
ar
X

iv
:2

40
5.

04
33

5v
1 

 [
m

at
h.

PR
] 

 7
 M

ay
 2

02
4

THE TAIL DISTRIBUTION OF THE PARTITION FUNCTION FOR

DIRECTED POLYMER IN THE WEAK DISORDER PHASE

STEFAN JUNK AND HUBERT LACOIN

Abstract. We investigate the upper tail distribution of the partition function of the directed
polymer in a random environment on Z

d in the weak disorder phase. We show that the distribu-
tion of the infinite volume partition function W β

∞ displays a power-law decay, with an exponent
p∗(β) ∈ [1 + 2

d
,∞). We also prove that the distribution of the suprema of the point-to-point

and point-to-line partition functions display the same behavior. On the way to these results, we
prove a technical estimate of independent interest: the Lp-norm of the partition function at the
time when it overshoots a high value A is comparable to A. We use this estimate to extend the
validity of many recent results that were proved under the assumption that the environment is
upper bounded.
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1. Introduction

The directed polymer in random environment (or DPRE) on Z
d is a model in statistical

mechanics envolving a random walk (or polymer) interacting with a disordered medium. It was
introduced [HH85], for d = 1, as a simplified model to describe the interfaces of the planar
Ising model with random coupling constants at low temperature, and was generalized to higher
dimension soon afterwards [IS88].

The DPRE and variations of the model have received much attention from the mathematical
community for a wide variety of reasons – we refer to [Zyg24] for a recent survey. In this
introduction, we discuss mainly the model in spatial dimension d ≥ 3 as this is the object of the
present work. In that setup, the DPRE undergoes a phase transition from a high-temperature,
weak disorder phase to a low-temperature, strong disorder phase, each phase exhibiting radically
different behavior. In the weak disorder phase, on large scales, the polymer trajectory is not
affected by the disorder and displays the same behavior as a simple random walk. In particular,
it converges to a standard Brownian motion under a diffusive scaling (see [CY06] and references
therein).

On the other hand, in the strong disorder phase, it is conjectured that there exists a corridor
where the environment is particularly favorable and around which the trajectories localize with
high probability. It is further predicted that this corridor is superdiffusive in the sense that
its transversal fluctuation is much larger than

√
N . While the rigorous understanding of this

pathwise localization phenomenon is still rudimentary and usually requires assumptions beyond
strong disorder (see e.g. [CC13, Bat21] for progresses in that direction), a more precise picture
has emerged concerning localization for the end point of the polymer (see for instance [CH02,
CSY03, BC20]).

The weak and strong disorder regimes are defined in terms of the asymptotic behavior of the

partition function W β
n (defined in Equation (2.3) below). Weak disorder holds if the sequence

(W β
n )n≥1 is uniformly integrable and converge to a non-trivial limit W β

∞, while strong disorder
1
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holds if W β
n converges to zero. There exists a critical value of βc which separates the weak

and strong disorder phases. The understanding of the phase transition from weak to strong
disorder has been significantly improved in [JL24] by proving (under technical assumption on

the distribution of ω) that whenever W β
n decays to zero, it does so exponentially fast, and that

consequently, weak disorder holds at βc. However, most questions concerning this transition
remain widely open. Let us mention two of them:

(A) How regular is the free energy curve around βc? The free energy, defined as f(β) :=

lim
n→∞

n−1 logW β
n , is equal to zero for β ≤ βc and is negative for β > βc, hence it is not

analytic at βc, but currently not much is known beyond this.
(B) What features, if any, distinguish the behavior of the system at βc from the interior of

the weak disorder phase?

In the present work, we study the probability distribution of the limit W β
∞ in the weak

disorder phase. We prove that P (W β
∞ > u) decays, up to a multiplicative constant, like u−p∗(β)

as u → ∞ for an exponent p∗(β) ∈ [1+ 2
d ,∞). In the process we also obtain comparable bounds

for supn≥1W
β
n and for the supremum over all point-to-point partition functions.

Many properties of the function β 7→ p∗(β) have been proved in earlier works [Jun22a, Jun23a,
Jun23b, JL24] (with an appropriate definition for p∗(β) see Equation (2.5)) sometimes with addi-
tional technical assumptions concerning the distribution on the environment ω. More precisely
in many instance ω is assumed to be upper bounded. In this paper, we provide alternative
proofs for some of these statements which do not require any assumption besides exponential
integrability of ω.

The key estimates that allows us to prove our results with greater generality is Proposition 2.3

which controls the amount of overshoot of W β
n at time when it crosses a large value A. This

technical result is likely to find further application in the study of directed polymer, and could
also be generalized and helpful in the study of other disordered models.

2. Model and results

2.1. Definition and previous results. Let X = (Xk)k≥0 be the nearest neighbor simple

random walk on Z
d starting from the origin and P its law. We have P (X0 = 0) = 1 and the

increments (Xk+1−Xk)k≥1 are independent and identically distributed (i.i.d.) with distribution

P (X1 = x) =
1{|x|=1}

2d

where | · | denotes the ℓ1 distance on Z
d. Given a collection ω = (ωk,x)k≥1,x∈Zd of real-valued

weights (the environment), a parameter β ≥ 0 (the inverse temperature) and n ≥ 1 (the polymer

length), we define the polymer measure P β,ω
n as a modification of the distribution P which favors

trajectories that visit sites where ω is large. More precisely, to each path π : N → Z
d we associate

an energy Hn(ω, π) :=
∑n

i=1 ωi,π(i), and we set

P β,ω
n (dX) :=

1

Zβ
n

eβHn(ω,X)P (dX), where Zβ
n := E

[
eβHn(ω,X)

]
. (2.1)

The quantity Zβ
n is referred to as the partition function of the model (note that Zβ

n depends on
ω). In what follows, we assume that the environment ω is given by a fixed realization of an i.i.d.
random field on N × Z

d with law P. We assume that ω has finite exponential moments of all
order, that is

∀β ∈ R, λ(β) := logE[eβω1,0 ] < ∞. (2.2)



3

By Fubini, it is easy to check that E[Zβ
n ] = enλ(β), and it is thus natural to define the normalized

partition function W β
n by setting

W β
n =

Zβ
n

E[Zβ
n ]

= E
[
eβHn(ω,X)−nλ(β)

]
. (2.3)

The normalized partition function W β
n encodes essential information on the typical behavior of

X under P β,ω
n and thus has been a central object of attention in the study of this model. An

important observation made in [Bol89] is that W β
n is a martingale with respect to the filtration

Fn := σ(ωk,x : k ≤ n), and hence converges almost surely to a limit W β
∞ ∈ [0,∞). Furthermore

we have P(W β
∞ > 0) ∈ {0, 1} since the event is measurable w.r.t. the tail σ-algebra. We say that

weak disorder holds if W β
∞ > 0 while strong disorder holds if W β

∞ = 0.

Another observation from [Bol89] is that (W β
n )n∈N is bounded in L2 when d ≥ 3 and β

is sufficiently small. Indeed setting β2 := sup{β ≥ 0: supn≥0 E

[
(W β

n )2
]
< ∞}, an explicit

computation yields that β2 either satisfies the following identity

eλ(2β2)−2λ(β2) =
1

P⊗2(∃n ≥ 1,X
(1)
n = X

(2)
n )

. (2.4)

or is equal to infinity when (2.4) has no solution. In particular, β2 > 0 when d ≥ 3 and weak
disorder hold for β ∈ (0, β2). On the other hand, βc = 0 when d = 1, 2, and it was shown in that
case [CH02, CSY03] that strong disorder holds for all β > 0. As mentioned earlier, this work is
concerned with the weak disorder phase and we thus restrict ourselves to d ≥ 3. The following
result indicates that the influence of the disorder is monotone in β: .

Theorem A ([CY06, JL24]). Assume d ≥ 3. There exists βc ∈ (0,∞] such that weak disorder
holds for β < βc and strong disorder holds for β > βc. If βc < ∞ and ω is bounded from above,
i.e., ess supω1,0 < ∞, then weak disorder also holds at β = βc.

