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Abstract

Non–Contact Atomic Force Microscopy with CO–functionalized metal tips (referred to as HR-AFM)
provides access to the internal structure of individual molecules adsorbed on a surface with totally unprece-
dented resolution. Previous works have shown that deep learning (DL) models can retrieve the chemical
and structural information encoded in a 3D stack of constant-height HR–AFM images, leading to molec-
ular identification. In this work, we overcome their limitations by using a well-established description of
the molecular structure in terms of topological fingerprints, the 1024–bit Extended Connectivity Chemical
Fingerprints of radius 2 (ECFP4), that were developed for substructure and similarity searching. ECFPs
provide local structural information of the molecule, each bit correlating with a particular substructure
within the molecule. Our DL model is able to extract this optimized structural descriptor from the 3D
HR–AFM stacks and use it, through virtual screening, to identify molecules from their predicted ECFP4
with a retrieval accuracy on theoretical images of 95.4%. Furthermore, this approach, unlike previous
DL models, assigns a confidence score, the Tanimoto similarity, to each of the candidate molecules, thus
providing information on the reliability of the identification. By construction, the number of times a
certain substructure is present in the molecule is lost during the hashing process, necessary to make them
useful for machine learning applications. We show that it is possible to complement the fingerprint-based
virtual screening with global information provided by another DL model that predicts from the same
HR–AFM stacks the chemical formula, boosting the identification accuracy up to a 97.6%. Finally, we
perform a limited test with experimental images, obtaining promising results towards the application of
this pipeline under real conditions

1 Introduction

Atomic Force Microscopy (AFM) operated in the frequency modulation (FM) mode in ultra–high vac-
uum conditions (commonly known as Non–Contact AFM, NCAFM) has become an essential tool for
nanoscience [1, 2]. NCAFM allows us to explore and manipulate matter at the atomic scale through the
interaction between a sharp apex probe and the sample. The functionalization of AFM metal tips with
closed-shell molecules, in particular with CO, provides access with totally unprecedented resolution to the
inner structure of small organic molecules adsorbed on surfaces [3, 4, 5, 6]. Since the first High–Resolution
(HR) AFM image of the pentacene molecule [3], this striking resolution has been exploited to disclose bond
orders [7], to image frontier orbitals [5] and charge distributions, and to track the intermediate products of
chemical reactions [8]. Nowadays, HR–AFM has become an essential tool for on-surface chemistry [8, 9] and
fundamental catalysis studies [10].
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The utmost resolution provided by HR–AFM arises from the Pauli repulsion between an inert probe
like CO probe with the electronic charge distribution of the sample molecule [11, 12] modified by the
electrostatic interaction between the potential created by the sample and the charge distribution associated
with the oxygen lone pair at the probe [13, 14, 15]. The flexibility of the bond between the CO and the last
atom of the metal probe magnifies the saddle lines of the total potential energy surface sensed by the CO,
further enhacing the resolution [16].

This exquisite sensitivity to the sample charge density immediately rises the question whether we can
go beyond structure and use HR–AFM as a molecular identification tool. Given the capability of HR–AFM
to address individual molecules, such a tool would not only serve to on–surface chemistry applications but
has the potential to overcome some of the fundamental limitations of the spectroscopic techniques [17] such
as vibrational spectroscopy (Fourier Transform Infrared (FTIR) and Raman spectroscopies) [18], nuclear
magnetic resonance (NMR) [19], or mass spectrometry [20, 21] traditionally used for molecular identification.

For molecular identification solely based on HR–AFM, the repulsive nature of the CO-sample interaction
prevents the application of force spectroscopy protocols, based on the determination of maximum attractive
forces, that achieved single-atom chemical identification [22].

