
Statistical estimation theory detection limits for label-free imaging

Lang Wang, Maxine Xiu, Ali Pezeshki, and Randy Bartels∗

Colorado State University, Fort Collins, CO 80523
(Dated: May 8, 2024)

The emergence of label-free microscopy techniques has significantly improved our ability to pre-
cisely characterize biochemical targets, enabling non-invasive visualization of cellular organelles and
tissue organization. Each label-free method has specific benefits, drawbacks, and varied varied sensi-
tivity under measurement conditions across different types of specimens. To link all these disparate
label-free optical interactions together and to compare detection sensitivity of these modalities, we
investigate their sensitivity within the framework of statistical estimation theory. This paper in-
troduces a comprehensive unified framework for evaluating the bounds for signal detection with
label-free microscopy methods, including second harmonic generation (SHG), third harmonic gen-
eration (THG), coherent anti-Stokes Raman scattering (CARS), coherent Stokes Raman scattering
(CSRS), stimulated Raman loss (SRL), stimulated Raman gain (SRG), stimulated emission (SE),
impulsive stimulated Raman scattering (ISRS), transient absorption (TA), and photothermal effect
(PTE). A general model for signal generation induced by optical scattering is developed. Based
on this model, the information obtained is quantitatively analyzed using Fisher information, and
the fundamental constraints on estimation precision are evaluated through the Cramér-Rao Lower
Bound (CRLB).
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I. INTRODUCTION

Optical imaging provides a method of observing biological systems that is particularly powerful for studying dy-
namics in live specimens. Information obtained from optical microscopes is derived from the light collected from
the specimen. In one widespread approach, exogenous labels (often molecular dyes or fluorophores) are applied to
interrogate the behavior of cells and tissues, such as nucleic acids, cytoplasm, extracellular proteins, or particular
biomolecules. Despite the incredible power that comes from the specificity of the application of these labels, the labels
carry their own problems. Many are toxic or severely disrupt biological function, complicating interpretation of data
from imaging experiments. In addition, the introduction of external labels is often impeded by physical processes,
such as the need for labels to diffuse through tissue or to pass through the blood-brain barrier.

An alternative strategy for optical microscopy, label-free imaging, uses intrinsic optical properties for imaging
biological samples. Such strategies provide a rich palette of light-molecule interactions that produce an optical signal
from which an optical microscope image may be formed. In this special issue of the Journal of Biophotonics, we
are celebrating the wide-ranging contributions that our dear colleague Gabi Popescu made to this field. Gabi was a
big champion and cheerleader for this field and his enthusiasm for the widespread utility of label-free imaging was
infectious.

There are a wide range of label-free imaging modalities. Each modality probes particular features of the specimen
and each exhibits a sensitivity that depends on the sample properties and the experimental scenario. However, the
field lacks a comprehensive comparison between various techniques to determine when each method will provide useful
information, as well as an assessment of the detection sensitivity of these methods. In this work, we develop a general
model for label-free signal generation to facilitate investigation of the relative performance of these label-free imaging
methods.

Our analysis considers a universal light-matter interaction mechanism for label-free imaging techniques, then we
apply the tools of statistical information theory to study the detection limits with label-free imaging methods. This
strategy establishes bounds on the detection sensitivity of label-free microscopy. Note that we do not treat label-free
methods based on the autofluorescent properties of a small set of endogenous biomolecules, as these methods cannot
be incorporated into our general optical signal model.

A wide range of label-free optical interactions have been exploited for optical microscopy. These optical modalities
universally rely on optical spectroscopy of illumination light and the methods in which the light-matter interactions
in the specimen modify light propagation, polarization, or color. Label-free imaging most often relies on linear optical
scattering, where spatial variations in the optical susceptibility, δε, distort light propagation through a specimen. To
recover the three-dimensional variation in optical susceptibility, a range of optical methods can record quantitative
changes in optical phase and amplitude and solve an inverse scattering problem. While such quantitative phase
microscopy methods [1–3] can be ubiquitously applied to specimens, the optical spectroscopy shows little dispersion,
and as a result it is difficult to differentiate between particular molecular species [4]. Nonlinear optical scattering
processes of second- and third-harmonic generation (SHG, THG) can occur for a large incident optical field strength.
These nonlinear scattering mechanisms convert incident light into a new color and reveal tissues formed from organized
distributions of structural proteins (SHG) [5–10] or from morphologies such as cell membranes and small lipid bodies
(THG) [11–16].

The rise of label-free microscopy has facilitated our ability to chemically specify biochemical targets, allowing us to
visualize cellular organelles without perturbing the biological dynamics. Because the identification and observation of
the behavior of biomolecules provides critical insight into biological systems, methods that can provide label-free bio-
chemical detection are highly sought after and forms the basis of a several label-free imaging methods that differentiate
molecules based on their vibrational spectral fingerprints [17–20] or based on the excited state decay dynamics [21–24].
The simplest vibrational spectral measurements exploit direct mid-infrared absorption at vibrational frequencies for
which motion induces a change in the molecular dipole, thus producing direct optical absorption with incident light
that matches the vibrational energy. [25–28] Alternatively, the Raman-active vibrational spectroscopy can be probed,
where vibrational motion leads to a change in molecular polarizability and thus drives inelastic optical scattering,
where scattered light either gains or loses a quanta of vibrational energy. [29, 30] Conventional Raman spectroscopy
and imaging are limited in detection sensitivity because they rely on spontaneous Raman scattering, a rare process.
Stimulated Raman scattering techniques, such as coherent anti-Stokes Raman scattering (CARS), [31, 32], coherent
Stokes Raman scattering (CSRS), [33], stimulated Raman scattering (SRS), [34, 35], or impulsive stimulated Raman
scattering (ISRS) [36–43] greatly increase the Raman signal scattering.

An advantage of stimulated spectroscopic interactions for the imaging of molecular targets is that the rate of
signal generation may be elevated relative to the natural excited state relaxation times that constrain fluorescent
imaging rates. The rate of signal generation can be increased in pump-probe experimental arrangements such as
transient absorption (TA), excited state absorption (ESA), stimulated emission (SE), or ground state depletion (GSD)
[21, 23, 44] imaging methods. In this family of interactions, a pump pulse drives electronic absorption that perturbs
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the transmitted power of a time-delayed probe pulse. [45]
Following excitation of a molecular chromophore, electrons promoted to an excited state will relax back down to

the ground state and this excess energy is thermalized. Thermalization of the deposited energy heats the region
surrounding the chromophore—producing an increase in temperature and pressure. These two perturbations are
exploited for photoacoustic (PA) [46] and photothermal (PT) [47, 48] detection mechanisms. We study the latter
here because the detection is optical and thus relevant to our signal model. PT interactions can be driven by optical
absorption [49] or vibrational state transitions [50–52] that leave residual energy in the molecule. The temperature
change induced by the energy dissipation following optical excitation produces a small change in the effective linear
optical susceptibility, δε. This differential change δε can then be extracted by comparing optical phase images or
changes in optical scattering following excitation to those taken at thermal equilibrium.

To link all these disparate label-free optical interactions together, we consider a description that can incorporate
the signal model for each of these modalities. The signal model that we develop links all label-free imaging methods
together to highlight the key underlying signal generation mechanism. To link all these disparate label-free optical
interactions together and assess their relative detection limits, we employ the general signal model and compute the
information available in measurements using statistical estimation theory. This model does allow direct comparison
of the detection sensitivity between all the methods. Specifically, we consider scattering-induced changes in an optical
imaging field produced by a spherical perturbation of optical susceptibility δε. A model of the imaging field that
has passed through an optical microscope is developed so that a model of the signal detection probability may be
constructed. This signal model accounts for shot noise in the optical detection, capturing the limiting case of optical
detection in the standard quantum limit. On the basis of this model, the measurement information is quantified
by Fisher information and the fundamental limits in estimation precision for δε are assessed by the Cramér-Rao
Lower Bound (CRLB). The effective susceptibility perturbation is then calculated for the label-free imaging methods
presented in the introduction so that detection bounds of molecular concentration, or other parameters of interest,
may be established with the general model. This general analysis can be applied to any label-free spectroscopy or
imaging method and we hope will be a valuable tool for assessing label-free imaging experiments.