It is furthermore known that βc > β2 (see [BS10] for a proof of this statement when d ≥ 4, for
dimension 3 we refer to [BT10] and [JL24, Theorem B]) i.e. there exists an interval of β such

that weak disorder holds but (W β
n )n∈N is not bounded in L2. The integrability of W β

∞ in the
weak disorder phase, and in particular in the interval [β2, βc], has been an object of interest. In
order to quantify it, the following integrability exponent has been introduced in [Jun22a]

p∗(β) := inf

{
p > 0 : sup

n≥0
E

[
(W β

n )
p
]
= ∞

}
. (2.5)

We always have p∗(β) ≥ 1 and as a consequence of [CY06, Lemma 3.3], β 7→ p∗(β) is nonin-
creasing. Clearly we have p∗(β) = 1 in strong disorder and p∗(β) ≥ 2 for β < β2, but a priori
there is no guarantee that p∗(β) > 1 in the remainder of the weak disorder. The following result

summarizes what is known about the integrability of W β
∞.

Theorem B ([CY06, Jun22b]). Weak disorder is equivalent to E[supnW
β
n ] < ∞, and in partic-

ular W β
n converges to W β

∞ in L1 in weak disorder. If furthermore ess supω1,0 < ∞, then weak
disorder implies that p∗(β) > 1.

2.2. Power tail asymptotics for the partition function. Our first result establishes that,

up to a multiplicative constant, the tail distribution P (W β
∞ > u) decays like a power of u. The

corresponding exponent depends β and is equal to p∗(β). We obtain asymptotics of the same
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order for the suprema of partition functions

W β,∗
∞ = sup

n≥0
W β,∗

n and Ŵ β,∗
∞ = sup

(n,x)∈N×Zd

Ŵ β
n (x), (2.6)

where

Ŵ β
n (x) := E

[
eβHn(ω,X)−nλ(β)1{Xn=x}

]
. (2.7)

Given two positive functions f and g defined on R+ we say that f and g are comparable at
infinity and write f(u) ≍ g(u) if there exist C > 1 and u0 > 0 such such that

∀u ≥ u0,
g(u)

C
≤ f(u) ≤ Cg(u).

Theorem 2.1. When weak disorder holds, we have the following:

P

(
W β,∗

∞ > u
)
≍ P

(
Ŵ β,∗

∞ > u
)
≍ P

(
W β

∞ > u
)
≍ u−p∗(β). (2.8)

Remark 2.2. Save for a couple special cases, the value of p∗(β) is not known in general. A
first special case is the L2-threshold β2 defined in Equation (2.4): we have p∗(β2) = 2. A second
one is the critical threshold βc. In [JL24, Corollary 2.2] it is stated that under the assumption
that ω is upper bounded we have p∗(βc) = 1 + 2

d . Hence in that case Theorem 2.1 implies that

P

(
W βc

∞ ≥ u
)
≍ u−

d+2
d . (2.9)

We believe that such a precise information may be helpful in attempts to address Questions (A)
and (B) raised in the introduction.

2.3. Overshoot considerations. We present next a technical result which not only plays a
key role in our proof but has many other potential applications.

In recent years, many significant results concerning directed polymers have been obtained
under some restriction concerning the distribution on ω. Either assuming that ω is bounded from
above [Jun22b, Jun22a, Jun23a, JL24], or some regularity on the tail distribution of ω [FJ23].
One of the reasons (and in many occurrences the main one) for imposing these restriction is to
have a control on the value of the partition function as it overshoots a given threshold A > 1. To

illustrate better what we mean, let us define τA := inf{n ≥ 1 : W β
n ≥ A} (with the convention

inf ∅ = ∞). If one assume that ω is bounded from above then we have

WτA ≤ LA with L := eβess sup(ω1,0)−λ(β). (2.10)

The information that WτA is comparable to A turns out to have many practical applications. Of
course (2.10) is false if the environment is not bounded from above. Using only the assumption
(2.2), we obtain a result in the same spirit with a control of the Lp norm of WτA , for arbitrary
p ∈ [1,∞), instead of the supremum norm.

Proposition 2.3. For any p ≥ 1 there exists a constant Cp > 0 (depending also on β and on
P) such that for every A > 1 we have

E

[
(W β

τA)
p
∣∣∣ τA < ∞

]
< CpA

p. (2.11)

Remark 2.4. In the course of the proof of Proposition 2.3, we will see that the constant Cp can
be taken of the form

Cp =
(
2p + Ce

λ(2βp)
2

−pλ(β)
)
. (2.12)

where C depends on β and on P but not on p. In particular, Cp can be taken continuous and
increasing in p.
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With the help of Proposition 2.3, we prove the required lower bound for P(W β,∗
∞ ≥ u) in (2.8).

Corollary 2.5. There exists a constant c > 0 (depending on β and on P) such that for every
u ≥ 1 we have

P (τA < ∞) = P

(
W β,∗

∞ ≥ A
)
≥ cA−p∗(β). (2.13)

Note that we do not require that weak disorder holds and that (2.13) is also valid in the strong
disorder regime, in which case p∗(β) = 1.

Remark 2.6. The bound (2.13) has been proved under the assumption that p∗(β) ≤ 2 and that
the the environment is upper bounded as [Jun22a, Theorem B].

2.4. First consequences of the main results. The main results have a couple of rather direct
consequences. First, we obtain a lower bound for p∗(β) in the weak disorder phase.

Corollary 2.7. Assume that weak disorder holds at β.

(i) It holds that p∗(β) > 1.
(ii) It holds that p∗(β) ≥ 1 + 2

d .

Of course, claim (ii) implies claim (i) and there is no need to state it separately. We in-
cluded it here because of the simplicity of its proof, which is immediate from (2.8). By [JL24,
Corollary 2.2], the bound from part (ii) is sharp in the case of a bounded environment.

Remark 2.8. Item (i) has been proved as [Jun22b, Theorem 1.1(ii)] under the assumption that
the environment is upper-bounded and in [FJ23, Theorem 1.1] under a weaker assumption on the
regularity of the tail of ω at infinity. Item (ii) was proved assuming an upper-bounded environ-
ment as [Jun22a, Corollary 1.3]. The proof of this lower-bound was accomplished indirectly via
the study of a fluctuation exponent associated with the partition function. This approach extends
to general environment, see the comment after Corollary 2.13, but we present an alternative,
direct proof, which partially relies on ideas developed in [JL24].

Next, we introduce the critical threshold for exponential growth of moments,

q∗(β) := inf

{
p ≥ 0: lim

n→∞
1

n
logE[(W β

n )
p] > 0

}
. (2.14)

The existence of the above limit follows from the subadditivity/superadditivity of the sequence

logE[(W β
n )p] (depending on whether p ≤ 1 or p ≥ 1). The inequality p∗(β) ≤ q∗(β) is trivial.

Corollary 2.9. The following hold:

(i) If weak disorder holds at β then limβ′↑β p∗(β′) = p∗(β).
In particular, β 7→ p∗(β) is left-continuous in (0, βc).

(ii) If weak disorder holds at β then p∗(β) = q∗(β).

Remark 2.10. We expect that the identity p∗(β) = q∗(β) holds in the strong disorder regime
(recall that in that case p∗(β) = 1) but at the moment cannot prove this with full generality.
Using exponential concentration of logWn around its mean [LW09, Section 6] it is possible to

show that q∗(β) = 1 whenever lim supn→∞
1
n logW β

n < 0 a regime known as very strond disorder.
The equivalence of strong disorder and very strong disorder has been established [JL24, Theorem
2.1] under the assumption that the environment is upper-bounded.

Remark 2.11. Item (i) has been proved as [Jun23a, Theorem 1.2, item (ii)] under the additional
assumption that p∗(β) ≤ 2 and that the environment is upper bounded. Item (ii) has been proved
under the same assumption as [Jun22a, Theorem 1.5]. The validity of part (ii) for general
environments has been mentioned as on open problem in [Zyg24, Question 6].
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Part (ii) of the previous corollary shows that E[(W β
n )p] grows exponentially fast for any

p > p∗(β), and by definition E[(W β
n )p] is bounded when p < p∗(β). When p = p∗(β), Theorem 2.1

immediately implies that limn→∞ E[(W β
n )p

∗(β)] = ∞ but identifying the growth of E[(W β
n )p

∗(β)]
turns out to be a challenging task. As a consequence of Theorem 2.1, we can prove that this
growth is at most linear in n.

