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Abstract

We give an explicit algebraic description, based on prismatic cohomology, of the algebraic K-groups of

rings of the form OK/I where K is a p-adic field and I is a non-trivial ideal in the ring of integers OK ;

this class includes the rings Z/pn where p is a prime.

The algebraic description allows us to describe a practical algorithm to compute individual K-groups

as well as to obtain several theoretical results: the vanishing of the even K-groups in high degrees, the

determination of the orders of the odd K-groups in high degrees, and the degree of nilpotence of v1 acting

on the mod p syntomic cohomology of Z/pn.
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1 Introduction

We fix the following notation for the entire paper. Let OK be a complete discrete valuation ring with finite
residue field k = Fq and quotient field K of characteristic zero, which is necessarily finite over Qp of some
degree d. Let q = pf , where f is the residual degree. One has d = fe for some positive integer e called the
ramification index. Fix a choice of a uniformizer ̟ ∈ OK ; e is the unique integer such that the ideals (p)
and (̟e) are equal in OK .

The fields K that arise this way are the p-adic number fields; rings of integers such as OK are p-adic
number rings. The quotients OK/̟n are called finite chain rings [15].

1.1 Results

The problem of computing the K-groups of the quotient rings OK/̟n was raised by Swan in 1972; see [23,
Prob. 20]. When n = 1, we have OK/̟ = Fq; the K-groups of finite fields were computed by Quillen in [37]
(see also [28]):

Kr(Fq) ∼=





Z if r = 0,

Z/(qi − 1) if r = 2i− 1, and

0 otherwise.

(1)

Since p does not divide qi−1, letting K(−;Z[ 1p ]) denote the prime-to-p localization of algebraic K-theory, we

have Kr(Fq) ∼= Kr(Fq;Z[
1
p ]) for r > 1, while K(Fq;Zp) ≃ Zp, where K(−;Zp) denotes the p-adic completion.

When n 6 e, OK/̟n ∼= Fq[z]/z
n. The K-groups of truncated polynomial rings over finite fields were

completely described by Hesselholt and Madsen in [25] (see also [41, 42]). These are the only cases where a
complete computation is known.

The K-groups Kr(OK/̟n) of OK/̟n are finitely generated abelian groups, torsion for r > 1, and their
prime-to-p information is determined by Quillen’s computation of the K-groups of finite fields: K(OK/̟n;Z[ 1p ]) ≃

K(Fq;Z[
1
p ]), as can be proved by using group homology techniques. It remains to compute the p-complete

K-groups Kr(OK/̟n;Zp). For r > 0, Kr(OK/̟n;Zp) ∼= TCr(OK/̟n;Zp) by the Dundas–Goodwillie–
McCarthy theorem (see Corollary 2.5).

Bhatt, Morrow, and Scholze introduced in [10] p-adic syntomic complexes Zp(i)(R) for quasisyntomic
rings R; these are objects in the p-complete derived category D(Zp)

∧
p . They gave a complete decreasing fil-

tration F>⋆
motTC(R;Zp) with graded pieces grimotTC(R;Zp) ≃ Zp(i)(R)[2i]. The associated spectral sequence

then converges from the cohomology of these complexes to the homotopy groups of TC(R;Zp). We will show



3 1.1 Results

that in the case of OK/̟n, the spectral sequence collapses for degree reasons and that there are no possible
extensions (see Corollary 2.16). As H0(Zp(i)(OK/̟n)) = 0 for i > 1 (Corollary 2.14), we conclude that

K2i−1(OK/̟n;Zp) ∼= H1(Zp(i)(OK/̟n))

for i > 1 and

K2i−2(OK/̟n;Zp) ∼= H2(Zp(i)(OK/̟n))

for i > 2, K0(OK/̟n;Zp) ∼= H0(Zp(0)(OK/̟n)) ∼= Zp.

This paper has three main results. The first gives a practical algorithm for computing the p-adic syntomic
complexes Zp(i)(OK/̟n).

Theorem 1.1. Given K, n, i > 1, and a fixed uniformizer ̟ ∈ OK , there is an explicit, algorithmically
computable three-term cochain complex

· · · → 0→ Zf(in−1)
p

syn0

−−−→ Z2f(in−1)
p

syn1

−−−→ Zf(in−1)
p → 0→ · · · (2)

concentrated in cohomological degrees 0, 1, 2 of finite rank free Zp-modules which is is quasi-isomorphic to
Zp(i)(OK/̟n).

Our approach relies on a detailed examination of prismatic envelopes and is heavily influenced by the
work of Liu–Wang [33] who introduced a topological version of the local-to-global descent arguments given
below to recover the calculation of K(OK ;Fp) of Hesselholt–Madsen [27].

Remark 1.2. The differentials syn0 and syn1 are p-adic matrices; the algorithm is to construct these
matrices up to sufficient p-adic precision. As mentioned above, the map syn0 is injective by Corollary 2.14
so that this cochain complex has cohomology only in degrees 1 and 2.

Remark 1.3. The computability of these groups is not new and follows also from a combination of homolog-
ical stability (see [43, 46]) and the fact that homotopy groups of finite CW complexes with finite homotopy
groups are computable, for example via minimal Kan complexes or by Serre’s fibration method. See [12] for
the classical approach and [40] for a more modern survey which also presents Kenzo, a computer package for
making such computations. In [17], a SAGE interface for Kenzo is described. In practice, these approaches
are feasible only in very low degrees. The novelty in our approach is the reduction to linear algebra using
prismatic cohomology which also allows us to compute high-degree K-groups independently of low-degree
groups.

In particular, writing Zp(i)(OK/̟n)• for our explicit cochain complex model for Zp(i)(OK/̟n), we have
for i > 1 that

H0(Zp(i)(OK/̟n)•) = 0,

H1(Zp(i)(OK/̟n)•) ∼= K2i−1(OK/̟n;Zp),

H2(Zp(i)(OK/̟n)•) ∼= K2i−2(OK/̟n;Zp) (if additionally i > 2).

These groups can thus be computed using elementary divisors from the matrices syn0 and syn1.

We have implemented in [5] the computation of the matrices syn0 and syn1 in SAGE 10.2 [44] in the
special case where f = 1, so that the residue field is Fp. For example, Figure 1 displays a table of K-groups
for some small rings we obtained through computer algebra computations. Similar computations can be
carried out for many more examples and degrees and we present extended calculations in Appendix A.

In addition to computational results in small degrees, our approach allows us to deduce some abstract
statements about K∗(OK/̟n;Zp). A striking pattern in Figure 1 is that the K-groups seem to vanish in
even degrees from some point.

Our second theorem is that this is always true, which we prove by showing that the differential syn1

from (2) is surjective for i sufficiently large.
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F2 Z/4 Z/8 F2[z]/z
3

K1 0 Z/2 Z/4 Z/4
K2 0 Z/2 Z/2 0
K3 Z/3 Z/3⊕ Z/8 Z/3⊕ Z/4⊕ Z/8 Z/3⊕ Z/2⊕ Z/8
K4 0 0 Z/2 0
K5 Z/7 Z/7⊕ Z/8 Z/7⊕ Z/2⊕ Z/26 Z/7⊕ (Z/2)2 ⊕ Z/16
K6 0 0 0 0
K7 Z/15 Z/15⊕ Z/2⊕ Z/8 Z/15⊕ Z/16⊕ Z/16 Z/15⊕ (Z/2)2 ⊕ Z/4⊕ Z/16
K8 0 0 0 0
K9 Z/31 Z/31⊕ (Z/2)2 ⊕ Z/8 Z/31⊕ Z/2⊕ Z/4⊕ Z/27 Z/31⊕ (Z/2)2 ⊕ (Z/4)2 ⊕ Z/16
K10 0 0 0 0

Figure 1: Low-degree K-groups of some small rings. The gray terms were known prior to this paper.

Theorem 1.4 (The even vanishing theorem). If

i− 1 >
p

p− 1

Å
p

p− 1
(p⌈

n
e ⌉ − 1)− p⌈

n
e ⌉(⌈ne ⌉ −

n
e )

ã

(and i > 2), then K2i−2(OK/̟n;Zp) = 0 for all p-adic fields K of ramification index e.1

Another result we extract from our methods is the following proposition, in which we use |A| to denote
the order of a finite abelian group A. It was stated and proved by Angeltveit [2] in the unramified case, i.e.,
for rings of the form W (Fq)/p

n.

Proposition 1.5 (Angeltveit’s quotient). For any p-adic number field K and any n > 1 and i > 2,

|K2i−1(OK/̟n;Zp)|

|K2i−2(OK/̟n;Zp)|
= qi(n−1).

Together, the even vanishing theorem and Angeltveit’s quotient imply the following corollary.

Corollary 1.6. For i≫ 0, K2i−1(OK/̟n) has order (qi − 1)qi(n−1).

A nice way to summarize these results is that, in large degrees, the orders of K∗(OK/̟n) and K∗(Fq[z]/z
n)

agree, even though the groups might differ.
For a fixed ring OK/̟n, by applying Theorem 1.1 in low degrees and Corollary 1.6 in high degrees, one

reduces the determination of the orders of all K-groups of OK/̟n to a finite number of applications of the
algorithm.

Example 1.7. For Z/4, Theorem 1.4 and the values from the table in Appendix A.1 show that the only
positive degree non-zero even K-group is K2(Z/4) ∼= Z/2. It follows that the orders of the K-groups of Z/4
are

|Kr(Z/4)| ∼=





2 if r = 1, 2,

24 if r = 3,

(2i − 1)2i if r = 2i− 1 for i > 3,

0 otherwise.

for r > 1.

Another application of our results is to reprove the main step in the proof of the theorem of Bhatt–
Clausen–Mathew [7] (reproved and generalized by Land–Mathew–Meier–Tamme [31]), which says that
LT (1)K(R) ≃ LT (1)K(R[ 1p ]), where LT (1) denotes the height 1 telescopic localization at the prime p. The
main step is to prove that

LT (1)K(Z/pn) ≃ 0

1Note that ⌈n
e
⌉ is the exponent of the abelian group OK/̟n.
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for all n > 1. For n = 1, this follows from Quillen’s computation (1). For n > 2, other arguments are needed.
In [7], the argument goes by reduction to the case of OCp/p

n and an argument using prismatic cohomology
and prismatic envelopes; in [31], the argument uses excision results.

Our third theorem is a finer vanishing result, giving a bound on the degree of v1-nilpotence of K(Z/pn;Fp).
See Section 6.

Theorem 1.8. The class v1 ∈ Fp(p − 1)(Z/pn) has nilpotence degree exactly [n]p = pn−1
p−1 in the motivic

associated graded

gr⋆motTC(Z/p
n;Fp) ≃

⊕

i>0

Fp(i)(Z/p
n).

Remark 1.9. It follows that for primes p > 5, the self map v1 of K(Z/pn;Fp) has nilpotence degree
between [n]p and 2[n]p using that in these cases K(Z/pn;Fp) is a homotopy associative ring spectrum; see
Corollary 6.5. However, the work of Hahn–Levy–Senger (see Remark 1.11) can be used to show that it has
nilpotency degree either [n]p or [n]p + 1.

Remark 1.10. There is a version of Theorem 1.8 for ramified extensions as well. In that case, one has that
v1 has nilpotence degree at most

p⌈
n
e ⌉ − 1

p− 1

when acting on the motivic associated graded. This bound is sharp when e divides n. See Theorem 6.3.

1.2 History

Kuku proved that if R is a finite associative ring, then Kr(R) is a finite abelian group for r > 0; see [47,
Prop. IV.1.16].

Work of Dennis and Stein [19] treats K2(O/̟
n). This is the only previous paper we know which considers

the higher algebraic K-theory of general rings of this form.
As mentioned above, the K-groups of the characteristic p quotients Fq[z]/z

n (so, when n 6 e) were
described by Hesselholt–Madsen [25]. Their calculations have been revisited by Speirs [41], Mathew [35],
and Sulyma [42] using modern advances in cyclotomic spectra and prismatic cohomology. (They have also
been generalized to truncated polynomial rings over perfectoid rings by Riggenbach [39].)

The K-groups in the unramified case have been considered by many researchers. Evens and Friedlan-
der [21] computed K3(Z/p

2) and K4(Z/p
2) for p > 5 and Aisbett, Lluis-Puebla, and Snaith [1] worked on

K3(Z/p
n) and K3(Fq[z]/z

2). Geisser computed K3(W (Fq)/p
2) for p > 3, correcting a mistake in Aisbett et

al. at p = 3.
Brun [14] computed Kr(Z/p

n) for r 6 p−3 and Angeltveit [2] computed Kr(W (Fq)/p
n) for r 6 2p−2, but

his results in conjunction with Proposition 1.5 also give the order of K2p−1(W (Fq)/p
n). One consequence of

Angeltveit’s calculation is the discovery of an error in the calculation of K3(Z/4) in Aisbett et al.; Angeltveit’s
calculation gives the correct order and the correct group structure is given by our calculations in Figure 1.
We thank Markus Szymik for bringing this to our attention.

In the limit, the p-adic K-theory of OK itself was an important test case for the Quillen–Lichtenbaum
conjecture and was computed by Hesselholt and Madsen [27]. This calculation was revisited by Liu and
Wang [33] with Fp-coefficients.

Our approach is very similar to that of Liu and Wang [33] and also to the method used in [30] for
computing THH of OK and OK/̟n; indeed, what we do can be viewed as a purely prismatic analogue of
the topological story in [30, 33].

Remark 1.11. Hahn, Levy, and Senger have recently announced a complete calculation of K(Z/pn)/(p, v1)
for odd primes; the resulting groups are independent of n, for n > 2.

Organization. Section 2 gives an overview of our approach to the calculation of K∗(OK/̟n;Zp). Section 3
contains a detailed analysis of the algebra of prismatic envelopes and Section 4 gives our approach to explicit
relative-to-absolute descent. Section 5 gives the proof of the even vanishing theorem and Section 6 gives the
proof of the v1-nilpotence theorem. Finally, Section 7 details the algorithm for computing the K-groups.
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2 Strategy

In this section, we give the theoretical results which reduce the computation of the K-groups of OK/̟n

to a finite computation involving prismatic cohomology. We will make heavy use of prismatic cohomology
relative to δ-rings and its filtered variant, for which we refer to our companion paper [4]. In general, let
∆R/A denote the prismatic package of a δ-pair, possibly filtered, from which we can functorially extract
relative syntomic complexes Zp(i)(R/A), which are equipped with natural filtrations for filtered δ-pairs. We
are most interested in the case when A = Zp or W (k) with the trivial filtration, in which case we will
write ∆R and Zp(i)(R) for the absolute theories. The prismatic cohomology package contains the data of
prismatic cohomology, the Hodge–Tate tower, Breuil–Kisin twists, and Nygaard-filtered Nygaard-completed
Frobenius-twisted prismatic cohomology, together with canonical and Frobenius maps.

2.1 General reductions

To begin with, the groups we are interested in are finitely generated abelian groups, making an algorithmic
approach feasible. Weibel [47] attributes the group homology proof of this fact to Aderemi Kuku.

Proposition 2.1 (Kuku). If A is a finite associative ring, then for each r > 1 the K-group Kr(A) is finitely
generated and torsion.

Corollary 2.2. For each r > 1, the K-group Kr(OK/̟n) is finitely generated and torsion.

As above, let Z[ 1p ] denote the prime-to-p localization of Z. We let K(−;Z[ 1p ]) be the prime-to-p localization

of K(−), and similarly for other functors.

Corollary 2.3. The natural map K(OK/̟n;Z[ 1p ])→ K(Fq;Z[
1
p ]) is an equivalence.

Proof. This follows from the fact that the kernel of the surjective homomorphism GL(OK/̟n) → GL(Fq)
is a p-group.

The result we need for p-adic K-theory is the Dundas–Goodwillie–McCarthy theorem; see also the rigidity
result of Clausen–Mathew–Morrow [16].
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Theorem 2.4 (Dundas–Goodwillie–McCarthy [20]). If A is an associative ring and I is a 2-sided nilpotent
ideal in A, then the natural commutative square

K(A) //

��

K(A/I)

��

TC(A) // TC(A/I)

is a pullback square.

In the theorem, note that if A is p-nilpotent, then TC(A) and TC(A/I) are p-complete.

Corollary 2.5. The natural map Kr(OK/̟n;Zp)→ TCr(OK/̟n) is an isomorphism for r > 0.

Proof. This follows from Theorem 2.4 and the fact that K(Fq;Zp)→ TC(Fq) is (−2)-truncated by Quillen’s
computation of the K-theory of finite fields and the calculation of Hesselholt–Madsen [26, Thm. B] of TC of
perfect fields of characteristic p; see also [36, Cor. IV.4.10].

In order to compute the TC-groups of OK/̟n, and hence the higher p-adic K-groups, we use the theory
of syntomic cohomology first defined in [10] (see also [22, 29] and [6] for a comparison). This gives, for
a quasisyntomic ring R a sequence of p-complete complexes Zp(i)(R) in the p-complete derived category

D(Zp)
∧
p and a complete multiplicative decreasing filtration F>⋆

motTC(R;Zp) with graded pieces

grimotTC(R;Zp) ≃ Zp(i)(R)[2i].

The associated spectral sequence takes the form

Ei,j
2 = Hi−j(Zp(−j)(R))⇒ TC−i−j(R;Zp)

with differentials dr of bidegree (r, 1 − r). The goal in this paper is to compute the cohomology of the
complexes Zp(i)(OK/̟n). It turns out that in this case the motivic filtration on TC(R;Zp) is simple
enough that there is no additional work needed to go from the cohomology of the Zp(i)(OK/̟n) to the
p-adic K-groups: the associated spectral sequence degenerates and there are no non-trivial extensions for
degree reasons. See Corollary 2.16.

2.2 Prismatic and syntomic cohomology

By the definition in [10], for i ∈ Z, the ith syntomic complex of a quasisyntomic ring R is

Zp(i)(R) = fib
(
N>i

∆̂R{i}
can−ϕ
−−−−→ ∆̂R{i}

)

in D(Zp)
∧
p , where ∆̂R{i} is the ith Breuil–Kisin twisted Nygaard-complete absolute prismatic cohomology of

R and N>i
∆̂R{i} is the ith stage of the Nygaard filtration.

Our goal in this section is to bound the complexity of Zp(i)(OK/̟n), which we do by comparison with the
characteristic p case via a philosophy we will refer to as crystalline degeneration. Indeed, the rings OK/̟n are
filtered by ̟-adic powers. The associated graded ring is Fq[z]/z

n, which we view as being z-adically filtered.
These filtrations induce secondary filtrations on all of the invariants in the picture: prismatic cohomology,
THH, TC, etc. We will in all cases write F>⋆ for this secondary filtration. On associated graded pieces,

gr⋆FZp(i)(OK/̟n) ≃ gr⋆FZp(i)(Fq [z]/z
n)

by the following proposition, and similarly for the other theories (by [4, Cor. 10.32]).

Proposition 2.6. Let F>⋆R and F>⋆S be filtered quasisyntomic rings (in the sense that the associated p-
completed Rees algebras are quasisyntomic over the p-completed Rees algebra of the trivial filtration on Zp).
If the associated graded rings gr⋆FR and gr⋆FS are equivalent, then there is an induced equivalence

gr⋆F ∆R ≃ gr⋆F ∆ S



2.2 Prismatic and syntomic cohomology 8

and hence there are induced equivalences

gr⋆FZp(i)(R) ≃ gr⋆FZp(i)(S)

for each i.

Proof. See [4, Prop. 10.44, Cor. 10.45].

Remark 2.7. A similar use of filtrations is the basis of the work of Brun [14] and Angeltveit [2].

Mathew [35] (for n = 2 and p odd) and Sulyma [42] (in general) have computed the syntomic cohomology
of truncated polynomial rings R = k[z]/zn when k is a perfect field of characteristic p. In this case, prismatic
cohomology agrees with crystalline cohomology. Since R admits a flat lift to W (k) together with a lift of
Frobenius, one can compute ∆R as a complex

∆
•
R :
(
D(zn)W (k)[z]

d
−→ D(zn)W (k)[z]dz

)∧
p
, (3)

the p-completion of the divided power de Rham complex. The Nygaard filtration N>⋆
∆R is given by the

Day convolution of the p-adic filtration on Zp and the pd-Hodge filtration on ∆
•
R. (For characteristic p rings

such as R, the Breuil–Kisin twists are trivializable.)

Lemma 2.8. These presentations also compute the graded absolute prismatic cohomology of R = k[z]/zn

together with its Nygaard filtration; see also [35, Ex. 8.11].

Proof. The lemma can be proved along the lines of [10, Prop. 8.7] by keeping track of the grading everywhere.

Lemma 2.9. Let R = k[z]/zn where k is a perfect field of characteristic p.

(a) For j > 0, grjF∆̂R is concentrated in cohomological degree 1, while gr0F∆̂R ≃ ∆̂k ≃W (k).

(b) For j > 0, grjFN
>i

∆̂R is concentrated in cohomological degree 1, while gr0FN
>i

∆̂R ≃ (pi) ⊆ W (k) for
i > 0.

(c) For i > 1, grjFZp(i)(R) is in D(Zp)[−2,−1] and vanishes for j > in and for j = 0.

Proof. See the computation in [42, Sec. 3], noting that in this case the Nygaard-completion and F-adic
completion of ∆R agree.

Remark 2.10. The F-adic filtration on ∆̂R need not be complete for general filtered commutative rings
F⋆R, even if the filtration on R is complete. Nevertheless, Proposition 2.11 implies that in good cases the
induced filtration on syntomic cohomology is complete.

Proposition 2.11 (Completeness). Suppose that F>⋆R is a complete filtered ring. If F>⋆R is the filtered
quotient of the completion of a finitely generated filtered polynomial ring by a filtered regular sequence, then
the induced F-adic filtration on Zp(i)(R) is complete.

Proof. It suffices to check the claim modulo p. However, modulo p, we can compute Zp(i)(R)/p = Fp(i)(R)
as

Fp(i)(R) ≃ fib

Ç
N>i

∆̂R{i}/p

N>i+M ∆̂R{i}/p

can−ϕ
−−−−→

∆̂R{i}/p

N>i+M ∆̂R{i}/p

å

for M sufficiently large by [10, Lem. 7.22] or [6, Cor. 5.31] or [4, Prop. 8.6]. The terms in the fiber sequence
can be expressed via finitely many associated graded pieces of the Nygaard filtration on absolute prismatic
cohomology (modulo p), which in turn can be expressed in terms of finitely many filtered pieces of the

conjugate filtration Fconj
6⋆ ∆R{i} on absolute Hodge–Tate cohomology ∆R{i}. Finally, each filtered piece

Fconj
6j ∆R{i} can be expressed in terms of the finitely many filtered pieces of the conjugate filtration on the

diffracted Hodge complex Ω
/D
R of Bhatt–Lurie [8]. But, grconjj Ω

/D
R ≃

”LΩj

R/Zp
[−j], the (−j)-fold shift of the

p-complete derived absolute j-forms of R. It suffices now to use the fact that LΩj
R/Zp

is complete for all j

by Lemma 2.12.
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Lemma 2.12. Suppose that F>⋆R is a complete filtered ring. If F>⋆R is the filtered quotient of the completion
of a finitely generated filtered polynomial ring by a filtered regular sequence, then LΩj

R/Zp
is complete for each

j > 0.

Proof. By hypothesis, LR/Zp
can be written as the cofiber of maps F>⋆P1 → F>⋆P0 where F>⋆P1 and

F>⋆P0 are filtered projective F>⋆R-modules on finitely many generators. But, in this case, LΩj
R/Zp

has a

finite increasing filtration with graded pieces LΛaP0 ⊗ LΛb(P1[1]) ≃ LΛaP0 ⊗ LΓb(P1)[b] where a + b = j.
Each of these is a (shift of a) filtered projective F>⋆R module on finitely many generators. It follows that
LΩj

R/Zp
is complete since F>⋆R is.

Corollary 2.13. If R = OK/̟n is given the ̟-adic filtration, then

(i) the induced filtration F>⋆Zp(i)(R) on Zp(i)(R) is complete for all i,

(ii) grjFZp(i)(R) is in D(Zp)[−2,−1] for i > 1 and vanishes for j > in, and

(iii) gr0FZp(i)(R) ≃ 0 for i > 1.

Proof. This follows from Proposition 2.11, Proposition 2.6, and Lemma 2.9.

The main result of this section is the following, which says that the weight i syntomic cohomology of
OK/̟n is concentrated in bounded F-weights. Later, this will permit us to work with the absolute prismatic
cohomology of R and its Nygaard filtration in bounded F-weights as well. For a filtered spectrum F>⋆M
and integers a 6 b, we write F[a,b] for the cofiber of F>b+1M → F>aM .

Corollary 2.14. For i > 1, there is a zig-zag of equivalences

Zp(i)(OK/̟n)→ F[0,in−1]Zp(i)(OK/̟n)← F[1,in−1]Zp(i)(OK/̟n).

Moreover, Zp(i)(OK/̟n) ∈ D(Zp)[−2,−1].

Proof. This follows from Corollary 2.13.

Remark 2.15. One can extend the filtration bounds from Corollary 2.14 to a fairly general situation. Let
A be a filtered δ-ring A and R a filtered A-algebra, and assume that the filtration of R is concentrated in
[0, c] and that LR/A as an R-module has “filtered amplitude in [a, b]”, i.e. can be built from copies of R with

filtration shifted by values in [a, b]. Then LΩj
R/A has filtered amplitude in [ja, jb], and an argument using the

Nygaard and conjugate filtrations shows that the filtration on Zp(i)(R/A) is concentrated in [0, (i− 1)b+ c],
i.e.

Zp(i)(R/A) ≃ F[0,(i−1)b+c]Zp(i)(R/A).

Corollary 2.16. For i > 1, K2i−1(OK/̟n;Zp) ∼= H1(Zp(i)(OK/̟n)) and, for i > 2, K2i−2(OK/̟n;Zp) ∼=
H2(Zp(i)(OK/̟n)).

Proof. Indeed the motivic spectral sequence computing TC and hence p-adic K-theory degenerates for degree
reasons and there are no possible extensions by Corollary 2.14.

Remark 2.17. The analogue of Corollary 2.16 holds in the limit for OK as well. This can be proved from
Corollary 2.16 using p-adic continuity for syntomic cohomology (see [8, Cor. 7.4.11]) and TC(−;Zp) (see [16,
Thm. 5.20]), or it can be proved directly by using crystalline degeneration again to reduce to characteristic
p.

Already, it is possible to extract qualitative information about the K-groups using crystalline degeneration
for syntomic cohomology and Sulyma’s calculation [42]. The following result was proved in the unramified
case in [2].

Proposition 2.18 (Angeltveit quotient). For i > 1 and any finite chain ring R = OK/̟n with residue field
Fq, ∣∣H1(Zp(i)(R))

∣∣
|H2(Zp(i)(R))|

= qi(n−1).
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Proof. By Corollary 2.14,

Zp(i)(R) ≃ fib
(
F[1,in−1]N>i

∆̂R{i}
can−ϕ
−−−−→ F[1,in−1]

∆̂R{i}
)
.

On associated graded pieces,

in−1⊕

j=1

grjFN
>i

∆̂R{i} ≃
in−1⊕

j=1

grjFN
>i

∆̂Fq [z]/zn

(where the Breuil–Kisin twist is trivialized on the right as we are in the crystalline setting there) and similarly
for F[1,in−1]

∆R{i}.