II. THE IMAGING MODEL FOR SIGNAL DETECTION

Our universal model for label-free signal generation is based on the optical system illustrated in Fig. 1. We consider an
object that consists of a spherical perturbation of optical susceptibility, δε = εs−εb, a change in the relative dielectric
permittivity of the sphere, εs, relative to a background relative dielectric permittivity, εb. The sphere has a radius
a ≪ λ that is small compared to the incident field wavelength λ. The signal model is determined by the light that is
imaged from the object space to the image space through a 4-f optical microscope; we closely follow the theoretical
analysis of the image of a dipole in an optical microscope. [53] Once the model for the signal is obtained, we apply
the tools of statistical estimation theory to establish the bounds on the precision with which we may estimate δε.

A. The dipole moment of a sub-wavelength particle

Our particle lies in an object space, with coordinates r = (x, y, z) centered at the origin r0 = (0, 0, 0), and is illuminated
by an incident optical field Ei(r, t) = E0 ur(r)ut(t) exp(i nb k0 z0) ϵ̂. We assume that the incident beam propagates
along z so that the beam polarization vector, ϵ̂, lies in the transverse plane with a surface normal aligned with z.
The incident beam has a peak electric field strength of E0, with a spatial variation of field amplitude that varies
due to beam diffraction described by ur(r). This diffracted field is normalized such that |ur| ≤ 1. For cases of a
pulse, we assume that ut is a complex temporal envelope normalized to |ut| ≤ 1 and that the pulse is a member of
a pulse train with a repetition rate of νr. Note that for an un-pulsed continuous wave beam, ut = 1. We assume
that the illumination beam is centered at the origin such that ur(r0) = 1. The polarization of the incident beam is
denoted by ϵ̂ and the free space wavenumber is k0 = 2π/λ is increased by the object space background refractive
index, nb =

√
εb. The beam transverse intensity profile is I(r⊥, t) = I0 |ur(r⊥, z)|2 |ut(t)|2 at an axial plane z, where

the transverse spatial coordinate vector is r⊥ = (x, y). Definitions of the beam area, Ab = I−1
0

∫
I(r⊥, 0) d

2r⊥, and

the pulse temporal duration, τp = I−1
0

∫
I(0, t) dt, make use of this transverse intensity profile. Finally, we note that

the average power of the incident beam is pi = νr
∫
Ii(r⊥, t) dt d

2r⊥ = νr τp Ab I0 ≡ Ab Ia, which can be written in a
very simple form using the average intensity Ia = νr τp I0.
Due to constraints of optical diffraction, the beam area is on the order of λ2 or larger. Consequently, scattering by

the sub-wavelength centered on the illumination beam is produced by an oscillating electric dipole moment driven by
the field at the peak of the incident beam, µ = α̃Ei(r0), where we assume that the particle is centered on the beam.
The parameter α̃ ≡ ε0 α is a complex quantity describing the propensity of a scatterer to produce a polarization in
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FIG. 1. The model and the label-free imaging techniques. (a) From left to right: the scattering of the particle, the 4-f imaging
configuration, and the measurement by a camera. In the scattering event, the particle is illuminated by an incident light,
forming a dipole moment d. The scattering property of the dipole in the far-field region. (b) The contrast mechanisms of the
imaging methods. The methods are classified into dark-field and bright-field methods. In the pump-probe methods, the red
arrow denotes the pump, the purple arrow denotes the probe, and the blue arrow denotes the scattering, that is, the spatial
frequency of the particle to be imaged [? ]. Notice that CARS, CSRS, SRL, and SRG share the same step (1) so only step (2)
is shown for CSRS, SRL, and SRG.

response to an applied electric field. We separate this polarizability into a product of the dielectric permittivity of free
space, ε0, and the complex-valued polarizability volume α. Even for a real-valued optical susceptibility perturbation,
δε, the polarizability will be complex due to rescattering described by the radiative reaction term. [54] However,
because we consider k0 a ≪ 1 and δε ≪ 1, we may reliably approximate the polarizability volume by α ≈ V δε, where
the volume of the sphere is V = (4π/3) a3.

Within the approximations presented here, the oscillating dipole moment, µ, radiates a dipole electric field. This
radiation is the universal physical origin of our label-free signal used for probing a specimen. The frequency at which
the induced dipole oscillates is determined by the particular label-free interaction and the interaction can either be
an elastic scattering process, where the wavelength stays the same as the incident light, or an inelastic scattering
process, where there is a change in optical wavelength. In addition, the effective susceptibility perturbation will be
determined by the number of molecules contributing within the perturbation volume, V , and the coherence of the
interaction that drives the susceptibility perturbation. The specific cases for label-free imaging will be discussed later
in this article.

B. Dipole scattering and cross-sections

To appreciate signal levels, we consider the expression for the extinction, scattering, and absorption cross-sections
of the label-free perturbation. [55] The extinction cross-section reads σext = (k0/nb)V Im{δε}, while the scattering
cross-section is given by σs = (k40 V

2/6π) |δε|2. The difference is the absorption cross-section, σabs = σext − σs.
Note that these cross-section values will be composed of molecular components within our scattering sphere and the
contribution of the effective polarizability of the set of molecular components to the total δε. As a consequence, the
total cross-section values depend on the coherence between induced dipole moment between each molecules within
the sphere. Each scenario will be treated separately later in the article.

With the cross-section for the sub-wavelength sphere, we can estimate the extinguished and scattered average
powers as pσ = νr σ

∫
Ii(0, t) dt. Making use of the expression for the incident average power, we write pσ = (σ/Ab) pi,

scaling as the ratio of the cross-section and the incident beam area. For a fixed incident optical power budget, it is



5

desirable to focus the incident beam tightly to minimize Ab, and thus maximize the intensity of the illumination beam.
In a high numerical aperture (NA) focusing limit, an incident beam focused to the origin can be approximated with a

three-dimensional Gaussian distribution ur(r) = exp(−ρ2/w2
0) exp(−z2/w2

z). Here ρ =
√

x2 + y2 is radial transverse

coordinate and the radii of the focused beam are w0 = 0.52nb λ/NA and wz = 0.76λ/[1 −
√
1− (NA/nb)2]. [56]

This produces a beam area of Ab = 0.42(nb/NA)λ2. Combining these expressions, we find that the power (scattered,
extinguished, or absorbed) reads pσ ≈ 2.4 (NA/nb)

2 (σ/λ2) pi. The coefficient in front of the incident power is a small
number indicating that much of the incident power is unperturbed. This sets a level of background light that usually
degrades sensitivity and must be accounted for in the signal model. For a complete model, we compute the image of
excitation beam and scattered beam through a 4-f imaging system.