Attempts to discriminate atoms in molecules by HR–AFM have been based so far either on differences
found in the tip-sample interaction decay at the molecular sites [13, 23] or on characteristic image features
associated with the chemical properties of particular molecular moieties [24, 25, 26, 13, 27, 28, 29, 5, 6,
30, 31]. For instance, sharper vertices are displayed for substitutional N atoms on hydrocarbon aromatic
rings [24, 13, 23] due to their lone pair. Furthermore, the decay of the CO-sample interaction over those
substitutional N atoms is faster than over their neighboring C atoms [13, 23]. In general, due to their slower
charge density decay, C atoms in aromatic rings are usually sensed as more repulsive than N, which, in
turn, is more repulsive than oxygen. Halogen atoms can also be distinguished in AFM images thanks to
their oval shape (associated to their σ-hole) and to the significantly stronger repulsion compared to atoms
like nitrogen or carbon [28]. Although promising, these rules do not represent a reliable solution to the
atom identification problem as the molecular environment plays an important role: C atoms in carboxylic
groups literally disappear from the image of trimesic acid (TMA) self-assembled networks as they are much
less repulsive than the neighboring O atoms in the acid moiety, that strongly attract the electronic charge
towards them [29]. Furthermore, small height differences can significantly modify the images [32], leading
in many cases to contrast inversion with respect to the above rules.

The previous analysis suggests that not a single HR–AFM image, but a 3D stack of constant–height
images covering a range of relevant tip heights is needed to provide enough information on the molecular
electronic charge distribution to disentangle the contribution of the bonding topology, the chemical com-
position and the internal corrugation of the molecule to the contrast of the HR-AFM images. While 2D
features, like the sharper vertex associated with N atoms [13] are easily recognized by a human via visual in-
spection, handling 3D information to discriminate, for example, among the different halogens (that produce
the same oval-shape contrast but with different decays moving out of molecule [28]) calls for the application
of a Machine Learning (ML) approach. In particular, Deep Learning (DL) has proven to be a powerful
tool for learning long–range, complex correlations over large sets of images using a data–centric approach.
Convolutional Neural Networks (CNNs) [33] have been employed over 3D stacks of constant-height AFM
images with remarkable success at different tasks. In 2020, Alldritt et al. [34] developed a CNN model that
obtained information about the 3D molecular structure from an 3D image stack by predicting the van der
Waals spheres representation of the molecule. They also reported a preliminary test for the prediction of
the chemical composition, with modest but promising results. Later in 2022, Oinonen et al. [35] created a
pipeline for obtaining the molecular graph also from 3D image stacks. This pipeline consisted of a CNN
that extracted a point cloud representation of the atoms, a peak finding algorithm and a combination of
Multilayer Perceptron (MLP) and Graph Neural Network (GNN) models to classify each node and assign
the bonds. The detection of atomic positions worked quite reliably even for relatively large molecules such as
PTCDA (3,4,9,10-Perylenetetracarboxylic dianhydride CID: 67191)although there were inconsistencies for
non-planar systems (error rate of ∼ 20 %) and the model was sensitive to the choice of coordinate system.
However, the compositional analysis, that was restricted to families of atoms –1: (H), 2: (C, Si), 3: (N, P),
4: (O, S), 5: (F, Cl, Br)–, showed errors up to 30% for the family (N,P), that was commonly mistaken with
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the C- and O-groups.
In previous work, we have addressed the problem of complete molecular identification (structure and

composition) of quasi planar organic molecules with no prior information about them using two different DL
approaches, taking as input a stack of 10 constant-height HR-AFM images covering the range of tip-sample
distances commonly used for AFM imaging, spanning a distance variation of 1 Å. Firstly, we framed it as
an image captioning challenge and used multimodal networks [36] to solve it. Each multimodal network
(M-RNN) included a CNN for image analysis and a Recurrent Neural Network (RNN) for language pro-
cessing. The first network took as input the 3D image stack and provided the attributes, the IUPAC terms
corresponding to all the chemical groups present in the molecule. The second M-RNN exploited both the
3D image stack and the attributes provided by the first M-RNN to predict the IUPAC name of the molecule,
that completely describes the structure and composition of the molecule. The determination of the chemical
groups within the molecule had a 95% accuracy, showing that HR–AFM images did carry significant chem-
ical information and that the CNN model is able to retrieve it. For the prediction of the complete IUPAC
name, although the model outperforms most applications of RNN to language translation, the accuracy was
limited to 76% using the cumulative 4-gram BLEU metric [37], the standard metric for natural language
processing. This performance drop is probably related to intrinsic limitations of RNNs models and to the
IUPAC formulation rules, specifically designed for humans but not particular suitable for machine learning
applications.