By [42], grjF∆̂Fq[z]/zn
∼= W (Fq)/{j, n}[−1] for j > 1, where

{j, n} =

®
n if n | j,

j otherwise.

On the other hand, grjFN
>i

∆̂Fq [z]/zn ∼= W (Fq)/p
ǫ(i,j){j, n}[−1] for j > 1, where

ǫ(i, j) =

®
1 if ⌊ jn⌋ < ⌈

j
n⌉ 6 i

0 otherwise.

It follows that the quotient appearing in the statement of the proposition has order

in−1∏

j=1

qǫ(i,j).

Note that ǫ(i, j) = 1 if and only if j is not divisible by n. In the range 1, . . . , in− 1 there are i− 1 numbers
j divisible by n. So, the product has order qin−1−(i−1) = qi(n−1), as desired.

Remark 2.19. Proposition 2.18 can be proved directly using the machinery of prismatic envelopes; see
Lemma 4.65.

Finally, we observe that while ∆
(1)
R/A is generally not complete for either the F-filtration or the Nygaard

filtration, the two completions are closely related.

Theorem 2.20. Let R/A be a filtered prismatic δ-pair.

(1) If F>⋆R is complete and LR/A is a perfect filtered R-module (i.e. in the thick subcategory generated by

filtered shifts of R), then the Nygaard-completion of ∆
(1)
R/A is also F-complete.

(2) If gr0R is smooth over gr0A, then the F-completion of ∆
(1)
R/A is also Nygaard-complete.

Proof. For the first statement, it suffices to check that each term in the Nygaard associated graded is

F-complete, since this exhibits the Nygaard completion as limit of F-complete objects. As griN∆
(1)
R/A ≃

Fconj
6i ∆R/A, it suffices to check that each of the grconji ∆R/A ≃”LΩ

i

R/A[−i] is F-complete. By assumption, LR/A

is a perfect filtered R-module, so the same is true for each of its exterior powers. Since F>⋆R is complete,

the ”LΩi

R/A[−i] are all complete.
For the second statement, we need to prove that each term in the F-associated graded is Nygaard-complete.

To do so, we observe that there is a limit N>⋆
∆
(1)
R/A ≃ limj

Ä
N>⋆

∆
(1)
R/A ⊗I⋆A (I⋆A/IjA)

ä
in (p, I)-complete

filtered complexes: this follows from I-completeness of ∆
(1)
R/A upon forgetting the Nygaard filtration and from

the fact that the filtration is eventually constant in each weight on the Nygaard associated graded pieces. It

is now enough to show that each grkF

Ä
N>⋆

∆
(1)
R/A ⊗I⋆A (I⋆A/IjA)

ä∧
p
is a complete filtration and for this we
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can reduce to the case when j = 1. Recall that the filtered tensor product
Ä
N>⋆

∆
(1)
R/A ⊗I⋆A A/I

ä∧
p
agrees

with the Hodge filtration on p-complete derived de Rham cohomology, for example by [32, Thm. 1.8] or [8,
Cor. 5.2.8]. We prove the following stronger claim: if r is an upper bound for the rank of the projective gr0FR-

module Lgr0FR/gr0FA
, then the induced Nygaard/Hodge filtration on grhF(∆

(1)
R/A ⊗I⋆A A/I)∧p ≃ grhF(dRR/A)

∧
p is

bounded by h+ r for each h > 0. Indeed, this statement can be checked after base change along A→ gr0FA,
so we may assume the F-filtration on A to be trivial. We may also pass to the F-associated graded to assume
that R is in fact graded instead of just filtered. Finally, we may write any graded A-algebra with the given
smooth degree 0 part as sifted colimit of smooth graded A-algebras, constant on the degree 0 part. So the
statement is reduced to the case where R is graded smooth over A, and gr0FR has relative dimension bounded
by r. In that case, the p-completed derived de Rham complex (dRR/A)

∧
p is in fact Hodge-complete (see for

example [8, Prop. E.12]) and ”LΩh

R/A has F-filtration bounded below by h − r since ”LΩj

gr0FR/A vanishes for

j > r. Thus, grhF(∆
(1)
R/A ⊗I⋆A A/I)∧p has Nygaard/Hodge filtration bounded above by h+ r, as claimed.

2.3 Relative-to-absolute descent

In order to compute the syntomic complexes, we will compute part of the prismatic cohomology of OK/̟n.
Specifically, by Corollary 2.14, it is enough to compute

F[1,in−1]N>i
∆̂OK/̟n{i} and F[1,in−1]

∆̂OK/̟n{i}

and the canonical and Frobenius maps between these complexes. Unfortunately, these absolute prismatic
cohomological objects are not abelian groups but objects of D(Zp) concentrated in cohomological degrees
0 and 1. However, by working relative to the Breuil–Kisin prism W (k)Jz0K, where z0 maps to ̟, the
analogous relative terms become discrete, i.e., they are abelian groups and admit algebraic descriptions in
the form of prismatic envelopes. The absolute prismatic cohomology can then be understood via descent
along W (k)→W (k)Jz0K using that ∆ R/Zp

≃ ∆R/W (k) by [4, Thm. 1.2]. This is a complementary approach
to the quasisyntomic descent introduced in [10] and was introduced, for THH and its variants, by Liu and
Wang in [33].2

In more detail, we consider the cosimplicial δ-ring A• given by taking the p-complete Amitsur complex
of W (k) → W (k)〈z0〉 and completing each term with respect to the augmentation ideal given by mapping
to the constant cosimplicial diagram Zp induced by sending z0 to zero. In other words, A• is

W (k)Jz0K W (k)Jz0, z1K . . . .

Moreover, A• is a cosimplicial filtered δ-ring in the sense of [4, Sec. 10], where each As is given the filtration
where z0, . . . , zs have weight 1 and where δ(z0) = · · · = δ(zs) = 0. There is a filtered map from A• to OK/̟n,
given by sending each of z0, . . . , zs to ̟, which makes (A•,OK/̟n) into a cosimplicial filtered δ-pair.

Construction 2.21. In [4], we introduce relative syntomic complexes

Zp(i)(R/A) ≃ fib
(
N>i

∆̂
(1)
R/A{i}

can−ϕ
−−−−→ ∆̂

(1)
R/A{i}

)

for any i ∈ Z, which can be defined from the prismatic package ∆R/A of any δ-pair (A,R). In the case of a
filtered δ-pair, there is an induced natural filtration F⋆Zp(i)(R/A) on the relative syntomic complex.

The following theorem follows from our work in [4].

Theorem 2.22 (Relative-to-absolute descent). Let R = OK/̟n. The following maps are equivalences:

2In [30], two of us used a closely related fiber sequence THH(R;Zp) → THH(R/S[z];Zp) → THH(R/S[z];Zp)[2] to give a
new computation of the homotopy groups of THH(R;Zp) for R of the form OK or OK/̟n. This is a fiber sequence of spectra
and the first map is naturally a map of cyclotomic spectra, but the cofiber term has a complicated cyclotomic structure. It has
never been clear how to use this to give a computation, even of TP(R;Zp), the issue being that the structure of the S1-Tate
construction of the cofiber remains mysterious. The descent approach below can be viewed either as a way around this or as a
way to access this mystery term.
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(a) F>⋆
∆R/W (k){i} → TotF>⋆

∆R/A•{i} for all i ∈ Z;

(b) F>⋆N>j
∆̂
(1)
R/W (k){i} → TotF>⋆N>j

∆̂
(1)
R/A•{i} for all i, j ∈ Z;

(c) F>⋆Zp(i)(R)→ TotF>⋆Zp(i)(R/A•) for all i ∈ Z;

(d) F[a,b]Zp(i)(R)→ TotF[a,b]Zp(i)(R/A•) for all integers i > 1 and all intervals [a, b] ⊆ Z.

Proof. Part (d) follows from part (c), which follows from (a) and (b). On F0, parts (a) and (b) follow from [4,
Thm. 1.1 and Cor. 1.2]. Therefore, to prove (a) and (b) it is enough to check on F-associated graded pieces
and even on the F-associated graded pieces of the Hodge–Tate and the Nygaard filtrations, where it follows
from descent for the graded cotangent complex.

Proposition 2.23 (Cosimplicial prismatic envelope). The cosimplicial filtered δ-ring F>⋆
∆R/A• is discrete;

the same is true for F>⋆N>i
∆̂
(1)
R/A• and F>⋆

∆̂
(1)
R/A• .

Proof. For ∆R/A• the levelwise discreteness follows from [11, Prop. 3.13] and for F⋆
∆R/A• it follows from [4,

Prop. 10.41]. For F>⋆N>i
∆̂
(1)
R/A• , one reduces, using the conjugate filtration, to the fact LR/A• [−1] is a

levelwise flat filtered R-module.

Proposition 2.24 (Cosimplicial freeness). For [a, b] ⊆ Z, both F[a,b]N>i
∆̂
(1)
R/A•{i} and F[a,b]

∆̂
(1)
R/A•{i} are

cosimplicial Zp-modules which are levelwise finite and free.

Proof. This follows from Proposition 2.23 and Proposition 3.34.

Proposition 2.25. Let R = OK/̟n. Then, grjF∆̂R{i} and grjFN
>i

∆̂R{i} are in D(Zp)[−1,−1] for each
j, i > 1.

Proof. See Proposition 2.6 and Lemma 2.9.

Proof. By Proposition 3.34, all terms are finitely generated free W (k)-modules of the same ranks. The map
is an injection as is seen by rewriting zn0 in terms of f00. Thus, it is an isogeny.

Lemma 2.26. For R = OK or OK/̟n, the limits F[a,b]N>i
∆̂R{i} and F[a,b]

∆̂R{i} of the descent diagrams

F[a,b]N>i
∆̂
(1)
R/A0{i} · · ·

and

F[a,b]
∆̂
(1)
R/A0{i} · · ·

have finitely generated torsion cohomology groups for each i ∈ Z and each finite interval [a, b] ⊆ Z with
a > 1.

Proof. This follows from a crystalline degeneration argument. For example, the associate graded of the
̟-adic filtration on OK is kJz0K. Its prismatic cohomology agrees with its crystalline cohomology, but, as
it admits a lift to W (k), its crystalline cohomology is identified with the de Rham cohomology of the lift,
which is computed by the complex

W (k)Jz0K
d
−→W (k)Jz0Kdz0.

Restricting to F-filtration [a, b] amounts to restricting to the subcomplex

W (k) · {za0 , . . . , z
b
0}

d
−→ W (k) · {za−1

0 dz0, · · · , z
b−1
0 dz0},

which has finitely generated torsion cohomology, since a > 1. The other cases are left to the reader.
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2.4 A finite complex computing syntomic cohomology

In the absolute case, F[1,in−1]N>i
∆̂R{i} and F[1,in−1]

∆̂R{i} are each in D(Zp)[−1,−1] for i > 1 by Proposi-
tions 2.6 and 2.25, so the cochain complexes associated to the cosimplicial abelian groups

F[1,in−1]N>i
∆̂
(1)
R/A•{i} and F[1,in−1]

∆̂
(1)
R/A•{i}

are exact in cohomological degrees at least 2.
It follows that we can compute F[1,in−1]N>i

∆̂R as the fiber of an injective map

F[1,in−1]N>i
∆̂
(1)
R/A0{i} → ker

Å
F[1,in−1]N>i

∆̂
(1)
R/A1{i}

d0−d1+d2

−−−−−−→ F[1,in−1]N>i
∆̂
(1)
R/A2{i}

ã
(4)

and similarly for F[1,in−1]
∆̂R{i}.

Lemma 2.26 implies that F[1,in−1]N>i
∆̂R{i} and F[1,in−1]

∆̂R{i} are finitely generated torsion abelian
groups, while Proposition 2.24 implies that the terms in (4) have the same rank over Zp.

We summarize the reductions of this section in the following theorem.

Theorem 2.27. For each i > 1, the complex Zp(i)(R) ≃ F[1,in−1]Zp(i)(R) is equivalent to the total complex
(i.e., total fiber) of the commutative square

F[1,in−1]N>i
∆̂
(1)
R/A0{i} //

can−ϕ

��

ker

Å
F[1,in−1]N>i

∆̂
(1)
R/A1{i}

d0−d1+d2

−−−−−−→ F[1,in−1]N>i
∆̂
(1)
R/A2{i}

ã

can−ϕ

��

F[1,in−1]
∆̂
(1)
R/A0{i} // ker

Å
F[1,in−1]

∆̂
(1)
R/A1{i}

d0−d1+d2

−−−−−−→ F[1,in−1]
∆̂
(1)
R/A2{i}

ã
.

To compute the total complex of Theorem 2.27, we analyze the prismatic cohomology of R over A0 and
A1 via the prismatic envelopes introduced in [11]. This lets us find bases of all of the terms involved and
to compute the maps between them; see Sections 3 and 4.1. Moreover, we identify in Corollary 4.44 the

horizontal maps with a kind of ‘connection’ on ∆̂
(1)
R/A0{i}, not unlike the description of prismatic cohomology

of k[z]/zn in equation (3).

3 Envelope algebra

In [11], Bhatt and Scholze give a prismatic envelope description of ∆R/A when (A, d) is a bounded, oriented

prism and R = A/(d, r), where r ∈ A is an element which defines a non-zero divisor in A = A/d. The
description is as a “prismatic envelope”, which is defined as the (p, d)-completion of a pushout

A{x}
x 7→da−r

//

x 7→0

��

A{a}

��

A // A{a}/(da− r)δ

in δ-A-algebras, where A{a} denotes the free δ-A-algebra on a generator a.3 We write A{ rd} for the pushout
and A{ rd}

∧
p,d for its completion. The result is a flat δ-A-algebra and the construction commutes with base

change of maps of bounded, oriented prisms by [11, Prop. 3.13]. Given an object (B, I) in the relative
prismatic site (R/A)∆, one has that R maps to B = B/I so that the image of r in B must be divisible by
I. Using that I = dB and writing r = da ∈ I for some unique a, we see there is a natural induced map
A{ rd}

∧
p,d → B of prisms over A. Bhatt and Scholze show that in fact A{ rd}

∧
p,d represents a final object of

(R/A)∆ so that ∆R/A ≃ A{ rd}
∧
p,d.

3Recall that A{a} is isomorphic to the countably-generated polynomial ringA[a, δ(a), δ2(a), . . .]) and that the δ-ideal (da−r)δ
is equal to the ideal (da− r, δ(da − r), δ2(da − r), . . .).
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In this section, we examine the algebra of the construction of A{ rd}
∧
p,d and closely-related variants. In

particular, we show that, as a commutative ring, the prismatic envelope is the (p, d)-completed quotient
of a countably generated polynomial ring over A by countably many relations which are (p, d)-completely
Koszul-regular. Then, we give generators and relations descriptions of

Fconj
6⋆ ∆R/A, gr⋆N∆̂

(1)
R/A, and N>⋆

∆̂
(1)
R/A,

as increasingly filtered, graded, and decreasingly filtered commutative rings. This allows us to give additive
generators of these objects. When A = W (k)Jz0, . . . , zsK is viewed as filtered prism with respect to some
Eisenstein polynomial E(zj) where z0, . . . , zs have weight 1 and when R = OK or OK/̟n, then we give

additive bases for the filtered pieces F[a,b]N>i
∆̂
(1)
R/A. Eventually, these additive bases are how we will compute

the syntomic cohomology of OK/̟n.

Notation 3.1. Throughout this section, we consider filtered rings and modules. Here we will often think of
a decreasingly filtered module F>⋆M as a graded module

⊕
i∈Z

F>iM together with an action by the graded
ring Z[τ ], where τ acts by the transition maps F>iM → F>i−1M .

3.1 Some formulas about δ

Recall the following facts about δ-rings A. We have

δ(x+ y) = δ(x) + δ(y) + w1(x, y) (5)

for all x, y ∈ A, where

w1(x, y) = (xp + yp − (x+ y)p)/p = −

Ñ
p−1∑

j=1

Ç
p

j

å
xjyp−j

é
/p, (6)

a polynomial in x and y with integer coefficients. If x, y ∈ A, then

δ(xy) = δ(x)yp + xpδ(y) + pδ(x)δ(y) (7)

= δ(x)yp + ϕ(x)δ(y) (8)

= δ(x)ϕ(y) + xpδ(y). (9)

If x ∈ A, then
ϕ(x) ∈ (p, x) (10)

since ϕ(x) = xp + pδ(x).

Lemma 3.2. If A is a δ-ring and x, y ∈ A, then

• δ(x+ y) = δ(x) + δ(y) (mod x),

• δ(x− y) = δ(x) − δ(y) (mod x− y), and

• δ(xy) = δ(x)ϕ(y) (mod x).

Proof. These relations follow from the addition and multiplication formulas for δ.

Lemma 3.3. If A is a δ-ring, then δ(xp) = 0 (mod p) for all x ∈ A.

Proof. Use xp2

+ pδ(xp) = ϕ(xp) = ϕ(x)p = (xp + pδ(x))p to prove the lemma in the free δ-ring on one
generator x, which is p-torsion free, and deduce it in general.

Lemma 3.4. If A is a δ-ring, then δ(uxp) = δ(u)xp2

(mod p) for all u, x ∈ A.

Proof. Indeed, δ(uxp) = δ(u)xp2

+ ϕ(u)δ(xp) = δ(u)xp2

(mod p) by Lemma 3.3.
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3.2 Prismatic envelopes

Definition 3.5 (Koszul-regularity). Say that a sequence (x0, x1, . . .) of elements in a commutative ring R is
Koszul-regular if the associated Koszul complex K(x•) has homology concentrated in degree 0, in which case
it is a resolution of R/(x0, x1, . . .). Koszul-regularity is implied by regularity. If I ⊆ R is a finitely generated
ideal, then such a sequence is called I-completely Koszul-regular if the I-completed Koszul complex K(x•)

∧
I

has homology concentrated in degree 0, in which case it is a resolution of the derived I-adic completion of
R/(x0, x1, . . .).

Lemma 3.6. Let (A, d) be an oriented prism and fix elements a, r ∈ A. Let λ0 = − 1
δ(d) and R0 = δ(r)

δ(d) and

inductively define elements

λu+1 =
λp
u

1− δ(dpu+1λu)

and

Ru+1 =
1

1− δ(dpu+1λu)
(δ(Ru) + w1(d

pu+1

λuδ
u+1(a), Ru))

for u > 0. Then, the following statements hold.

(i) The elements Ru, for u > 0, are polynomials in the δ-powers δj(a) for j 6 u (with coefficients in
Zp{d, r}[δ(d)

−1]∧p,d), of total degree < pu+1 with respect to the grading where |δj(a)| = pj. In particular,
Ru involves only powers of δu(a) with exponent < p.

(ii) The elements λu are units in A for u > 0.

(iii) The δ-ideal (da− r)δ agrees with the ideal generated by (da− r) and the elements

δu(a)p − (−p+ dp
u+1

λu)δ
u+1(a)−Ru.

Proof. To prove (iii), observe that

δu(a)p − (−p+ dp
u+1

λu)δ
u+1(a)−Ru = ϕ(δu(a))− dp

u+1

λuδ
u+1(a)−Ru.

We write Iu for the ideal

(da− r, δ(da− r), . . . , δu(da− r)).

To prove that (da − r)δ =
⋃
Iu agrees with the ideal generated by (da − r) and the elements ϕ(δu(a)) −

dp
u+1

λuδ
u+1(a)−Ru, we claim there exist units µu with

δu+1(da− r) = µu

Ä
ϕ(δu(a))− dp

u+1

λuδ
u+1(a)−Ru

ä
(mod Iu).

This in particular implies

Iu+1 = Iu + (δu+1(da− r)) = Iu + (ϕ(δu(a))− dp
u+1

λuδ
u+1(a)−Ru),

which is what we want to prove. To prove the claim, we proceed by induction. We will make repeated use
of Lemma 3.2 Observe that

δ(da− r) = δ(da)− δ(r) (mod da− r),

and

δ(da)− δ(r) = δ(d)ϕ(a) + dpδ(a)− δ(r) = δ(d) · (ϕ(a)− dpλ0δ(a)−R0),

showing the claim for u = 0 (with µ0 = δ(d)).
For the inductive step, assume the claim for u. Observe that δ(Iu) ⊆ Iu+1, so

δu+2(da− r) = δ
Ä
µu(ϕ(δ

u(a))− dp
u+1

λuδ
u+1(a)−Ru)

ä
(mod Iu+1).
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Next, using Lemma 3.2, we find that

δ
(
µu(ϕ(δ

u(a))− dp
u+1

λuδ
u+1(a)−Ru)

)
= ϕ(µu)δ(ϕ(δ

u(a))− dp
u+1

λuδ
u+1(a)−Ru) (mod Iu+1)

= ϕ(µu)
(
δ(ϕ(δu(a))− δ(dp

u+1

λuδ
u+1(a) +Ru)

)
(mod Iu+1),

using that ϕ(δu(a))− dp
u+1

λuδ
u+1(a)−Ru ∈ Iu+1.

Now δ(ϕ(δu(a))) = ϕ(δu+1(a)), and

δ(dp
u+1

λuδ
u+1(a) +Ru) = δ(dp

u+1

λu)ϕ(δ
u+1(a)) + dp

u+2

λp
uδ

u+2(a) + δ(Ru) + w1(d
pu+1

λuδ
u+1(a), Ru).

Their difference can be factored as

δ(ϕ(δu(a)))− δ(dp
u+1

λuδ
u+1(a) +Ru)

= ϕ(δu+1(a)) −
Ä
δ(dp

u+1

λu)ϕ(δ
u+1(a)) + dp

u+2

λp
uδ

u+2(a) + δ(Ru) + w1(d
pu+1

λuδ
u+1(a), Ru)

ä

= (1− δ(dp
u+1

λu)) · (ϕ(δ
u+1(a)) − dp

u+2

λu+1δ
u+2(a)−Ru+1),

using the definition of λu+1 and Ru+1, which completes the inductive step (with µu+1 = ϕ(µu) · (1 −

δ(dp
u+1

λu))).

Part (i) follows easily from the provided recursion, working in the graded δ-ring

Zp{d, r, a}[δ(d)
−1]∧p,d

where |a| = 1 and |d| = |r| = 0. Part (ii) follows inductively from Lemma 3.2.

Remark 3.7. If δ(r) = 0, observe that the Ru are all inductively zero.

Proposition 3.8. Let A be a bounded prism with orientation I = (d) and let r1, . . . , rc ∈ A map to
a p-completely Koszul-regular sequence in A = A/d. Then, the prismatic envelope A{ r1d , . . . ,

rc
d }

∧
(p,d) =

(A{a1, . . . , ac}/(da1 − r1, . . . , dac − rc)δ)
∧
(p,d) is the quotient of the (p, d)-complete free δ-ring A{a1, . . . , ac}

∧
(p,d)

on generators a1, . . . , ac by the (p, d)-completely Koszul-regular sequence of relations

(da1 − r1, . . . , dac − rc)

and

δu(av)
p − (−p+ dp

u+1

λu)δ
u+1(av)−Ruv

for u > 0 and 1 6 v 6 c, where Ruv is the polynomial from Lemma 3.6 (for a = av and r = rv).

Proof. By Lemma 3.6, the δ-ideal (da1 − r1, . . . , dav − rv)δ agrees with the ideal generated by (da1 −

r1, . . . , dac − rc) and the δu(av)
p − (−p+ dp

u+1

λu)δ
u+1(av)−Ruv.

Thus it suffices to prove that these form a (p, d)-completely Koszul-regular sequence in A[δu(av) | u >

0, 1 6 v 6 c]∧p,d. It suffices to do this after base change to A = A/d and hence it suffices to prove that the
images of the elements

δu(av)
p − (−p+ dp

u+1

λu)δ
u+1(av)−Ruv = δu(av)

p + pδu+1(av)−Ruv

form a p-completely Koszul-regular sequence in R[δu(av) | u > 0, 1 6 v 6 c]∧p . This ring admits an ascending
filtration where δu(av) is in filtration 6 pu. With respect to that filtration, Ruv has filtration strictly smaller
pu+1, as discussed in Lemma 3.6. As the leading terms with respect to this filtration

δu(av)
p + pδu+1(av)

of the relations form a regular sequence, the relations do too.
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⊕

N>i
∆̂
(1)
R/A

Proposition 3.9. Let (A, (d)) be a bounded, oriented prism and let r1, . . . , rc ∈ A be elements which map to

a p-completely Koszul-regular sequence in A. Letting R = A/(d, r1, . . . , rc), the filtered A-algebra Fconj
6⋆ ∆R/A

is a p-completely Koszul-regular quotient of the filtered polynomial ring

R[δu(av) | u > 0, 1 6 v 6 c]∧p

by relations
δu(av)

p + pδu+1(av)−Ruv,

where δu(av) has filtration weight > pu. In particular, the monomials

∏

uv

δu(av)
euv

for 1 6 v 6 c, u > 0, 0 6 euv < p, and
∑

v,u ev,up
u 6 i form a p-completely free basis for the R-module

Fconj
6i ∆R/A ⊆ (A{ r1d , . . . ,

rc
d }

∧
p )/d.

Proof. We first argue that the monomials ∏

uv

δu(av)
euv

form a basis for ∆R/A. Indeed, Proposition 3.8 exhibits ∆R/A as a Koszul-regular quotient of

R[δu(av) | u > 0, 1 6 v 6 c]∧p

by elements
δu(av)

p + pδu+1(av)−Ruv,

where here there is no claim about the conjugate filtration. We have an ascending filtration G6⋆ with δu(av)
in filtration 6 pu. On the associated graded ring, we are dealing with the quotient of R[δu(av) | u > 0, 1 6

v 6 c]∧p by relations δu(av)
p+ pδu+1(av). This is a free divided power algebra, which has the indicated basis.

So these element form a basis before passage to the associated graded ring as well.
It remains to prove that G6⋆ and the conjugate filtration Fconj

6⋆ agree. Both sides satisfy base change, so
it suffices to analyze the universal case of

A = Zp{d, r1, . . . , rc}[δ(d)
−1]∧p,d.

Furthermore, by monoidality we can reduce to the case of a single relation, A = Zp{d, r} and R = A/r. We
may endow A with the structure of a graded prism with r in degree 1. In that case, LR/A ≃ R(1)[1] since R

is obtained from A by quotienting by a regular element of degree 1. So, the Hodge–Tate comparison theorem
shows that

grconjj ∆R/A = LΩj

R/A
[−j] ≃ R(j).

We also have that a = r
d is in degree 1, and hence the basis element

∏
u δ

u(a)eu is in degree
∑

pueu. It

follows that grjG is also R(j). Both G6j and Fconj
6j therefore agree with the degree 6 j part of ∆R/A, and in

particular agree.

Remark 3.10. Below, in Corollary 3.23, we will see another way of seeing that the elements δi(a) must be

in Fconj
6pi ∆R/A.