C. Signal obtained from the image of the dipole through a microscope

To compute the signal produced from a field imaged from the object region into an image region, we follow the
derivation of the image of a dipole field produced with a high NA imaging system. [53] The object field may be
expanded into a set of transverse spatial frequencies, k⊥ = (kx, ky), at a reference plane, here z = 0, providing the
expression of the object field

Eobj(r) =

∫
e(k⊥) e

i (k⊥·r⊥+γo z)d2k⊥. (1)

The transverse spatial frequency spectral amplitude is denoted by e(k⊥) and the angular spectral propagator can be
used to express the field at a plane other then z = 0 with a transverse spatial frequency phase determined by the
axial spatial frequency for propagation, γ0 =

√
n2
b k

2
0 − ∥k⊥∥2 of the wavevector, at k = (k⊥, γo), for each transverse

spatial frequency.
The object field is mapped to an image space where we place a detector using a 4-f optical imaging system. As

indicated in Fig. 1, the focal lengths of the imaging system are f1 and f2, leading to a magnification of the object field
by the factor M = −f2/f1. When mapping the object field to the image space in air, the wavevector is transformed

such that k′ = (k′
⊥, γi), where k′

⊥ = (kx/M, ky/M) and γi =
√
k20 − ∥k′

⊥∥2. The image of the object field, labeled by
the image-space coordinates r1 = (r1⊥, z1), at the in-focus plane of z1 = 0 may be expressed in terms of the object
space transverse spatial frequencies as

Eimg(r1) = M

∫ √
γo
γi

H(M k′
⊥) e1(M k′

⊥) e
ik′

⊥·r1⊥d2k′
⊥. (2)

Moreover, the polarization of the dipole field may be decomposed into ŝ and p̂ polarization directions. The imaging
system transforms the object field polarization through a unitary rotation, thus preserving the magnitude of the
transverse spatial frequency components, so that |e1| = |e|. The coherent transfer function of the 4-f imaging system,
H(k⊥), is a low-pass transverse spatial frequency filter with a cutoff spatial frequency, kc = 2πNA/λ, determined by
the NA of the imaging objective lens (f1).
We assume that the NA of the imaging objective lens does not restrict the collection of the illumination beam,

which implies the beam is simply expanded by the magnification factor with a corresponding drop in field amplitude
such that the full power of the incident excitation beam is transmitted through the imaging system. The label-free
signal originates from the source, Q = (k20/ε0)µ, that is produced by the induced dipole moment. The transverse
spatial frequency spectrum of the forward-propagating component of the dipole field reads

eQ(k⊥) =
i

8π2 γo
[Q− (Q · k̂)k̂]. (3)

Here k̂ = k/∥k∥ and we exploited that fact that we consider an object is located at the origin of the coor-
dinate system. The power of the field scattered in the forward direction is given by [53] the formula psob =
(2π2/µ0 ω)

∫
|e(k⊥)|2 γo d2k⊥. Applying this to the dipole scattered field, we find that psob = σs I0/2, which is

half of the total scattered power. The other half of the power propagates in the backward direction. Due to the finite
NA of the imaging objective lens, the power of the image of the dipole emission is reduced to, psim = ηc psob,where

the efficiency of the forward-scattered power by the object is given by ηc = 1−
√
1−NA2 + (NA2/4)

√
1−NA2.

To admit a wide range of experimental arrangements, we consider the following total field in the image space

Etot,im = aEex,im +EQ,im +Er ≡ r̃Eex,im +EQ,im. (4)
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This total field consists of the dipole field image, EQ,im, the image of the excitation field, Eex,im, and a reference field
Er = rEex,im. We have assumed that the reference field is a replica of the image of the illumination field, scaled
by a complex factor r = R exp(i ϕ), where R is the relative amplitude and ϕ is the relative phase of the reference
beam. In addition, we multiply a factor a by the image of the excitation field so that we can set a = 1 to represent
bright-field imaging and a = 0 for the case of dark-field imaging, where the unscattered field is not collected. We
define a generalized complex reference amplitude as r̃ = a+ r.

In our Fisher information analysis, we consider both the case where a single detector collects some fraction of the
total signal power or we send the image onto a camera to capture the signal. In both cases, the information content is
the same as the measurement on each pixel is uncorrelated. As a result, the relevant parameter from the signal model
starts with the total power of the signal, which is computed from the total transverse spatial frequency amplitude.
This total power is the sum of three terms, pt = |r̃|2 pi + psig + pint. The first two power terms have already been
computed and the interference power term, pint = (4π2 r̃∗/µ0 ω)

∫
|H(k⊥)|2 Re{eQ(k⊥) ·e∗ex(k⊥)} γo d2k⊥, arises from

mixing between the dipole source transverse spatial frequency distribution given in Eq. 3 and the excitation beam
transverse spatial frequency distribution, eex(k⊥) = (4π2)−1

∫
u(r⊥) exp(−ik⊥ · r⊥) d2r⊥. Assuming that we have a

symmetric, unaberrated beam propagating along the optical axis that was produced by a uniformly filled illumination
optic numerical aperture (NAi ≤ NA), then we find that pint = −I0 k0 V Im{r̃∗ δε} fNA, where fNA = 1−(NAi/2nb)

2.
Note that plane wave illumination is the limiting case where NAi → 0.

The signal collected in a time-interval ∆t, for a photon energy Eph = h c/λ and detector quantum efficiency ηd that
has a surface area larger than the beam size gives us a mean-detected photon count given by N = ηd ∆t pt/Eph, reads

N = Ni

(
|r̃|2 + 1

2
ηc

σ
(j)
eff

Ab
− k0 V

Ab
Im{r̃∗δε(j)eff } ℓ

(j) fNA

)
≡ Ni FN . (5)

Where we have definedNi = ηd pi/Eph the mean number of detectable photons in the illumination beam and the single-

photon signal function FN . In addition, we have defined δε
(j)
eff = N B(j) α(j) for use with coherent nonlinear scattering

as the effective susceptibility becomes dependent on the incident fundamental beam power, and of course, with CARS
and CSRS, will depend on Stokes and pump beam powers. The parameter B(j) and ℓ(j) will be defined when coherent
nonlinear scattering is discussed and account for pulse averaging effects. For the linear case, where j = 1, B(1) = 1 and
ℓ(1) = 1. In addition, σeff = k4j V

2 |δεeff |2/6π defines the effective scattering cross-section. The number density, N ,
of the molecules in the sphere leads to a total number of molecules of N V , each with a single-molecule polarizablity
(for j = 1, where α(1) is the molecule polarzaiblity) and for j > 1 we represent hyperpolarizabilities used to describe
nonlinear scattering processes.

D. Probabilistic Model for Susceptibility Perturbation Estimation and CRLB

Having established the measurement model in terms of photon count for the particle susceptibility in label-free
imaging, we now delve into the quantitative assessment of each imaging system’s sensitivity of the measurement
data, or equivalently, the amount of information the measurement data carries about the particle susceptibility. The
statistical tools used are the Fisher information, J , and the CRLB, both of which are instrumental in quantifying the
fundamental limits in estimation precision.