Corollary 2.12. For any β, there exists C > 0 such that

E

[
(W β

n )
p∗(β)

]
≤ Cn. (2.15)

We conjecture in fact that

E

[
(W β

n )
p∗(β)

]
= nκ(β)+o(1)

where κ(β) ∈ (0, 1] when β ∈ (0, βc) and κ(βc) = 0. To motivate this, let us explicitly compute

E
[
(W β)p

∗(β)
]
in the specific case of β = β2 (recall (2.4)). The second moment of the partition

function E[(W β
n )2] coincides with the partition function of a homogeneous pinning model and

thus can be explicitly computed explicitly: E[(W β
n )2] grows exponentially in n for β > β2 and

when β = β2 we have

E[(W β2
n )2] ∼





C3n
1/2 if d = 3,

C4
n

logn if d = 4,

Cdn if d ≥ 5.

(2.16)

For a proof of (2.16) we refer to [Gia07, Theorem 2.2], applied to the renewal function

K(n) := P⊗2
(
n = inf{i ≥ 1 : X

(1)
i = X

(2)
i }

)

The above information, combined with the fact that weak disorder holds at β2 and Corollary 2.9,
implies that p∗(β2) = q∗(β2) = 2. The asymptotic (2.16) illustrates in particular that (2.15) can
be sharp in some situations (namely β = β2 and d ≥ 5). The identification of the growth rate
in the general case, and particularly for β = βc, remains a challenging open problem that we
believe to be quite important for understanding the phase transition of the model, in particular
for Questions (A) and (B) mentioned in the introduction.

2.5. The fluctuation field. To introduce the next corollary, let us digress a bit on the con-
nection between the DPRE and the Stochastic Heat Equation with multiplicative noise (SHE).
This connection can be seen for instance by writing the recursion equation which is satisfied by
the point-to-point partition function (or some variant, for instance, considering shifted partition
function, see Equation (2.19) below). The resulting equation is a discrete analogue of the SHE.

In dimension 1, the solution of the SHE can be obtained as a scaling limit of the point to
point partition function of the directed polymer by considering diffusive scaling and taking β
proportional to n−1/4 where n length of the polymer (see [AKQ14]).

When d = 2, the SHE, as is, is ill defined and the directed polymer model has been used as
instrument to define a two dimensional version of the SHE via scaling limit (in that case β has

to be proportional to (log n)−1/2 see [CSZ23] as well as references therein).

In dimension d ≥ 3, when weak disorder holds, the system homogenizes and, at first order,
the disorder disappears under diffusive scaling (the scaling limit is simply the heat equation
without noise). In that case, a natural question to investigate is that of the amplitude and
distribution of the random fluctuations around this deterministic limit. It has been done in
[MSZ16, GRZ18, CN21, CNN22, LZ22, Jun22a].
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To state the result, let us introduce the translation operator θm,y. For m ≥ 0 and y ∈ Z
d the

environment θm,y ω is defined by setting

(θm,y ω)n,x := ωn+m,x+y. (2.17)

We also let θm,y act on functions of ω by setting θm,xf(ω) := f(θm,y ω). We are interested in
investigating the scaling limit of the field (Yβ(n, x))x∈Zd defined by

Yβ(n, x) := θ0,xW
β
n (2.18)

Note that, by time reversal, for a fixed n, Yβ(·, x) has the same distribution as Ỹβ(n, ·) defined
by

Ỹβ(0, x) = 1, ∀x ∈ Z
d,

Ỹβ(n+ 1, x) = eβωn+1,x−λ(β)DỸβ(n, x).
(2.19)

where the operator D is the transition matrix of the simple random walk on Z
d, that is to say

Df(x) =
1

2d

∑

y∈Zd

f(y)1|x−y|1=1. (2.20)

Thus (2.19) corresponds to a discrete analogue of the stochastic heat equation with multiplicative
noise. In the weak disorder phase, it has been established (see [Jun22a, Theorem C(i)] and
[CNN22, Theorem 2.1] for an continuum analogue) that homogenization occurs in the weak
disorder phase in the sense that for any f ∈ Cc(R

d) (continuous and compactly supported
functions f : Rd → R) we have, in L1,

lim
n→∞

n−d/2
∑

x∈Zd

f(x/
√
n)Yβ(n, x) =

∫

Rd

f(x)dx. (2.21)

We define the fluctuation field X β
n around this limit by setting for f ∈ Cc(R

d)

X β
n (f) := n−d/2

∑

x∈Zd

f(x/
√
n)(Yβ(n, x)− 1).

In the case where β < β2 (that is to say p∗(β) > 2), the exact scaling limit of X β
n has been

identified. More precisely it has been proved that the process (n
d−2
4 X β

n (f))f∈Cc(Rd) converges
to to a random Gaussian field whose covariance can be expressed in terms of the d-dimensional
heat kernel (see [LZ22, Theorem 1.1]). A consequence of this is that when p∗(β) > 2 we have

lim
ε→0

lim
n→∞

P

(
εn− d−2

4 ≤ |X β
n (f)| ≤

1

ε
n− d−2

4

)
= 1. (2.22)

When p∗(β) < 2, since the field Yβ(n, x) is not L
2-integrable, one may expect larger fluctuations

for the field. Indeed, in [Jun22a, Theorem 1.1], the correct fluctuation exponent has been

identified in this regime, showing that |X β
n (f)| is of order n−ξ(β)+o(1) where

ξ(β) :=
d

2
− 2 + d

2(p∗(β) ∧ 2)
.

However, for technical reasons, the result was proved under the assumption that the environment
ω is upper bounded. The only reason for this technical limitation is that the identity p∗(β) =
q∗(β) was proved in [Jun22a] under this assumption. Hence, using Corollary 2.9, we can extend
the validity of the result. We record this as our last corollary.
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Corollary 2.13. When weak disorder holds we have, for any ε > 0 and f 6≡ 0,

lim
n→∞

P

(
n−ξ(β)−ε ≤ |X β

n (f)| ≤ n−ξ(β)+ε
)
= 1, (2.23)

Note that (2.23) only identifies the correct fluctuation exponent but it leaves open the question

of identifying the exact order of magnitude of X β
n (f) (as in (2.22)) and that of identifying the

scaling limit of X β
n (f) as in [LZ22].

Remark 2.14. Note that the combination of (2.21) and (2.23) implies that we have necessarily
ξ(β) ≥ 0. This yields an alternative proof of Corollary 2.7(ii).

Proof of Corollary 2.13. When p∗(β) > 2 there is nothing to prove since (2.23) follows directly
from (2.22). When p∗(β) ≤ 2, we can use [Jun22a, Theorem 1.4] which states – under the
assumption that p∗(β) > 1, which holds by Corollary 2.7(i) – that

lim
n→∞

P

(
|X β

n (f)| ≤ n−ξ∗(β)+ε
)
= 1,

lim
n→∞

P

(
|X β

n (f)| ≥ n−ξ(β)−ε
)
= 1,

(2.24)

where ξ∗(β) := d
2 − d+2

2q∗(β) (recall the definition (2.14)). Since by Corollary 2.9(i) we have

q∗(β) = p∗(β) in weak disorder, this allows to conclude. �

2.6. Organization of the paper. In Section 3, we prove Proposition 2.3 and Corollary 2.5. In
Section 4, we prove Theorem 2.1 and Corollaries 2.5 and 2.7(i). The remaining corollaries are
proved in Section 5.

2.7. Notation. Throughout the paper, we make use of the notation Ja, bK := [a, b] ∩ Z. We let

µβ
n denote the endpoint distribution associated with the polymer measure P β

ω,n that is to say

µβ
n(x) = P β,ω

n (Xn = x). (2.25)

3. Proof of the results of Section 2.3

3.1. Probability of doubling the mean of a linear combination of i.i.d. random vari-
ables. We start this section introducing a key technical lemma used in the proof. Let us
introduce first some context. Recalling the definition 2.20, we have

W β
n

W β
n−1

=
∑

x∈Zd

Dµβ
n−1(x)e

βωx,n−λ(β). (3.1)

The coefficients DŴ β
n−1(x) are Fn−1 measurable while the variables eβωx,n−λ(β) are i.i.d. and

independent of Fn−1. The following result can be used to estimate the conditional probability
of “doubling” the partition function at step n.