3.3 The δ-ring structure on
⊕

N>i
∆̂
(1)
R/A

Definition 3.11. Let (A, I) be a bounded prism and let R be a commutative A-algebra. The Frobenius-

twisted prismatic cohomology of A, denoted by ∆
(1)
R/A, is the derived (p, I)-completion of ∆R/A ⊗A,ϕ A. It

is equipped with an A-linear relative Frobenius map ∆
(1)
R/A

ϕR/A
−−−→ ∆R/A and there is a ϕA-semilinear map

w : ∆R/A → ∆
(1)
R/A. The composition w ◦ ϕR/A is the Frobenius endomorphism of ∆

(1)
R/A and the composition

ϕR/A ◦ w is the Frobenius endomorphism of ∆R/A.
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Remark 3.12 (The Nygaard filtration). Let (A, I) be a bounded prism and let R be a commutative A-

algebra. There is a decreasing multiplicative exhaustive filtration N>⋆
∆
(1)
R/A, the Nygaard filtration, on ∆

(1)
R/A

studied in [10, 11, 8]. The Nygaard filtration has the following properties:

(i) N>0
∆
(1)
R/A = N>−1

∆
(1)
R/A = · · · = ∆

(1)
R/A, or equivalently griN∆

(1)
R/A = 0 for i < 0;

(ii) the relative Frobenius ϕR/A : ∆
(1)
R/A → ∆R/A promotes to a natural map N>⋆

∆
(1)
R/A → I⋆∆R/A of filtered

E∞-rings;

(iii) the map griN∆
(1)
R/A → ∆R/A{i} induced from (ii) yields an equivalence griN∆

(1)
R/A ≃ Fconj

6i ∆R/A{i} for all

i ∈ Z;

(iv) if LR/A has p-complete Tor-amplitude in [1, 1], then the Nygaard-completed Frobenius-twisted pris-

matic cohomology ∆̂
(1)
R/A is discrete, the natural induced relative Frobenius map ϕR/A : ∆̂

(1)
R/A → ∆R/A

is injective, and N>i
∆̂
(1)
R/A consists of those x such that ϕR/A(x) ∈ Ii∆R/A. (For the last part, in this

generality, see [4, Cor. 6.13].)

Remark 3.13. Either property (iii) or property (iv) of Definition 3.12 can be used to define the filtration

general [11, Thm. 15.3]. If R is p-completely smooth over A, then one lets N>⋆
∆
(1)
R/A be LηI∆R/A, where LηI

denotes the décalage functor [10, Prop. 5.8], and then left Kan extends this filtration to all commutative
A-algebras. On the other hand, if R is relatively quasiregular semiperfectoid over A, then one defines the

Nygaard filtration by letting x ∈ N>i
∆
(1)
R/A if and only if ϕR/A(x) ∈ Ii∆R/A. Then, this can be descended to

give a definition for all relatively quasisyntomic A-algebras.

For the most part, we are interested only in the Nygaard-completion of ∆
(1)
R/A when R is a Koszul-regular

quotient of A.

Lemma 3.14. Let (A, d) be a bounded, oriented prism and let R be an A-algebra of the form A/(d, r1, . . . , rc),
where the images of r1, . . . , rc form a p-completely Koszul-regular sequence in A/d. By [11, Lem. 7.7], there
is an equivalence

∆R/A ≃ A
{r1
d
, . . . ,

rc
d

}∧

(p,d)
.

The relative Frobenius

ϕR/A : ∆
(1)
R/A → ∆R/A

induces an injective map

ϕR/A : ∆̂
(1)
R/A → ∆R/A

exhibiting the Nygaard completion as the completed sub-δ-ring generated by the elements
ϕ(rj)
ϕ(d) = ϕ

( rj
d

)
, i.e.

as

A

ß
ϕ(r1)

ϕ(d)
, . . . ,

ϕ(rc)

ϕ(d)

™∧
(p,N)

⊆ A
{r1
d
, . . . ,

rc
d

}∧

(p,d)
,

with Nygaard filtration given by the restriction of the d-adic filtration.

Proof. As ∆R/A is generated, as a δ-ring over A, by elements aj =
rj
d , one has that H0(∆

(1)
R/A) is generated

as a δ-ring over A by their images aj ⊗ 1. Under the relative Frobenius, these map to ϕ(aj) =
ϕ(rj)
ϕ(d) . The

Frobenius twist ∆
(1)
R/A is not necessarily discrete, but by Remark 3.12(iii) and discreteness of the associated

graded terms LΩj

R/A
[−j] of the conjugate filtration, the Nygaard associated graded terms are discrete and

embed into the d-adic associated graded terms. It follows that the Nygaard completion is discrete and

obtained as closure of the image of ∆
(1)
R/A in ∆R/A with respect to the (p, d)-adic topology and that the

Nygaard filtration on the Nygaard completion can be obtained by restricting the d-adic filtration.
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Remark 3.15. As suggested in Lemma 3.14, one may think of ∆
(1)
R/A as a prismatic envelope in its own right,

adjoining fractions
ϕ(rj)
ϕ(d) . Indeed, the pushout diagram (3) at the beginning of the section base changes to

an analogous pushout. The issue is that in general, both ∆
(1)
R/A = ∆R/A ⊗A,ϕ A and this pushout diagram

have to be interpreted in a derived way, even if ∆R/A is discrete. However, in many cases, the ϕ(rj) also

form a p-completely Koszul-regular sequence in A, in which case the prismatic envelope is discrete, admits

a description as in the preceding section, and agrees with ∆
(1)
R/A.

The problem with this description is that the Nygaard filtration is rather inexplicit. We would like to

find an explicit description (in terms of generators and relations) of the Nygaard filtered pieces N>i
∆̂
(1)
R/A.

Example 3.16. The Nygaard filtration on prismatic envelopes is rarely complete, although it will be sepa-

rated in all cases considered in this paper. For example, neither N>⋆
∆
(1)
(Z/pn)/ZpJz0K nor N>⋆

∆
(1)
Zp/ZpJz0,z1K is

complete. Indeed, the elements fj ∈ N>pj

∆̂
(1)
(Z/pn)/ZpJz0K we construct in Proposition 3.34 lift to N>pj

∆
(1)
(Z/pn)/ZpJz0K,

but a sum such as
∑

j>0 fj exists in the Nygaard-completion, but does not exist before Nygaard-completion.

Construction 3.17. Let (A, d) be an oriented prism and let R be a commutative A-algebra with LR/A

having p-complete Tor-amplitude in [1, 1]. Consider the graded ring
⊕

i>0 N
>i

∆̂
(1)
R/A. Define functions

ϕ̃i : N
>i

∆̂
(1)
R/A → N>pi

∆̂
(1)
R/A by ϕ̃i(x) =

ϕ(x)
ϕ(d)id

pi,

δ̃i : N
>i

∆̂
(1)
R/A → N>pi

∆̂
(1)
R/A by δ̃i(x) = δ(x)− δ(di) ϕ(x)

ϕ(d)i .

Using part (iv) of Remark 3.12, we also have the A-linear d-divided relative Frobenius maps

ϕi,R/A : N>i
∆̂
(1)
R/A → ∆R/A defined by ϕi,R/A(x) =

ϕR/A(x)

di

and the ϕ(d)-divided Frobenius maps

ϕi : N
>i

∆̂
(1)
R/A → ∆̂

(1)
R/A defined by ϕi(x) =

ϕ(x)
ϕ(d)i .

Notation 3.18. We will write δ̃ =
⊕

i>0 δ̃i and ϕ̃ =
⊕

i>0 ϕ̃i as graded functions on
⊕

i>0 N
>i

∆̂
(1)
R/A.

Proposition 3.19 (The graded δ-ring structure). Let (A, d) be a bounded oriented prism and let R be

a commutative A-algebra with LR/A having p-complete Tor-amplitude in [1, 1]. The operation δ̃ makes
⊕

⋆>0 N
>⋆

∆̂
(1)
R/A into a graded δ-ring with graded Frobenius morphism ϕ̃; the relative divided Frobenius map

⊕

⋆>0

N>⋆
∆̂
(1)
R/A

⊕
ϕi,R/A

−−−−−−→ ∆R/A

is a δ-ring morphism.

Proof. Let x ∈ N>i
∆̂
(1)
R/A. While ϕ̃i(x) ∈ N>pi

∆̂
(1)
R/A follows because dpi ∈ N>pi

∆̂
(1)
R/A, it is less obvious that

δ̃i preserves the gradings in the claimed way. Nevertheless,

xp + pδ̃i(x) = xp + p
Ä
δ(x) − δ(di) ϕ(x)

ϕ(d)i

ä
=

(xp + pδ(x))ϕ(d)i − pδ(di)ϕ(x)

ϕ(d)i
= ϕ(x)

ϕ(d)i d
pi = ϕ̃i(x).

so that pδ̃i(x) is in weight pi. By reduction to a universal case using base change, we can assume that the

Nygaard-filtered pieces N>i
∆̂
(1)
R/A are p-torsion free and hence that δ̃i(x) is in weight pi, as desired. As ϕ̃i is

a graded ring endomorphism by definition, it also follows that it is a lift of Frobenius with associated δ-ring
structure given by δ̃.
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Again, using reduction to a p-torsion free case, to check that the relative divided Frobenius maps ϕi,R/A

assemble into a δ-ring morphism, it is enough to check that they commute with the Frobenius endomorphisms.
But, e have

ϕpi,R/A(ϕ̃i(x)) = ϕR/A

Ä
ϕ(x)
ϕ(d)i d

pi
ä

1
dpi =

ϕR/A(ϕ(x))

ϕ(d)i = ϕ
Ä
ϕR/A(x)

di

ä
= ϕ(ϕi,R/A(x)),

using A-linearity and ϕ(d)-torsion freeness of ∆R/A to commute dpi and ϕ(d)i through ϕR/A and using that
ϕR/A is a map of δ-rings to say that ϕ(ϕR/A(x)) = ϕR/A(ϕ(x)).

Warning 3.20. In the oriented case, the δ-ring structure δ̃ on
⊕

⋆>0
N>⋆

∆̂
(1)
R/A does not descend to a filtered

δ-ring structure on N>⋆
∆̂
(1)
R/A. Indeed, if it did, in the case of ∆̂Fp/Zp

, one would obtain on gr0N∆̂Fp/Zp
≃ Fp a

δ-ring structure, which is absurd. This is explained by the fact that δ̃ does not commute with the transition

maps N>i+1
∆̂
(1)
R/A → N>i

∆̂
(1)
R/A.

3.4 Generators for the Nygaard filtration

We are now ready to define the generators for the Nygaard filtration.

Construction 3.21 (The fu,v generators). Fix a bounded, oriented prism (A, d) and a sequence of elements
r1, . . . , rc ∈ A that define a p-completely Koszul-regular sequence in A; let R = A/(d, r1, . . . , rc). We let r̃v

denote the image of rv in N>1
∆̂
(1)
R/A under

N>1
∆̂
(1)
R/A ⊆ ∆̂

(1)
R/A
∼= (∆R/A ⊗A,ϕ A)∧p,N.

For 1 6 v 6 c and u > 0, we define fu,v ∈ N>pu

∆̂
(1)
R/A by

fu,v = δ̃u(rv).

Additionally, we let
av = ϕ1,R/A(f0,v) ∈ ∆R/A.

We first remark that there is no conflict in notation between the av from Construction 3.21 and those
from Proposition 3.8.

Lemma 3.22. If (A, d) is a bounded, oriented prism and r1, . . . , rc is a sequence of elements whose image
in A is p-completely Koszul-regular, then av ∈ ∆R/A satisfies dav = rv for 1 6 v 6 c. Moreover, the induced
map

A{ r1d , . . . ,
rc
d }

∧
(p,d) → ∆R/A

is an equivalence.

Proof. By definition, av = ϕ1,R/A(f0,v) =
ϕR/A(r̃v)

d , so dav = ϕR/A(r̃v). But, since ϕR/A is A-linear,
ϕR/A(r̃v) = rv, so we have that dav = rv. Now, there is an induced map

A{ r1d , . . . ,
rc
d }

∧
(p,d) → ∆R/A

by definition of the prismatic envelope. But, this map is the map arising in the proof of the fact that the
prismatic envelope of an lci quotient computes the prismatic cohomology in [11, Ex. 7.9]; in particular, it is
an equivalence.

Corollary 3.23. If (A, d) is a bounded, oriented prism and r1, . . . , rc is a sequence of elements whose image
in A is p-completely Koszul-regular, then for every 1 6 v 6 c and every u > 0, one has ϕpu,R/A(fu,v) = δu(av)

and the image of δuav in ∆R/A is in Fconj
6pu∆R/A.

Proof. The first statement follows by the compatibility of δ̃ and δ under ϕ⋆,R/A established in Proposition 3.19.

The second statement follows from the fact that the relative Frobenius induces an equivalence grp
u

N ∆̂
(1)
R/A ≃

Fconj
pu ∆R/A (see for example [8, Rem. 5.1.2]).
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Lemma 3.24 (Relations for the fu,v). Let d̃ ∈ N>1
∆̂
(1)
R/A be d, regarded as element of Nygaard filtration > 1.

The elements fu,v satisfy relations

fp
u,v = (−p+ λud

pu+1

)fu+1,v + d̃p
u+1

R′
u,v,

in N>pu

∆̂
(1)
R/A, where λu is given by λ0 = − 1

δ(d) and

λu+1 =
λp
u

1− δ(dpu+1λu)

and the R′
u,v ∈ N>0

∆̂
(1)
R/A are given by R′

0,v = δ(rv)
δ(d) and

R′
u+1,v =

1

1− δ(dpu+1λu)
(δ(R′

u,v) + w1(λufu+1,v, R
′
u,v)).

Remark 3.25. Note that in the statement of Lemma 3.24, δ does not preserve the Nygaard filtration in
any way.

Proof of Lemma 3.24. Applying Lemma 3.6 to the graded δ-ring
⊕

⋆>0 N
>⋆

∆̂
(1)
R/A and the relation df0,v = d̃r,

we obtain relations
fp
u,v = (−p+ λud

pu+1

)fu+1,v +Ru,v,

using δ̃(d̃) = 0, with R0,v = δ̃(d̃rv)
δ(d) = d̃pR′

0,v. Now Ru,v satisfies the recursion

Ru+1,v =
1

1− δ(dpu+1λu)
(δ̃(Ru,v) + w1(d

pu+1

λufu+1,v, Ru,v).

We may rewrite dp
u+1

fu+1,v as d̃p
u+1

· fu+1,v in N>pu+1

∆̂
(1)
R/A. It inductively follows that

Ru+1,v = d̃p
u+1

R′
u+1,v,

proving the claimed relation.

Lemma 3.26 (Structure maps on the fu,v). The divided Frobenius and δ-structure maps are determined on
the elements fu,v by

(1) ϕpu(fu,v) = λufu+1,v +R′
u,v,

(2) ϕ(fu,v) = ϕ(d)p
u

· (λufu+1,v +R′
u,v), and

(3) δ(fu,v) = (1 + δ(dp
u

)λu)fu+1,v + δ(dp
u

)R′
u,v

Proof. We have

ϕ̃(fu,v) = fp
u,v + pfu+1,v = λud

pu+1

fu+1,v + d̃p
u+1

R′
u,v.

Using ϕ̃(fu,v) = d̃p
u+1

ϕpu(fu,v) and rewriting dp
u+1

fu+1,v = d̃p
u+1

fu+1,v, this implies

ϕpu(fu,v) = λufu+1,v +R′
u,v,

since d̃ acts as nonzerodivisor on the Nygaard filtration: indeed, on the associated graded pieces of the
Nygaard filtration, d̃ fits into a commutative diagram

grj−1
N ∆̂

(1)
R/A grjN∆̂

(1)
R/A

Fconj
6j−1∆R/A Fconj

6j ∆R/A,

≃

d̃

≃

can
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where the last map has discrete cofiber ”LΩj

R/A[−j] by assumption. Since ϕ(fu,v) = ϕ(d)p
u

ϕpu(fu,v), the
second claim follows.

Finally, observe that

fp
u,v = (−p+ λud

pu+1

)fu+1,v + dp
u+1

R′
u,v,

and, since ϕ(dp
u

) = dp
u+1

+ pδ(dp
u

),

ϕ(fu,v) = (dp
u+1

+ pδ(dp
u

)) · (λufu+1,v +R′
u,v).

taking the difference,

ϕ(fu,v)− fp
u,v = pδ(fu,v) = p(1 + δ(dp

u

)λu)fu+1,v + pδ(dp
u

)R′
u,v,

which we may divide by p to prove the last claim, since it suffices to prove these relations in the universal
case, where everything is p-torsion free.

Remark 3.27 (Translating between the fu,v and δu(av)). Since the relative divided Frobenius satisfies
ϕpu,R/A(fu,v) = δu(av), part (1) of Lemma 3.26 implies that

w(δu(av)) = λufu+1,v +R′
u,v,

expressing the image of our generators of ∆R/A in the Frobenius twist ∆̂
(1)
R/A in terms of the fu,v. As the

leading coefficient here is a unit, this in fact provides a way to translate between the fu,v and the δu(av).

One may use this to obtain a generators-and-relations description of ∆
(1)
R/A in terms of the fu,v and the above

relations. We prove this below only for the Nygaard completion N>⋆
∆̂
(1)
R/A in a different way and will not

need to directly translate between these two sets of generators.

We now want to express the fact that, as a filtered ring, N>⋆
∆̂
(1)
R/A is generated by the fu,v subject to the

relations from Lemma 3.24. The problem is that the R′
u,v are only defined as elements of N>⋆

∆̂
(1)
R/A rather

than abstract polynomials in the fu,v, and since the recursion involves the δ-ring structure on ∆̂
(1)
R/A, it is not

immediately obvious how to lift them to polynomials. The following construction accomplishes that.

Construction 3.28. On the polynomial ring A[fu,v | u > 0, 1 6 v 6 c]∧p,d, we introduce a δ-ring structure

and elements R′
u,v through R′

0,v = δ(rv)
δ(d) and the mutual recursions

δ(fu,v) = (1 + δ(dp
u

)λu)fu+1,v + δ(dp
u

)R′
u,v

R′
u+1,v =

1

1− δ(dpu+1λu)
(δ(R′

u,v) + w1(λufu+1,v, R
′
u,v)).

This works since inductively, R′
u,v is a polynomial in f0,v, . . . , fu,v, and δ(fu,v) is a polynomial in f0,v, . . . , fu+1,v.

Also note that with respect to the ascending filtration G6⋆A[fu,v]
∧
p,d where fu,v has filtration 6 pu, one

inductively sees that Ru,v ∈ G<pu+1A[fu,v]
∧
p,d and δ

Ä
G6⋆A[fu,v]

∧
p,d

ä
⊆ G6p⋆A[fu,v]

∧
p,d. In particular, R′

u,v

involves fu,v with exponents strictly smaller than p.

Finally, note that the map A[fu,v]
∧
p,d → ∆̂

(1)
R/A is a map of δ-rings and takes R′

u,v to the element of the
same name.

Remark 3.29. If δ(r) = 0, observe that the R′
u are all inductively zero.

Proposition 3.30. If (A, d) is a bounded, oriented prism and r1, . . . , rc is a sequence of elements whose

image in A is p-completely Koszul-regular, then, as a graded commutative R-algebra,
⊕

⋆>0 gr
⋆
N∆̂

(1)
R/A is a

p-completely Koszul-regular quotient of the p-complete graded polynomial ring R[d̃, fu,v | u > 0, 1 6 v 6 c]∧p ,

where d̃ is in weight 1 and corresponds to d ∈ gr1N∆̂
(1)
R/A and fu,v is in weight pu, by the relations

fp
u,v = (−p+ λud

pu+1

)fu+1,v + d̃p
u+1

R′
u,v,

As a graded R-module,
⊕

⋆>0 gr
⋆
N∆̂

(1)
R/A is p-completely free on monomials d̃k

∏
f
eu,v
u,v ∈ gr

k+
∑

pueu,v

N ∆̂R/A with
eu,v < p.
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Proof. Recall that we have commutative diagrams

grj−1
N ∆̂

(1)
R/A grjN∆̂

(1)
R/A

Fconj
6j−1∆R/A Fconj

6j ∆R/A,

≃

d̃

≃

can

so d̃ acts injectively on gr⋆N∆̂
(1)
R/A. The relations hold by Lemma 3.24. To check that they form a p-completely

regular sequence, it suffices to know that they do so modulo d̃. This reduces to the claim that the elements
fp
u,v + pfu+1,v for u > 0 and 1 6 v 6 c form a p-completely regular sequence in R[fu,v | u > 0, 1 6 v 6 c]∧p ,

which is clear. This also shows that the monomials d̃k
∏

f
eu,v
u,v form a basis of the quotient of R[d̃, fu,v | u >

0, 1 6 v 6 c]∧p by the indicated relations. The divided relative Frobenius ϕi,R/A : griN∆̂
(1)
R/A

≃
−→ Fconj

6i ∆R/A

takes the d̃i−
∑

pueu,v
∏

f
eu,v
u,v to

∏
δu(av)

eu,v , so gr⋆N∆̂
(1)
R/A is also free on the same set of monomials.

Recall that in our convention is that in N>⋆
∆̂
(1)
R/A the element τ denotes 1, but viewed as being in

N>−1
∆̂
(1)
R/A. In the corollary below, τf0,v is then in N>0

∆̂
(1)
R/A.

Corollary 3.31. If (A, d) is a bounded, oriented prism and r1, . . . , rc is a sequence of elements whose
image in A is p-completely Koszul-regular with quotient R, then, as a complete filtered commutative d⋆A ∼=

N>⋆
∆̂
(1)

A/A
-algebra, N>⋆

∆̂
(1)
R/A is a p-completely Koszul-regular quotient of the p-complete complete filtered

polynomial ring d⋆A[fu,v | u > 0, 1 6 v 6 c]∧p,N, where fu,v is in weight pu, by relations τf0,v − rv of weight
0 and the relations

fp
u,v = (−p+ λud

pu+1

)fu+1,v + d̃p
u+1

R′
u,v,

δd,pu−1 · · · δd,1(df0,v − d̃rv) for u > 1 of weight pu.

Proof. There is a filtered map d⋆A[fuv | u > 0, 1 6 v 6 c]∧p,N → N>⋆
∆̂
(1)
R/A taking the elements fuv to

the corresponding elements of N>⋆
∆̂
(1)
R/A defined in Construction 3.21. By construction, τf0v maps to rv

in N>⋆
∆̂
(1)
R/A, so it follows that the map factors through the quotient by the indicated relations. We may

check whether that map is an equivalence after passing to the associated graded ring, which corresponds to
reducing mod τ . This turns the τf0v − rv into −rv, which reduces the claim to Proposition 3.30.

Remark 3.32. Corollary 3.31 is almost expressing
⊕

N>⋆
∆̂
(1)
R/A as the prismatic envelope A[d̃]{ d̃rvd | 1 6

v 6 c}. However, this is just a graded and not a filtered object. One might want to take a prismatic

envelope in filtered objects, but the problem is that δ̃ is not compatible with τ . (See Warning 3.20.) One
valid description along those lines is

⊕

i∈Z

N>i
∆̂
(1)
R/A
∼=

(A[d̃]{ d̃rvd })[τ ]

(τ d̃ − d, τ d̃rv
d − rv)

,

which however is not a derived quotient, as the relations τ d̃−d and τ d̃rv
d −rv are redundant with d · d̃rvd − d̃rv.

3.5 The F-filtration on prismatic envelopes

We now specialize to the following situation. We take as our prism A a multivariable Breuil–Kisin prism
A = W (k)Jz0, . . . , zsK with Eisenstein polynomial E(z0). We consider this as a filtered δ-ring with z0, . . . , zs
in filtration weight 1. We consider R = OK or OK/̟n as a filtered commutative A-algebra by letting
z0, . . . , zs map to ̟. As explained in [4], in this case the prismatic cohomology ∆R/A obtains a secondary
filtrations compatible with all structure, which we will denote everywhere by F⋆. In particular, we have the

F-filtrations F⋆
∆R/A and F⋆N[a,b]

∆̂
(1)
R/A.
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Proposition 3.33. Let OK be a discrete valuation ring with residue field k perfect of characteristic p and
with uniformizer ̟. Let A = W (k)Jz0, . . . , zsK be the filtered δ-ring defined by letting each of z0, . . . , zs have
weight 1 and letting δ(z0) = · · · = δ(zs) = 0. We view OK and OK/̟n as A-algebras by letting z0, . . . , zs
map to ̟.

(1) For R = OK , we have elements δu(b1), . . . , δ
u(bs) ∈ F>pu

∆R/A for u > 0 corresponding to the relations

z1 − z0, . . . , zs − z0. A W (k)-basis for F[a,b]
∆R/A is given by the monomials

zk0
∏

u>0,v∈[1,s]

δu(bv)
euv

with 0 6 euv < p for all u, v and k +
∑

pueuv ∈ [a, b].

(2) For R = OK/̟n, in addition to δu(b1), · · · , δ
u(bs) above, there are elements δu(a) ∈ F>npu

∆R/A for

u > 0 corresponding to the relation zn = 0. A W (k)-basis for F[a,b]
∆R/A is given by the elements

zk0
∏

u>0

δu(a)eu
∏

u>0,v∈[1,s]

δu(bv)
euv

with (i) 0 6 eu < p for all u > 0, (ii) 0 6 euv < p for all u, v, (iii) k < n, and (iv) k + n
∑

u>0 p
ueu +∑

v∈[1,s] p
ueuv ∈ [a, b].

Proof. We give the proof of (1). In this case, Proposition 3.8 presents ∆R/W (k)Jz0,...,zsK as the prismatic
envelope

W (k)Jz0, . . . , zsK

ß
z1 − z0
E(z0)

, . . . ,
zs − z0
E(z0)

™∧
p,E(z0)

.

We let bv = zv−z0
E(z0)

, which has weight 1 and hence the δ-iterates δu(bv) have weight p
u. By Proposition 3.9, the

monomials with k = 0 give p-complete generators of ∆R/W (k)Jz0,...,zsK as a module over R ∼= W (k)Jz0K/E(z0).
It follows that the monomials with k = 0 give (p,E(z0))-complete generators of the prismatic cohomology
as W (k)Jz0K-module. Thus, the monomials where k is now allowed to vary give an F-complete basis for
the prismatic envelope as a p-complete W (k)-module. It remains to argue that each monomial is in the
given weight and not in a possibly higher weight. Equivalently, we must check that the given elements form
a basis for the F-associated graded ring, which follows from [4, Prop. 10.41]. The proof of (2) proceeds
analogously.

Proposition 3.34. Let OK be a discrete valuation ring with residue field k perfect of characteristic p and
with uniformizer ̟. Let A = W (k)Jz0, . . . , zsK be the filtered δ-ring defined by letting each of z0, . . . , zs have
weight 1 and letting δ(z0) = · · · = δ(zs) = 0. We view OK and OK/̟n as A-algebras by letting z0, . . . , zs
map to ̟.

(1) For R = OK , we have elements gu,1, . . . , gu,s ∈ F>pu

N>pu

∆̂
(1)
R/A for u > 0 corresponding to the relations

z1 − z0, . . . , zs − z0. A W (k)-basis for F[a,b]N>i
∆̂
(1)
R/A is given by the monomials

d̃jzk0
∏

u>0,v∈[1,s]

geu,v
u,v

with 0 6 eu,v < p for all u, v, j +
∑

pueu,v = i or j = 0 and
∑

pueu,v > i, and k +
∑

pueu,v ∈ [a, b].