In order to overcome this language limitation, we devised a completely new perspective using visualisation
techniques that map images onto images [38]. Our Conditional Generative Adversarial Network (CGAN)
converts the image stack into a ball-and-stick depiction, where balls of different color and size represent
the chemical species and sticks represent the bonds, providing, in this way, complete information on the
structure and chemical composition. As an additional advantage, this approach can handle images containing
groups of molecules bonded by hydrogen or halogen-bond interactions or molecular fragments that cannot
be described by the IUPAC formulation. To estimate the accuracy of our identification method we used
a global assessment and two specific evaluations focused on either structure or composition. The CGAN
model achieved a remarkable 74% of perfect predictions, that increased to 95% (96%) when considering only
structure (composition). Our criteria in the total accuracy and the structure accuracy was really tough as
a prediction was considered correct only if there was a perfect match (in all the predictions, most of the
structure is revealed correctly, providing valuable information about the molecule, in spite of been considered
as incorrect in the determination of the accuracy.)

The results of the two DL models described above show the potential for chemical and structural identi-
fication of molecules encoded in HR–AFM images. However they are still limited by the deficiencies of the
IUPAC nomenclature as a language in the M-RNN model and by the visual character of the information
retrieved by the CGAN, perfectly informative for a human but not useful for its possible use for a prediction
of the molecular properties based on the chemical information stored in the HR–AFM images. Here, we seek
to overcome these limitations by using an alternative, well-established description of the molecular structure
in terms of topological fingerprints [39], that were developed for substructure and similarity searching. In
particular, we have selected a widely used and optimized topological fingerprint, the 1024–bit Extended
Connectivity Chemical Fingerprints of radius 2 (ECFP4) [40]. We show that we can design and train (with
the QUAM–AFM database [41]) a DL model that is able to extract this optimized structural descriptor
from the 3D HR–AFM stacks and use it, through virtual screening [42], to identify molecules from their
predicted ECFP4 with very high accuracy (see Fig. 1).

ECFPs, developed specifically for structure-activity modeling, are circular fingerprints with a number of
useful qualities: they can be very rapidly calculated; they are not predefined, and can represent an essen-
tially infinite number of different molecular substructures (including stereochemical information). ECFPs
have proven to be useful in several applications including virtual screening, quantitative structure–activity
relationship (QSAR) modeling [43, 44] and similarity searching [45]. Particularly relevant examples are the
use of ECFPs applied to different molecular datasets for the prediction of electronic properties, solubility
and binding affinities for bio-molecular complexes [44], and the recent application to predict compounds
with high antibiotic activity and low cytotoxicity [46].

The rest of the paper is organized as follows. After introducing our model for predicting the molecular
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fingerprints, the 1024–bit ECFP4 [40], of a target molecule and exposing other methodological details used
in the work, we show the performance of the model for fingerprint extraction from 3D HR–AFM stacks
by using the Tanimoto similarity [47, 48]. As the direct reconstruction of molecular representations from
ECFPs is far from being straightforward [49], we have chosen a virtual screening process as the strategy for
molecular identification. Our results show that molecules can be identified from the predicted ECFP4 with
very high accuracy (95.4%). This method, unlike previous works [35, 36, 38], has the additional advantage
of selecting an arbitrary number of candidate molecules and assigning a confidence score, the Tanimoto
similarity [47, 48]) to each one of them, thus providing information on the reliability of the identification.
This approach let us identify the correct molecule even when the prediction of the fingerprint is partially
wrong.
By construction, ECFPs provide local structural information and the frequency of the identified substruc-
tures is lost during the hashing process necessary to map them into a fixed sized vector (see Methods).
To address this limitation, we complement the fingerprint-based virtual screening with global information
from another deep learning model that predicts the chemical formula from the same high-resolution atomic
force microscopy (HR-AFM) stacks, enhancing the identification accuracy to 97.6%. Finally, we conducted
a limited test with experimental images, yielding promising results that support the feasibility of applying
this pipeline under real-world conditions.