When only photon detection noise is present, noise in optical detection can be modeled with as a Poisson process,
where the likelihood function for detecting Y = y photons to be detected is expressed as f(Y = y; δεeff) = N y e−N /y!
and N is the mean photon count. Here we analyze the estimation precision of δε in the model given in Eq. 5
for a Poisson noise model. It is beneficial to define a normalized Fisher information J̃ by the number of photons
from the incident light Ni since the Fisher information scales linearly with respect to the signal strength. The
stronger the detected signal, which requires an increased illumination power, the larger the Fisher information. The
normalized Fisher information J̃ signifies the amount of information carried by a single incident photon about the
object susceptibility perturbation. The Fisher information for this estimate, J = Ni J̃ , can be separated into a
product of the incident mean photon count Ni and the normalized single-photon Fisher information, J̃ , that provides
information on the sensitivity for an experimental arrangement on the detection of the parameter of interest. The
Fisher information and the CRLB are inherently connected as the CRLB is inversely proportional to the Fisher
information. Serving as a theoretical lower limit on the variance of any unbiased estimator when evaluated at the
true parameter value, the CRLB for any unbiased estimation of the susceptibility is, therefore, given by σ2

CRLB =

J−1 = N−1
i J̃−1. The limit to the precision with which a single parameter is simply σCRLB = 1/

√
J . Multiparameter

estimation is more complex because the Fisher information becomes a matrix which must be inverted to obtain the
CRLB values for estimation precision on its diagonal.
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For the Poisson noise model, the normalized Fisher information, J̃ = s2N/FN , is the ratio of the square of the single
photon Fisher score, sN , to the single-photon signal flux FN . The Fisher score, which is the derivative of the log
likelihood function for the measurement with respect to the parameter of interest, establishes the sensitivity of the
measurement with respect to the parameter of interest and helps quantify the amount of information that a set of data
provides about the parameter of interest in a statistical model. Because in general δε is a complex-valued parameter,
we will consider the limiting cases where our parameter of interest, δε, is either purely real so that δε → δεre or
it is purely imaginary so that δε → i δεim. Then, we consider two cases: the normalized Fisher information for a

real-valued susceptibility perturbation is given by J̃re = (s
(re)
N )2/F

(re)
N and the normalized Fisher information for an

imaginary susceptibility perturbation is given by J̃im = (s
(im)
N )2/F

(im)
N . For the real-valued case, we use

F
(re)
N = |r̃|2 + ηc

k40 V
2

12π Ab

(
δε

(re)
eff

)2
− k0 V

Ab
δε

(re)
eff Im{r̃∗} ℓ fNA (6)

and

s
(re)
N = ηc

k40 V
2

6π Ab
δε

(re)
eff − k0 V

Ab
Im{r̃∗} ℓ fNA. (7)

Similarly, for the imaginary-valued case, we use

F
(im)
N = |r̃|2 + ηc

k40 V
2

12π Ab

(
δε

(im)
eff

)2
− k0 V

Ab
δε

(im)
eff Re{r̃∗} ℓ fNA (8)

and

s
(im)
N = ηc

k40 V
2

6π Ab
δε

(im)
eff − k0 V

Ab
Re{r̃∗} ℓ fNA. (9)

The normalized Fisher information will be explored for a variety of label-free signal detection modalities and experi-
mental arrangements.

The Fisher information and the CRLB can be connected to the notion of signal and noise, and thus the signal-
to-noise ratio (SNR) that are commonly used to describe optics experiments. The change in the expected mean
signal for the true parameter of interest value δϵeff,0 to be measured is approximated by ∆Ns ≈ Ni sN ∆δϵeff given
that ∆δϵeff is sufficiently small. Equivalently, when δϵ0 is sufficiently small, the expected mean signal is given by
Ns ≈ Ni sN δϵeff,0. The root mean square noise for the Poisson noise model here gives a noise of Nn =

√
Ni FN . From

these quantities, we may construct the SNR as SNR ≡ Ns/Nn. This leads to the understanding of how the Fisher
information and the CRLB relates to the balance between the signal and the noise. If a small change in the parameter
of interest results in a larger change in the signal or the noise is lower, the Fisher information increases and the
CRLB decreases. Comparing this definition, we see that we may write SNR = δε0 J

1/2 = δε0/σCRLB. This suggests
that the SNR can be comprehensively represented by the behavior of the maximum likelihood estimator (MLE) as
it follows a Gaussian distribution with its mean equal to the true parameter value, and its variance approaches the
CRLB when the number of measurements approaches infinity. Essentially, the variability in the MLE relative to the
mean from different realizations of the same process is contingent on the level of noise power. A lower noise power
results in diminished relative variability, highlighting the importance of noise control. Moreover, We may interpret the
limit of detection as the object susceptibility perturbation at which the SNR = 1 in our measurement and therefore,
(δεeff,0)min = σCRLB.

In summary, a higher Fisher information implies a lower CRLB, indicating that precise estimation of the parameter
is attainable. Therefore, our following sensitivity analysis will focus on the calculation of the Fisher information for
all label-free microscopy methods. Moreover, the Fisher information is broader than a calculation of the SNR and
significant difference can emerge between a simple SNR analysis and one based on Fisher information. [57, 58] While
SNR analysis is applied to a measure of total signal and total noise, [7] it is not straightforward to apply such analysis
to a multipixel detector such as a camera. [59] The Fisher information analysis presented here is directly applicable
to detection schemes where a fraction, ηc/2, of signal power is collected on a single photodetector, or where a camera
is used and many pixels are used to collect the data over an image field of view. At first glance, these may not seem
compatible; however, each pixel measurement is an independent event and thus the log likelihood functions for each
pixel add together, meaning that Fisher information will add for each pixel and becomes equivalent to the integrals
used in our analysis and thus our results are equally valid for camera-based detection. [60]
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III. EFFECTIVE SUSCEPTIBILITY OF LABEL-FREE OPTICAL INTERACTIONS

The normalized Fisher information, J̃ , provides the contribution to the standard deviation of susceptibility per-
turbation estimation precision, J̃−1/2, which we have seen also corresponds to the minimum detectable perturbation
for a general scattering model. Each label-free interaction produces a susceptibility perturbation that is related to
the intensity of the light that drives the light-matter interaction and sets bounds on the limit on how small of a
concentration of the molecules under study may be detected. The coherence of the scattered light relative to the
incident light also plays a role the effective δεeff and the detection limits. In all cases, we consider a set of molecules
contained within the scattering sphere volume, V , that produce a total detected light power.

We may separate the label-free optical interactions into two broad categories: coherent and incoherent. In the
incoherent case, each molecule contributes to the change in the detected light power independently of the other
molecules within the interaction volume. The total signal is proportional to the concentration in the incoherent case.
In the coherent case, each molecule is driven in phase within the interaction volume, and thus the total susceptibility
perturbation is proportional to the molecular concentration, which we will specify in terms of the number density, N .
Within the volume, there are M = N V total molecules that contribute to the label-free signal generation.

A key aspect of the incoherent case is that the phase of scattering or emission from each molecule fluctuates randomly
on a time scale that is rapid compared to the detector integration time. This is the case for autofluorescence and for
spontaneous Raman scattering. In spontaneous Raman scattering, each molecule scatters light inelastically to new
optical frequencies by modulation of the molecular polarizability due to thermal excitation of molecular vibrational
modes. The phase of the vibrational oscillations, and thus the phase of the scattered light, is a random variation that

changes from molecule to molecule. Within V , each molecule will scatter a power of p
(1)
R = σ

(1)
R I0. The origin of Raman

scattering is a change in polarizablity, δα(1) = α′ Qv, of the molecule with displacement of the vibrational coordinate,
Qv. As weak excitation of a vibrational mode is modeled as a harmonic with an amplitude of Qv0 =

√
ℏ/2Ωv for

vibrational frequency Ωv driven by thermal excitation. The strength of the polarizability modulation is α̃′. The

Raman scattering cross-section of a single molecule follows as σ
(1)
R = (k40/6π) |δα(1)|2. This classically derived model

must be slightly modified to account for mode occupancy in a quantum scattering picture, and this modification
explains the discrepancy between the amplitude of Stokes and anti-Stokes spontaneous Raman scattering.

Because spontaneous Raman scattering is incoherent, the total power scattered is simply pR = M p
(1)
R . The effective

Raman scattering cross-section for the volume is σV
R = M σ

(1)
R . In the case of Raman scattering without resonant

enhancement, the effective Raman susceptibility perturbation is purely real, δε(SR) = k−2
0

√
6πM σ

(1)
R /V = δε

(SR)
eff .