(2) For R = OK/̟n, in addition to gu,1, . . . , gu,s above, there are elements fu ∈ F>npu

N>pu

∆̂
(1)
R/A for u > 0

corresponding to the relation zn = 0. A W (k)-basis for F[a,b]N>i
∆̂
(1)
R/A is given by the elements

d̃jzk0
∏

u>0

feu
u

∏

u>0,v∈[1,s]

geu,v
u,v

such that (i) 0 6 eu < p for all u > 0, (ii) 0 6 eu,v < p for all u > 0 and 1 6 v 6 s (iii) k < n,
(iv) j +

∑
pueu +

∑
pueu,v = i or j = 0 and

∑
pueu +

∑
pueu,v > i, and (v) k + n

∑
u>0 p

ueu +∑
v∈[1,s] p

ueu,v ∈ [a, b].
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Proof. We prove the second statement, the first statement is easier and completely analogous. It suffices
to check that those elements form a basis for the F-associated graded, i.e. by crystalline degeneration we
may reduce to the case of R = k[z]/zn. Now Proposition 3.30 tells us that the elements d̃j

∏
f
eu,v
u,v with

eu,v < p and j +
∑

pueu,v > i form a k[z]/zn-basis for the Nygaard-associated graded
⊕

i′>i gr
i′

N∆̂
(1)
R/A. So,

the elements d̃jzk
∏

f
eu,v
u,v with k < n, eu,v < p, and j+

∑
pueu,v > i form a k-basis, and hence the elements

d̃jzk
∏

f
eu,v
u,v with k < n, eu,v < p and j +

∑
pueu,v = i or j = 0 and

∑
pueu,v > i form a k[d̃]-basis of⊕

i′>i gr
i′

N∆̂
(1)
R/A. Analyzing their filtration, those elements with k+n

∑
pueu+n

∑
pueu,v ∈ [a, b] form a k[d̃]-

basis for F[a,b]
⊕

i′>i gr
i′

N∆̂
(1)
R/A. So they form a W (k)-basis of F[a,b]N>i

∆̂
(1)
R/A before passing to the associated

graded.

Remark 3.35. We can summarize the interaction between the generators given in Proposition 3.34 and

the Nygaard and F-filtrations on ∆̂
(1)
R/W (k)Jz0K as follows. The bigraded is concentrated below a staircase of

slope n, with d̃jzk
∏

feu
u of Nygaard-filtration j +

∑
pueu and F-filtration k + n

∑
pueu. The situation is

summarized in Figure 2. Note that in the F-associated graded, the copies of k generated by d̃jzk
∏

feu
u for

varying j form a copy of W (k) generated by zk
∏

feu
u .

N

F

1

z

...

zn−1

f0

zf0

...

zn−1f0
∏

feu
u

d̃
d̃j

Figure 2: Note that all monomials
∏

feu
u lie on the line of slope n through the origin, and everything is

concentrated below the staircase depicted bold in the figure. It follows that the filtration induced by F>⋆

on each N[a,b]
∆̂
(1)
R/A is bounded above, and that the filtration induced by the Nygaard filtration on each

F[a,b]
∆̂
(1)
R/A is complete (by d-completeness). See Section 2.2 for more on the interaction of the F-filtration

and the Nygaard filtration.

4 Relative-to-absolute descent

In this section, we discuss in detail the structure of descent from the multivariable Breuil–Kisin prismatic
cohomology of OK/̟n to its absolute prismatic cohomology. Recall the augmented cosimplicial δ-ring A•

W (k)→W (k)Jz0K W (k)Jz0, z1K . . . ,

which is the completion of the Amitsur complex of W (k)→W (k)〈z0〉 at the augmented cosimplicial ideal

0→ (z0) (z0, z1) · · · .

We view (A•,OK) and (A•,OK/̟n) as augmented cosimplicial δ-pairs by letting z0, . . . , zs map to ̟.
Using the prismatic envelope machinery of Section 3, we can compute the prismatic package of O/̟n

relative to each As individually. Since the multivariable Breuil–Kisin prisms are orientable, one can trivialize
away the Breuil–Kisin twist by Lemma 4.7 in computing the relative syntomic complexes Zp(i)((O/̟

n)/A•)
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of Construction 2.21, as we explain in Section 4.2. But, the transition maps in the diagram are not compatibly
maps of prisms, so in the limit the Breuil–Kisin twist is non-trivial and we must account for it. We explain
how Breuil–Kisin orientations transform in Section 4.1 and study the Hopf algebroid associated to the descent
diagram in the remainder of Section 4.

4.1 Breuil–Kisin orientations

For a prism (B, I), the Breuil–Kisin twist B{1} admits a canonical description as a limit

B{1} = lim
r

Ir/I
2
r = lim

(
· · · → I3/I

2
3

can
p
−−→ I2/I

2
2

can
p
−−→ I1/I

2
1

)
(11)

where Ir = I · ϕ∗
B(I) · · · (ϕ

r−1
B )∗(I). If B is transversal, the transition map Ir/I

2
r → Ir−1/I

2
r−1 for r > 2 is

characterized as the unique map which, after multiplication with p, agrees with the canonical map Ir/I
2
r →

Ir−1/I
2
r−1. See [8, Sec. 2.2] for details.

Proposition 4.1. If (B, I) is a prism, the natural map B{1}/Ir → Ir/I
2
r is an isomorphism.

Proof. This is [8, Prop. 2.2.12].

Remark 4.2. In [8, Sec. 2.2], the authors construct B{1} as a limit as in (11) under the assumption that
B is transversal and they prove Proposition 4.1 in that case as well. They go on to define B{1} in general
by base change from the transversal case by showing that the category of maps to a given prism from
transversal ones is sifted. However, Proposition 4.1 holds for general B by base change again, since Ir and
the map involved are also obtained by base change from transversal prisms. Moreover, the limit description
of B{1} also holds in the non-transversal case, once the diagram has been obtained by base change from the
transversal case. That is, for any prism B there are natural maps can

p : Ir/I
2
r → Ir−1/I

2
r−1 for r > 2 and

a natural equivalence identifying B{1} as the limit of the tower of (11). To see this, it is enough to check
it after derived modding out by p, where one can use the equivalences Ir+1/p ≃ I [r+1]p/p. Now, the result
follows from (p, I)-completeness.

In this section, we discuss choices of orientations on B{1}, i.e., B-module isomorphisms B ∼= B{1}. Such
isomorphisms are in bijection to choices of generators s ∈ B{1} as a B-module.

Definition 4.3 (Breuil–Kisin orientations). For a ring R and an invertible R-module M , we write

OrR(M)

for the R×-torsor (possibly empty) of R-module isomorphisms R → M . For a prism (B, I), we refer to
OrB(I) as the set of orientations of B and OrB(B{1}) as the set of Breuil–Kisin orientations of B. The
prism (B, I) is orientable if OrB(I) is nonempty and is Breuil–Kisin orientable if OrB(B{1}) is nonempty.

Remark 4.4. We will see in Lemma 4.7 that the existence of a Breuil–Kisin orientation is equivalent to
the existence of an orientation in the usual sense (i.e. of the ideal I). However, when it comes to choices of
orientations, the more natural direction is to go from a Breuil–Kisin orientation to an ordinary orientation.

Recall the following construction from [8, Const. 2.2.14].

Construction 4.5 (The Frobenius on the Breuil–Kisin twist). The Breuil–Kisin twisted Frobenius for a
prism B arises from a natural isomorphism of B-modules

B{1} ⊗B,ϕ B
∼=
−→ I−1 ⊗B B{1}

whose reduction mod ϕ∗
B(Ir) is given by the isomorphism

B{1}/Ir ⊗B,ϕ B I−1 ⊗B B{1}/ϕ∗
B(Ir)

Ir/I
2
r ⊗B,ϕ B I−1 ⊗B Ir+1/Ir+1ϕ

∗
B(Ir)

ϕ∗
B(Ir)/ϕ

∗
B(Ir)

2 I−1 ⊗B Ir+1/Ir+1ϕ
∗
B(Ir),

∼=

∼= ∼=

∼=

∼= =

∼=
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where the top right vertical arrow exists because ϕ∗
B(Ir) contains Ir+1 so that B{1}⊗BB/ϕ∗

B(Ir)
∼= B{1}⊗B

B/Ir+1⊗B/Ir+1
B/ϕ∗

B(Ir)
∼= Ir+1/I

2
r+1⊗B/Ir+1

B/ϕ∗
B(Ir) by Proposition 4.1 and where the bottom arrow is

an isomorphism because ϕ∗
B(Ir)

∼= I−1Ir+1. Now, ϕB{1} is the ϕB-semilinear map obtained by adjunction
from the composition

B{1} → B{1} ⊗B,ϕ B
∼=
−→ I−1 ⊗B B{1};

it satisfies

ϕB{1}(as) = ϕB(a)ϕB{1}(s)

for a ∈ B and s ∈ B{1}.

Lemma 4.6. For a prism B, a Breuil–Kisin orientation s : B → B{1} on B determines a unique orientation
ds ∈ Or(I) with

ϕB{1}(as) = d−1
s ϕB(a)s.

The corresponding map

OrB(B{1})→ OrB(I)

is equivariant with respect to the homomorphism B× → B× given by

u 7→
u

ϕB(u)
.

Proof. As the map

B{1} ⊗B,ϕ B
∼=
−→ I−1 ⊗B B{1}, s⊗ b 7→ b · ϕB{1}(s)

is an isomorphism, ϕB{1}(s) is a uniquely determined generator of I−1 ⊗B B{1}, so of the form d−1
s ⊗ s for

a generator ds of I. We can write ds symbolically as s
ϕB{1}(s)

. It is then clear that

ds′ =
us

ϕB{1}(us)
=

u

ϕB(u)
ds

if s′ = us for a unit u in R.

The next lemma is also proven in [8, Rem. 2.5.8].

Lemma 4.7. A prism (B, I) is orientable if and only if it is Breuil–Kisin orientable.

Proof. Lemma 4.6 shows that Breuil–Kisin orientability implies orientability. For the other direction, choose
an orientation d of I. Then Ir/I

2
r is a free B/Ir-module on the generator d ·ϕ(d) · · ·ϕr−1(d). We now observe

that, for r > 1, there are units ur such that

ϕr(d) = p · ur mod Ir .

For r = 1, this follows from

ϕ(d) = p · δ(d) + dp

since d is distinguished by hypothesis. We proceed by induction and assume that

ϕr(d) = p · ur + Sr

with Sr ∈ Ir . Then

ϕr+1(d) = ϕr(d)p + pϕr(δ(d))

= ϕr(d)p−1(pur + Sr) + pϕr(δ(d))

= p(ϕr(δ(d)) + ϕr(d)p−1ur) + ϕr(d)p−1Sr,

with ϕr(d)p−1Sr ∈ Ir+1 and ur+1 := ϕr(δ(d)) + ϕr(d)p−1ur a unit since δ(d) is a unit and ϕr(d) ∈ (d, p).
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It follows that if (B, I) is transversal, we can identify the unique “ 1
pcan” map Ir+1/I

2
r+1 → Ir/I

2
r through

the following commutative diagram:

B/Ir+1 Ir+1/I
2
r+1

B/Ir Ir/I
2
r .

ur

d···ϕr(d)

can
p

d···ϕr−1(d)

In particular, the tower of Ir/I
2
r whose limit defines B{1} is identified with the tower of B/Ir with transition

maps given by ur times the canonical maps. This further identifies with the canonical tower of B/Ir (using
appropriate products of units). We get an identification B → B{1} in the transversal case. Since the Breuil–

Kisin twist on non-transversal prisms is obtained by base change from an arbitrary transversal prism ‹B → B
by [8, Sec. 2.5] and since an orientable prism can always be mapped to from an orientable transversal prism
(e.g. the universal oriented prism), the claim follows for arbitrary prisms.

Remark 4.8. In principle, the above proof determines a canonical way to associate to an orientation a Breuil–
Kisin orientation. This is however not inverse to the construction of Lemma 4.6, and leads to cumbersome
formulas in practice. In what follows, we will instead describe situations in which we can find preferred lifts
against the construction of Lemma 4.6, i.e., preferred refinements of orientations to Breuil–Kisin orientations.

Remark 4.9. Subsequently, we will never implicitly identify B{i} with B. It is therefore harmless to just
write ϕ both for ϕB and ϕB{i}, so we will do so. This makes computations with the Breuil–Kisin twisted
Frobenius notationally very intuitive: for example,

ϕ(asi) = ϕ(a)ϕ(s)i = d−i
s ϕ(a)si

describes the Frobenius map B{i} → I−i ⊗B B{i}.

Lemma 4.10. If (B, (p)) is a crystalline prism, then there is a Breuil–Kisin orientation s : B → B{1} with
ds = p which is uniquely characterized by the requirement that s = pr (mod I2r ) in B{1}/I2r

∼= Ir/I
2
r .

Proof. While there is no unique map Ir+1/I
2
r+1 → Ir/I

2
r whose multiple by p is the canonical map in the

crystalline case, it is still true that the canonical identifications

B{1}/Ir+1 B{1}/Ir

Ir+1/I
2
r+1 Ir/I

2
r

∼= ∼=

exhibit B{1} as the limit of some such maps; see Remark 4.2.

In the crystalline case, the limits of any two systems of such maps are canonically identified, since
they differ by maps which factor through the p-torsion subgroups of (Ir/I

2
r ), which form a pro-nil system.

The maps taking pr+1 in Ir+1/I
2
r+1
∼= (pr+1)/(p2r+2) to pr in Ir/I

2
r
∼= (pr)/(p2r) yield one choice of such

maps. We can thus canonically identify B{1} with the limit along those maps. The collection of classes [pr]
determine a generator s ∈ B{1} in the limit.

Chasing through the diagram of isomorphisms which defines the Frobenius

B{1} ⊗B,ϕ B ∼= I−1 ⊗B B{1},

we see that for this Breuil–Kisin orientation, ds = p.

Definition 4.11 (Crystalline Breuil–Kisin orientation). We will refer to the Breuil–Kisin orientation con-
structed in Lemma 4.10 as the crystalline Breuil–Kisin orientation. Note that it is not uniquely characterized
by the requirement that ds = p: if B = Zp, then changing s by a unit u ∈ Z×

p changes ds by u
ϕ(u) = 1.
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Remark 4.12. Bhatt and Lurie show in [8, Prop. 2.6.1] that there is a Breuil–Kisin orientation s ∈ B{1}
where (B, I) is the q-de Rham prism with B = ZpJq − 1K, ϕ(q) = qp, and I = [p]q = 1 + q + · · · + qp−1.
Moreover, the associated orientation ds in this case is equal to [p]q by [8, Rem. 2.6.2]. Specializing along
q 7→ 1, one obtains a Breuil–Kisin orientation of any crystalline prism with associated orientation equal to
p; this gives an alternative proof of Lemma 4.10.

In [4], we introduced the notion of filtered prisms (F⋆B, I). Say that a filtered prism (F⋆B, I) is crystalline
if (gr0B, I⊗Bgr

0B) is crystalline. Crystalline filtered prisms inherit canonical filtered-crystalline Breuil–Kisin
orientations under the additional assumption of completeness.

Lemma 4.13. If (F>⋆A, I) is a complete filtered crystalline prism, then (A, I) is orientable.

Proof. The map I → gr0FI is surjective, so choose an element d ∈ I that reduces modulo F>1 to p ∈ gr0FI =
(p) ⊆ gr0FA. Since δ(d) is a unit modulo F>1 and since F⋆A is a complete filtered commutative ring, δ(d) is
a unit in A. Thus, (A, (d)) is a prism and (A, (d)) → (A, I) is a map of prisms. By rigidity of prisms [11,
Prop. 3.5], I = (d).

Lemma 4.14. Assume (B, I) is a filtered prism. If B is filtered-crystalline and complete, then for any d ∈ I
whose image in gr0I is p, there exists a unique lift s : B → B{1} of the crystalline Breuil–Kisin orientation
on gr0B with ds = d.

Proof. Any two lifts of the crystalline Breuil–Kisin orientation differ by elements of (1 + F>1B)× ⊆ B×.
Similarly, ds for such a lift differs from d by an element of (1 + F>1B)×. The claim now follows from the
observation that the map

u 7→
u

ϕ(u)

is an automorphism of (1 +F>1B)×, since it agrees with the identity on the associated graded pieces as the
Frobenius raises filtration weight from m to pm.

This enables us to talk about canonical choices of Breuil–Kisin orientations on filtered crystalline prisms
such as (z⋆W (k)JzK, E(z)), where E(z) is a choice of a (not necessarily monic) Eisenstein polynomial with
E(0) = p.

For future reference, we also record how these transform.

Lemma 4.15. Let (F⋆B, I) be a complete filtered-crystalline prism, and d, d′ two generators of I whose
image in gr0I is p. Let u ∈ (1 + F>1B)× with d′ = ud. If s and s′ are the canonical filtered-crystalline
Breuil–Kisin orientations with ds = d and ds′ = d′, then

s′ =

Ñ
∏

r>0

ϕr(u)

é
· s.

Proof. We have s′ = v · s with v ∈ (1 + F>1B)× by construction. Now

ds′ =
v

ϕ(v)
ds,

i.e., v
ϕ(v) = u. The unique solution v is given by the product

v =
∏

r>0

ϕr(u),

which converges because the filtration F⋆B is complete and because Frobenius raises filtration weight m to
pm.



4.2 Orienting the syntomic complex 30

4.2 Orienting the syntomic complex

Suppose that (A, I) is a prism with a Breuil–Kisin orientation s ∈ A{1}. Our goal in this section is to use s
to rewrite the relative syntomic complex of a commutative A-algebra R

Zp(i)(R/A) ≃ fib
(
N>i

∆̂
(1)
R/A{i}

can−ϕ
−−−−→ ∆̂

(1)
R/A{i}

)

as an isomorphic complex

fib
(
N>i

∆̂
(1)
R/A

can−ϕi
−−−−−→ ∆̂

(1)
R/A

)
,

for an appropriate divided Frobenius morphism ϕi.
We briefly review the Nygaard filtration and the construction of the relative syntomic complexes.

Construction 4.16. We write ϕ∗
A for the (p, I)-completed extension of scalars along the Frobenius of

A. Suppose that (A, I) is a prism and recall the A-linear isomorphism ϕ∗
A(A{i})

∼= I−iA{i} given in
Construction 4.5. Given a commutative A-algebra R, there is an induced A-linear map

ϕ∗
A(∆R/A{i}) ∼= ϕ∗

A(∆R/A)⊗A ϕ∗
A(A{i})

∼= ϕ∗
A(∆R/A)⊗A I−iA{i}

ϕR/A⊗id
−−−−−−→ ∆R/A ⊗A I−iA{i} ∼= I−i

∆R/A{i},

where ϕ∗
A(∆R/A)→ ∆R/A is the relative Frobenius ϕR/A.

Notation 4.17. We write ∆
(1)
R/A{i} for ϕ

∗
A(∆R/A{i}), despite the possibility for confusion.

Remark 4.18 (The Nygaard filtration). The Frobenius ϕ : ∆
(1)
R/A{i} → I−i

∆R/A{i} refines to a filtered map

N>⋆
∆
(1)
R/A → I⋆−i

∆R/A{i}. In fact, this can be taken to be the defining property of N>⋆
∆R/A{i} in the case

when LR/A has p-complete Tor-amplitude in [1, 1]. In that case, N>j
∆
(1)
R/A{i} is defined to be the non-derived

pullback

N>j
∆
(1)
R/A{i}

//

��

Ij−i
∆R/A{i}

��

∆
(1)
R/A{i}

// I−i
∆R/A{i}

for j > 0. For details, see [11, Thm. 15.2].

Definition 4.19 (The Breuil–Kisin orientation on the Frobenius twist). Suppose that A is a prism with a

Breuil–Kisin orientation s. In this case, there is an induced A-linear isomorphism ∆
(1)
R/A

w(si)
−−−→ ∆

(1)
R/A{i}.

Lemma 4.20. Suppose that A is a prism with a Breuil–Kisin orientation s and that R is a commutative
A-algebra. Then, there is a natural commutative diagram

∆
(1)
R/A

∼= w(si)

��

ϕi,R/A
// I−i

∆R/A

∼= si

��

∆
(1)
R/A{i}

ϕR/A
// I−i

∆R/A{i}

for some A-linear map ϕi,R/A. If x ∈ N>i
∆
(1)
R/A, then ϕi,R/A(x) =

ϕR/A

di
s

, where ds is the orientation associated

to the Breuil–Kisin orientation s.

Proof. Existence follows from the fact that w(si) and si are isomorphisms. Given x ∈ ∆̂
(1)
R/A, we have that

ϕR/A(xw(s
i)) = d−i

s ϕR/A(x)s
i = ϕi,R/A(x)s

i,

where the first equality is by construction and the second is by commutativity of the diagram and the
definition of ϕi,R/A. As si is invertible it follows that ϕi,R/A(x) = d−i

s ϕR/A(x) in I−i
∆R/A. Now, if x ∈

N>i
∆
(1)
R/A, then we can write ϕi,R/A(x) = d−i

s ϕi,R/A(x) in ∆R/A, as desired.
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Definition 4.21. Let s be a Breuil–Kisin orientation of a prism A and let R be a commutative ring. We
define

ϕi,R/A(x) =
ϕR/A(x)

dis

for x ∈ N>i
∆
(1)
R/A. This is the ith relative divided Frobenius.

Definition 4.22. The square

∆R/A
w

//

si

��

∆
(1)
R/A

w(si)

��

∆R/A{i}
w

// ∆
(1)
R/A{i},

(12)

is naturally commutative. It follows that by composing ϕi,R/A with w : ∆R/A → ∆
(1)
R/A, one obtains a map

ϕi : N
>i

∆
(1)
R/A → ∆

(1)
R/A,

semilinear with respect to the Frobenius on ∆
(1)
R/A and which satisfies

ϕi(x) =
ϕ(x)

ϕ(d)i
.

This follows from the fact that w is ϕ-semilinear, so w(d) = ϕ(d), and w ◦ ϕR/A = ϕ
∆
(1)

R/A

.

Definition 4.23 (Oriented syntomic complexes). Both can, ϕi : N
>i

∆
(1)
R/A → ∆

(1)
R/A descend to the Nygaard-

completions to give maps can, ϕi : N
>i

∆̂
(1)
R/A → ∆̂

(1)
R/A. Fix a prism A and a commutative A-algebra R. If s is

a Breuil–Kisin orientation of A, then the oriented syntomic complex Zp(i)(R/A, si) is defined as

fib
(
N>i

∆̂
(1)
R/A

can−ϕi
−−−−−→ ∆̂

(1)
R/A

)
.

Proposition 4.24. If A is a prism, R is a commutative A-algebra, and s is a Breuil–Kisin orientation for
A, then there is an equivalence

Zp(i)(R/A, si) ≃ Zp(i)(R/A),

natural in R and the pair (A, s).

Proof. The proposition follows from Lemma 4.20, the commutativity of (12), and the compatibility of the

Nygaard filtrations on ∆
(1)
R/A and ∆

(1)
R/A{i} with the Breuil–Kisin twists under the orientations si.

4.3 The descent diagram

Let OK be a DVR with perfect residue field k, uniformizer ̟, and Eisenstein polynomial E(z0) ∈W (k)Jz0K.
There is a prism structure on W (k)Jz0K with d = E(z0). Let R = OK/̟n. Then

∆R/W (k)Jz0K = W (k)Jz0K

ß
zn0

E(z0)

™
.

More generally, we have a prism structure on W (k)Jz0, . . . , zsK, given (somewhat arbitrarily) by the ideal
(E(z0)). We have

∆R/W (k)Jz0,...,zsK = W (k)Jz0, . . . , zsK

ß
zn0

E(z0)
,
z1 − z0
E(z0)

, . . . ,
zs − z0
E(z0)

™∧
,

where we take all zj 7→ ̟. These are more natural than we expect from the description. For example, there
should be a map from ∆R/W (k)Jz0K → ∆R/W (k)Jz0,z1K taking z0 7→ z1, even though that does not define a map
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on the base prisms. The problem is the arbitrary choice of ideal (E(z0)): The map z0 7→ z1 is only compatible
with the prism structure defined by (E(z1)) instead. These different choices do however become equivalent
in ∆R/W (k)Jz0,...,zsK, as one can see from the prismatic envelope description: E(zj) − E(z0) is divisible by

zj − z0, and is thus being made divisible by E(z0), since the prismatic envelope contains an element
zj−z0
E(z0)

.

In fact, the various E(zj) become unit multiples of each other in the prismatic envelope. Hence the above

prismatic envelope also contains elements
zj′−z0
E(zj)

for 0 6 j, j′ 6 s and satisfies the universal property of the

prismatic envelope describing prismatic cohomology relative to the prism structure (E(zj)) on the base.
In [4], this idea is used to systematically extend prismatic cohomology to a functor defined on the category

of δ-pairs (A,R), where A is a δ-ring and R an A-algebra in such a way that, for a prism (A, I) and an
A/I-algebra R, it agrees with derived prismatic cohomology in the sense of [11], and, for A = Z, it agrees
with absolute prismatic cohomology in the sense of [8]. This additional functoriality allows us to make the
following statement.

Lemma 4.25. For a perfect Fp-algebra k and a W (k)Jz0K-algebra R, we have

∆R{i} ≃ ∆R/W (k){i} ≃ Tot
Ä
∆R/W (k)Jz0K{i} ∆R/W (k)Jz0,z1K{i} . . .

ä

and

∆̂
(1)
R/W (k){i} ≃ Tot

Ä
∆̂
(1)
R/W (k)Jz0K{i} ∆̂

(1)
R/W (k)Jz0,z1K{i} . . .

ä

for all weights i ∈ Z.

Proof. See [4, Thm. 1.2(6)].

We will call the cosimplicial diagrams of Lemma 4.25 the relative-to-absolute descent diagrams for abso-
lute prismatic cohomology and Nygaard-complete absolute prismatic cohomology, respectively. They give
prismatic cohomology analogues of the approach to TP and TC pioneered by Liu and Wang in [33]. Note
that in the case R = OK/̟n, all terms appearing in the diagrams are discrete, and thus the totalization is
represented by the total complex of the diagram. In this case, we will also call this diagram the relative-to-
absolute descent complex. There is also an F-completed version of the untwisted relative-to-absolute descent
diagram which will play a role in the arguments below.

Notation 4.26. If (F⋆A,F⋆R) is a filtered δ-pair in the sense of [4], then ∆R/A admits an associated F-

filtration F⋆
∆R/A. We will write ∆̂R/A for the completion of ∆R/A with respect to F⋆. If A = Zp with the

trivial filtration, we write ∆̂R for ∆̂R/Zp
.

Warning 4.27. Recall that for rings R such as OK or OK/̟n, the Nygaard completion ∆̂
(1)
R/W (k)Jz0,...,zsK

agrees with the F-completion of ∆
(1)
R/W (k)Jz0,...,zsK by Theorem 2.20. In [10, 8], the Nygaard filtration is

constructed on absolute prismatic cohomology ∆R and one typically writes ∆̂R for the completion with
respect to the Nygaard filtration. In general, this conflicts with our notation. However, for rings R such as
OK or OK/̟n, the two completions agree using an argument similar to that of Theorem 2.20. In this paper,

∆̂R/A will always denote the completion of ∆R/A with respect to the F-filtration induced by a filtration on the

δ-pair (A,R) while ∆̂
(1)
R/A will always denote the completion of ∆

(1)
R/A with respect to the Nygaard filtration.