Lemma 3.1. Let (Yi)i≥1 be a sequence of i.i.d. nonnegative random variables with moments
of all orders and such that E[Y1] = 1. Then for any q ≥ 1 there exists Cq (depending on the
distribution of Y1) such that for any sequence (αi)i≥1 of nonnegative real numbers satisfying∑

i≥1 αi ≤ 1

P


∑

i≥1

αiYi ≥ 2


 ≤ Cqα

q
max, (3.2)

where αmax = maxi≥1 αi.
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Proof. We want to derive the inequality from a Chernov type bound. Since a priori the variables
Yi are not exponentially integrable, we first need to apply a truncation. We observe that

P


∑

i≥1

αiYi ≥ 2


 ≤ P

(
max
i≥1

αiYi >
√
αmax

)
+ P


∑

i≥1

(αiYi) ∧
√
αmax ≥ 2


 . (3.3)

We can bound the first term in the r.h.s. as follows

P

(
max
i≥1

αiYi >
√
αmax

)
≤
∑

i≥1

P (αiYi >
√
αmax) ≤ E[Y

2(q+1)
1 ]

∑

i≥1

α2q+2
i

αq+1
max

≤ E[Y 2q+2
1 ]αq

max,

where in the last inequality simply uses that α2q+2
i ≤ α2q+1

max αi. Now to bound the second term
in the r.h.s. of (3.3), we observe that for any λ > 0 we have

P


∑

i≥1

(αiYi) ∧
√
αmax ≥ 2


 ≤ E

[
eλ[

∑
i≥1((αiYi)∧

√
αmax )−2]

]
. (3.4)

Using the inequality eu ≤ 1 + u+ u2 valid for u ≤ 1 we obtain that for all λ ≤ α
−1/2
max ,

E

[
eλ((αiYi)∧

√
αmax )

]
≤ E

[
1 + λαiYi + λ2α2

i Y
2
i

]
≤ eλαi+λ2α2

iE[Y1]. (3.5)

This implies that

E

[
eλ[

∑
i≥1(αiYi)∧

√
αmax−2]

]
≤ eλ[

∑
i≥1 αi−2]+λ2E[Y 2

1 ]
∑

i≥1(αi)2 . (3.6)

Using
∑

i≥1 αi ≤ 1 and
∑

i≥1 α
2
i ≤ αmax and taking λ = α

−1/2
max , we obtain

P


∑

i≥1

(αiYi) ∧
√
αmax ≥ 2


 ≤ eE[Y

2
1 ]−α

−1/2
max ≤ eE[Y

2
1 ]⌈2q⌉!α−q

max, (3.7)

which concludes the proof. �

3.2. Proof of Proposition 2.3. Since is trivial if ω is bounded from above, we may assume
that P(ω1,0 > t) > 0 for all t > 0. We set τ := τA for notational simplicity. We want to discard
first the contribution of “small overshot” above the value A using the following decomposition

E

[
(W β

τ )
p1{τ<∞}

]
= E

[
(W β

τ )
p
(
1{τ<∞ ; Wτ∈[A,2A)} + 1{τ<∞ ; Wτ≥2A}

)]

≤ (2A)pP(τ < ∞) + E

[
(W β

τ )
p1{τ<∞ ; Wτ≥2A}

]
.

(3.8)

Then we estimate the second term decomposing according to the value of τ . We have

E

[
(W β

τ )
p1{τ<∞ ; Wτ≥2A}

]
=
∑

n≥1

E

[
(W β

n )
p1{τ≥n ; Wn≥2A}

]

=
∑

n≥1

E

[
E

[
(W β

n )
p1{Wn≥2A}

∣∣∣Fn−1

]
1{τ≥n}

]
.

(3.9)

Next we apply Cauchy-Schwarz and obtain

E

[
(W β

n )
p1{Wn≥2A}

∣∣∣ Fn−1

]
≤
√

E

[
(W β

n )2p
∣∣∣ Fn−1

]
P (Wn ≥ 2A | Fn−1) (3.10)
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Now setting ξx := eβωn,x−λ(β) and recalling (3.1) we obtain that (using Jensen’s inequality for

the probability DŴ β
n−1(x)/W

β
n−1) on the event τ ≥ n

E

[
(W β

n )
2p
∣∣∣ Fn−1

]
= (W β

n−1)
2p
E




∑

x∈Zd

DŴ β
n−1(x)

W β
n−1

ξx




2p ∣∣∣∣∣∣
Fn−1




≤ eλ(2pβ)−2pλ(β)A2p.

(3.11)

Next we use Lemma 3.1 with coefficients αx := A−1DŴ β
n−1(x) and

q := −4 log2 κ with κ := P(eβω0,1−λ(β) ≥ 4d) ∧ 1

2
, (3.12)

(κ > 0 since we assumed that ω was unbounded from above). We obtain that for a constant C
that depends only on β and of the distribution of ω, on the event τ ≥ n (which guarantees that

W β
n−1 ≤ A and hence that the coefficient’s sum is smaller than one) we have

P (Wn ≥ 2A | Fn−1) ≤ C

(
max
x∈Zd

A−1DŴ β
n−1(x)

)q

. (3.13)

Combining (3.9), (3.10) and (3.11) we obtain that

E

[
(W β

n )
p1{τ<∞ ; Wn≥2A}

]
≤ Ce

λ(2pβ)
2

−pλ(β)Ap
∑

n≥1

E


1{τ≥n}

(
max
x∈Zd

DŴ β
n−1(x)

A

)q/2

 . (3.14)

To conclude the proof we are going to show that – with the above choice of q – we have (for a
different C > 0)

∑

n≥1

E

[
1{τ≥n}

(
max
x∈Zd

DŴ β
n−1(x)

)q/2
]
≤ CP(τ < ∞). (3.15)

Combining (3.8), (3.14) and (3.15) we obtain that for a constant C that depends on the distri-
bution of ω and on β but not on p we have

E

[
(W β

τ )
p1{τ<∞}

]
≤
(
2p + Ce

λ(2pβ)
2

−pλ(β)
)
P(τ < ∞). (3.16)

Let us now prove (3.15). Recalling the definition of κ in (3.12), we observe that for any k ≥ 1,

P

[
Wn+k−1 ≥

(
2k+1d

)
max
x∈Zd

DŴ β
n−1(x)

∣∣∣∣ Fn−1

]
≥ κk. (3.17)

Indeed, assuming that maxx∈Zd DŴ β
n−1(x) is attained at x0, the event on the right-hand side is

satisfied if

∀i ∈ J1, kK, eβωn+i−1,x0+(i−1)e1
−λ(β) ≥ 4d.

Of course (3.17) remains valid if k is replaced by any (Fn−1)-measurable random quantity. With
this in mind we set

Θn :=

⌈
log2

(
A

dmaxx∈Zd DŴ β
n−1(x)

)⌉
≥ 1.

We obtain that on the event {τ ≥ n} we have

κΘn ≤ P [Wn+Θn−1 ≥ A | Fn−1] ≤ P [τ ∈ Jn, n+Θn − 1K | Fn] . (3.18)
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Hence we have

E

[
1{τ≥n}

(
max
x∈Zd

A−1DŴ β
n−1(x)

)q/2
]
≤ (2d)q/2E

[
1{τ≥n}2

−Θnq
2 κ−Θn+Θn

]

≤ (2d)q/2E
[
1{τ∈Jn,n+Θn−1K}(2

q/2κ)−Θn

]
.