Raman scattering interactions are weak, which is reflected in low Raman scattering cross-sections ranging from

σ
(1)
R ∼ 10−31− 10−29 cm2.[61] Tuning the Raman laser near an electronic absorption resonance can increase the cross-

sections to σ
(1)
R ∼ 10−25 − 10−21 cm2. Thus, while Raman vibrational spectra are extremely valuable, detection at

low species concentrations is exceedingly difficult and stimulated Raman and field enhancement techniques have been
used to help alleviate this difficulty.

Another class of inelastic scattering processes are those of coherent nonlinear scattering where light at a fundamental
frequency ω is incident on a molecule. If the amplitude of the incident field is sufficiently large, the induced dipole
moment no longer exhibits a linearly proportional response to the applied electric field. This dipole moment is
usually expanded as a Taylor series of the form [62] µ = α̃ E + β̃ E2 + γ̃ E3 + . . . . The quantities β = β̃/ε0
and γ = γ̃/ε0 are called the first and second hyperpolarizabilities. Here, we are assuming that the polarizability
and hyperpolarizabilities are isotropic so that the complications of tensor algebra need not be invoked. We will
use a compact notation by introducing α(j) as a generalized hyperpolarizability. Thus, we may write the induced
nonlinear dipole as µ = ε0

∑
j α

(j) Ej . The second-order therm with j = 2 can represent SHG, where α(2) = β is the

hyperpolarizability. In the case of j = 3, α(3) = γ is the second hyperpolarizablity, which includes the case of THG
and self phase modulation driven by the electronic contribution, γe, and includes stimulated Raman scattering that
arises from the use the vibrationally resonant component, α(3) = γv.

These hyperpolarizablities produce a nonlinear source term, Q(j) = k2j α
(j) Ej

i ϵ̂. Here the wavenumber at the
scattered frequency is kj = ωj k0 and the harmonic frequency is ωj = j ω0. For a set of molecules in the volume, V , at

a number density N , the coherent scattering is described by a nonlinear polarization density, P (NL) = ε0 D
(j) χ(j) Ej

i .

The factor D(j) is a degeneracy parameter with a value determined by the nonlinear interaction. In the volume
of our sub-wavelength sphere with a number density N of molecules, the generalized hyperpolarizabilities for SHG
and THG are α(2) → β = χ(2)/2N and α(3) → γ = χ(3)/4N , respectively. The nonlinear scattering cross-section,

σ
(j)
s = (2j−1 k4j/6π nj

b (ε0 c)
j−1) |N V α(j)|2, is defined through the instantaneous scattered power. As nonlinear optical

interaction strengths are weak, pulsed lasers are used to ensure a large enough peak field strength to produce sufficient
rates of nonlinear scattering.
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The total time-averaged power scattered by a nonlinear dipole source with frequency ωj , whether from a single

molecule or a distribution inside of a sub-wavelength sphere, is pj = σ
(j)
eff Ia. We have defined an effective linear cross-

section for the nonlinear scattering process as σ
(j)
eff = σ

(j)
s g(j) Ij−1

a . Notice that this effective cross-section depends

nonlinearly on the average intensity of the incident fundamental beam, Ia, and on the zero-lag jth-order intensity
correlation function, g(j). This correlation function, defined as, g(j) = ⟨Ij(t)⟩/⟨I(t)⟩j , depends on the duty cycle,
νr τp, of the fundamental excitation beam laser source. While the exact value of g(j) depends on the pulse shape, the

value is bounded by g(j) ≤ (νr τp)
−(j−1), where the upper bound is met with a square pulse. The effective cross-section

defined an effective linear susceptibility perturbation through the relationship δεeff =

√
6π σ

(j)
eff /k2j V . With this, we

define the effective linear susceptibility perturbation for coherent harmonic scattering as δεeff = N α(j) B(j). The

factor B(j) =

√
(2/ε0 c)(j−1) g(j) I

(j−1)
a accounts for averaging the nonlinear scattered power over the pulse train. The

effective cross-section and susceptibility can be used direction in the signal model given in Eq. 5. This equation also

includes the term ℓ(j) = h(j)/
√
g(j). The term h(j) = I

−(j+1)/2
a ⟨I(t)(j+1)/2⟩ arises as an interference factor from signal

averaging over the pulse train. This term is also bounded as h(j) ≤
√
g(j), where the bounds are again saturated by

a square pulse. In the case of a square pulse, ℓ(j) = 1.
Single molecules interacting can absorb light through linear or nonlinear absorption processes and optical absorption

can occur for electronic and vibrational energy level transitions. Exactly on resonance, the polarizability for a

molecule becomes purely imaginary, i.e., α(1) → i α
(1)
i . The superscript indicates that we are dealing with the

polarizability of a single molecule. This polarizability produces both absorption and scattering, with cross-section for

extinction, σ
(1)
e = k0 Im{α(1)}, scattering, σ(1)

s = (k40/6π)|α(1)|2, and absorption, σ
(1)
a = σ

(1)
e − σ

(1)
s . As generally

σ
(1)
a ≪ λ2, the absorption cross-section on resonance, when α(1) is purely imaginary, the absorption cross-section

is well approximated by σ
(1)
a ≈ k0 α

(1)
i . The perturbation to the linear susceptibility form a number density, N ,

molecules is then δε
(abs)
eff = iN α

(1)
i ≈ iN σ

(1)
a /k0. The absorption cross-sections vary over a wide range, with a

maximum value determined of σa ∼ λ2/2, which corresponds to δεabs = iN α
(1)
i ≈ iN λ3/4π. Chromophores have

absorption cross-sections ranging from [61] σ
(1)
a ∼ 10−17 − 10−15 cm2 for visible and ultraviolet absorption. These

numbers drop several orders of magnitude for mid-infrared vibrational spectra that exhibit cross-sections in a range

σ
(1)
a ∼ 10−19 − 10−17 cm2. Overtone stretches are generally weaker, on the order of range σ

(1)
a ∼ 10−22. [63, 64]

Another common absorption mechanism is multiphoton absorption, were promotion of an electron from a ground
to an excited state requires the simultaneous arrival of two or more photons with energy below the energy gap. For
degenerate two-photon absorption, the interaction of the fields induces a perturbation to the effective linear optical
susceptibility of [65] δε2PA = (3/4)χ(3) |Ei|2. This perturbation is complex-valued, indicating that both self-phase
modulation and two photon absorption are driven in this interaction. Moreover, the existing linear susceptibility
dominates this interaction, i.e., χ(1) ≫ δε2PA, and thus the change in field strength and the extinguished power is
vanishingly small compared to two-photon absorption. As a result, two-photon and multiphoton absorption in general
are typically used with efficient fluorophores, where emitted fluorescent light is collected as the signal. Thus, we do
not discuss direct detection of molecules through multiphoton absorption in the context of direct detection.

The limitations of spontaneous Raman scattering can be partially mitigated using stimulated Raman methods.
These techniques are nonlinear optical methods where a two-photon resonant excitation is driven at the vibrational
frequency, Ωv, in a molecule. The stimulated two-photon process driven by two incident fields, a pump field, Ep,
at frequency ωp and a Stokes field, ES , at frequency ωS < ωp. At resonance, the frequency difference is set to
ωp − ωS = Ωv. There are many subtleties in dealing with the description of stimulated Raman scattering and we will

focus on the vibrationally resonant part of the nonlinear optical response arising from χ
(3)
VR. However, the presence of

nonlinear phase modulation from the electronic contribution to the nonlinear optical susceptibility presents challenges
and opportunities—depending on the experimental arrangement.