Definition 4.28. By Lemma 4.25 for a filtered commutative z⋆0W (k)Jz0K-algebra R, there is an induced
equivalence

∆̂R{i} ≃ ∆̂R/W (k){i} ≃ Tot
Ä
∆̂R/W (k)Jz0K{i} ∆̂R/W (k)Jz0,z1K{i} . . .

ä
.

We will refer to this as the F-completed relative-to-absolute descent diagram for absolute prismatic cohomol-
ogy.

The relative-to-absolute descent diagrams are the cobar complexes associated to Hopf algebroids, as we
now explain.
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Definition 4.29 (Hopf algebroids). A Hopf algebroid consists of a pair of commutative rings (Γ0,Γ1) with
maps

(1) ηL, ηR : Γ0 → Γ1,

(2) ε : Γ1 → Γ0,

(3) ι : Γ1 → Γ1, and

(4) ∆: Γ1 → Γ1 ⊗ηR,Γ0,ηL Γ1

fulfilling various identities which make the pair (Spec Γ0, Spec Γ1) into a groupoid object in the category of
affine schemes. See [38, App. 1] for details.

Definition 4.30 (Comodules). For a Hopf algebroid (Γ0,Γ1), a (right) comodule is given by a right Γ0-
module M together with a coaction map M → M ⊗Γ0 Γ1, which is a right Γ0-module map and which
satisfies counit and coassociative identities as in [38, App. 1].

Definition 4.31. The cobar complex of a Hopf algebroid (Γ0,Γ1) is a cosimplicial commutative ring
coBar(Γ0,Γ1) of the form

Γ0 Γ1 Γ1 ⊗Γ0 Γ1 · · · .

To a comodule M over (Γ0,Γ1), there is an associated cobar complex coBar(M), taking the form

M M ⊗Γ0 Γ1 M ⊗Γ0 Γ1 ⊗Γ0 Γ1 · · · ,

which is a cosimplicial module over coBar(Γ0,Γ1). See [38, Def. A1.2.11] for a reference to the reduced
version of this construction.

Remark 4.32. Analogous definitions make sense in (complete) filtered commutative rings and modules.

Construction 4.33. Consider the Hopf algebroid (W (k)Jz0K,W (k)Jz0, z1K) in commutative W (k)-algebras,
where

(1) ηL(z0) = z0 and ηR(z0) = z1,

(2) ǫ(z0) = ǫ(z1) = z0,

(3) ι(z0) = z1 and ι(z1) = z0, and

(4) ∆(z0) = z0 and ∆(z1) = z2 under the identification

W (k)Jz0, z1K⊗ηR,W (k)Jz0K,ηL
W (k)Jz0, z1K ∼= W (k)Jz0, z1, z2K.

Write W (k)Jz•K for the cobar complex of this Hopf algebroid, which agrees with the (completed) descent
complex of W (k)→W (k)Jz0K. If R is a commutative W (k)Jz0K-algebra, we can consider the pair of pairs

((R/W (k)Jz0K), (R/W (k)Jz0, z1K)),

which is a Hopf algebroid in the category of δ-pairs.

Lemma 4.34. Suppose that R is a commutative W (k)Jz0K-algebra such that LR/W (k)Jz0K has p-complete
Tor-amplitude in [0, 1].

(a) The pair (∆R/W (k)Jz0K,∆R/W (k)Jz0,z1K) forms a complete filtered Hopf algebroid (with respect to the
Hodge–Tate filtration) and the local-to-global descent complex ∆R/W (k)Jz•K identifies with its cobar com-
plex.

(b) For each integer i, the ith Breuil–Kisin twist ∆R/W (k)Jz0K{i} is a comodule over the Hopf algebroid of
part (a) and the descent complex ∆R/W (k)Jz•K{i} identifies with its cobar complex.
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Proof. We can apply prismatic cohomology (in the sense of [4]) pointwise to the cobar complex of the Hopf
algebroid in δ-rings of Construction 4.33. This produces the local-to-global descent complex computing
absolute prismatic cohomology of Lemma 4.25. For each i ∈ Z, s > 2, and 0 6 j 6 s, the natural map

∆R/W (k)Jz0,...,zjK{i} ⊗∆R/W (k)JzjK
∆R/W (k)Jzj ,...,zsK → ∆R/W (k)Jz0,...,zsK{i}

is an equivalence by symmetric monoidality of prismatic cohomology for prismatic δ-pairs, which follows
for example from the compatibility of relative (derived) Cartier–Witt stacks with limits of schemes and the
affineness of all such stacks in question (see [9, Thm. 7.17]), and by functoriality of the Breuil–Kisin twists [8,
Prop. 2.5.1]. Taking s = 2 and j = 1 produces the comultiplication ∆. For s > 2, one learns that the cobar
complex is indeed isomorphic to the local-to-global descent complex. This completes the proof.

Remark 4.35. The F-completion (F⋆
∆̂R/W (k)Jz0K,F

⋆
∆̂R/W (k)Jz0,z1K) of the Hopf algebroid of Lemma 4.34

is a Hopf algebroid in complete p-complete filtered complexes (with respect to the F-filtration) and the F-
completed relative-to-absolute descent diagram is its cobar complex. A result analogous to Lemma 4.34(2)
holds for the Breuil–Kisin twists.

The analogous statements hold with Frobenius twists, and the proof is similar. For the relevant symmetric
monoidality of the Nygaard-completed Frobenius twists, one can reduce to the associated graded pieces of
the Nygaard filtration and hence to the conjugate filtered pieces of Hodge–Tate cohomology where it follows

using symmetric monoidality of p-completed derived differential forms ”LΩ∗

−/−.

Lemma 4.36. (a) The pair (∆̂
(1)
R/W (k)Jz0K, ∆̂

(1)
R/W (k)Jz0,z1K) forms a complete filtered Hopf algebroid (with

respect to the Nygaard filtration), and the descent complex ∆̂
(1)
R/W (k)Jz•K identifies with its cobar complex.

(b) For each integer i, the ith Breuil–Kisin twist ∆̂
(1)
R/W (k)Jz0K{i} is a comodule over the Hopf algebroid of

part (a) and the local-to-global descent complex ∆̂
(1)
R/W (k)Jz•K{i} identifies with its cobar complex.

4.4 Structure maps of the descent complex

We now describe the structure maps in detail for R = OK/̟n. From now on, we will be using F-completed

prismatic cohomology ∆̂R/A. In this case,

∆̂R/W (k)Jz0K = W (k)Jz0K

ß
zn0

E(z0)

™∧
p,E(z0)

is an F-completely free W (k)-module on monomials zk0
∏

u δ
u(a)eu for k < n and eu < p, where a =

zn
0

E(z0)

by Proposition 3.33. On

∆̂R/W (k)Jz0,z1K = W (k)Jz0K

ß
zn0

E(z0)
,
z1 − z0
E(z0)

™∧
p

we similarly have a W (k)-basis of monomials zk0
∏

u δ
u(a)eu

∏
u δ

u(b)e
′
u with k < n and eu, e

′
u < p, where

a =
zk
0

E(z0)
and b = z1−z0

E(z0)
.

Observe that the two orientations E(z1) and E(z0) of ∆̂R/W (k)Jz0,z1K differ by the factor

u =
E(z1)

E(z0)
= 1 +

E(z1)− E(z0)

z1 − z0
b.

By Lemma 4.15, the corresponding filtered-crystalline Breuil–Kisin orientations s0 and s1 compatible with
the left and right unit maps from ∆̂R/W (k)Jz1K differ by the factor v = s1

s0
=
∏

r>0 ϕ
r(u).

Lemma 4.37. The structure maps in the Hopf algebroid (∆̂R/W (k)Jz0K, ∆̂R/W (k)Jz0,z1K) are determined, in
terms of the prismatic envelope description of Proposition 3.33, by noting that

(i) ηL : ∆̂R/W (k)Jz0K → ∆̂R/W (k)Jz0,z1K takes z0 7→ z0 and a 7→ a;
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(ii) ηR : ∆̂R/W (k)Jz0K → ∆̂R/W (k)Jz0,z1K takes

z0 7→ z1 = z0 + E(z0) · b

and

a 7→
zn1

E(z1)
=

(z0 + E(z0)b)
n

E(z0)
· u−1;

(iii) ε : ∆̂R/W (k)Jz0,z1K → ∆̂R/W (k)Jz0K takes z0 7→ z0, a 7→ a, and b 7→ 0;

(iv) ι : ∆̂R/W (k)Jz0,z1K → ∆̂R/W (k)Jz0,z1K takes z0 7→ ηR(z0) = z1, a 7→ ηR(a), and

b 7→
z0 − z1
E(z1)

= −bu−1;

(v) ∆: ∆̂R/W (k)Jz0,z1K → ∆̂R/W (k)Jz0,z1,z2K
∼= ∆̂R/W (k)Jz0,z1K ⊗ηR,∆R/W (k)Jz0K,ηL ∆̂R/W (k)Jz0,z1K takes z0 7→

z0 ⊗ 1, a 7→ a⊗ 1, and

b =
z1 − z0
E(z0)

7→
z2 − z0
E(z0)

=
z1 − z0
E(z0)

+
z2 − z1
E(z1)

Å
1 +

E(z1)− E(z0)

z1 − z0
b

ã
= b⊗ 1 + u⊗ b.

The values on the remaining generators are determined by compatibility of the structure maps with the δ-ring
structures.

Proof. This follows from the description as prismatic envelope.

For the Frobenius-twisted term, we have a similar description. Recall from Proposition 3.34 that

∆̂
(1)
R/W (k)Jz0K = W (k)Jz0K

ß
zpn0

ϕ(E(z0))

™∧

is F-completely W (k)-free on monomials zk0
∏

feu
u where k < n and eu < p, and

∆̂
(1)
R/W (k)Jz0,z1K = W (k)Jz0, z1K

ß
zpn0

ϕ(E(z0))
,
zp1 − zp0
ϕ(E(z0))

™∧

is F-completely W (k)-free on monomials zk0
∏

feu
u

∏
g
e′u
u where k < n, eu < p, e′u < p. Here f0 is zn0 , viewed

as element of N>1
∆̂
(1), g0 is z1 − z0, viewed as element of N>1

∆̂
(1), and fu and gu arise from iterating

δ̃ : N>⋆
∆̂
(1) → N>p⋆

∆̂
(1).

Lemma 4.38. The structure maps in the Hopf algebroid (∆̂
(1)
R/W (k)Jz0K, ∆̂

(1)
R/W (k)Jz0,z1K) are determined, in

terms of the prismatic envelope description of Proposition 3.34, by noting that

(a) ηL takes z0 7→ z0 and f0 7→ f0;

(b) ηR takes z0 7→ z1 = z0 + g0 and f0 7→ (z0 + g0)
n;

(c) ε takes z0 7→ z0, f0 7→ f0 and g0 7→ 0;

(d) ι takes z0 7→ ηR(z0) = z0 + g0, f0 7→ ηR(f0) = (z0 + g0)
n and g0 7→ z0 − z1 = −g0;

(e) ∆ takes z0 7→ z0, f0 7→ f0, and g0 7→ z2 − z0 = (z1 − z0) + (z2 − z1) = g0 ⊗ 1 + 1⊗ g0.

The values on the other generators are determined by compatibility of the structure maps with the δ-ring
structures.
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Note that the maps in Lemma 4.38 are not compatible with the operations δ̃, since they depend on the
orientation, so one has to use the formulas for δ on the fu and gu generators from Section 3.4. Alternatively,
one can consider different versions of δ̃ and how to translate them into each other. In the algorithm we have
implemented, we use an alternative approach to compute the map ∇ from Definition 4.41; see Section 4.5.
For the proof of Lemma 4.38, it will suffice to determine the structure maps on the associated graded of the
F-filtration, which we do below in Lemma 4.51.

Finally, we describe the comodule structure on ∆̂R/W (k)Jz0K{i} and ∆̂
(1)
R/W (k)Jz0K{i}. Recall from Lemma 4.14

that ∆̂R/W (k)Jz0K{i} is a free ∆̂R/W (k)Jz0K-module on an element si with s determined as the unique filtered-

crystalline Breuil–Kisin orientation with ϕ(s) = s
E(z0)

. Note that this implies that ∆̂
(1)
R/W (k)Jz0K{i} is a free

∆̂
(1)
R/W (k)Jz0K-module on w(si).

Lemma 4.39. The coaction

∆̂R/W (k)Jz0K{i} → ∆̂R/W (k)Jz0,z1K{i} ≃ ∆̂R/W (k)Jz0K{i} ⊗∆̂R/W(k)Jz0K
∆̂R/W (k)Jz0,z1K

takes si 7→ visi where

v =
∏

r>0

ϕr(u).

Proof. The map is induced by z0 7→ z1. So it takes the filtered-crystalline Breuil–Kisin orientation s with
ds = E(z0) to the filtered-crystalline Breuil–Kisin orientation sR with dsR = E(z1). Since

u =
E(z1)

E(z0)

we have dsR = uds, and so

s 7→ vs,

with v =
∏

r>0 ϕ
r(u) by Lemma 4.15.

Lemma 4.40. The coaction

∆̂
(1)
R/W (k)Jz0K{i} → ∆̂

(1)
R/W (k)Jz0,z1K{i} ≃ ∆̂

(1)
R/W (k)Jz0K{i} ⊗∆̂

(1)

R/W(k)Jz0K

∆̂
(1)
R/W (k)Jz0,z1K

takes w(si) to w(vi) · w(si).

Proof. This follows by applying w to the result of Lemma 4.39.

4.5 The connection

In the case of R = OK or OK/̟n, one can show using the Hodge–Tate comparison theorem in absolute

prismatic cohomology [8] that ∆̂R and ∆̂
(1)
R are cohomologically 1-dimensional. This means that, in these

cases, the relative-to-absolute descent complexes are quasi-isomorphic to the 2-term complexes

∆̂R/W (k)Jz0K{i} → ker
Ä
∆̂R/W (k)Jz0,z1K{i} → ∆̂R/W (k)Jz0,z1,z2K{i}

ä
,

∆̂
(1)
R/W (k)Jz0K{i} → ker

Ä
∆̂
(1)
R/W (k)Jz0,z1K{i} → ∆̂

(1)
R/W (k)Jz0,z1,z2K{i}

ä (13)

obtained as their good truncations τ61. In this section, we want to produce a more explicit description of
the second term, reproducing the statement about the cohomological dimension along the way.

It follows from Proposition 3.33 that ∆̂R/W (k)Jz0,z1K is F-completely free as a ∆̂R/W (k)Jz0K-module, on

generators
∏

δu(b)eu with eu < p. Similarly, ∆̂
(1)
R/W (k)Jz0,z1K is F-completely free as a ∆̂

(1)
R/W (k)Jz0K-module, on

generators
∏

geuu with eu < p.
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Definition 4.41. We define maps

θ : F>⋆
∆̂R/W (k)Jz0,z1K{i} → F>⋆−1

∆̂R/W (k)Jz0K{i− 1} =: F>⋆
∆̂
∇
R/W (k)Jz0K{i}

θ : F>⋆N>⋆
∆̂
(1)
R/W (k)Jz0,z1K{i} → F>⋆−1N>⋆−1

∆̂
(1)
R/W (k)Jz0K{i− 1} =: F>⋆N>⋆

∆̂
(1),∇
R/W (k)Jz0K{i}

as the ∆̂R/W (k)Jz0K-linear map taking bsi 7→ si−1 and all other basis monomials
∏

δu(b)eusi 7→ 0 for the

first line, and as the ∆̂
(1)
R/W (k)Jz0K-linear map taking g0 · w(s

i) 7→ w(si−1) and all other basis monomials∏
geuu · w(s

i) 7→ 0 for the second line. We then define maps

∇ : F>⋆
∆̂R/W (k)Jz0K{i} → F>⋆

∆̂
∇
R/W (k)Jz0K{i}

∇ : F>⋆N>⋆
∆̂
(1)
R/W (k)Jz0K{i} → F>⋆N>⋆

∆̂
(1),∇
R/W (k)Jz0K{i}

as the composite of the first differential ηR − ηL of the descent complexes with θ.

Remark 4.42. Note that we define the ∆
∇ terms with shifted F and Nygaard filtrations. Additionally, this

where the F-completion of relative prismatic is necessary as the map θ is defined only with respect to an
F-complete basis.

In Sections 4.6 and 4.7, we will prove the following lemma.

Lemma 4.43. There are commutative diagrams

F>⋆
∆̂R/W (k)Jz0K{i} F>⋆

∆̂R/W (k)Jz0,z1K{i} . . .

F>⋆
∆̂R/W (k)Jz0K{i} F>⋆

∆̂
∇
R/W (k)Jz0K{i} 0

id θ

∇

and

F>⋆N>⋆
∆̂
(1)
R/W (k)Jz0K{i} F>⋆N>⋆

∆̂
(1)
R/W (k)Jz0,z1K{i} . . .

F>⋆N>⋆
∆̂
(1)
R/W (k)Jz0K{i} F>⋆N>⋆

∆̂
(1),∇
R/W (k)Jz0K{i} 0,

id θ

∇

where the top rows in each case are the cochain complexes associated to the relative-to-absolute descent
diagrams, and the vertical map induces a quasi-isomorphism between the rows.

Note that the upper horizontal map is not ∆̂
(1)
R/W (k)Jz0K-linear, so the bottom horizontal map is also not

a linear map. Additionally, the next differential in the upper complex is not linear, so while the above
lemma implies that the restriction of θ defines an isomorphism between the kernel term in Equation 13 and

∆̂
(1),∇
R/W (k)Jz0K, that isomorphism is not a module map with respect to any a priori defined module structure

on the kernel. In fact, the whole identification is non-canonical in the sense that if we switch the roles of
z0 and z1, we obtain different maps θ and ∇. It is an interesting problem to give ∇ and its codomain a
more invariant interpretation, but we will not pursue this here. A more canonical version of this type of
connection exists in the q-de Rham setting, see [24].

Corollary 4.44. The syntomic complex Zp(i)(R) with its F-filtration identifies with the total fiber of a
square

F>⋆N>i
∆̂
(1)
R/W (k)Jz0K{i} F>⋆N>i

∆̂
(1),∇
R/W (k)Jz0K{i}

F>⋆
∆̂
(1)
R/W (k)Jz0K{i} F>⋆

∆̂
(1),∇
R/W (k)Jz0K{i}

N>i∇

can−ϕ can−ϕ∇

∇
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for some map ϕ∇. (Compare Definition 4.54 below.)

Proof. By definition and the fact that prismatic cohomology is 1-dimensional, the syntomic complex identifies
with the total fiber of

F>⋆N>i
∆̂
(1)
R/W (k)Jz0K{i} F>⋆N>⋆K

F>⋆
∆̂
(1)
R/W (k)Jz0K{i} F>⋆K,

can−ϕ can−ϕ

where K denotes the kernel of the second differential in the descent complex. By Lemma 4.43, the restriction
of θ to K is an isomorphism. By transporting the maps can and ϕ along θ|K , we thus obtain the claim. Note
that although θ is not a module map, it commutes with can (see Lemma 4.55), so can appears unchanged
in the square above.

Remark 4.45. The map ϕ∇ can in fact be characterized uniquely by commutativity of the square above,
since we will see that ∇ is F-completely a rational isomorphism, and all involved terms are torsion-free. In
the algorithmic application of Corollary 4.44, we can therefore avoid explicitly computing K and θ.

4.6 Generalities about Hopf algebroid operations

In this section, let Γ = (Γ0,Γ1) be a Hopf algebroid where Γ1 is free as a left Γ0-module.

Definition 4.46. For a left Γ0-linear map θ : Γ1 → Γ0, we obtain a transformation

∇θ : M →M

natural in right Γ-comodules M , as the composite

M →M ⊗Γ0 Γ1
id⊗θ
−−−→M.

Lemma 4.47. The above construction determines an equivalence between the set of left linear homomor-
phisms Γ1 → Γ0 and the set of natural endomorphisms

M →M

of the forgetful functor from right Γ-comodules to abelian groups.

Proof. We may evaluate a natural endomorphism ∇ on Γ1 to obtain a map

∇ : Γ1 → Γ1

which is a left Γ0-module homomorphism by naturality, as the left Γ0-action on Γ1 is through right comodule
morphisms. We may postcompose with ε : Γ1 → Γ0 to obtain a left linear homomorphism θ : Γ1 → Γ0. We
claim those constructions are inverse to each other. Starting with a left linear homomorphism θ : Γ1 → Γ0,
passing to ∇θ and forming the composite as above, we recover θ, since the diagram

Γ1

Γ1 ⊗Γ0 Γ1 Γ1

Γ1 Γ0

∇θ

id id⊗θ

ε⊗id ε

θ



39 4.6 Generalities about Hopf algebroid operations

commutes. Conversely, if we start with a natural endomorphism ∇ and obtain a left linear θ : Γ1 → Γ0 as
above, ∇ = ∇θ, since the following diagram commutes:

M M

M ⊗Γ0 Γ1 M ⊗Γ0 Γ1

M.

∇

id∇=id⊗∇

id⊗θ

id⊗ε

Here ∇ on M ⊗Γ0 Γ1 agrees with idM ⊗∇ by naturality of ∇, since (−)⊗Γ0 Γ1 is a colimit-preserving functor
from right Γ0-modules to right Γ-comodules.

Example 4.48. For bi a left Γ0-basis of Γ1 (possibly in some completed sense), θi : Γ1 → Γ0 the dual basis
homomorphisms, and x ∈ Γ1, we have

∆(x) =
∑

i

∇θi(x) ⊗ bi.

Similarly, for x ∈ Γ0, we have

ηR(x) =
∑

i

∇θi(x) · bi.

Example 4.49. If Γ1 is a free divided power algebra over Γ0 on a generator y which is primitive (meaning
that ∆(y) = y ⊗ 1 + 1⊗ y), then

∆(y[n]) =
∑

i

y[i] ⊗ y[n−i],

so ∇θ(y
[n]) = y[n−1] when θ : Γ1 → Γ0 is the dual basis element to y with respect to the divided power basis,

which is to say the map that takes y 7→ 1 and y[n] 7→ 0 for n 6= 1. In particular, ε ◦∇n
θ : Γ1 → Γ0 is the dual

basis element to y[n], hence after a suitable completion, every ∇ may be expressed as a power series in the
chosen ∇θ. We also have

ηR(x) =
∑

n

∇n
θ (x) · y

[n],

for x ∈ Γ0, and evaluating ηR(xy) two ways shows a Leibniz rule

∇θ(xy) = ∇θ(x)y + x∇θ(y).

Since the sequence

0→ Γ0
ηL
−−→ Γ1

∇θ−−→ Γ1 → 0 (14)

is a short exact sequence of left Γ-comodules (by direct inspection), applying the two-side cobar complex
coBarΓ(M,−) to (14) yields a fiber sequence

coBarΓ(M,Γ0)→M
∇θ−−→M.

Remark 4.50. We will see below that the situation of the descent Hopf algebroid behaves as a deformation
of this divided power situation: the ∇ from Lemma 4.43 is indeed of the form discussed in this section, and
while we do not have a divided power structure, it still generates all operations in a suitably completed sense,
and identifies the limit of the cobar complex of M with the fiber of ∇ on M (Lemma 4.43 is a special case of
this). Since we work with the bases

∏
δu(b)eu or

∏
geuu instead of a divided power basis, and the relations

for gpu for example may involve terms linear in g0, the analogue of the Leibniz rule breaks down and instead
involves higher correction terms. The precise behaviour is of course highly sensitive to the choice of basis,
and we currently do not know whether there is a better choice of basis that leads to closed-form formulas.
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4.7 Proof of Lemma 4.43

We need two preliminary lemmas. The first gives a set of generators of the F-associated graded pieces of the
relevant prismatic envelopes which are related to, but not the same as, those given in Section 3.5.

Lemma 4.51. (i) In the Hopf algebroid (gr⋆F∆R/W (k)Jz0K, gr
⋆
F∆R/W (k)Jz0,z1K), the element b satisfies ∆(b) =

b ⊗ 1 + 1 ⊗ b, and admits divided powers. Furthermore, the divided powers b[k] provide a basis of
gr⋆F∆R/W (k)Jz0,z1K as a gr⋆F∆R/W (k)Jz0K-module.

(ii) In the Hopf algebroid (gr⋆F∆̂
(1)
R/W (k)Jz0K, gr

⋆
F∆̂

(1)
R/W (k)Jz0,z1K), the element g0 satisfies ∆(g0) = g0⊗1+1⊗g0,

and admits divided powers. Furthermore, the divided powers g
[k]
0 provide a basis of gr⋆F∆̂

(1)
R/W (k)Jz0,z1K

as a ∆̂
(1)
R/W (k)Jz0K-module.

Proof. We established that ∆(g0) = g0 ⊗ 1 + 1⊗ g0 and

∆(b) = b⊗ 1 + u⊗ b = b⊗ 1 + 1⊗ b (mod F>2
∆R/W (k)Jz0,z1,z2K)

in Lemmas 4.37 and 4.38. For the statements about divided powers, we first do the Frobenius-twisted case.
Recall from Lemma 3.24 that

gpu = (−p+ dp
u+1

λu)gu+1 + dp
u+1

R′
u.

As R′
0 = δ(z1−z0)

δ(d) and

δ(z1 − z0) =
zp1 − zp0 − (z1 − z0)

p

p
=

(z0 + g0)
p − zp0 − gp0
p

,

we have that R′
0 is divisible by g0, so in particular it is a polynomial in the gu without constant term.

The explicit formula for δ(g0) then shows that δ(g0) is a polynomial in the gu without constant term, and
then the formula for R′

1 shows that R′
1 is a polynomial in the gu without constant term. Inductively, this

shows that all R′
u and δ(gu) are polynomials in the gu without constant terms. So dp

u+1−1R′
u is still in

N>pu+1

∆̂
(1)
R/W (k)Jz0,z1K, and we have

gpu = (−p+ pp
u+1

λu)gu+1 + pdp
u+1−1R′

u

in grp
u+1

F N>pu+1

∆̂
(1)
R/W (k)Jz0,z1K. So gu has a pth divided power in the F-associated graded ring (unique because

of torsion-freeness), and it agrees with

g[p]u = (−1 + pp
u+1−1λu)gu+1 + dp

u+1−1R′
u.

As R′
u is a polynomial in g0, . . . , gu, this equation also proves that g

[p]
u again has a pth divided power, and

we deduce inductively that g0 has all divided powers. We also see that g
[pu]
0 differs from a unit multiple of

gu by some polynomial in g0, . . . , gu−1, and so it follows that the g
[pu]
0 form a basis as claimed.

We obtain the statement for the non-Frobenius twisted version by applying the relative divided Frobenius.

Remark 4.52. Because the relative-to-absolute Hopf algebroid is compatible with the F-filtration and
because the associated graded pieces are crystalline prisms, the existence of the divided power structure on
the Frobenius twists follows from the crystalline comparison theorem.

Lemma 4.53. If (Γ0,Γ1) denotes either the non-Frobenius twisted or Frobenius twisted descent Hopf alge-
broid and θ : Γ1 → Γ0 as in Lemma 4.43, then the sequence

0→ Γ0
ηL
−−→ Γ1

∇θ−−→ Γ1 → 0

is F-completely exact.
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Proof. It suffices to check this after passage to the F-associated graded. In that case, we let y = b in the
non-Frobenius twisted case or y = g0 in the Frobenius twisted case, and recall that y is primitive and has
divided powers. We have

∆(y[k]) =
∑

j

y[j] ⊗ y[k−j]

and θ(y) = 1, and so

∇θ(y
[k]) = y[k−1] +

∑

k>2

y[j] · θ(y[k−j]).