(3.19)

Taking the sum over n we obtain

∑

n≥1

E

[
1{τ≥n}

(
max
x∈Zd

A−1DŴ β
n−1(x)

)q/2
]
≤ (2d)q/2

∑

n≥1

E

[
Θn(2

q/2κ)−Θn

]
. (3.20)

and with our choice for q (3.12) the r.h.s. is finite. This concludes the proof of (3.15). �

3.3. Proof of Corollary 2.5. Recalling (2.17) and (2.25) we have for any k ≤ n

W β
n /W

β
k :=

∑

x∈Zd

µβ
k(x)θk,x(W

β
n−k). (3.21)

Hence for p ≥ 1, Jensen’s inequality applied twice yields

E

[(
W β

n /W
β
k

)p ∣∣∣ Fk

]
≤ E[(W β

n−k)
p] ≤ E[(W β

n )
p]. (3.22)

Hence for any A > 1, p > 1 and n ∈ N, we have

E[(W β
n )

p] = E

[
(W β

n )
p1{τA>n}

]
+

n∑

k=1

E[(W β
n )

p1{τA=k}]

≤ Ap +
∑

k≤n

E

[
(W β

k )
p1{τA=k}E

[(
W β

n /W
β
k

)p ∣∣∣ Fk

]]

≤ Ap + E[(W β
n )

p]
∑

k≤n

E[(W β
k )

p1{τA=k}]

≤ Ap + E[(W β
n )

p]E[(W β
τA)

p1{τA<∞}]

≤ Ap + CpA
p
P(τA < ∞)E[(W β

n )
p],

(3.23)

where we have used (3.22) in the first inequality and (2.11) in the last one. Then, since E[(W β
n )p]

is unbounded for p > p∗(β), (3.23) implies that

CpA
p
P(τA < ∞) ≥ 1. (3.24)

Taking the limit as p ↓ p∗(β) (recall (2.12)) yields the desired result with c = (Cp∗(β))
−1. �

3.4. Proof of Corollary 2.7(i). We simply observe that

E

[
sup
n≥1

W β
n

]
= 1 +

∫ ∞

1
P [τA < ∞] dA.

Since by [Jun22b, Theorem 1.1(i)], E[supn≥1 W
β
n ] < ∞ in the weak disorder phase, in view of

(2.13) we must necessarily have p∗(β) > 1. �
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4. Proving Theorem 2.1

4.1. Organizing the proof of Theorem 2.1. Note that (2.8) displays a total of 6 comparisons
of the form f(u) ≍ g(u), corresponding to 12 inequalities. Of course some of these inequalities
are redundant and in the end, it is sufficient to prove 6 “independent” inequalities. Before we
begin the formal proof, let us briefly expose which inequalities we prove. First we observe that

Ŵ β,∗
∞ ≤ W β,∗

β and W β
∞ ≤ W β,∗

∞ , (4.1)

and hence two inequalities are immediate. A third inequality, that is (2.13) in Corollary 2.5,
has been proved in the previous section. This leaves us with three remaining inequalities to
prove. The first one is proved in Section 4.2, using the supermultiplicativity of the point-to-
point partition functions.

Lemma 4.1. In the weak disorder regime, we have for any u > 1,

P

(
Ŵ β,∗

∞ > u
)
≤ u−p∗(β). (4.2)

The next lemma does not exactly match an inequality in (2.8) (because of the factor 4 in the
r.h.s.) but combined with the others it is sufficient to prove the theorem. It is proved in
Section 4.3.

Lemma 4.2. There exists a constant c such that for every u > 1

P

[
W β

∞ ≥ u
]
≥ cP[W β,∗

∞ ≥ 4u]. (4.3)

The most technical part of the proof is the comparison of the tail of Ŵ β,∗
∞ (the maximum

over point-to-point partition functions) with that of W β,∗
∞ (the maximum over point-to-plane

partition functions). We achieve this by proving a localization result for the endpoint at time
τu, which is interesting in its own right. The outcome of our proof (presented in Sections 4.4
and 4.5) is the following comparison which combined with the five previous inequalities allows
to complete the proof of Theorem 2.1.

Proposition 4.3. There exist constants C > 1, δ > 0 and a closed set U ⊂ [1,∞) satisfying

∀v ≥ 1, [v,Cv] ∩ U 6= ∅, (4.4)

(the set {log u : u ∈ U} has no gap larger than logC) such that the following holds

∀u ∈ U , P

[
max
x∈Zd

µτu(x) ≥ δ

∣∣∣∣ τu < ∞
]
≥ δ. (4.5)

Remark 4.4. Observe that the above proposition is an intermediate result on the path of ob-
taining Theorem 2.1. Once Theorem 2.1 is proven, one obtains that for δ > 0 sufficiently small

∀u ≥ 1, P

[
max
x∈Zd

µτu(x) ≥ δ

∣∣∣∣ τu < ∞
]
≥ δ, (4.6)

with no need for a restriction to a specific set U .

We end up this subsection by showing that indeed the combination of all the element exposed
above yields our main result.

Proof of Theorem 2.1. Let us first show that P
[
W β,∗

∞ ≥ u
]
and P

[
W β,∗

∞ ≥ u
]
are comparable to

u−p∗ . As two of the four required inequalities are provided by (4.2) and (2.13), it only remains
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to show that for some constant κ > 0 we have

∀u ≥ 1, P

[
W β,∗

∞ ≥ u
]
≤ 1

κ
u−p∗(β),

∀u ≥ 1, P

[
Ŵ β,∗

∞ ≥ u
]
≥ κu−p∗(β).

(4.7)

From Proposition 4.3, we can find C, δ and U such that (4.4) and (4.5) hold. Let us define u′

and u′′ to be the nearest points to u in U
u′ := max{v ∈ U : v ≤ u} and u′′ := min{v ∈ U : δv ≥ u} (4.8)

Note that from (4.4) we have u/u′ ∈ [1, C] and u′′/u ∈ [1/δ,C/δ]. Both P

[
W β,∗

∞ ≥ u
]
and

P

[
Ŵ β,∗

∞ ≥ u
]
are decreasing in u. Thus, at the cost of changing the value of the constant κ, it

is sufficient to show that the first line in (4.7) is valid for u′ and that the second line is valid for
δu′′ . From (4.5) we have for any v ∈ U

P

(
Ŵ β,∗

∞ ≥ δv
)
≥ P

(
max
x∈Zd

Ŵ β
τv(x) ≥ δv ; τv < ∞

)
≥ δP (τv < ∞) . (4.9)

Combining this with (2.13) (and writing p∗ for p∗(β) for better readability) we obtain that

P

(
Ŵ β,∗

∞ ≥ u
)
≥ P

(
Ŵ β,∗

∞ ≥ δu′′
)
≥ δc(u′′)−p∗ ≥ cC−p∗δ1+p∗u−p∗ . (4.10)

On the other hand we have also from (4.9), using this time (4.2),

P

[
W β,∗

∞ ≥ u
]
≤ P (τu′ < ∞) ≤ δ−1

P

(
Ŵ β,∗

∞ ≥ δu′
)
≤ δ−1−p∗(u′)−p∗ ≤ δ−1−p∗u−p∗ , (4.11)

finishing the proof of (4.7).

To conclude, let us prove that P
[
W β

∞ ≥ u
]
≍ u−p∗ . The upper bound is a direct consequence

of the first line in (4.7) since W β
∞ ≤ W β,∗

∞ . The lower bound it is obtained by combining
Lemma 4.2 with (2.13). �

4.2. Proof of Lemma 4.1. We can focus on the case p∗(β) > 1 since when p∗(β) = 1 the result
is an immediate consequence of Markov’s inequality. The result follows from the observation

that setting θ(u) := P

(
supn≥0,x∈Zd Ŵ

β
n (x) > u

)
we have

∀u, v > 1, θ(uv) ≥ θ(u)θ(v) (4.12)

Now, for any u > 1, k ≥ 1 and p ∈ (1, p∗(β)) we have

(θ(u)up)k ≤ θ(uk)ukp ≤ E

[(
Ŵ β,∗

∞
)p]

≤ E

[(
W β,∗

∞
)p]

< ∞. (4.13)

By taking k → ∞, this implies that θ(u) ≤ u−p, and we obtain the result by taking the limit

p ↑ p∗(β). Now let us justify (4.12). Set Bu := {supn≥0,x∈Zd Ŵ
β
n (x) > u}, so that θ(u) = P(Bu).