The CARS and CSRS nonlinear scattering processes also coherently produce light at a new optical frequency of
ωaS/cS, where aS and cS denotes the anti-Stokes and Stokes frequencies, respectively. As with SHG and THG, we
define an effective susceptibility that may be computed in an analogous manner to the case of SHG and THG scat-

tering, resulting in δϵ
(CARS/CSRS)
eff = N B(CARS/CSRS) γ(CRS). Here B(CARS/CSRS) = (2/ε0 c)

√
g(CARS/CSRS) Iap IaS,

which depends on the product of the average power of the pump and Stokes beams. Here we have also assumed
that the temporal profile of the pump and Stokes pulses are identical so that g(CARS/CSRS) = g(3). The same is true

of h(CARS/CSRS) = h(3). The explicit expression for the effective scattering cross-section now reads σ
(CARS/CSRS)
eff =

(2 k4aS/S V
2/3π n3

b (ε0 c)
2) |δϵ(CARS/CSRS)

eff |2. The wavenumbers are given by kaS/cS = ωaS/cS/c and the SRS hyper-

polarizablity reads γ(CRS) = (6/4) χ(3)(Ωv). Because the CARS and CSRS processes are driven by two fields, the

expression for the averaged scattered power depends on the process as paS/cS = σ
(CARS/CSRS)
eff Ip/S.
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A set of label-free interactions fall into the category of pump-probe interactions, which are distinguished by the
excitation of a non-equilibrium condition in the system by a first (pump) pulse. That non-equilibrium condition
evolves with time and produces a time-varying change in the optical properties of the system that is probed by a
second pulse (probe) that arrives at a later time. The excitation by the pump pulse produces a perturbation in the
effective linear susceptibility, δεeff(t) for t > 0, where we denote t = 0 as the arrival time of the pump pulse. The
time-dependence of the susceptibility perturbation produces spectral scattering that slightly modifies the detected
signals. We will neglect the spectral scattering effects, but a recent review of coherent Raman scattering analyses this
scenario in detail. [36]

The non-equilibrium condition may be established by the rearrangement of population among electronic or vibra-
tional energy levels. Following the perturbation of the system, the kinetics of the relaxation of the excited state
dictates perturbations to the optical properties of the system that can be detected by a time-delayed probe pulse.
While these subsequent dynamics can be quite complicated, the effect on the probe pulse can be modeled by a
complex-valued δεeff(t), and the details of the description depend on the detailed spectroscopy interrogated by the
probe pulse which can be tuned in wavelength to vary the interaction dynamics.

In the case of optical absorption induced by a pump pulse, the pump pulse moves population from the ground to an
excited electronic state by a change in number density δN . This population transfer admits several optical spectroscopy
perturbations for a time-delayed probe pulse. Details of the particular spectroscopic interactions depend on the center
wavelength of the probe pulse. Absorption of the probe pulse can be reduced through ground state depletion or
increased through excited state absorption, processes referred to as transient absorption (TA). Alternatively, as some
probe wavelengths, a population inversion can be established, leading to stimulated emission (SE) that amplifies the

probe pulse. [21, 23, 44, 45] The change in susceptibility following pump pulse excitation is given by δε
(TA/SA)
eff =

∆α(1) δN , for the change in the single-molecule polarizability between the ground and excited states at the probe

wavelength, ∆α(1). In general, ∆α(1) = ∆α
(1)
r + i∆α

(1)
i is complex valued. When dominated by the imaginary

component, ∆α
(1)
i , this process is called TA for positive values and called SE for negative values. When the real

component, ∆α
(1)
r , dominates, the population change is detected through a phase modulation. In all cases, the

susceptibility perturbation drives a change in the scattering from the molecule. [45] The signal change to the probe
pulse is causes either gain or loss in the probe field. For the signal model in Eq. 5, TA and SE make use of the scattering

cross-sections from the volume given by σ
(TA/SE)
eff = (k4pr V

2/6π)
∣∣∣δε(TA/SA)

eff

∣∣∣2 = σ
(TA/SE)
eff . The wavenumber of the

probe pulse kpr = ωpr/c, and B(TA/SE) = 1, g(TA/SE) = 1, and h(TA/SE) = 1.
As noted above, the change in population δN is a perturbation away from thermal equilibrium. This change in

population density for an probe pulse with a fluence well below saturation can be computed for a square pulse with

peak intensity I0 and pulse duration τp, have δN = ρN . parameter ρ = τp λ I0 σ
(1)
a /h c, where h is Planck’s constant.

In the case of two-photon absorption, ρ = τp λ I20 σ
(1)
2PA/h c, where σ

(1)
2PA is the 2PA cross-section for a single molecule in

units of m2/W. This excited state excitation will relax back to the ground state to reach thermal equilibrium. While
this energy decay is often described by a single exponential decay with a excited state lifetime, τe, on the order of
a few picoseconds for non-fluorescent chromophores, the decay dynamics vary across molecular systems and can be
extremely complicated. In addition, this relaxation will lead to thermalization of energy deposited in the molecule
with the surrounding environment that can also be used for label-free imaging through the PT detection as described
below.

Pump-probe interactions are also used for vibrational spectroscopic measurements. While vibrational effects, and
thus vibrational spectroscopy, can be extracted from dynamics on the excited state of molecules, in label-free mi-
croscopy vibrational spectroscopy is usually probed on the ground state through SRS. The processes of SRS is driven
by pulses overlapped in time and produces two processes that occur at the same time as CARS and CSRS scatter-
ing. SRS, however, produces both loss at the pump frequency driven by the intensity of the Stokes field, leading to
stimulated Raman loss (SRL), and gain at the Stokes frequency, leading to stimulated Raman gain (SRG).

Both SRL an SRG produce an effective instantaneous linear susceptibility change that may be written as δϵ
(SRL)
eff =

N B(SRL) γ(CRS) and δϵ
(SRG)
eff = N B(SRG) γ(CRS)∗. Here B(SRL/SRG) = (2/ε0 c)

√
g(3) IaS/ap, which depends on the

product of the average power of either the pump or Stokes beam. The average SRG and SRL power scattered is

pSRG/SRL = ∓σ
(SRL/SRG)
eff Ip/S. Because the vibrationally resonant contribution to the third-order susceptibility is

purely imaginary at peak excitation, χ(3) ∼ i(N ε0/12mΩv Γv)α
′2 ∼ i 3 × 10−20 m2 /V2, δϵ

(SRL/SRG)
eff is purely

imaginary and thus behaves analogously to TA for SRL and SE for SRG. [35] Here, m is the reduced mass of the
vibrational mode and Γv is the linewidth of the vibrational mode resonance. SRL and SRG modify the pump and
the Stokes beams through absorption and scattering, and where α(SRL) = γ(SRS) and α(SRG) = γ(SRS)∗. Finally, we

note that B(SRL/SRG) = (2/ε0 c)
√

g(3) IaS/ap.
SRS is usually implemented with laser pulses longer that the decay time of the excited vibrational coherence. When
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a pulse duration is shorted so that the τp Ωv ≪ 1, the vibrations are driven impulsively by drawing pump and Stokes
frequencies from within the bandwidth of a single pump pulse. This limit is referred to as impulsive stimulated
Raman scattering (ISRS). [36] A vibrational coherence is prepared in the molecule following interaction with a short
pump pulse. This vibrational coherence in the impulsive excitation limit produces an oscillating polarizability the

leads to an optical susceptibility perturbation of δε
(ISRS)
eff = N B(ISRS) Im{γ(CRS)}. In the impulsive case, we have

B(ISRS) = (3/ε0 c) (Γv/νr)) Ia,pu, and Ia,pu = ppu/Apu denotes the average intensity of pump pulse and Γv is the
decay rate of the vibrational coherence. As with TA/SE, a time-delayed probe pulse interacts with the susceptibility
perturbation to produce linear scattering from a spherical particle with polarizability α(ISRS) = V δε(ISRS), and with
the usual scattering cross-section, so that we use ppr for Eq. 5.

