 2,0)S,(as)
= A™"™Z(PP(m,0)as + A2PP(m — 1,0)a,)Sy_1(as)
—AT""2(NN(m, 0)as + A’NN(m - 1,0))S,1(as)
+(—A™T2 4 ATMEPP(m, 0)S, (as)
— (=A™ 4 ATMYDP(m — 2,0)S,(as)
_ _(_Am—n+2 + Am+”_2)PP(m, 0)S,_1(as)as
—(=A""+ AT PP(m - 1,0)S,-1(as)az
+(—A™T2 L ATMEPP(m, 0)S, (as)
— (=A™ 4 AT DP(m — 2,0)S,(as)
_ —(=A™Z L AT™N2PD(1 0)S,_s(as)
— (=A™ 4 AT PP(m — 1,0)S,_1(a3)a;
— (=A™ 4 AT PP (m — 2,0)S,(as),
_ — (=AM L AT G (01)Sp_a(as3)
—(=A"T" 4+ AT S, _1(a1)Sa-1(a3)ay
AT ARS L a)S, ().
The fourth equality is obtained from the following equalites:
PP(m, 1) = PP(m,0)as + A2PP(m — 1,0)a; + A™*PP(m — 2,1)
& PP(m1) - A*PP(m —2,1) = PP(m,0)as + A“PP(m — 1,0)az

Lemnﬁz 3.11

and
NN(m,1) = NN(m,0)as + A’NN(m — 1,0)a, + A*NN(m — 2,1)
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& NN(m,1) —+A*NN(m -2,1) = NN(m,0)as + A NN (m — 1,0)as.
Since PP(m,0) = S,(ay), the last equality follows. O
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KAUFFMAN BRACKET SKEIN MODULE OF (S! x §2) # (S! x §?)

P(m,0)

= AP(m—-1,0) — A2P(m - 2,0).

FIGURE 6.1. P(m,0) = AP(m —1,0) — A’P(m — 2,0) for m > 2.

P(m, n)

= AP(m,n—1)as — A*P(m,n — 2).

FIGURE 6.2. P(m,n) = AP(m,n — 1)as — A2P(m,n — 2) for n > 2.
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P(m,1)

AP(m,0)as + P(m — 1)ay + A"P(m — 2,1).

FIGURE 6.3. P(m,1) = AP(m,0) + P(m — 1,0)ay, + A"2P(m — 2,1) for m > 2.
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P(m,-1)

AP(m,0)az + A"'P(m, 1).

FIGURE 6.4. AP(m,0)a; + A"'P(m, 1) for m > 0.

P(m,—-2)

AP(m,0) + A"'P(m, —1)as.

FIGURE 6.5. P(m,—2) = AP(m,0) + A"*P(m, —1)as for m > 0.
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P(m,—n)

= —A*P(m,—n+2)+A'P(m,—n+ 1)as.

FIGURE 6.6. P(m,—n) = —A"2P(m,-n+2) + A"'P(m,—n + 1)as form > 0,n > 3.
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