We define

(σ,Z) := min
{
(n, x) ∈ N× Z

d : Ŵn(x) > u
}

where min refers to the minimal element of the set for the lexicographical order on N× Z
d. By

convention (σ,Z) = (∞, 0) on the event Bc

u. Recalling the definition (2.17) we have, for any
n,m ≥ 0 and x, z ∈ Z

d,

Ŵn+m(x+ z) ≥ E

[
eβHn+m(X)−(n+m)λ(β)1{Xm=z,Xn+m=x+z}

]
= Ŵm(z)θm,zŴn(x). (4.14)
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Hence Ŵn+m(x + z) ≥ uv if Ŵm(z) ≥ u and θm,zŴn(x) ≥ v. Decomposing over the possible
values of (σ,Z) we have

⋃

m≥1,z∈Zd

n≥1,x∈Zd

{(σ,Z) = (m, z)} ∩ θm,zBv ⊂ Buv. (4.15)

Now the events (σ,Z) = (m, z)} and θm,zBv rely on disjoint regions of the i.i.d. environment
and are hence independent. Combining this observation with translation invariance and the fact
that {(σ,Z) = (m, z)}m≥1,z∈Zd is a partition of the event Bu, we obtain that

P(Buv) ≥
∑

m≥1,z∈Zd

P ({(σ,Z) = (m, z)} ∩ θm,zBv)

=
∑

m≥1,z∈Zd

P ((σ,Z) = (m, z)) P(Bv) = P(Bu)P(Bv). �

4.3. Proof of Lemma 4.2. Set A = 4u. On the event τA < ∞ we have

W β
∞ = W β

τA

∑

x∈Zd

DµτA−1(x)θτA,xW
β
∞ ≥ A

∑

x∈Zd

DµτA−1(x)θτA,x

(
W β

∞
)
. (4.16)

Let us set ZA(x) :=
(
θτA,xW

β
∞
)
. Note that (ZA

x )x∈Z is independent of FτA and distributed like

(Z(x))x∈Zd :=
(
θ0,xW

β
∞
)
x∈Zd

. For this reason we have for any u ≥ 0

P

(
W β

∞ ≥ u
)
≥ P[τA < ∞] inf

α∈P(Zd)
P


∑

x∈Zd

α(x)Z(x) ≥ 1/4


 (4.17)

where the infimum is taken over all probability measures α on Z
d. To conclude we just need

to show that this infimum is positive. Now if one sets Wα :=
∑

x∈Zd α(x)Z(x), it is immediate
to check that the collection of variables (Wα)α∈P

Zd
is uniformly integrable. Indeed if we let

ϕ : R+ → R+ be a convex function such that E[ϕ(W β
∞)] < ∞ and limx→∞ ϕ(x)/x = ∞ (such a

ϕ exists since W β
∞ ∈ L1), Jensen’s inequality yields that for any α ∈ P(Zd)

E [ϕ(Wα)] ≤
∑

x∈Zd

α(x)E [ϕ(Z(x))] = E[ϕ(W β
∞)], (4.18)

implying the desired uniform integrability. Since E[Wα] = 1, using uniform integrability there
exists M > 0 such that for every α ∈ P(Zd)

E[Wα1{Wα∈[1/4,M ]}] = 1− E[Wα1{Wα<1/4}]− E[Wα1{Wα>M}]

≥ 3/4− E[Wα1{Wα>M}] ≥ 1/2,
(4.19)

and thus we have

P(Wα ≥ 1/4) ≥ 1

M
E[Wα1{Wα∈[1/4,M ]}] ≥

1

2M
.

�
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4.4. Proof of Proposition 4.3. We start by fixing two parameters

q > p∗(β) and D := 3C2q2
2q (4.20)

where C2q ≥ 1 comes from Proposition 2.3. The reason for this peculiar choice for D will become
apparent in the course of the proof of Proposition 4.5 below. We start with the geometric
sequence/set U0 := {Dk : k ≥ 0}. Note that U0 clearly satisfies the density requirement (4.4).
We are going to show (4.5) is valid for a “large” subset of U0 such that (4.4) remains true. Given
q > p∗, we set

V := {u > 1 : P(τDu < ∞) ≥ D−q
P(τu < ∞)} and U1 := U0 ∩ V. (4.21)

Note that U1 is infinite. Indeed if this was not the case, then there would exists some k0 such
that the sequence (Dkq

P(τDk < ∞))k≥k0 is non-increasing (and hence bounded). Since q > p∗,
this would be a contradiction to (2.13). The next step is then to prove that u ∈ V satisfies the
desired localization property (4.5). This the most important step, its proof is postponed to the
next subsection.

Proposition 4.5. There exist δ > 0 and D > 2 such that for every u ∈ V

P

(
max
x∈Zd

µτu(x) ≥ δ

∣∣∣∣ τu < ∞
)

≥ δ. (4.22)

Remark 4.6. Note that a posteriori, Theorem 2.1 implies that V = [1,∞) if D is chosen
sufficiently large. Hence Proposition 4.5 implies that (4.6) holds.

Finally to conclude we need to show that there are no big gaps in U1. This is the role of the
following lemma.

Lemma 4.7. There exists an integer k0 ≥ 1 such that

∀u ∈ U1, {uDi : i ∈ J1, k0K} ∩ U1 6= ∅ (4.23)

In particular U1 satisfies (4.4) with C = Dk0.

Proposition 4.3 follows immediately from the combination of Proposition 4.5 and Lemma 4.7.

Proof of Lemma 4.7. For k0 to be chosen later, let us assume that we can find u ∈ U1 such that
(4.23) does not hold. Then we have

P (τuDk0 < ∞) ≤ D−q(k0−1)
P (τuD < ∞) ≤ D−q(k0−1)

P (τu < ∞) . (4.24)

On the other hand, since u ∈ U1, Proposition 4.5 implies that (4.5) holds. Recalling the compu-
tation (4.9) this implies that

P (τu < ∞) ≤ δ−1
P

(
Ŵ β,∗

∞ ≥ δu
)
≤ δ−p∗−1u−p∗ , (4.25)

where the last bound is simply (4.2). We conclude that

P (τuDk0 < ∞) ≤ D−q(k0−1)δ−p∗−1u−p∗ . (4.26)

Now recalling that q > p∗, the bound contradicts (2.13) if k0 is large enough that

D−q(k0−1)δ−p∗−1 ≤ cD−p∗k0 ,

where c is the constant in (2.13). �
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4.5. Proof of Proposition 4.5. The idea of the proof is to show that if the probability µτu is
too spread-out then the conditional probability P (τDu < ∞ | τu < ∞) is small, which in turns
implies that u /∈ V. Note that on the event τDu < ∞, either Wτu is much larger than u or
(Wn+τu/Wτu)n≥1 overshoots 2,

P (τDu < ∞ | τu < ∞) ≤ P

(
Wτu ≥ Du

2

∣∣∣∣ τu < ∞
)
+ P

(
sup
n≥0

Wn+τu

Wτu

≥ 2

∣∣∣∣ τu < ∞
)
. (4.27)

The first term can be controlled by Proposition 2.3. We have

P

(
Wτu ≥ Du

2

∣∣∣∣ τu < ∞
)

≤
(
Du

2

)−2q

E
[
|Wτu |2q | τu < ∞

]
≤ C2q2

2qD−2q ≤ D−q

3
, (4.28)

where the last inequality is valid thanks to our choice for D (4.20). We are going to show that
if (4.22) is violated for a value of δ to be determined in the course of the proof, then we would
also have

P

(
sup
n≥0

Wn+τu

Wτu

≥ 2

∣∣∣∣ τu < ∞
)

≤ D−q

3
. (4.29)

Combined with (4.27) and (4.28), this implies that u /∈ V and hence a contradiction. We first
note that

Wn+τu

Wτu

=
∑

x∈Zd

µτu(x)θτu,xW
β
n . (4.30)

Now by Markov’s property (θτu,xW
β
n )n≥0,x∈Zd is independent from Fτu . For this reason we define

Γ: P(α) → R+ by

Γ(α) := P


sup

n≥0

∑

x∈Zd

α(x)θ0,xW
β
n ≥ 2


 , (4.31)

so that, on the event τu < ∞, we have

P

[
sup
n≥0

Wn+τu

Wτu

≥ 2

∣∣∣∣ Fτu

]
= Γ(µτu). (4.32)

In particular, we have

P

(
sup
n≥0

Wn+τu

Wτu

≥ 2

∣∣∣∣ τu < ∞
)

= E [Γ(µτu) | τu < ∞] . (4.33)

Now the idea is that if the probability α is very spread out, good mixing properties of the

field (θ0,xW
β
n )x∈Zd (here we use slightly more than ergodicity) imply that

∑
x∈Zd α(x)θ0,xW

β
n is

concentrated around its mean which is equal to one and thus that Γ(α) is small. This is stated
in the following lemma, whose proof is postponed to the end of this section.