The final pump-probe interaction that we consider is the PT effect in which a local change in temperature leads

to a change in the local optical susceptibility, δε
(PT)
eff = ∆T (∂ ε/∂ T ) that modifies linear scattering for a probe pulse

identical to the cases of any optical excitation process, including absorption or inelastic scattering. The induced
perturbation depends on thermal transport because the susceptibility change depends on the change in temperature,
∆T , that is driven by heating from energy deposited into the system and the heat capacity of the medium. As we are
considering a system where the target but un-labeled molecules are confined in the volume of a sphere with radius
a ≪ λ, we can model the optical response with point heating. On timescales short compared to the thermal transport
time, we can estimate the local temperature rise from the energy deposited per excitation Eex = ℏΩex, where Ωex is the
energy gap between ground and excited states. These states can be electronic [66–69] or vibrational. [50, 51] The total
change in energy for Mex states is given as ∆Q = Eex Mex ηnr. The temperature rise from the heating by the thermal
relaxation to the surroundings of the energy deposited in the excitations within a volume, V , is ∆T = ∆Q/Cv V , where
Cv is the heat capacity per unit volume of the solvent surrounding the absorber. Nonradiative relaxation of this energy
leads to local heating, producing the change in optical susceptibility that is exploited by PT detection. For the case of
linear optical absorption, on average the efficiency of nonradiative relaxation ηnr = knr/(knr + kr) = 1− Φf , which is
the complement to the quantum fluorescent yield of a molecule, determines the fraction of the energy absorbed by the
molecule that contributes to heating. Thus, non-fluorescing chromophores are the best candidates for PT detection.
The nonradiative and radiative relaxation rates are knr and kr, respectively. The excited state lifetime of a molecule,
given by τe = (knr + kr)

−1 and which is on the order of several picoseconds for non-fluorescing molecules or several
nanoseconds for fluorescent molecules, sets the times scales for the population kinetics following excitation.

The thermal timescales in a biological imaging scenario are dominated by conductive heat transport. Conductive
thermal transport is modelled by the diffusion equation, which gives a diffusion radius Lth =

√
4D t in an infinite

thermal medium, where t is the time after the point heating has occurred. The thermal transport of the heat away
from the absorbers depends on the thermal conductivity, κ = DCv, and the diffusion coefficient. As we are considering
the detection of sub-wavelength particles, we can establish a thermal time scale for diffusion over a wavelength, set
by tth = λ2/4D. Using a typical value for the diffusion coefficient, D ∼ 10−6 m2/s, and λ = 10−6 m, we obtain
tth = 25µs. This timescale is much larger than the pulse spacing in a typical modelocked oscillator, tth ≫ ν−1

r , so
we may treat the heating and detection with the average beam powers. To eliminate the effects of stray background
absorption and scattering, the heating beam is modulated with frequency νmod and the thermal transport length
associated with this modulation frequency gives a radius of rth =

√
D/π νmod, which we consider for defining an

effective volume of the heated region that induces scattering on the probe pulse.

On a time interval ∆t short compared to tth, where ∆t ≪ tth, there is little time for heat to diffuse as rth will
be much less that λ. However, given such short times, we can estimate the heading that is produced by Mp =
∆t νr pulses in the time interval for a pulsed source with a repetition frequency of νr. The heating per pulse, ∆Q,
will accumulate to a total temperature rise of ∆T = ∆QMp/Cv V . For optical absorption well below saturation,
the mean number of molecules excited by a square heating pulse of length τh and peak intensity I0h is given by

Mex = τh σ
(1)
a I0h N V/Eex. Putting this together, we obtain a susceptibility perturbation of δεPT

eff = N δε
(1)
i BPT.

Here, the imaginary component of the single-molecule susceptibility is δε
(1)
i = σ

(1)
a k−1

0 and the photothermal factor
is BPT = (2/3) e−2 (Aa/Ah) (∆th ph/λκ) (∂ ε/∂ T ). The heating depends on the ratio of the sphere, Aa = π a2, to
the heating beam cross-section area, Ah, the ratio of the average power of the heating beam, ph, to the product λκ.
Heating is converted into a change in optical susceptibility through (∂ ε/∂ T ). The thermal properties of the solvent
that scale the PT susceptibility perturbation are κ−1 (∂ ε/∂ T ). Using numbers from the literature, [70] we find that
this figure of merit is ∼ 6.6× larger for glycerol than it is for water, which is why PT imaging experiments use glycerol
as a solvent when possible. [52]
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δεeff B δεeff,0

1PA
M σ

(1)
a

k0 V
−

Chromophores:
VIS/UV: ∼ 10−4 − 10−3

mid-IR: ∼ 10−5 − 10−4

near-IR: ∼ 10−6

SHG
1

2
B χ

(2)
nr

√
2

ε0 c
h(2)

√
pi
Ab

Collagen:
3.80× 10−4/mW

THG
1

4
B χ

(3)
nr

2

n2
b ε0 c

h(3) pi
Ab

Neat Acetonitrile:
1.86× 10−4/mW

SR

√
6πM σ

(1)
R

V k2
s

− Non-Res: ∼ 10−11 − 10−10

Res: ∼ 10−8 − 10−6

CARS/CSRS
6

4
B

∣∣∣χ(3)(Ων)
∣∣∣ 2

n
3/2
b ε0 c

h(3)

√
pp pS

Ab

Neat Acetonitrile:
7.06× 10−5/mW

SRL/SRG
3

2
B χ

(3)/(3)∗
vr (Ων)

2

n
3/2
b ε0 c

h(3) pp/pS
Ab

Neat Acetonitrile:
i7.06× 10−5/mW

ISRS −3

2
B Im

{
χ
(3)
vr (Ων)

} Γν

νr

2

nb ε0 c
h(3) pp

Ab

Neat Acetonitrile:
1.18× 10−4/mW

TA/SE
σ
(1)
a λ

νr h c

pi
Ab

χ
(1)
vr − −

PT
M

V

σ
(1)
a

k0
B

2

3
e−2 π a2

Ab

∆th ph
λκ

δε

δT
−

TABLE I. Summary of the susceptibility perturbation for various label-free imaging modalities discussed above: 1PA = one
photon absorption, SHG = second harmonic generation, THG = third harmonic generation, SR = spontaneous Raman, CARS
= coherent anti-Stokes Raman scattering, CSRS = coherent Stokes Raman scattering, SRL = stimulated Raman loss, SRG =
stimulated Raman gain, ISRS = impulsive stimulated Raman scattering, TA = transient absorption, SE = stimulated emission,
and PT = photothermal. Typical numbers are calculated based on pulsed laser in fs-regime for harmonic generations as well
as ISRS and ps-regime for other types of pump-probe Raman methods as well as TA/SE and PT (acts as a CW source).

IV. SINGLE PIXEL DETECTION OF DIFFERENT LABEL-FREE IMAGING METHODS

It is evident upon inspection of Eq. 5 that many experimental modalities are admitted by this expression. Having
established the general model for the estimation of either a real- or imaginary-valued optical susceptibility pertur-
bation, we will now study the relative performance of methods and comment on the detection sensitivity of various
optical methods under some arbitrary susceptibility. We begin with the case of direct signal detection without the
aid of interferometric enhancement that is enabled by mixing with a coherent reference field. With this baseline
established, we will examine the benefit of reducing noise power via the elimination of the incident field in detection,
alternatively known as dark-field imaging.