We also have θ(1) = 0 and thus ∇θ(1) = 0. Since ∇θ on Γ1 is a left Γ0 module map, and the above shows
that with respect to the y[k]-basis it is strictly upper triangular with ones on the first off diagonal, the kernel
is precisely Γ0 · 1, as claimed.

Proof of Lemma 4.43. The claim now follows by applying the two-sided coBar construction coBarΓ(M,−)
with the trivial right comodule Γ0 to the short exact sequence from Lemma 4.53. More precisely, consider
the map

M M ⊗Γ0 Γ1 M ⊗Γ0 Γ1 ⊗Γ0 Γ1 . . .

M M 0

1⊗θ

∇θ

of complexes, natural in a right Γ-comodule M . It is a quasi-isomorphism if M is of the form N ⊗Γ0 Γ1 for
a flat right Γ0-module N , since then both complexes are augmented by N , and the augmentation is a quasi-
isomorphism for the top one since the cobar complex for Γ1 has an extra degeneracy, and for the bottom
one cause of Lemma 4.53. Since we may resolve Γ0{i} as right Γ-comodule by such induced comodules, the
statement then follows for M = Γ0{i} as well, which is what we wanted to prove.

4.8 Properties of ∇

We now analyze compatibility of ∇ with the structure maps. Observe that Lemma 4.43 asserts that θ
determines an isomorphism

ker
(
F>⋆

∆̂R/W (k)Jz0,z1K{i} → F>⋆
∆̂R/W (k)Jz0,z1,z2K{i}

)
∼= F>⋆

∆̂
∇
R/W (k)Jz0K{i},

and analogously for the Frobenius-twisted version, in which case it is also compatible with the Nygaard
filtration (including the shift on the ∇-term).

Definition 4.54. For R = OK/̟n or OK and the natural structure maps can, ϕ, ϕR/W (k)Jz0K, w, where

w : ∆̂R/A → ∆̂
(1)
R/A is the canonical ϕ-semilinear map, we let

can∇ : F>⋆N>j
∆̂
(1),∇
R/W (k)Jz0K{i} → F>⋆

∆̂
(1),∇
R/W (k)Jz0K{i},

ϕ∇ : F>⋆N>i
∆̂
(1),∇
R/W (k)Jz0K{i} → F>p·⋆

∆̂
(1),∇
R/W (k)Jz0K{i},

ϕ∇
R/W (k)Jz0K : F

>⋆N>i
∆̂
(1),∇
R/W (k)Jz0K{i} → F>⋆

∆̂
∇
R/W (k)Jz0K{i},

w∇ : F>⋆
∆̂
∇
R/W (k)Jz0K{i} → F>p·⋆

∆̂
(1),∇
R/W (k)Jz0K{i}

denote the corresponding maps obtained by transporting them along the above isomorphism θ.

Lemma 4.55. For R = OK/̟n or OK , ∇ commutes with can. In other words, the following diagram
commutes:

F>⋆N>j
∆̂
(1)
R/W (k)Jz0K{i} F>⋆N>j

∆̂
(1),∇
R/W (k)Jz0K{i} F>⋆−1N>j−1

∆̂
(1)
R/W (k)Jz0K{i− 1}

F>⋆
∆̂
(1)
R/W (k)Jz0K{i} F>⋆

∆̂
(1),∇
R/W (k)JzK{i} F>⋆−1

∆̂
(1)
R/W (k)JzK{i− 1}.

can

N>j∇

can∇ can

∇
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Proof. The left square commutes by definition. For the right square, commutativity unwinds to the claim
that θ commutes with can, which can be checked on basis elements.

Lemma 4.56. For R = OK/̟n or OK , and R′ = OK/̟m, with R → R′ the reduction map, ∇ commutes
with the induced map on prismatic cohomology, i.e., the following diagram commutes:

F>⋆N>j
∆̂R/W (k)Jz0K{i} F>⋆N>j

∆̂
∇
R/W (k)Jz0K{i} F>⋆−1N>j−1

∆̂R/W (k)Jz0K{i− 1}

F>⋆
∆̂R/W (k)Jz0K{i} F>⋆

∆̂
∇
R/W (k)Jz0K{i} F>⋆−1

∆̂R/W (k)Jz0K{i− 1}.

red

N>j∇

red∇ red

∇

The analogous statement holds for the Frobenius-twisted version.

Proof. This again reduces to checking that θ commutes with the induced maps, which follows since it preserves
the

∏
geuu -basis expressing ∆̂R/W (k)Jz0,z1K as an F-completely free ∆̂R/W (k)Jz0K-module.

Lemma 4.57. For R = OK/̟n or OK , ∇ commutes with the relative Frobenius, i.e., the following diagram
commutes:

F>⋆N>i
∆̂
(1)
R/W (k)Jz0K{i} F>⋆N>i

∆̂
(1),∇
R/W (k)Jz0K{i} F>⋆N>i−1

∆̂
(1)
R/W (k)Jz0K{i− 1}

F>⋆
∆̂R/W (k)Jz0K{i} F>⋆

∆̂
∇
R/W (k)Jz0K{i} F>⋆

∆̂R/W (k)Jz0K{i− 1}.

ϕR/W(k)Jz0K

∇

ϕ∇
R/W(k)Jz0K

ϕR/W(k)Jz0K

∇

Proof. Again, the left square commutes by definition. For the right square, we again check that θ commutes
with the relative Frobenius, which comes from the fact that the divided Frobenius takes gu 7→ δub, i.e., it
respects the monomial bases involved in the definition of θ on the Frobenius-twisted and the non Frobenius-
twisted versions of relative prismatic cohomology.

Remark 4.58. The corresponding statement for the absolute Frobenius (and the canonical map w : ∆̂ →

∆̂
(1)) is false: ϕ∇ and w∇ do not agree with ϕ and w.

4.9 Isogeny properties

In this section, we determine the action of can, ∇ and the map induced by OK → OK/̟n on the F-associated
graded. We obtain that various maps are rationally invertible, and explicit formulas for their determinants.
We note that these results are very similar in nature to [42] and could in fact be reduced to this using the
idea of crystalline degeneration.

Recall that grjF∆̂
(1)
(OK/̟n)/W (k)Jz0K is a free W (k)-module on a generator zk0

∏
feu
u where

∑
pueu = ⌊ jn⌋

with all eu < p, and k is the remainder of j mod n. Similarly, grjN>i
F ∆̂

(1)
(OK/̟n)/W (k)Jz0K is a free W (k)-

module on a generator d̃lzk0
∏

feu
u where

∑
pueu = ⌊ jn⌋ with all eu < p, k is the remainder of j mod n,

and l = max(i−
∑

eup
u, 0). Analogously, grkF∆̂

(1)
OK/W (k)Jz0K and grkFN

>i
∆̂
(1)
OK/W (k)Jz0K are free on zk0 and d̃izk0

respectively. Generators for the Breuil–Kisin twisted terms are obtained by formally multiplying with the
orientation w(si). On the ∇-terms, we have the same generators with a shift in indexing.

Lemma 4.59. For R = OK/̟n, the can and can∇ maps are described on the F-associated graded as follows
with respect to the chosen bases:

(1)

grjFN
>i

∆̂
(1)
R/W (k)Jz0K → grjFN

>i
∆̂
(1)
R/W (k)Jz0K

is multiplication with pmax(i−⌊ j
n ⌋,0);
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(2)

grjFN
>i

∆̂
(1),∇
R/W (k)Jz0K → grjFN

>i
∆̂
(1),∇
R/W (k)Jz0K

is multiplication with pmax(i−1−⌊ j−1
n ⌋,0).

The analogous statements hold with Breuil–Kisin twists.

Proof. For the first statement, the basis element is d̃lzk0
∏

feu
u with l = max(i −

∑
pueu, 0),

∑
pueu = ⌊ jn⌋,

and k the residue of j mod n. Since the basis element in the target is zk0
∏

feu
u and d̃ = E(z0) is p in the

F-associated graded, the claim follows.
The second statement follows from the first by taking into account the indexing shift from the definition

of the target of ∇.

Lemma 4.60. The reduction maps induced by OK → OK/̟n are described on the F-associated graded as
follows with respect to the chosen bases:

(1)

grjF∆̂
(1)
OK/W (k)Jz0K → grjF∆̂

(1)
(OK/̟n)/W (k)Jz0K

is multiplication with a unit multiple of ⌊ jn⌋! and

(2)

grjF∆̂
(1),∇
OK/W (k)Jz0K → grjF∆̂

(1),∇
(OK/̟n)/W (k)Jz0K

is multiplication with a unit multiple of ⌊ j−1
n ⌋!.

The analogous statements hold with Breuil–Kisin twists.

Proof. On the F-associated graded, d = p, and so fp
u = (−p+λup

pu+1

fu+1). This exhibits f
p
u as unit multiple

of pfu+1, so zn0 = f0 has all divided powers, and the basis monomials feu
u are unit multiples of the divided

powers (zn0 )
[s]. It follows that zj0 is taken to zk0s!(z

n
0 )

[s] where k is the remainder of j modulo n and s = ⌊ jn⌋.
The second statement follows from the first by taking into account the indexing shift from the definition of
the target of ∇.

Lemma 4.61. For OK , the map ∇ acts on the F-associated graded with respect to the chosen bases as
follows:

(1)

∇ : grjF∆̂
(1)
OK/W (k)Jz0K{i} → grjF∆̂

(1),∇
OK/W (k)Jz0K{i}

acts by multiplication with a unit multiple of j and

(2)

∇ : grjFN
>i

∆̂
(1)
OK/W (k)Jz0K{i} → grjFN

>i
∆̂
(1),∇
OK/W (k)Jz0K{i}

for i > 1 acts by multiplication with a unit multiple of pǫ(i,j)j, where

ǫ =

®
1 if ⌊ jn⌋ < ⌈

j
n⌉ 6 i

0 otherwise.

Proof. We have
∇(zj0w(s

i)) = θ(((z0 + g0)
jw(vi)− zj0)w(s

i)),

i.e. w(si−1) times the coefficient of g0 in (z0 + g0)
jw(vi)− zj0. Working in the F-associated graded, the unit

v is 1, so

∇(zj0w(s
i)) = jzj−1

0 w(si−1) +

j∑

m=2

Ç
j

m

å
zj−m
0 θ(gm0 si).
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For weight reasons, each of the summands is a multiple of zj−1
0 . As observed in Lemma 4.51, g0 has divided

powers. So each of the summands for m > 2 is divisible by
( j
m

)
m!. By Kummer’s theorem, this has

p-valuation at least
vp(j)− vp(m) + vp(m!),

which is strictly bigger than vp(j) unless m = 2. If p 6= 2, θ(g20s
i) = 0. If p = 2, we deduce that θ(g20w(s

i))
is divisible by d2 since

g20 = (−2 + λ0d
2)g1 + d2R′

0,

and since d = p in the F-associated graded we conclude in all cases that each of the m > 2 summands is
divisible by pjzj−1

0 w(si−1). So we conclude that ∇(zj0w(s
i)) is a unit multiple of jzj−1

0 w(si−1).
For the second statement, we use the commutative square

grjFN
>i

∆̂
(1)
R/W (k)Jz0K{i} grjFN

>i
∆̂
(1),∇
R/W (k)Jz0K{i}

grjF∆̂
(1)
R/W (k)Jz0K{i} grjF∆̂

(1),∇
R/W (k)Jz0K{i},

∇

can can

∇

observing that, up to units, the bottom horizontal map acts by j, the left vertical map acts by pmax(i−⌊ j
n ⌋,0),

and the right vertical map acts by pmax(i−1−⌊ j−1
n ⌋,0). The difference of these exponents is at most 1, and

only is 1 if i > ⌊ jn⌋ and i − ⌊ jn⌋ > i − 1 − ⌊ j−1
n ⌋. This happens if and only if j is not divisible by n and

⌈ jn⌉ 6 i, i.e. if ǫ(i, j) 6= 1. So the above diagram shows that the top horizontal map acts by a unit multiple

of pǫ(i,j)j.

Lemma 4.62. For R = OK/̟n, the map ∇ acts on the F-associated graded with respect to the chosen bases
as follows:

(1)

∇ : grjF∆̂
(1)
R/W (k)Jz0K{i} → grjF∆̂

(1),∇
R/W (k)Jz0K{i}

acts by multiplication with a unit multiple of {j, n}, where

{j, n} =

®
n if n | j

j otherwise;

(2)

∇ : grjFN
>i

∆̂
(1)
R/W (k)Jz0K{i} → grjFN

>i
∆̂
(1),∇
R/W (k)Jz0K{i}

for i > 1 acts by multiplication with a unit multiple of pǫ(i,j){j, n}.

Proof. We use the commutative diagram

grjF∆̂
(1)
OK/W (k)Jz0K{i} grjF∆̂

(1)∇
OK/W (k)Jz0K{i}

grjF∆̂
(1)
R/W (k)Jz0K{i} grjF∆̂

(1)∇
R/W (k)Jz0K{i}

∇

red red∇

∇

The top horizontal map acts by multiplication with a unit multiple of j. The left vertical map acts by ⌊ jn⌋!,

and the right vertical map by ⌊ j−1
n ⌋! due to the indexing shift. We obtain that the bottom map acts by a

unit multiple of

j ·

õ
j − 1

n

û
! ·

Åõ
j

n

û
!

ã−1

.

The quotient of the two factorial terms is 1 if n ∤ j, and
Ä

j
n

ä−1
if n | j. In total we obtain that the bottom

map acts by a unit multiple of {j, n} as claimed.

For the second statement, we proceed analogously with N>i
∆̂
(1).
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In particular, we may conclude from this that all maps in the syntomic square as well as the reduction
maps are rational isomorphisms on any finite part F[a,b] of the F-filtration:

Lemma 4.63. For R = OK/̟n or R = OK , the map

can: N>i
∆̂
(1)
R/W (k)Jz0,...,zsK{i} → ∆̂

(1)
R/W (k)Jz0,...,zsK{i}

is a rational isomorphism on F[a,b] for any integers a 6 b. Its cokernel has order

min(b,in−1)∏

j=a

qi−⌊ j
n ⌋,

where q = pf is the order of the residue field k.

Proof. This follows directly from the description of can on the F-associated graded.

Lemma 4.64. The reduction map

red: ∆̂
(1)
OK/W (k)Jz0K{i} → ∆̂

(1)
(OK/̟n)/W (k)Jz0K{i}

is a rational isomorphism on F[a,b] for any integers a 6 b. Its cokernel has order
∏b

j=a q
vp(⌊

j
n ⌋!).

Proof. This follows directly from the description of red on the F-associated graded.

Lemma 4.65.

(1) For R = OK/̟n or OK, the map

∇ : ∆̂
(1)
R/W (k)Jz0K{i} → ∆̂

(1),∇
R/W (k)Jz0K{i}

is a rational isomorphism on F[a,b] for any integers a 6 b with a > 1. Its cokernel has order∏b
j=a q

vp{j,n} for R = OK/̟n and
∏b

j=a q
j for R = OK .

(2) For R = OK/̟n or OK and i > 1, the map

∇ : N>i
∆̂
(1)
R/W (k)Jz0K{i} → N>i

∆̂
(1),∇
R/W (k)Jz0K{i}

is a rational isomorphism on F[a,b] for any integers a 6 b with a > 1. Its cokernel has order∏b
j=a q

ǫ(i,j)+vp{j,n} for R = OK/̟n and
∏b

j=a q
ǫ(i,j)+vp(j) for R = OK .

Proof. This follows directly from the description of ∇ on the F-associated graded.

Remark 4.66. Lemma 4.65 can be used to derive the Angeltveit quotient result of Proposition 2.18.

Remark 4.67. These results together imply the following for the structure maps on F[a,b], with a > 1.

(1) From knowledge of the map

∇ : F[a,b]
∆̂
(1)
OK/W (k)Jz0K{i} → F[a,b]

∆̂
(1),∇
OK/W (k)Jz0K{i}

and the maps induced by the reduction OK → OK/̟n, we may recover the map

∇ : F[a,b]
∆̂
(1)
(OK/̟n)/W (k)Jz0K{i} → F[a,b]

∆̂
(1),∇
(OK/̟n)/W (k)Jz0K{i}

(analogously for the non-Frobenius twisted version).
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(2) From knowledge of the map

∇ : F[a,b]
∆̂
(1)
(OK/̟n)/W (k)Jz0K{i} → F[a,b]

∆̂
(1),∇
(OK/̟n)/W (k)Jz0K{i}

and the can maps, we may recover the map

∇ : F[a,b]N>i
∆̂
(1)
(OK/̟n)/W (k)Jz0K{i} → F[a,b]N>i

∆̂
(1),∇
(OK/̟n)/W (k)Jz0K{i}.

(3) From knowledge of the maps

∇ : F[a,b]
∆̂
(1)
(OK/̟n)/W (k)JzK{i} → F[a,b]

∆̂
(1),∇
(OK/̟n)/W (k)Jz0K{i},

∇ : F[a,b]N>i
∆̂
(1)
(OK/̟n)/W (k)Jz0K{i} → F[a,b]N>i

∆̂
(1),∇
(OK/̟n)/W (k)Jz0K{i},

and the Frobenius map

ϕ : F[a,b]N>i
∆̂
(1)
(OK/̟n)/W (k)Jz0K{i} → F[a,b]

∆̂
(1)
(OK/̟n)/W (k)Jz0K{i},

we may recover the map ϕ∇.

So in practice, all structure maps appearing in the syntomic square (Corollary 4.44) are determined by the
can and ϕ maps for OK/̟n, the reduction map for OK → OK/̟n, and the map ∇ for OK . One advantage
is that the latter depends on OK and the choice of uniformizer, but not on n. The other advantage is

that each of these pieces of data requires computations in ∆̂
(1)
(OK/̟n)/W (k)Jz0K or ∆̂

(1)
OK/W (k)Jz0,z1K, but never

∆̂
(1)
(OK/̟n)/W (k)Jz0,z1K, which is significantly bigger.

5 The even vanishing theorem

In this section, we prove the following fact: K2i−2(O/̟
n) vanishes for i ≫ 0. This comes as a complete

surprise, since, in the previously known range of K∗(Z/p
n) due to Angeltveit [2], while K2i−2(Z/p

n) = 0
for all 2 6 i < p, one has K2p−2(Z/p

n) ∼= Z/p. In the characteristic p case, where OK/̟n ∼= Fp[z]/z
n,

the even degree positive K-groups all vanish due to a result of Hesselholt–Madsen (see Corollary 5.5, which
we can obtain as a special case of Theorem 5.2). Note that the vanishing of the even degree K-groups in
sufficiently large degrees determines the orders of the odd degree K-groups in sufficiently large degrees by
Proposition 2.18.

Definition 5.1 (p-analogues). Recall that the p-analogue of an integer j is

[j]p =
pj − 1

p− 1
= 1 + p+ p2 + · · ·+ pj−1.

Theorem 5.2. If

i− 1 >
p

p− 1

(
p[j]p − pjj + pj

n

e

)

with j = ⌈ne ⌉, then K2i−2(OK/̟n) = 0.

Remark 5.3. The number j = ⌈ne ⌉ is the exponent of the abelian group OK/̟n.

Remark 5.4. As n
e − j 6 0, a slightly weaker but cleaner bound is given by

i− 1 >
p

p− 1
· p[j]p =

p2

(p− 1)2
· (pj − 1).

This version has the same asymptotic behaviour, but does not imply Corollary 5.5 below.

The following corollary was originally discovered in [25, Thm. A].
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Corollary 5.5 (Hesselholt-Madsen). For all i > 2,

K2i−2(Fq[z]/z
n) = 0.

Proof. We can write Fq[z]/z
n as a quotient of rings of the form OK where K has arbitrarily large ramification

index e; for example Fq[z]/z
n ∼= W (Fq)[p

1/e]/pn/e. Thus, we can choose e arbitrarily large in Theorem 5.2.
For large e, we have j = 1 and the inequality simplifies to

i− 1 >
p2n

(p− 1)e
,

which is satisfied for any i > 2 for e sufficiently large.

Corollary 5.6. If

i− 1 >
p

p− 1

(
p[j]p − pjj + pj

n

e

)

with j = ⌈ne ⌉, then K2i−1(OK/̟n) is a group of order (qi − 1) · qi(n−1), where q is the order of the residue
field of OK .

Proof. This follows from Theorem 5.2, Proposition 2.18, Corollary 2.3, and Quillen’s calculation in [37] of
the K-theory of finite fields.

5.1 Nilpotency mod p

In this section, we observe that in ∆̂
(1)
R/W (k)JzK and N>⋆

∆̂
(1)
R/W (k)JzK for R = OK/̟n, various elements become

nilpotent mod p. This will feature in our proof of the even vanishing theorem, but also implies nilpotence of

v1. It also implies that, in large F-filtration, the prismatic envelope ∆̂
(1)
R/W (k)JzK admits divided powers.

Below, we write x ∼ y for two elements which are unit multiples mod p. Recall that

fp
u ∼ dp

u+1

fu+1 ∼ zep
u+1

fu+1

in N>pu+1

∆̂
(1)
R/W (k)Jz0K. This follows from the explicit relation for fp

u given in Lemma 3.24, the fact that the

R′
u vanish for the relation zn by Remark 3.29, and the fact that d = E(z) ∼ ze.

Lemma 5.7. Let R = OK/̟n. In Npj−1−1
∆̂
(1)
R/W (k)JzK for j 6 ⌈ne ⌉, we have

zp
j−1(n−je)+[j]pe−1dp

j−1−1 ∼ zn−1fp−1
0 · · · fp−1

j−2

Proof. For j = 1, this is the tautology zn−1 = zn−1. We now proceed by induction. Assuming the relation
for j < n

e , first observe that

zp
j−1(n−je)+[j]pe−1dp

j−1

∼ zn−1fp−1
0 · · · fp−1

j−2 d.

Multiplying both sides with z and using znd ∼ zef0 and fp
u ∼ zep

u+1

fu+1, we learn that

zp
j−1(n−je)+[j]pedp

j−1

∼ z[j]pefj−1.

As n− je > 0, we may use this relation p− 1 times to deduce that

z(p−1)pj−1(n−je)+[j]pedp
j−1 ∼ z[j]pefp−1

j−1 d
pj−1−1;

(note that the exponent on the left-hand side is pj − 1, not pj−1). Finally, multiplying with zp
j−1(n−je)−1

and using the inductive assumption once more, we obtain

zp
j(n−je)+[j]pe−1dp

j−1 ∼ zn−1fp−1
0 · · · fp−1

j−1 .

Since pj(n− je) + [j]pe− 1 = pj(n− (j + 1)e) + [j + 1]pe− 1, this completes the inductive step.
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Lemma 5.8. Let R = OK/̟n. In ∆̂
(1)
R/W (k)JzK for j 6 ⌈ne ⌉, we have

zp
j(n−je)+p[j]pe−1 ∼ zn−1fp−1

0 · · · fp−1
j−1

Proof. The j < ⌈ne ⌉ case can be deduced directly from Lemma 5.7, but the j = ⌈ne ⌉ case requires special
manipulations either way, so we proceed by an analogous induction. For j = 0, we again have the tautology
zn−1 = zn−1. Given the relation for some j < n

e , multiplication by z yields

zp
j(n−je)+p[j]pe ∼ zp[j]pefj . (15)

As n− je > 0, we may multiply (15) with z(p−2)pj(n−je) and simplify using the relation (15) to obtain

z(p−1)pj(n−je)+p[j]pe ∼ zp[j]pefp−1
j . (16)

Multiplying (16) with zp
j(n−je)−1 and using the inductive assumption yields the relation

zp
j+1(n−je)+p[j]pe−1 ∼ zn−1fp−1

0 · · · fp−1
j .

As pj+1(n− je) + p[j]pe− 1 = pj+1(n− (j + 1)e) + p[j + 1]pe− 1, this completes the induction.

Lemma 5.9. Let R = OK/̟n with n > 2. For j = ⌈ne ⌉,

(1) zp[j]pe−pj(je−n) = 0 in ∆̂
(1)
R/W (k)JzK/p, but z

p[j]pe−pj(je−n)−1 6= 0;

(2) for any i > pj − 1,

z[j]pe−pj−1(je−n)di = 0

in N>i
∆̂
(1)
R/W (k)JzK/p, but z

[j]pe−pj−1(je−n)−1di 6= 0.

Proof. We start with the relation

zp
j(n−je)+p[j]pe−1 ∼ zn−1fp−1

0 · · · fp−1
j−1

from Lemma 5.8; these terms are not zero mod p since the right-hand term is one of our standard basis
elements of the prismatic cohomology. Multiplying with z, we get

zp[j]pe−pj(je−n) ∼ zp[j]pefj.

As je − n > 0, the exponent on the right is at least as big as on the left. Thus we may iterate, obtaining
elements of arbitrarily high Nygaard filtration. This proves the first statement.

For the second statement, it suffices to treat i = pj − 1. We start with the relation

zp
j−1(n−je)+[j]pe−1dp

j−1

∼ zn−1fp−1
0 · · · fp−1

j−2 d

in N>pj−1

∆̂
(1)
R/W (k)Jz0K implied by Lemma 5.7. The right-hand side of this relation is non-zero as it is one of

the standard basis elements of the Nygaard filtration (see Proposition 3.34). Multiplying with z, we obtain

z[j]pe−pj−1(je−n)dp
j−1

∼ z[j]pefj−1.

As je− n > 0, we may iterate this to obtain

z[j]pe−pj−1(je−n)dp
j−1 ∼ z[j]pe+(p−2)pj−1(je−n)fp−1

j−1 d
pj−1−1.

Again, using the relation from Lemma 5.7, we further learn

z[j]pe−pj−1(je−n)dp
j−1 ∼ z(p−1)pj−1(je−n)+1zn−1fp−1

0 · · · fp−1
j−1 .

The right hand side is a multiple of
znfp−1

0 · · · fp−1
j−1 ∼ zp[j]pefj,

which is zero mod p by the first statement.
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Corollary 5.10. For j > ⌈ne ⌉, the element fp
j agrees with pfj+1 up to a unit.

Proof. Recall that fp
j = (−p+ λjd

pj+1

)fj+1 where λj is some unit. We have that

e(pj+1 − 1) > ep[j]p,

and so
dp

j+1−1 ∼ ze(p
j+1−1) ∼ 0

by Lemma 5.9(1). It follows that dp
j+1−1 = 0 modulo p, and thus

fp
j = (−1 + λjrd)pfj+1

for some r. By d-completeness, the factor (−1 + λjrd) is a unit.

Remark 5.11. Corollary 5.10 says that “asymptotically” ∆̂
(1)
(OK/̟n)/W (k)JzK looks like a free divided power

algebra.

5.2 A prismatic Cartier isomorphism

Observe the following immediate consequence of relative-to-absolute descent (Corollary 4.44).

Theorem 5.12. The commutative square

∆̂R/W (k)Jz0K{i} ∆̂
∇
R/W (k)Jz0K{i}

∆̂
(1)
R/W (k)Jz0K{i} ∆̂

(1),∇
R/W (k)Jz0K{i}

w

∇

w∇

∇

induces a quasi-isomorphism between the rows.