Lemma 4.8. For any ε > 0, there exists η = η(ε) such that for any α ∈ P(Zd)

max
x∈Zd

α(x) ≤ η ⇒ Γ(α) ≤ ε. (4.34)

To conclude, let us fix δ := min(η(D−2q),D−2q) – where η is the function given by the above
lemma – and assume that (4.22) is violated for this value of δ. Since Γ(µτu) ≤ 1, the combination
of (4.33) and (4.34) yields

E [Γ(µτu) | τu < ∞] ≤ D−2q + P

(
max
x∈Zd

µτu(x) > δ

∣∣∣∣ τu < ∞
)

≤ D−2q + δ ≤ 2D−2q, (4.35)

which, with our choice for D (4.20), concludes the proof of (4.29) and hence of the proposition.
�
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Proof of Lemma 4.8. We prove that there exists η such that if maxx∈Zd α(x) ≤ η then

E


sup
n≥0

∑

x∈Zd

α(x)θ0,xW
β
n − 1


 ≤ ε (4.36)

and then conclude using Markov’s inequality (note that the supremum is non-negative). The
first step is to reduce the range over which the sup is taken. For any M , we have

E


sup
n≥0

∑

x∈Zd

α(x)θ0,xW
β
n


 ≤ E


 sup
n∈J0,MK

∑

x∈Zd

α(x)θ0,xW
β
n




+
∑

x∈Zd

α(x)E

[
sup
i≥0

θ0,xW
β
M+i − θ0,xW

β
M

]
(4.37)

Now since α is a probability, by translation invariance we have

∑

x∈Zd

α(x)E

[
sup
i≥1

θ0,xW
β
M+i − θ0,xW

β
M

]
= E

[
sup
i≥0

W β
M+i −W β

M

]
. (4.38)

Note that we have

lim
M→∞

(
sup
i≥0

W β
M+i −W β

M

)
= 0 and sup

i≥0

∣∣∣W β
M+i −W β

M

∣∣∣ ≤ W β,∗
∞ (4.39)

Since by [Jun22b, Theorem 2.1(i)], W β,∗
∞ ∈ L1, we can use dominated convergence to obtain

that for M sufficiently large we have

E

[
sup
i≥0

W β
M+i −W β

M

]
≤ ε/2 (4.40)

and we are left with estimating the first term in (4.37). First observe that (by Cauchy-Schwarz)

E


 sup
n∈J0,MK

∑

x∈Zd

α(x)θ0,xW
β
n − 1


 ≤ E


 sup
n∈J0,MK


∑

x∈Zd

α(x)θ0,xW
β
n − 1




2

1/2

(4.41)

Then we use Doob’s L2-inequality (for the martingale
∑

x∈Zd α(x)θ0,xW
β
n − 1) and obtain that

E


 sup
n∈J0,MK


∑

x∈Zd

α(x)θ0,xW
β
n − 1




2
 ≤ 4E




∑

x∈Zd

α(x)θ0,xW
β
M − 1




2
 (4.42)

Now we can conclude by observing that

E




∑

x∈Zd

α(x)θ0,xW
β
M − 1




2
 ≤

∑

x,x′∈Zd

|x−x′|≤2M

α(x)α(x′)E

[(
W β

M − 1
)2]

≤ (4M + 1)deM(λ(2β)−2λ(β))η,

(4.43)

which is bounded by ε
2 if η is sufficiently small. �
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5. Proof of the corollaries from Section 2.4

5.1. Preparation for the proof of Corollary 2.7(ii). We are going to prove that p∗(β) <
1+ 2

d implies strong disorder. To do so we are borrow a couple of elements of proof from [JL24].
This includes using a characterization of strong disorder via the size-biased measure, as well as

an estimate of the tail distribution of the supremum of the partition function W β
n take over a

finitely many values of n.

The size-biased measure P̃n defined by dP̃n := W β
n dP. When weak disorder holds, P̃n converges

when n → ∞ to a measure P̃∞ which is absolutely continuous w.r.t. P. On the other hand,

when strong disorder holds, P̃n and P become increasingly singular as n grows. Hence to prove
that strong disorder holds, it is sufficient to find an event An which has large probability under

P and small probability under P̃n. The following lemma, although not strictly necessary, helps
to understand this dichotomy. Its proof can be found in [JL24, Lemma 3.2].

Lemma 5.1. For any event A we have

P

[
(W β

n )
1/2
]
≤
√

P(Ac) +

√
P̃n(A) (5.1)

Our goal is thus to identify a sequence of events An such that

lim
n→∞

P(Ac

n) = lim
n→∞

P̃n(An) = 0. (5.2)

Before introducing the event An, we state a key technical result that will be essential to obtain

an estimate on P̃n(An).

Lemma 5.2. Assume that weak disorder holds at β. Given ε > 0, there exist constants Cε > 0
and u0(ε) > 0 such that for every u ≥ u0(ε)

∃m ∈ J0, Cε log uK, P

(
W β

m ≥ u
)
≥ u−p∗(β)−ε. (5.3)

The above result is the analogue of [JL24, Proposition 4.2] which states that (5.3) is valid
when strong disorder holds (in which case p∗(β) = 1) under the additional assumption that the
environment is upper-bounded. The proof the present lemma is almost identical, except that we

use Theorem 2.1 (more specifically, the asymptotic behavior of Ŵ β,∗
n ) in place of [JL24, Theorem

4.4] as an input. We therefore only sketch the argument.

Proof. First, by an inductive argument similar to the one used to prove (4.12) (we refer to the
proof of [JL24, Proposition 6.1] for details), we obtain, for any k, T ∈ N and u > 1,

P

(
max

n∈J1,kT,x∈ZdK
Ŵ β

n (x) > vk
)

≥ P

(
max

n∈J1,T K,x∈Zd
Ŵ β

n (x) ≥ v

)k

. (5.4)

Then we fix v1 large enough that v
−ε/2
1 ≤ c

2 , where c is such that P
(
Ŵ β,∗

∞ > u
)
≥ cu−p∗ holds

for all u > 1 (such a constant exists due to Theorem 2.1). By choosing T large enough, we have

P

(
max

n∈J1,T K,x∈Zd
Ŵn(x) ≥ v1

)
≥ c

2
v−p∗

1 . (5.5)

Now given u we set k = ku := ⌊log u/ log v1⌋. By a union bound and (5.4)–(5.5), we obtain

max
n∈J1,kT K

P

(
W β

n > u
)
≥ 1

kT
P

(
max

n∈J1,kT K
W β

n > u

)

≥ 1

kT
P

(
max

n∈JkT K,x∈Zd
Ŵ β

n (x) > vk1

)
≥
( c
2
v−p∗

1

)k
≥ v

−k(p∗+ε/2)
1 ≥

(
u

v1

)−(p∗+ε/2)

(5.6)
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It is then easy to see that the claim holds with u0 = (v1)
2p∗

ε
+1 and Cε :=

T
log v1

. �

The last ingredient we need is a well-known construction which allows for a simple repre-
sentation of the size-biased measure, which is sometimes called the spine construction, see for
instance [Bir04, Lemma 1]. We define (ω̂i)i≥1 as a sequence of i.i.d. random variable with
marginal distribution given by

P̂[ω̂1 ∈ ·] = E

[
eβω1,0−λ(β)1{ω1,0∈·}

]
, (5.7)

and X a simple random walk (P̂ and P denote the respective distributions). Given ω, ω̂ and X,
all sampled independently, we define a new environment ω̃ = ω̃(X,ω, ω̂) by

ω̃i,x :=

{
ωi,x if x 6= Xi,

ω̂i if x = Xi.
(5.8)

In words, ω̃ is obtained by tilting the distribution of the environment on the graph of (i,Xi)
∞
i=1.