While experimentally challenging due to the potential weakness of the signal, dark-field imaging oftentimes utilizes
a detection angle different from the incident angle. The normalized Fisher information, for both cases of purely real-
and imaginary-valued susceptibilities, is expressed as

J̃dark = ηc
k40 V

2

3π Ab
. (10)

It is independent of the object susceptibility and increases as the object volume increases or as the incident beam
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area decreases. For a typical experimental setup using the dark-field imaging scheme, the Fisher information suggests
that ∼ 102 − 103 photons shall be collected to detect a small susceptibility perturbation as discussed in Sec. III.
Bright-field imaging, by contrast, is a more commonly employed technique in optical experiments. However, the

presence of the incident field, whether or not it interferes with the object field, leads to an elevation in the noise level.
Increased noise decreases the Fisher information and this is more evident in the real-valued case thanks to the absence
of interference between the incident and scattered fields. The corresponding normalized Fisher information expression

is given by ηc k
4
0 V

2/(F
(im)

N,inc +3π Ab), where F
(im)

N,inc denotes the scaled incident intensity normalized by the scattered
intensity. Here, the information about the object susceptibility is preserved in the scattered field, similar to dark-field
imaging, while the noise level experiences an increase. For the imaginary-valued case, although the interference term
contributes additional information about the object susceptibility, the concurrent rise in background results in a higher
noise level and consequently, a reduction in the Fisher information.

However, with an increase in the strength of the object field—whether due to a higher object susceptibility and/or
a larger volume—the Fisher information approaches that in dark-field imaging, as illustrated in Fig. 2. This phe-
nomenon occurs because the signal from the object field becomes more dominant. For more realistic values of optical
susceptibility and volume, the normalized Fisher information in bright-field imaging never exceeds approximately
≪ 1% of that in dark-field imaging for purely real susceptibility perturbation and ∼ 50% for purely imaginary
susceptibility perturbation.

Unlike conventional direct imaging approaches, the exploration of interferometric detection methods in optical
experiments opens new avenues for precision and sensitivity. Subtle variations in the optical path length can be
precisely detected, enabling the measurement of quantities such as phase differences with exceptional accuracy. To
validate its potential enhancement on the estimation of the object susceptibility, we examine the Fisher information
in both dark- and bright-field imaging with a coherent reference beam. The ratio of the Fisher information between
each detection scheme with reference and the dark-field without reference is plotted in Figs. 3(a) and 4(a) accordingly.

The relative phase of the reference proves significant, influencing constructive or destructive interference with the
object field. The interference results in a boost or diminishment in information about the optical susceptibility
perturbation without drastically changing the overall measurement and consequently, the noise level. Therefore, the
Fisher information analyses allow for determining the optimal reference beam intensity and phase relative to the
incident.

Given the demonstrated enhancement in sensitivity achieved by suppressing the noise level, it is only natural to
question whether dark-field imaging with reference offers any advantages over its bright-field counterpart. Interest-
ingly, as long as the reference is not fully eliminated, the noise level experiences similar increases in both detection

FIG. 2. The ratio between the normalized Fisher information in bright-field imaging and in dark-field imaging is plotted as a
function of the object susceptibility and volume. The particle optical susceptibility is arbitrarily chosen to be between 10−10

and 10−2. Particles are assumed to be suspended in a sphere of diameter that follows the Rayleigh scattering regime, on the
order of less than 1

15
of the wavelength of the incident.
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FIG. 3. The ratio between the normalized Fisher information in dark-field imaging with reference and in dark-field imaging. (a)
Plotted as a function of the relative amplitude and phase of the reference. (b) Plotted as a function of the relative amplitude
of the reference to demonstrate its asymptotic behavior as compared to the corresponding approximated limit expression.

schemes, while the information pertaining to the susceptibility perturbation remains constant. This leads to compa-
rable reductions in the Fisher information. However, as the reference strength increases, the interference term gains
dominance, leading to the asymptotic behavior of the normalized Fisher information converging to

lim
|r|→∞

J̃
(re)
ref =

k20 V
2 f (j) sin (ϕ)

A2
b

, (11)

for the real-valued susceptibility case and for the imaginary-valued susceptibility case,

lim
|r|→∞

J̃
(im)
ref =

k20 V
2 f (j) cos (ϕ)

A2
b

(12)

in both schemes. The demonstration of such asymptotic behavior is illustrated by plotting the Fisher information
against the relative amplitude and phase of the reference in Figs. 3(b) and 4(b). Notably, the convergence rate
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is influenced by the object susceptibility or volume, with slower convergence observed for larger values of these
parameters. Nonetheless, the ratio between the Fisher information in either detection scheme with reference and
dark-imaging converges rapidly to ∼ 50% at optimal relative reference phases.
More incidentally, introducing a reference beam in the bright-field imaging not only increases the noise level, leading

to a loss of information, but also reveals the potential for destructive interference between the incident and reference
fields, effectively suppressing the background and thereby reducing the noise level. Particularly intriguing is the
scenario where the reference completely cancels out the incident, resulting in an equivalent to dark-field imaging, and
maximizing the Fisher information, as illustrated in Fig. 4(b).

In summary, our findings align with the initial assessment derived from the Fisher information expression in Sec.
IID. We have demonstrated that lower noise power leads to reduced relative variability, consequently enhancing
precision in estimating object susceptibility. Specifically, the maximum Fisher information is attained in dark-field
imaging without reference and equivalently, in bright-field imaging with reference when the reference cancels out

FIG. 4. The ratio between the normalized Fisher information in bright-field imaging with reference and in dark-field imaging.
(a) Plotted as a function of the relative amplitude and phase of the reference. (b) Plotted as a function of the relative amplitude
of the reference to demonstrate its asymptotic behavior as compared to the corresponding approximated limit expression.
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the incident. In cases where a reference beam is necessary for signal detection facilitation, opting for a relatively
large beam intensity is advisable to achieve improved estimation precision. However, it’s worth noting that the best
achievable precision in optical susceptibility is ∼

√
2× worse than that in dark-field imaging without reference.

V. CONCLUSIONS

We have presented a comprehensive examination of signal detection methods in label-free imaging, culminating in
the development of a universal signal model for measuring the optical susceptibility of sub-wavelength particles appli-
cable across various imaging modalities. By leveraging Fisher information analyses, we have explored the sensitivity of
each modality, assuming limiting cases in optical susceptibility, purely real or imaginary, and noise, shot-noise-limited.

Our Fisher information analyses suggest that dark-field imaging is the most sensitive, yielding the best precision in
estimating the particle optical susceptibility, due to the lack of noise contributions from incident or reference sources.
This finding is prevalent with the presence of other noises while the signal sits above the additive noise floor. Moreover,
we propose an approach to achieve dark-field-like imaging using bright field imaging with a reference arm, where the
reference effectively cancels out the incident light in both amplitude and phase. The advantage with the reference is
the boost in signal intensity to mitigate the weak scattered light from the sample.

In this calculation, we considered the limiting case of ideal optical detection, where we need only consider shot noise
in the detection. Such a model neglects the effects of noise in the detector, such as Johnson noise and dark current,
as well as relative intensity noise (RIN) that is present in optical sources. We make these assumptions because we
are primarily interested in the limiting case of weak signal detection, and thus low dark-field signal flux. At such
low signal levels, RIN becomes negligible, and the dominant noise that we must contend with is dark current noise.
Dark current is modeled as a Poisson process and thus is an additive noise contribution in the denominator of the
Fisher information. The key issue is that the dark counts must be lower than the dark-field signal flux. Under such
conditions, the conclusions that we draw here are widely applicable.

Building on the legacy left behind by Gabi Popescu, future research endeavors may focus on practical imple-
mentations of dark-field-like imaging approach, while further exploration of its applications in diverse scientific and
biomedical domains remains crucial.
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