Proof. This is due to the fact that both horizontal fibers are ∆̂R/Zp
and the canonical inclusion ∆̂R/Zp

→

∆̂
(1)
R/Zp

is an isomorphism since Zp is perfect.

Remark 5.13. We view this as a kind of Cartier isomorphism, since it looks formally similar to the Cartier
isomorphism for k[z] as quasi-isomorphism between the rows of

Ω0
k[z]/k Ω1

k[z]/k

Ω0
k[z]/k Ω1

k[z]/k,

0

d

where the vertical maps are induced by the Frobenius on k[z]. (See for example [18].) A meaningful
justification of this analogy would require a more conceptual understanding of the connection ∇.

Remark 5.14. Note that the vertical maps take F>j → F>pj , due to the semilinearity of w. It follows in
particular that w induces an equivalence between the cokernel of

∇ : grjF∆R/W (k)Jz0K{i} → grjF∆
∇
R/W (k)Jz0K{i}

and that of
∇ : grpjF ∆̂

(1)
R/W (k)Jz0K{i} → grpjF ∆̂

(1),∇
R/W (k)Jz0K{i},

and that
∇ : grjF∆̂

(1)
R/W (k)Jz0K{i} → grjF∆̂

(1),∇
R/W (k)Jz0K{i},

is an isomorphism if p ∤ j.
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Lemma 5.15. In the case R = OK/̟n, the prismatic Cartier isomorphism fits into a commutative diagram

F[1,b]N>i
∆
(1)
R/W (k)Jz0K{i} F[1,b]N>i

∆
(1),∇
R/W (k)Jz0K{i}

F[1,b]
∆R/W (k)Jz0K{i} F[1,b]

∆
∇
R/W (k)Jz0K{i}

F[1,pb]
∆
(1)
R/W (k)Jz0K{i} F[1,pb]

∆
(1),∇
R/W (k)Jz0K{i}

∇

ϕR/W(k)Jz0K ϕ∇
R/W(k)Jz0K

∇

w w∇

∇

inducing quasi-isomorphisms between the rows whenever b 6 n(i+ 1)− 1.

Proof. The statement about the lower two rows follows from the fact that the prismatic Cartier isomorphism
of Theorem 5.12 is compatible with filtrations. Commutativity of the upper square follows from Lemma 4.57.
Recall that F[1,b]

∆R/W (k)JzK is a free W (k)-module on monomials zc0
∏

δu(a)eusi with c < n, eu < p and

total filtration 6 b. Similarly, F[1,b]N>i
∆
(1)
R/W (k)Jz0K is free on monomials di−

∑
pueuzc0

∏
feu
u w(si) with total

filtration 6 b. The bound b 6 n(i + 1) − 1 guarantees that the ith divided Frobenius sends generators to
generators: by construction, and Corollary 3.23,

ϕW (k)Jz0K

Ä
di−

∑
pueuzc0

∏
feu
u w(si)

ä
= zc0d

i
∏

ϕpu(fu)
eu si

di = zc0
∏

δu(a)eusi,

so the upper left vertical map is an isomorphism. Similarly, the upper right vertical map is an isomorphism
and hence the upper square induces a quasi-isomorphism between the top two rows.

5.3 Proof of the even vanishing theorem

Lemma 5.16. Let R = OK/̟n and fix b > 1. If

e

Å
i−

õ
b

n

ûã
> p[j]pe − pj(je − n)

with j = ⌈ne ⌉, then

can: F[0,b]N>i
∆̂
(1)
R/W (k)Jz0K{i} → F[0,b]

∆̂
(1)
R/W (k)Jz0K{i}

is divisible by p. Similarly, if

e

Å
i− 1−

õ
b

n

ûã
> p[j]pe− pj(je − n),

then

can: F[1,b+1]N>i
∆̂
(1),∇
R/W (k)Jz0K{i} → F[1,b+1]

∆̂
(1),∇
R/W (k)Jz0K{i}

is divisible by p.

Proof. We may assume i = 0. A basis for F[0,b]N>i
∆̂
(1)
R/W (k)Jz0K is given by d̃i−

∑
pueuzk

∏
feu
u with eu < p

and k < n. Here, k +
∑

npueu 6 b, and so the exponent of d is > i− ⌊ bn⌋. By Lemma 5.9, we have

zp[j]pe−pj(je−n) = 0

mod p. As d ∼ ze, the claim follows. The claim for the ∇-term follows from the observation that

F[1,b+1]N>i
∆̂
(1),∇
R/W (k)Jz0K

∼= F[0,b]N>i−1
∆̂
(1)
R/W (k)Jz0K,

compatibly with can.



51 5.3 Proof of the even vanishing theorem

Proof of Theorem 5.2. It is enough to show that the maps into the lower right corner in the diagram

F[1,in−1]N>i
∆̂
(1)
R/W (k)Jz0K{i} F[1,in−1]N>i

∆̂
(1),∇
R/W (k)Jz0K{i}

F[1,in−1]
∆̂
(1)
R/W (k)Jz0K{i} F[1,in−1]

∆̂
(1),∇
R/W (k)Jz0K{i}

∇

can−ϕ can−ϕ∇

∇

are jointly surjective. In fact, on the ∇ terms, can is already an isomorphism on F>(i−1)n+1, and so we may
pass to the quasi-isomorphic quotient

F[1,in−1]N>i
∆̂
(1)
R/W (k)Jz0K{i} F[1,(i−1)n]N>i

∆̂
(1),∇
R/W (k)Jz0K{i}

F[1,in−1]
∆̂
(1)
R/W (k)Jz0K{i} F[1,(i−1)n]

∆̂
(1),∇
R/W (k)Jz0K{i}.

∇

can−ϕ can−ϕ∇

∇

Joint surjectivity of the maps into the bottom right corner is equivalent to surjectivity of

(can− ϕ∇) : F[1,(i−1)n]N>i
∆̂
(1),∇
R/ZpJz0K{i} → F[1,(i−1)n]

∆̂
(1),∇
R/W (k)Jz0K{i}/im(∇).

Since the target is a finitely generated abelian p-group, it suffices to check that

(can− ϕ∇) : F[1,(i−1)n]N>i
∆̂
(1),∇
R/W (k)Jz0K{i} → F[1,(i−1)n]

∆̂
(1),∇
R/W (k)Jz0K{i}/(im(∇), p)

is surjective. Now a map f : A→ B is surjective if and only if A/H → B/f(H) is surjective, for an arbitrary
subgroup H ⊆ A.

Applying this to the subgroup F[⌈ (i−1)n
p ⌉+1,(i−1)n]N>i

∆̂
(1),∇
R/W (k)Jz0K{i}, we are thus reduced to checking that

can− ϕ∇ : F[1,⌈
(i−1)n

p ⌉]N>i
∆̂
(1),∇
R/W (k)Jz0K{i} →

F[1,(i−1)n]
∆̂
(1),∇
R/W (k)Jz0K{i}(

im(∇), p, (can− ϕ∇)F[⌈ (i−1)n
p ⌉+1,(i−1)n]

) (17)

is surjective. By assumption,

i− 1 >
p

p− 1

(
p[j]p − pjj + pj

n

e

)
,

so

e

(
i− 1−

⌊
⌈ (i−1)n

p ⌉ − 1

n

⌋)
> e

(
i− 1−

⌈ (i−1)n
p ⌉ − 1

n

)

> e

Å
i− 1−

(i − 1)n

pn

ã

> e ·
p− 1

p
· (i− 1)

> p[j]pe− pj(je − n).

Thus, Lemma 5.16 applies to show that the can part of (17) is divisible by p, thus zero. We are reduced
to showing that the ϕ∇ part of the map (17) is surjective. We claim this holds even when quotienting the
target by less, i.e., that the map

ϕ∇ : F[1,⌈ (i−1)n
p ⌉]N>i

∆̂
(1),∇
R/W (k)Jz0K{i} → F[1,(i−1)n]

∆̂
(1),∇
R/W (k)Jz0K{i}/im(∇)

is surjective. This follows directly from the form of the prismatic Cartier isomorphism presented in Lemma
5.15.
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6 Nilpotence of v1

It has recently been proven in [7, 31] that LT (1)K(Z/pn) ≃ 0 for all n > 1, where LT (1) denotes the
Bousfield localization at the T (1)-equivalence. Recall that a map of spectra X → Y is a T (1)-equivalence if
X/p[v−1

1 ] → Y/p[v−1
1 ] is an equivalence, where v1 is an element of S/p which induces an equivalence after

tensoring with KU. For p odd, such an element exists in π2p−2(S/p) and is uniquely determined up to units,
while, for p = 2, only v41 ∈ π8(S/2) exists. This story is complicated by the fact that S/p is not an A∞-ring
spectrum, that for p = 3 multiplication is not associative, and that for p = 2 there is no multiplication;
see [45, App. A].

In mod p algebraic K-theory, the story is somewhat simpler. For all primes p, even and odd, there is a
class v1 ∈ K2p−2(Zp,Fp), which is the image of v1 ∈ π2p−2(S/p) when p is odd and whose fourth power is
the image of v41 ∈ π8(S/2) for p = 2. In this case, K(Zp;Fp) ≃ TC(Zp;Fp) and v1 arises from a class

v1 ∈ H0(Fp(p− 1)(Zp))

in syntomic cohomology for degree reasons (see Remark 2.17). The sheared down associated graded

⊕

i>0

grimotTC(Zp;Fp)[−2i] ≃
⊕

i>0

Fp(i)(Zp)

is anE∞-algebra in graded spectra and thus one can invert v1 on
⊕

i>0 Fp(i)(Zp) to obtain
⊕

i∈Z
Fp(i)(Zp)[v

−1
1 ].

Similarly, if R is any quasisyntomic Zp-algebra, the element v1 acts on
⊕

i∈Z
Fp(i)(R) and we can form the

localization
⊕

i∈Z
Fp(i)(R)[v−1

1 ].

Remark 6.1. We will use that v1 ∈ K2p−2(OK ;Fp) is non-zero for every p-adic field K. This follows from
the fact that v1 maps to (a unit multiple of) βp−1 in K(K;Fp) ≃ ku/p, where β denotes the Bott element.

Proposition 6.2. Let R = OK/̟n where n > 2. Let v ∈ N>p−1
∆̂
(1)
R/W (k)JzK/p be the element dp. For

j = ⌈ne ⌉, we have v[j]p = 0 in N>[j]p(p−1)
∆̂
(1)
R/W (k)JzK/p. If e divides n, this is sharp, i.e. v[j]p−1 6= 0.

Proof. After trivializing the Breuil–Kisin orientation and using d ∼ ze, we have

v[j]p ∼ z[j]ped(p−1)[j]p = z[j]pedp
j−1.

This is zero mod p by Lemma 5.9. If e divides n, we have n− ej = 0, and Lemma 5.7 shows that

z[j]pe−1di ∼ zn−1fp−1
0 · · · fp−1

j−2 d
i−(pj−1−1)

is nonzero mod p for any large enough i, and so in particular

v[j]p−1 ∼ z([j]p−1)ed(p−1)([j]p−1)

is nonzero mod p.

Theorem 6.3. The class v1 ∈ H0(Fp(p − 1)(Zp)) acts on
⊕

i∈Z
Fp(i)(OK/̟n) with nilpotency degree at

most [j]p, where j = ⌈ne ⌉. If e divides n, this is the exact nilpotence degree.

Proof. We first locate v1 in the relative-to-absolute descent spectral sequence for the syntomic cohomology
of OK , finding that there is an exact sequence

0→ H0(Fp(p− 1)(OK))→ H0(Fp(p− 1))(OK/A0)
d0−d1

−−−−→ H0(Fp(p− 1))(OK/A1).

In particular, by the coconnectivity of the syntomic complexes involved, v1 is non-zero in H0(Fp(p −
1)(OK/A0)). By Proposition 4.24, the relative syntomic complex Zp(p− 1)(OK/A0) is equivalent to

fib

Å
W (k)Jz0K · d

p−1 f(z0)·d
p−1 7→(f(z0)d

p−1−ϕ(f(z0)))
−−−−−−−−−−−−−−−−−−−−−−→W (k)Jz0K

ã
,
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where d = E(z0) is the distinguished element of the Breuil–Kisin prism A0. Working modulo p we find that
the complex Fp(p− 1)(OK/A0) is given by

fib

Å
kJz0K · z

p−1
0

f(z0)·d
p−1 7→(f(z0)(uz

e
0)

(p−1)−ϕ(f(z0)))
−−−−−−−−−−−−−−−−−−−−−−−−−−→ kJz0K

ã
,

where u is the coefficient of ze0 in E(z0). As up−1 = 1 (mod p), we can rewrite the map as f(z0) 7→

f(z0)z
e(p−1)
0 − ϕ(f(z0)) modulo p. The kernel of this map is generated by ze0 · d

p−1, so that H0(Fp(p −
1)(OK/A0)) is a 1-dimensional Fp-vector space. Thus, by counting dimensions and Remark 6.1, it follows
that the class ze0 ·d

p−1 ∼ dp = v survives to give a unit multiple of v1 in the absolute p-adic syntomic complex
Fp(p− 1)(OK).

To prove that v
[j]p
1 = 0 in Fp([j]p(p−1))(OK/̟n) it suffices to show that dp[j]p maps to zero in Fp([j]p(p−

1))((OK/̟n)/A0). This is the content of Proposition 6.2. The claim about the exact nilpotence degree follows
from the same proposition.

We recover the result of [7, 31].

Corollary 6.4. For any n > 1 and any prime number p,

LT (1)K(Z/pn) ≃ 0,

where T (1) denotes the height 1 telescopic localization at the prime p.

Proof. We have LT (1)K(Z/pn) ≃ LT (1)K(Z/pn;Zp) ≃ LT (1)TC(Z/p
n;Zp). It is enough to show that

TC(Z/pn;Fp)[v
−1
1 ] vanishes. This follows from Theorem 6.3 and the fact that the motivic filtration induces

a finite filtration on each πrTC(Z/p
n;Fp) by Corollary 2.16.

Corollary 6.5. Suppose that p > 5 is a prime and that j = ⌈ne ⌉. Then, for any n > 1, the action of v
2[j]p
1

on K(OK/̟n;Fp) is homotopic to 0.

Proof. We use that for p > 5, K(OK/̟n;Fp) is a homotopy associative ring spectrum. This reduces the

corollary to checking that v
2[j]p
1 = 0 in K∗(OK/̟n;Fp). However, v

[j]p
1 = 0 in

H0(Fp([j]p(p− 1))(OK/̟n)),

the motivic associated graded, so it lifts to some element, say x ∈ H2(Fp([j]p(p − 1) + 1))(OK/̟n)). But,

now, v
[j]p
1 x = 0 in the motivic associated graded, and thus v

2[j]p
1 = 0 in K∗(OK/̟n;Fp), as claimed.

7 An algorithm for syntomic cohomology

Section 7.1 describes our algorithm as we implemented it. Section 7.2 contains an analysis of the p-adic
precision required in order to guarantee correct results.

7.1 The algorithm as implemented

In this subsection, we give the algorithm as implemented in [5] for the computation of the K-groups of
R = OK/̟n.

Input: integers q = pf , i, n for f, i, n > 1 and an Eisenstein polynomial E(z) ∈ W (Fq)[z], assumed to be
normalized so that E(0) = p and specified up to the working p-adic precision specified in Step 1 below.

Output: p-adic matrices syn0 and syn1 defining a complex

· · · → 0→ Zf(in−1)
p

syn0

−−−→ Z2f(in−1)
p

syn1

−−−→ Zf(in−1)
p → 0→ · · ·

quasi-isomorphic to Zp(i)(OK/̟n). The cohomology of this matrix can be computed using Smith nor-
mal form and gives the cohomology of Zp(i)(OK/̟n) and hence the structure of K2i−2(OK/̟n;Zp) and
K2i−1(OK/̟n;Zp).
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Strategy: we will compute the commutative square

F[1,in−1]N>i
∆̂
(1)
R/W (Fq)Jz0K{i}

N>i∇
//

can−ϕ

��

F[1,in−1]N>i
∆̂
(1),∇
R/W (Fq)Jz0K{i}

can−ϕ

��

F[1,in−1]
∆̂
(1)
R/W (Fq)Jz0K{i}

∇
// F[1,in−1]

∆̂
(1),∇
R/W (Fq)Jz0K{i}

(18)

Each of the vertices in this square is a free W (Fq)-module of rank (in − 1). The maps in the diagram
are not W (Fq)-linear thanks to Frobenius, but they are of course Zp-linear, so we use W (Fq) ∼= Zf

p , to
compute matrix representatives for this square in Zp-modules. For the computation of ∇, we will also work

in ∆̂
(1)
OK/W (Fq)Jz0K{i} and ∆̂

(1)
OK/W (Fq)Jz0,z1K{i}.

Step 1: find the working p-adic precision. Lemma 7.2 shows that syn0 and syn1 should be com-
puted up to p-adic precision

in−1∑

j=1

ǫ(i, j) + vp{j, n},

where ǫ(i, j) = 1 if n | j and 0 otherwise in the given range and {j, n} = n if n | j and j otherwise (compare
Proposition 2.18). This is the target p-adic precision. (It is also possible to work with a smaller target
precision, at the cost of potentially having to restart the computation with a larger target precision, see
Remark 7.3.) Several steps in the algorithm below result in a cumulative precision loss of at most

⌊logp(in− 1)⌋+

i−1∑

s=p

nvp(s!) + n

Ç
i

2

å
+

in−1∑

j=1

ǫ(i, j) + vp{j, n}.

Thus, all computations in the algorithm below should be made starting at a p-adic precision of

2

Ñ
in−1∑

j=1

ǫ(i, j) + vp{j, n}

é
+ ⌊logp(in− 1)⌋+

i−1∑

s=p

nvp(s!) + n

Ç
i

2

å
,

the working p-adic precision, although we warn the reader that the effective precision drops in several of the
steps below.

Step 2: initialize linear bases. Choose a basis 1, x, x2, · · · , xf−1 for Fq over Fp and lift this to a
basis for W (Fq) over Zp. Assume that x satisfies a fixed degree f monic polynomial h(x) = 0.

A W (Fq)-basis for F[1,in−1]
∆̂
(1)
R/W (Fq)Jz0K is given by monomials zk0

∏
feu
u for 0 6 k < n and 1 6

k +
∑

npueu 6 in − 1 with eu < p. A W (Fq)-basis for F[1,in−1]N>i
∆̂
(1)
R/W (Fq)Jz0K is given by elements

of the form d̃i−
∑

pueuzk0
∏

feu
u with 0 6 k < n, 1 6 k +

∑
npueu 6 in − 1, and eu < p. Bases of

F[1,in−1]
∆̂
(1)
R/W (Fq)Jz0K{i} and F[1,in−1]N>i

∆̂
(1)
R/W (Fq)Jz0K{i} are obtained symbolically by multiplying with

w(si), where s is our preferred filtered crystalline Breuil–Kisin orientation. As F[1,in−1]N>⋆
∆̂
(1),∇
R/W (Fq)Jz0K{i} =

F[0,in−2]N>⋆−1
∆̂
(1)
R/W (Fq)Jz0K{i − 1}, bases for the ∇-terms are described analogously, with certain indexing

shifts. This determines W (Fq)-bases on all the terms in the diagram (18). Finally, Zp-bases are given by
xdzk0

∏
feu
u w(si) for 0 6 d < f , 0 6 k < n, 1 6 k+

∑
npueu 6 in− 1, and eu < p on the lower left term, and

analogously for the others, where we present W (Fq) = Zp[x]/h̃(x) where h is an arbitrary Zp-lift of the min-
imal polynomial h(x) used to present Fq. Let Mf be the largest u such that fu appears (Mf = ⌊logp(i− 1)⌋
if i > 1 and 0 otherwise).

For F[1,in−1]
∆̂
(1)
OK/W (Fq)Jz0K we have a W (Fq)-linear basis z0, . . . , z

in−1
0 . For F[1,in−1]N>i

∆̂
(1)
OK/W (Fq)Jz0K a

W (Fq)-linear basis is given by d̃izk0 for 1 6 k 6 in−1. For, F[1,in−1]
∆̂
(1)
OK/W (Fq)Jz0,z1K there is a W (Fq)-linear
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basis zk0
∏

geuu for 1 6 k+ pueu 6 in− 1 and eu < p. For F[1,in−1]N>i
∆̂
(1)
OK/W (Fq)Jz0,z1K, a W (Fq)-linear basis

is given by monomials d̃i−
∑

pueuzk0
∏

geuu with 1 6 k+
∑

pueu 6 in−1, and eu < p. The Breuil–Kisin twists
obtain analogous bases by multiplying with w(si) or shifting, respectively. Let Mg be the largest u such that
gu appears (Mf = ⌊logp(in− 1)⌋).

Step 3: compute relations and structure of the prismatic envelopes. For ∆̂
(1)
R/W (Fq)Jz0K, find el-

ements λu ∈ W (Fq)Jz0K as in Lemma 3.24 and create a lookup table of relations for fp
u in the prismatic

envelope in terms of those, noting that here the terms R′
u are all zero (Remark 3.29). We compute the δ

operation on W (Fq)Jz0K by δ(x) = ϕ(x)−xp

p , so each step of the recursion for λu causes a p-adic precision

loss by 1 digit. Also create a lookup table for the values of ϕpu(fu) following Lemma 3.26.

For the structure of ∆̂
(1)
OK/W (Fq)Jz0,z1K, use Construction 3.28 to compute elements R′

u and a δ-ring struc-

ture on W (Fq)Jz0K[gu | 0 6 u 6 Mg], using the additional trick that we may rewrite

R′
0 =

δ(z1 − z0)

δ(d)
=

1

δ(d)

∑

16j6p−1

1

p

Ç
p

j

å
gj0,

and so may work in W (Fq)Jz0K[gu | 0 6 u 6 Mg] instead of the bigger W (Fq)Jz0, z1K[gu | 0 6 u 6 Mg].
Following Lemma 3.24, compute a lookup table of relations for gpu in terms of those. The δ-ring structure
from Construction 3.28 is stored in terms of the Frobenius lift

ϕ(gu) = ϕ(d)p
u

(λugu+1,v +R′
u)

instead of directly storing the values of δ(gu), so each of the applications of δ in the recursion for R′
u causes

a p-adic precision loss by 1 digit, which is the same as for λu. Also create a lookup table for the values of
ϕpu(gu) in following Lemma 3.26.

Subalgorithm: reduce. At various points below, we have to rewrite a general element of one of ∆̂
(1)
R/W (Fq)Jz0K

or ∆̂
(1)
OK/W (Fq)Jz0K in terms of the chosen linear bases above; we do so using the relations introduced in Step

3. The rewriting process is W (Fq)-linear and we use the relations zn0 = f0 and the lookup table for fp
u from

Step 3 in the first case, and z1 = z0 + g0 and the lookup table for gpu from Step 3 in the second case. An
application of the reduce subalgorithm means in this context to replace a given polynomial in z0 and the
fu (or z0, z1 and gu) by an equal term in prismatic cohomology which is expressed as a sum of terms in the
W (Fq)-linear basis introduced in Step 2. In practice, we perform this reduction by simultaneously imposing
all relations above as well as all of the relations in the lookup table for the pth powers and repeating this
process until no further changes occur in F[1,in−1]. This process converges in F and hence terminates in finite
time in F[1,in−1]. (It is possible to recursively reduce the expressions in the lookup table for the fp

u and gpu
relations, which seems to improve runtimes in the case of the fp

u , and worsen runtimes in the case of the gpu.)

Step 4: compute the change-of-orientation unit w(v). The map ∇ in Breuil–Kisin weight i in-
volves the unit w(v) from Lemma 4.15. In ∆OK/W (Fq)Jz0K, we have

u =
E(z1)

E(z0)
= 1 +

E(z1)− E(z0)

z1 − z0
b,

and thus in ∆̂
(1)
OK/W (Fq)Jz0,z1K,

w(u) = 1 + ϕ

Å
E(z1)− E(z0)

z1 − z0

ã
ϕ1(g0).

Using the value of ϕ1(g0) described in Step 3, we may compute the value

w(v) =
∏

r>0

ϕr(w(u))
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as the fixed point of the recursion x = w(u) · ϕ(x) in F[1,in−1]
∆̂
(1)
OK/W (Fq)Jz0,z1K, by iterating (and reducing)

until the value remains unchanged, starting with x = w(u). This converges rapidly in the F-filtration and
takes around ⌊logp (in− 1)⌋ number of steps.

Step 5: compute ∇ : F[1,in−1]
∆̂
(1)
OK/W (Fq)Jz0K{i} → F[1,in−1]

∆̂
(1),∇
OK/W (Fq)Jz0K{i}. A basis for ∆̂

(1)
OK/W (Fq)Jz0K{i}

is given by zk0w(s
i) for 1 6 k 6 in− 1 and ∇(zk0w(s

i)) can be computed as (w(si−1) times) the coefficient of
g0 with respect to the W (Fq)Jz0K-basis

∏
geuu in

w(vi)(z0 + g0)
k − zk0 ,

after reducing. Compute this using the value of w(v) from Step 4.

Step 6: compute the reduction maps ∆̂
(1)
OK/W (Fq)Jz0K{i} → ∆̂

(1)
R/W (Fq)Jz0K{i}. Reduce zk0 for 1 6 k 6

in− 1 with respect to the relations in ∆̂
(1)
R/W (Fq)Jz0K and express as a linear combination of the basis elements

zk0
∏

feu
u to obtain a matrix red for the map

∆̂
(1)
OK/W (Fq)Jz0K{i} → ∆̂

(1)
R/W (Fq)Jz0K{i}

induced by OK → OK/̟n = R. Analogously (taking the indexing shift into account), compute a matrix
red∇ for

∆̂
(1),∇
OK/W (Fq)Jz0K{i} → ∆̂

(1),∇
R/W (Fq)Jz0K{i}.

Step 7: compute ∇ : F[1,in−1]
∆̂
(1)
R/W (Fq)Jz0K{i} → F[1,in−1]

∆̂
(1),∇
R/W (Fq)Jz0K{i}. The map ∇ is natural in R,

so we may reduce to the OK case via the commutative diagram

F[1,in−1]
∆̂
(1)
OK/W (Fq)Jz0K{i} F[1,in−1]

∆̂
(1),∇
OK/W (Fq)Jz0K{i}

F[1,in−1]
∆̂
(1)
R/W (Fq)Jz0K{i} F[1,in−1]

∆̂
(1),∇
R/W (Fq)Jz0K{i}.

red

∇

red∇

∇

The vertical maps were computed in Step 6 and the upper horizontal map in Step 5. Using that the vertical
maps are rational isomorphisms (Lemma 4.64) and that all terms are free Zp modules, compute the top map

as (red∇)−1 ◦ ∇ ◦ red.

The precision loss is bounded by the p-valuation of the determinant of red∇.