The distribution of ω̃ under P ⊗ P⊗ P̂ corresponds to that of ω under the size-biased measure.

Lemma 5.3. It holds that

P̃n[ (ωi,x)i∈J1,nK,x∈Zd ∈ · ] = P ⊗ P⊗ P̂[(ω̃i,x)i∈J1,nK,x∈Zd ∈ ·]. (5.9)

We refer to [JL24, Lemma 3.3] for a proof of the above using the same notation.

5.2. Proof of Corollary 2.7(ii). Assuming that p∗(β) < 1 + 2
d , we fix three parameters

ζ ∈
(
p∗(β), 1 +

2

d

)
, α ∈

(
2 + d

2ζ
,

1

ζ − 1

)
and ξ ∈

(
1

2
,
1− αζ

d

)
. (5.10)

Using Lemma 5.1, for n ≥ n0 sufficiently large and some C > 0 we let m be such that

m ≤ C log n and P

(
W β

m ≥ nα
)
≥ n−αζ . (5.11)

Now we define the event An as follows

An :=
{
∀(x, r) ∈ J0, n−mK × J−nξ, nξKd, θx,rW

β
m < n−α

}
. (5.12)

Our aim is to prove that both P(Ac

n) and P̃n(An) tend to zero (cf. (5.2)). Since ((W β
n )1/2)n∈N is

uniformly integrable, limn→∞ E[(W β
n )1/2] = 0 implies strong disorder, as desired. Using a union

bound and translation invariance we have (using Theorem 2.1)

P(Ac

n) ≤ ndξ+1
P

(
W β

m ≥ nα
)
≤ Cndξ+1−αζ . (5.13)

With our choice of parameters (5.10), the exponent in the r.h.s. is negative and hence P(Ac

n)

tends to zero. The remainder of the proof is to show that the same holds for P̃(An).

The key idea is to show that, in some sense that, under the size biased measure P̃n, we can

extract n1−o(1) variables amongst the collection (θr,xW
β
m)x∈Zd,r∈J0,m−mK, whose distribution is

i.i.d. and given by P̃m

(
W̃m ∈ ·

)
. This is where the spine representation from Lemma 5.3 is

useful. Let θx,rW̃
β
m denote the partition function built with environment ω̃(X,ω, ω̂) that is,

θx,rW̃
β
m := E′

[
e
∑m

i=1 βω̃r+m,x+X′
i
−mλ(β)

]
(5.14)
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where X ′ is a simple random walk with the same law as X (X appears in the definition ω̃ so it
is not available as a variable of integration). From Lemma 5.3 we have

P̃n(An) = P̂⊗ P⊗ P (ω̃ ∈ An) .

Now we observe that if ω̃ satisfies An then either θr,xW̃
β
m has to be small when (x, r) runs along

the graph of X, or the graph of X must leave the box J1, nK × J−nξ, nξKd, i.e.,

{ω̃ ∈ An} ⊂
{
∀r ∈ J0, n−mK, θr,XrW̃

β
m < n−α

}
∪
{
∃i ∈ J1, nK,Xi /∈ J−nξ, nξKd

}
. (5.15)

Setting jn := ⌊n/m⌋ and restricting the range of r to multiples of m we obtain that

P̂⊗ P⊗ P (ω̃ ∈ Ac

n) ≤ P
(
∃i ∈ J1, nK, Xi /∈ J−nξ, nξKd

)

+ P̂⊗ P⊗ P
(
∀i ∈ J0, jn − 1K, θim,XimW̃

β
m < n−α

)
(5.16)

Since ξ > 1/2, the probability of the first term goes to zero and we can conclude by showing
that

lim
n→∞

P̂⊗ P⊗ P
(
∀i ∈ J0, jn − 1K, θim,XimW̃

β
m < n−α

)
= 0. (5.17)

By construction (using the Markov property for the random walkX) the sequence of environment
(
(θim,Ximω̃n,x)(n,x)∈J1,mK×Zd

)
i≥0

is independent and identically distributed. In particular, the sequence of variables (θim,XimW̃
β
m)i≥1

is i.i.d. and from Lemma 5.3 the marginal distribution is given by

P ⊗ P⊗ P̂

(
W̃ β

m ∈ ·
)
= P̃m

(
W β

m ∈ ·
)
. (5.18)

Observing that, from (5.11) we have

P̃m(Wm ≥ n−α) = E
[
Wm1{Wm≥n−α}

]
≥ n−α(ζ−1),

we obtain that for any j ≥ 1 we have

P̂⊗ P⊗ P
(
∀i ∈ J0, j − 1K, θim,XimW̃

β
m < n−α

)
= P̃m

(
Wm < n−α

)j ≤ e−jn−α(ζ−1)
. (5.19)

We apply the above formula for jn and we can conclude using the fact that α(ζ − 1) < 1 (due
to our choice of (5.10)), hence limn→∞ jnn

−α(ζ−1) = ∞. �

5.3. Proof of Corollary 2.9. For part (i), since p∗ is decreasing, it is enough to show that for
any ε > 0 there exists β′ < β such that p∗(β′) ≤ p∗(β) + ε, that is

sup
n

E[(W β′

n )p
∗(β)+ε] = ∞. (5.20)

For this purpose, let u0 be large enough that uε0 ≥ 8
c1
, where c1 is such that P(Ŵ β,∗

n ≥ u) ≥ c1u
−p∗

holds for all u > 1. We then choose T0 large enough so that

P

(
sup

x∈Zd,t≤T0

Ŵ β
t (x) > u0

)
≥ 1

2
P

(
sup

x∈Zd,t∈N
Ŵ β

t (x) > u0

)
≥ c1

2
u−p∗

0 .

The probability on the left-hand side being continuous in β, we can find β′ < β such that

P

(
sup

x∈Zd,t≤T0

Ŵ β′

t (x) > u0

)
≥ c1

4
u−p∗

0 . (5.21)
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Using (5.4), we have

P

(
W β′

kT0
≥ uk0

)
≥ P

(
sup
x∈Zd

Ŵ β′

kT0
(x) ≥ uk0

)
≥ P

(
sup

x∈Zd,t≤T0

Ŵ β′

t (x) > u0

)k
(5.22)

and thus combining (5.21) and (5.22) we obtain

E

[
(W β′

kT0
)p

∗+ε
]
≥ (u0)

(p∗+ε)k
P

(
W β′

kT0
≥ uk0

)
≥
(c1
4
uε0

)k
≥ 2k (5.23)

where the last inequality comes from our choice for u0. This proves (5.20). For part (ii) we
repeat the above argument with β′ equal replaced by β, which gives

lim sup
n→∞

1

n
logE[(W β

n )
p∗+ε] ≥ lim

k→∞
1

kT0
log

[(c1
2
uε0

)k]
≥ log 4

T0
> 0.

�

5.4. Proof of Corollary 2.12. We observe that

E

[
(W β

n )
p∗
]
=

∫ ∞

0
p∗up

∗−1
P

(
W β

n ≥ u
)
du ≤ 1 +

∫ ∞

1
p∗up

∗−1
P

(
W β

n ≥ u
)
du. (5.24)

Now Theorem 2.1 implies that, for any u ≥ 1 and some constant C > 0,

up
∗−1

P

(
W β

n ≥ u
)
≤ Cu−1. (5.25)

We are going to show that there exists a constant K > 0 such that for every n we have

∀u ≥ exp(Kn), up
∗−1

P

(
W β

n ≥ u
)
≤ u−2. (5.26)

Combining (5.24), (5.25) and (5.26) we obtain that

E

[
(W β

n )
p∗
]
≤ 1 + Cp∗

∫ eKn

1
u−1du+ p∗

∫ ∞

eKn

u−2du ≤ 1 + p∗ + CKp∗n. (5.27)

Finally, to prove (5.26), we simply observe that

P

(
W β

n ≥ u
)
≤ u−p

E

[
(W β

n )
p
]
≤ u−pen(λ(βp)−pλ(β)). (5.28)

and conclude by applying the above to p := p∗ + 2, which implies (5.26) for K = λ(βp) −
pλ(β). �
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