Step 8: compute ∇ on the Nygaard filtration. Use ∇ and the can maps to compute the unique
map N>i∇ making the diagram below commute:

F[1,in−1]N>i
∆
(1)
R/W (Fq)Jz0K F[0,in−2]N>i−1

∆
(1)
R/W (Fq)Jz0K

F[1,in−1]
∆
(1)
R/W (Fq)Jz0K F[0,in−2]

∆
(1)
R/W (Fq)Jz0K.

can

N>i∇

can

∇

Specifically, the can maps are rational isomorphisms by Lemma 4.63, so the top map can be computed as
can−1 ◦∇ ◦ can. The resulting matrix has integral entries, but some p-adic precision has been lost, bounded
by the valuation of the determinant of can.
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Step 9: compute can−ϕ. Compute a matrix for can by reducing each of the basis elements d̃i−
∑

pueuzk0
∏

feu
u

in ∆̂
(1)
R/W (k)Jz0K (replacing d̃ to E(z0)). Compute a matrix for ϕ by reducing

ϕi

Ä
d̃i−

∑
pueuzk0

∏
feu
u

ä
= zpk0

∏
ϕpu(fu)

eu ,

using the values for ϕpu(fu) computed in Step 3. Obtain a matrix for

can− ϕ : F[1,in−1]N>i
∆̂
(1)
R/W (Fq)Jz0K → F[1,in−1]

∆̂
(1)
R/W (Fq)Jz0K

as the difference.

Step 10: compute can − ϕ∇. Using that N>i∇ is a rational isomorphism, compute the unique map
can− ϕ∇ such that

F[1,in−1]N>i
∆
(1)
R/W (Fq)Jz0K{i} F[1,in−1]N>i

∆
(1),∇
R/W (Fq)JzK{i}

F[1,in−1]
∆
(1)
R/W (Fq)Jz0K{i} F[1,in−1]

∆
(1),∇
R/W (Fq)Jz0K{i}

can−ϕ

N>i∇

can−ϕ∇

∇

commutes, as ∇◦(can−ϕ)◦(N>i∇)−1. There is a precision loss bounded by the valuation of the determinant
of N>i∇.

Return: syn0 =

Å
can− ϕ
N>i∇

ã
and syn1 =

(
∇, −can + ϕ∇

)
at the target p-adic precision.

7.2 The p-adic precision

In order to produce correct results, we give an a priori way of specifying the p-adic precision for the algorithm
by tracking bounds on the precision loss of the reductions explained in Remark 4.67.

7.2.1 The target p-adic precision

Let R = OK/̟n. We have found that Zp(i)(R) ≃ F[1,in−1]Zp(i)(R), which is the total complex of

F[1,in−1]N>i
∆̂
(1)
R/W (k)Jz0K{i} F[1,in−1]N>i

∆̂
(1),∇
R/W (k)Jz0K{i}

F[1,in−1]
∆̂
(1)
R/W (k)Jz0K{i} F[1,in−1]

∆̂
(1),∇
R/W (k)Jz0K{i}.

N>i∇

can−ϕ can−ϕ∇

∇

By Lemma 4.65 (or by crystalline degeneration and [42]), the horizontal maps are injective and their cokernels
have orders

in−1∏

j=1

qǫ(i,j)qvp{j,n} and

in−1∏

j=1

qvp{j,n}.

The exponents of these groups are bounded above by the same expressions with p replacing q.
We will use the following lemma throughout our analysis of p-adic precision.

Lemma 7.1. Let C• be a cochain complex of finitely generated free Zp-modules with differentials ds : Cs →
Cs+1. If the cohomology of C• is annihilated by pN , then the cohomology groups can be computed from
knowledge of the differentials up to precision pN+1 (i.e., their reductions modulo pN+1). If additionally
the ranks of each differential is known (for example if C• is bounded), then the cohomology groups can be
computed from knowledge of the differentials up to precision pN .
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Proof. The cohomology of C• is in particular torsion. This means that each cohomology group Hs(C•) can
be computed by finding the elementary divisors of ds−1 : Cs−1 → Cs. Indeed, the Smith normal form of ds−1

is a diagonal matrix with diagonal entries [1, . . . , 1, pa1 , . . . , paM , 0, . . . , 0] (up to units). The cohomology

in this case is
⊕M

j=1 Z/p
aj . By hypothesis, each aj 6 N . Thus, the diagonal matrix can be computed by

computing the Smith normal form in Z/pN+1.4

For the second statement, note that if we compute the elementary divisors in Z/pN , then some elementary
divisors in [1, . . . , 1, pa1, . . . , paM , 0 . . . , 0] might be indistinguishable from zero, namely those where aj = N .
However, if we already know the correct number of zeros in the list of elementary divisors, we can still
find the number of elementary divisors with aj = N by taking the difference from the number produced by
running the Smith normal form algorithm modulo pN and the given number.

Lemma 7.2 (Target precision). If the matrices syn0, syn1 in the cochain complex Zp(i)(OK/̟n)• are com-
puted to p-adic precision

in−1∑

j=1

ǫ(i, j) + vp{j, n},

then the cohomology can be computed by the procedure described above.

Proof. As discussed above, the p-exponents of the F[1,in−1]N>i
∆̂R{i} and F[1,in−1]

∆̂R{i} terms are bounded
by
∑

ǫ(i, j) + vp{j, n}. Moreover, the ranks of d0 and d1 are both f(in− 1). So, both parts of Lemma 7.1
apply.

Remark 7.3. Lemma 7.1 guarantees that if a p-adic cochain complex is known up to precision pN , then
as long as the cohomology computed using any given representatives of the maps happens be torsion with
p-exponent strictly smaller than N , then the cohomology computation is correct. This means that instead of
running the algorithm with the target precision derived from an a priori upper bound for the p-exponent as in
Lemma 7.2, we may instead run it with an arbitrary target precision. As long as the computed cohomology
groups have strictly smaller exponent than this target precision, they are correct, otherwise, we have to
restart at a higher precision. In practice, certain specific steps in the algorithm in this approach might result
in division-by-zero errors, which would also have to be caught.

It follows syntomic square should be computed to p-adic precision

in−1∑

j=1

ǫ(i, j) + vp{j, n},

which is bounded above for example by i(n− 1)+ vp((in− 1)!), but is typically smaller, especially as i grows
with respect to n.

Lemma 7.4 (Target precision in the even range). If the matrix syn0 in the cochain complex Zp(i)(OK/̟n)•

is computed to p-adic precision ⌊ fi(n−1)
2 ⌋ and H2(Zp(i)(OK/̟n)•) = 0, then H1(Zp(i)(OK/̟n)•) is com-

putable.

Proof. Under the vanishing hypothesis, the order of H1(Zp(i)(OK/̟n)•) is qi(n−1) by Proposition 2.18. The
elementary divisors of syn0 are α1, . . . , αf(in−1), 0, . . . , 0, for some p-powers αj , where there are f(in − 1)

copies of zero. Since
∏f(in−1)

j=1 αj = qi(n−1) = pfi(n−1), it is enough to compute all but the last non-zero
elementary divisor. Let νj = vp(αj). Thus, 0 6 ν1 6 · · · 6 νf(in−1)−1 6 νf(in−1) is an increasing sequence
of integers whose sum is fi(n− 1). The worst case is when νf(in−1)−1 is as large as possible, which is when

νf(in−1)−1 = ⌊ fi(n−1)
2 ⌋ (and νf(in−1) = ⌈ fi(n−1)

2 ⌉). These can be computed to the necessary precision by
using the Smith normal form as in the proof of Lemma 7.1.

4For the Smith normal form in principal ideal rings (as opposed to domains), see for example [13, Chap. 15].
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7.2.2 Precision loss from δ

Applying δ results in a loss of a single digit of p-adic precision, as we compute the δ-structure from δ(x) =
ϕ(x)−xp

p . Thus, each time δ is applied in the construction of the prismatic envelopes, we lose a digit of
precision. This causes λu in Step 3 above to be known with a precision u+ 1 less than the initial precision.
Similarly, it causes the R′

u appearing in the relations for gpu to be known to precision u + 2 less than the
initial precision.

Lemma 7.5 (Precision loss from δ). (a) Working in p-adic power series with p-adic precision N , the units
λu are computed with p-adic precision N − u − 1, and the R′

u are computable with p-adic precision
N − u− 2.

(b) The largest index u appearing in the required relations and values of ϕpu(fu) and ϕ(fu) is u = Mf − 1.
The largest index u appearing in the required relations and values of ϕpu(gu) and ϕ(gu) is u = Mg − 1.

(c) All necessary data in Step 3 is computed to p-adic precision N − ⌊logp (in− 1)⌋ − 1 = N −Mg − 1.

Proof. Part (a) follows from the inductive definition of the R′
u from Construction 3.28. The others are clear

from the fact that in F[1,in−1] only f0, . . . , fMf
and g0, . . . , gMg are involved, and fp

Mf
and ϕpMf (fMf

) etc.
vanish for weight reasons already.

7.2.3 Precision loss from passage from OK to OK/̟n

The map F[1,in−1]
∆̂
(1)
OK/W (Fq)Jz0K{i}

∇
−→ F[1,in−1]

∆̂
(1),∇
OK/W (Fq)Jz0K{i} can be computed exactly (i.e., without fur-

ther loss of precision). It is also straightforward to compute the reduction maps F[1,in−1]
∆̂
(1)
OK/W (Fq)Jz0K{i} →

F[1,in−1]
∆̂
(1)
(OK/̟n)/W (Fq)Jz0K{i} and F[1,in−1]

∆̂
(1),∇
OK/W (Fq)Jz0K{i} → F[1,in−1]

∆̂
(1),∇
(OK/̟n)/W (Fq)Jz0K{i} without fur-

ther loss of precision.

Lemma 7.6 (Precision loss from ∇ on OK/̟n). Filling in the square

F[1,in−1]
∆̂
(1)
OK/W (Fq)Jz0K{i}

∇
//

red

��

F[1,in−1]
∆̂
(1),∇
OK/W (Fq)Jz0K{i}

red∇

��

F[1,in−1]
∆̂
(1)
(OK/̟n)/W (Fq)Jz0K{i}

∇
// F[1,in−1]

∆̂
(1),∇
(OK/̟n)/W (Fq)Jz0K{i}

involves a precision loss of at most
∑i−1

s=p nvp(s!).

Proof. By Lemma 4.64, the left vertical map red is rationally invertible. Inverting it results in a matrix with
entries in Qp. By considering the Smith normal form of red, it is clear that its inverse has p-adic valuation
bounded below by −σ, where σ is the valuation of the largest elementary divisor of red. This agrees with
the exponent of its cokernel. Since the cokernel has order

in−1∏

j=1

qvp(⌊
j
n ⌋!)

and is a finite W (Fq)-module, its exponent is bounded by

in−1∑

j=1

vp(⌊
j
n⌋!) =

in−1∑

j=pn

vp(⌊
j
n⌋!) =

i−1∑

s=p

nvp(s!).

Remark 7.7. In particular, there is no precision loss in this step up to weight i = p.
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7.2.4 Precision loss from computing the Nygaard lift of ∇

Lemma 7.8 (Precision loss from N>i∇). Filling in the square

F[1,in−1]N>i
∆̂
(1)
R/W (Fq)Jz0K{i}

N>i∇
//

can

��

F[1,in−1]N>i
∆̂
(1),∇
R/W (Fq)Jz0K{i}

can

��

F[1,in−1]
∆̂
(1)
R/W (Fq)Jz0K{i}

∇
// F[1,in−1]

∆̂
(1),∇
R/W (Fq)Jz0K{i}

involves a precision loss of at most n
(i
2

)
.

Proof. By Lemma 4.63, the right-hand vertical map is rationally invertible and has cokernel of order

in−1∏

j=1

qi−1−⌊
j−1
n ⌋ =

i−2∏

s=0

qn(i−1−s) = qn(
i
2).

Since it is a W (Fq)-module, its exponent is bounded by n
(i
2

)
, so we conclude as in the previous argument

that inverting the right-hand map causes a precision loss of at most n
(
i
2

)
.

7.2.5 Precision loss from computing can− ϕ on the primitives

Lemma 7.9 (Precision loss from can− ϕ∇). Filling in the square

F[1,in−1]N>i
∆̂
(1)
R/W (Fq)Jz0K{i}

N>i∇
//

can−ϕ

��

F[1,in−1]N>i
∆̂
(1),∇
R/W (Fq)Jz0K{i}

can−ϕ∇

��

F[1,in−1]
∆̂
(1)
R/W (Fq)Jz0K{i}

∇
// F[1,in−1]

∆̂
(1),∇
R/W (Fq)Jz0K{i}

involves a precision loss of at most
∑in−1

j=1 ǫ(i, j) + vp{j, n}.

Proof. As in the proof of Lemma 7.6, the p-adic valuation of the exponent of the cokernel of the top horizontal
map is bounded above by

∑in−1
j=1 ǫ(i, j) + vp{j, n} by the analysis in Section 7.2.1.
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A Tables

In this section we include calculations for the p-adic K-groups of Z/pn for some small p and n. More extensive
calculations for other rings of the form OK/̟n have been made and will be released elsewhere. The labels
refer to local fields in the lmfdb [34]. All calculations were performed on the high-performance cluster QUEST
at Northwestern University.

Each entry in the table consists of a list of positive integers or the mark ‘x’. In the former case, it is a
list of the exponents in the decomposition of a given K-group into cyclic groups. For example, K15(Z/3

2;Z3)
is given as 1,1,6, which means the group is isomorphic to Z/31 ⊕ Z/31 ⊕ Z/36. An empty list implies the
group is zero. A mark ‘x’ indicates that the calculation did not succeed in the allotted time (48 hours per
computation) on QUEST.

A.1 2.1.0.1: Z/2n

Kr\n Z/22 Z/23 Z/24 Z/25

K1 1 1,1 1,2 1,3

K2 1 1 1 1

K3 3 2,3 3,4 3,6

K4 1 2 3

K5 3 1,6 1,1,9 1,2,12

K6 1 1

K7 1,3 4,4 1,4,8 1,1,4,11

K8 1 2

K9 1,1,3 1,2,7 1,1,2,12 1,1,1,2,17

K10 1

K11 1,5 3,9 3,3,12 1,3,5,16

K12 1

K13 1,2,4 1,1,3,9 1,1,1,3,15 1,1,1,1,3,22

K14 1

K15 1,1,1,5 1,1,6,8 1,1,2,5,15 1,1,2,3,5,21

K16 1

K17 1,1,1,3,3 1,1,2,2,3,9 1,2,2,2,3,17 1,1,2,2,2,3,26

K18

K19 2,3,5 1,3,4,12 3,3,4,20 3,3,3,4,27

K20

K21 1,1,2,2,5 1,1,1,2,2,3,12 1,2,2,2,2,4,20 1,1,2,2,2,2,4,30

K22

K23 1,1,1,1,2,6 1,1,1,2,5,14 1,1,1,1,4,6,22 1,1,1,1,3,4,6,31

K24 x

K25 1,1,1,1,2,3,4 1,1,1,2,2,3,4,12 1,1,1,1,2,3,3,4,23 x

K26 x

K27 1,3,4,6 1,3,3,6,15 1,3,3,3,6,26 x

K28 x

K29 1,1,1,2,2,3,5 1,1,1,1,2,2,3,4,15 1,1,1,1,2,2,3,4,4,26 x

K30 x

K31 1,1,1,1,1,1,3,7 1,1,1,1,3,3,8,14 1,1,1,1,1,3,3,3,7,27 x

K32 x x

K33 1,1,1,1,1,2,2,3,5 1,1,1,1,2,2,2,2,4,4,14 x x

K34 x x

K35 2,3,3,5,5 1,2,3,4,5,5,16 x x

K36 x x

K37 1,1,1,1,2,2,3,3,5 1,1,1,1,1,2,2,2,3,3,4,17 x x

K38 x x

K39 1,1,1,1,1,1,1,2,4,7 1,1,1,1,1,2,3,5,7,18 x x

K40 x x

K41 1,1,1,1,1,1,2,2,3,3,5 1,1,1,1,1,2,2,2,2,3,3,6,17 x x

K42 x x x

K43 1,3,3,4,4,7 x x x

K44 x x x

K45 1,1,1,1,1,2,2,2,3,3,6 x x x

K46 x x x

K47 1,1,1,1,1,1,1,1,1,3,5,7 x x x

K48 x x x

K49 1,1,1,1,1,1,1,2,2,3,3,3,5 x x x

K50 x x x

K51 2,3,3,3,4,5,6 x x x

K52 x x x

K53 1,1,1,1,1,1,2,2,2,2,3,4,6 x x x

K54 x x x

K55 1,1,1,1,1,1,1,1,1,1,2,3,6,7 x x x

K56 x x x

K57 1,1,1,1,1,1,1,1,2,2,2,3,3,4,5 x x x

K58 x x x

K59 1,3,3,3,4,4,5,7 x x x
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Kr\n Z/32 Z/33 Z/34 Z/35

K1 1 2 3 4

K2

K3 1,1 1,3 1,5 1,7

K4 1 1 1 1

K5 4 7 10 13

K6

K7 1,3 1,1,6 1,2,9 1,2,13

K8 1 1 1

K9 1,4 1,1,9 1,1,14 1,1,19

K10

K11 3,3 1,2,9 1,1,2,14 1,1,2,20

K12 1 2 2

K13 1,1,5 1,1,1,12 1,1,2,19 1,1,2,26

K14

K15 1,1,6 1,1,2,12 1,1,1,2,19 1,1,1,2,27

K16 1 1

K17 2,7 1,2,15 2,2,24 2,2,33

K18

K19 1,1,1,2,5 1,1,1,1,2,14 1,1,1,1,1,2,23 1,1,1,1,2,2,32

K20 1 1

K21 1,1,1,2,6 1,1,2,3,15 1,1,1,2,3,26 1,1,1,2,3,37

K22

K23 1,3,8 1,1,2,3,17 1,1,1,2,4,27 1,1,1,2,5,38

K24 1 2

K25 1,1,1,1,2,7 1,1,1,2,3,18 1,1,1,1,2,3,31 1,1,1,1,3,3,44

K26

K27 1,1,1,1,2,8 1,1,1,1,1,2,2,19 1,1,1,1,1,1,2,2,32 1,1,1,1,1,2,2,2,45

K28 1 1

K29 1,2,3,9 1,1,3,4,21 1,1,1,3,4,36 1,1,1,3,4,51

K30

K31 1,1,1,1,2,2,8 1,1,1,1,1,1,2,2,22 1,1,1,1,1,1,1,2,2,37 1,1,1,1,1,1,2,2,2,52

K32 1 x

K33 1,1,1,1,2,2,9 1,1,1,2,2,2,2,23 1,1,1,1,2,2,2,2,40 x

K34 x

K35 2,2,5,9 2,2,2,2,4,24 2,2,2,2,3,3,40 x

K36 1 x

K37 1,1,1,1,1,2,2,2,8 1,1,1,1,1,2,2,2,2,25 1,1,1,1,1,1,2,2,2,2,44 x

K38 x

K39 1,1,1,1,1,1,2,2,10 1,1,1,1,1,2,2,2,2,27 1,1,1,1,1,1,2,2,2,3,45 x

K40 x x

K41 1,2,3,3,12 1,1,1,3,3,4,29 x x

K42 x x

K43 1,1,1,1,1,1,1,2,2,11 1,1,1,1,1,2,2,2,2,3,28 x x

K44 x x

K45 1,1,1,1,1,1,1,2,2,12 1,1,1,1,1,1,1,1,2,3,3,30 x x

K46 x x

K47 1,2,2,3,3,13 1,1,1,1,1,3,3,5,32 x x

K48 x x

K49 1,1,1,1,1,1,1,2,2,2,12 1,1,1,1,1,1,1,1,2,2,2,3,33 x x

K50 x x

K51 1,1,1,1,1,1,1,2,2,2,13 1,1,1,1,1,1,1,1,2,2,2,3,35 x x

K52 x x

K53 2,2,2,2,4,15 1,1,1,2,2,2,2,2,4,37 x x

K54 x x x

K55 1,1,1,1,1,1,1,1,1,2,2,2,13 x x x

K56 x x x

K57 1,1,1,1,1,1,1,1,2,2,2,3,12 x x x

K58 x x x

K59 1,2,3,3,3,4,14 x x x

K60 x x x

K61 1,1,1,1,1,1,1,1,1,2,2,2,3,13 x x x

K62 x x x

K63 1,1,1,1,1,1,1,1,1,2,2,2,3,14 x x x

K64 x x x

K65 1,2,2,3,3,3,4,15 x x x

K66 x x x

K67 1,1,1,1,1,1,1,1,1,1,2,2,2,3,15 x x x

K68 x x x

K69 1,1,1,1,1,1,1,1,1,1,2,2,2,3,16 x x x

K70 x x x

K71 2,2,2,2,2,4,5,17 x x x

K72 x x x

K73 1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,15 x x x

K74 x x x

K75 1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,16 x x x

K76 x x x

K77 1,2,2,3,3,3,3,4,18 x x x

K78 x x x

K79 1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,3,17 x x x



63 A.3 5.1.0.1: Z/5n

A.3 5.1.0.1: Z/5n

Kr\n Z/52 Z/53 Z/54 Z/55 Z/56

K1 1 2 3 4 5

K2

K3 2 4 6 8 10

K4

K5 3 6 9 12 15

K6

K7 1,3 1,7 1,11 1,15 1,19

K8 1 1 1 1 1

K9 6 11 16 21 26

K10

K11 1,5 2,10 2,16 2,22 2,28

K12

K13 1,1,5 1,1,12 1,1,19 1,1,26 1,1,33

K14

K15 1,1,6 1,1,1,13 1,1,1,21 1,1,1,29 1,1,1,37

K16 1 1 1 1

K17 1,8 1,1,17 1,1,26 1,1,35 1,1,44

K18

K19 1,9 1,1,18 1,1,28 1,1,38 1,1,48

K20

K21 1,1,1,8 1,1,2,18 1,1,2,29 1,1,2,40 1,1,2,51

K22

K23 1,1,1,9 1,1,1,2,19 1,1,1,2,31 1,1,1,2,43 1,1,1,2,55

K24 1 1 1 1

K25 1,1,1,10 1,1,1,1,23 1,1,1,1,36 1,1,1,1,49 1,1,1,1,62

K26

K27 1,1,1,11 1,1,1,1,24 1,1,1,1,38 1,1,1,1,52 1,1,1,1,66

K28

K29 1,2,12 2,2,26 2,2,41 2,2,56 2,2,71

K30

K31 1,1,1,1,1,11 1,1,1,1,1,1,26 1,1,1,1,1,2,41 1,1,1,1,1,2,57 1,1,1,1,1,2,73

K32 1 1 1 1

K33 1,1,1,2,12 1,1,1,1,2,29 1,1,1,1,2,46 1,1,1,1,2,63 1,1,1,1,2,80

K34

K35 1,1,1,2,13 1,1,1,1,2,30 1,1,1,1,2,48 1,1,1,1,2,66 1,1,1,1,2,84

K36

K37 1,1,1,1,1,14 1,1,1,1,1,1,32 1,1,1,1,1,1,51 1,1,1,1,1,1,70 1,1,1,1,1,1,89

K38 x

K39 1,2,3,14 1,1,1,2,2,33 1,1,2,2,2,52 1,1,2,2,2,72 x

K40 1 2 2 x

K41 1,1,1,1,1,1,15 1,1,1,1,1,1,1,36 1,1,1,1,1,1,2,57 1,1,1,1,1,1,2,78 x

K42 x x

K43 1,1,1,1,1,1,16 1,1,1,1,1,1,2,36 1,1,1,1,1,1,2,58 x x

K44 x x

K45 1,1,1,1,1,1,17 1,1,1,1,1,1,2,38 1,1,1,1,1,1,2,61 x x

K46 x x

K47 1,1,1,1,1,1,18 1,1,1,1,1,1,2,40 1,1,1,1,1,1,1,2,63 x x

K48 1 x x

K49 2,2,2,19 1,2,2,2,43 2,2,2,2,68 x x

K50 x x x

K51 1,1,1,1,1,1,1,2,17 1,1,1,1,1,1,1,1,2,42 x x x

K52 x x x

K53 1,1,1,1,1,1,1,2,18 1,1,1,1,1,1,1,2,2,43 x x x

K54 x x x

K55 1,1,1,1,1,1,1,2,19 1,1,1,1,1,1,1,2,3,44 x x x

K56 x x x x

K57 x 1,1,1,1,1,1,2,3,47 x x x

K58 x x x

K59 1,2,2,3,22 1,1,1,2,2,4,49 x x x

K60 x x x

K61 1,1,1,1,1,1,1,1,2,21 1,1,1,1,1,1,1,1,2,3,49 x x x

K62 x x x

K63 1,1,1,1,1,1,1,1,1,2,21 1,1,1,1,1,1,1,1,2,2,2,50 x x x

K64 x x x

K65 1,1,1,1,1,1,1,1,2,2,21 1,1,1,1,1,1,1,2,2,2,53 x x x

K66 x x x x

K67 1,1,1,1,1,1,1,2,2,23 x x x x

K68 x x x x

K69 1,2,2,3,3,24 x x x x

K70 x x x x

K71 1,1,1,1,1,1,1,1,1,2,2,23 x x x x

K72 x x x x

K73 1,1,1,1,1,1,1,1,1,2,2,24 x x x x

K74 x x x x

K75 1,1,1,1,1,1,1,1,1,2,2,25 x x x x

K76 x x x x

K77 1,1,1,1,1,1,1,1,1,2,2,26 x x x x

K78 x x x x

K79 1,2,2,2,3,3,27 x x x x

K80 x x x x

K81 1,1,1,1,1,1,1,1,1,1,1,2,2,26 x x x x

K82 x x x x

K83 1,1,1,1,1,1,1,1,1,1,2,2,28 x x x x

K84 x x x x

K85 1,1,1,1,1,1,1,1,1,1,2,2,29 x x x x

K86 x x x x

K87 1,1,1,1,1,1,1,1,1,1,1,1,2,30 x x x x
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Kr\n Z/72 Z/73 Z/74 Z/75 Z/76 Z/77

K1 1 2 3 4 5 6

K2

K3 2 4 6 8 10 12

K4

K5 3 6 9 12 15 18

K6

K7 4 8 12 16 20 24

K8

K9 5 10 15 20 25 30

K10

K11 1,5 1,11 1,17 1,23 1,29 1,35

K12 1 1 1 1 1 1

K13 8 15 22 29 36 43

K14

K15 1,7 2,14 2,22 2,30 2,38 2,46

K16 x

K17 1,1,7 1,1,16 1,1,25 1,1,34 1,1,43 x

K18 x x

K19 1,1,8 1,1,18 1,1,28 1,1,38 x x

K20 x x

K21 1,1,9 1,1,20 1,1,31 1,1,42 x x

K22 x x x

K23 1,1,10 1,1,1,21 1,1,1,33 x x x

K24 1 1 x x x

K25 1,12 1,1,25 1,1,38 x x x

K26 x x x

K27 1,13 1,1,26 1,1,40 x x x

K28 x x x x

K29 1,1,1,12 1,1,2,26 x x x x

K30 x x x x

K31 1,1,1,13 1,1,2,28 x x x x

K32 x x x x

K33 1,1,1,1,13 1,1,1,1,30 x x x x

K34 x x x x

K35 1,1,1,1,14 1,1,1,1,1,31 x x x x

K36 x x x x x

K37 1,1,1,16 x x x x x

K38 x x x x x

K39 1,1,1,17 x x x x x

K40 x x x x x

K41 1,2,18 x x x x x

K42 x x x x x

K43 1,1,1,1,1,17 x x x x x

K44 x x x x x

K45 1,1,1,1,1,18 x x x x x

K46 x x x x x

K47 1,1,1,1,1,19 x x x x x

K48 x x x x x

K49 1,1,1,1,1,20 x x x x x

K50 x x x x x

K51 1,1,1,1,1,21 x x x x x
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