2 Methods

2.1 Molecular fingerprints

Molecular fingerprints [39] are representations of the chemical structure of the molecule optimized for sub-
structure searching and machine learning tasks. In molecular fingerprints, each integer represents the pres-
ence of a particular substructure. In our work, we have chosen the Extended Connectivity Fingerprints
(ECFPs) [40], a class of topological fingerprints that can be efficiently computed and represent an essen-
tially infinite number of different molecular substructures.

The ECFP generation process begins with the assignment of an initial integer identifier to each atom
in the molecule. These identifiers are typically based on atom types and incorporate properties such as
the valence, atomic mass and so forth. Following this, an iterative neighborhood expansion process takes
place up to a defined radius. In each iteration, a new integer identifier is created for each atom by hashing

Predicted ECFP4

Molecular 
database

Top-k

Top-k candidates

0

1

0

0

1

1

0

0

1

1

Data acquisition Fingerprint prediction Virtual screening

Figure 1: Diagram of the molecular identification pipeline. From the experiment, we obtain the 3D HR–
AFM stack consisting of 10 constant–height images, which is fed to our neural network to extract the
Extended Connectivity Topological Fingerprints (ECFP4). Then, we perform a virtual screening with
the predicted fingerprints against a molecular database molecule/fingerprints pairs and rank by decreasing
tanimoto similarity.
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its current identifier together with those of its immediate neighbors, in order to incorporate information
from the atom’s local environment. In ECFP4, the radius is set to second neighbors. Finally, we map the
fingerprints to a fixed–size 1024–bit vector. To obtain the index of the “on” bits in the final bit vector,
we use the modulo operator on each integer. This hashing step, although necessary for machine learning
applications [40, 44], produces a loss of information: firstly, the frequency of each substructure’s occurrence
within the molecule is lost; secondly, different integers can be mapped to the same index (a situation referred
to as a “bit collision” [40]).

In our implementation, we have used the RDKit [50] library to compute the molecular fingerprints from
the SMILES code of the molecules, obtained from the PubChem [51] repository.

2.2 Tanimoto similarity and virtual screening

Labelling molecules with these fingerprints allows an easy and fast quantification of the difference or simi-
larity between two molecules A and B. We have chosen the Taminoto Similarity [47, 48], SA,B, calculated
as:

0 ≤ SA,B =
c

a+ b− c
≤ 1 (1)

where a is the number of on bits in molecule A, b the number of on bits in molecule B and c the number
of bits that are on in both molecules [47]. The closer the value is to 1, the more similar molecules A and B
are. Therefore, SA,B = 1 means A and B are the same, except for the limitations due to the local character
of the fingerprints and the information lost in the hashing step of the fingerprint generation process.

Using this similarity metric, we can identify and rank candidate molecules via virtual screening as
described in [42]: firstly, the Tanimoto similarity [47, 48] between the predicted fingerprint and each molecule
in the database is computed. Then, the candidates are ranked by decreasing order. At the end, the top-k
candidates are returned as the output of the screening process, where k is an optional parameter set by the
user. Here, the Tanimoto similarity serves both as a ranking metric and as the model’s confidence in the
prediction.

2.3 Architecture of models

In this work, we have developed two CNN models: (i) a multilabel classification model for the prediction of
molecular fingerprints; and (ii) a regression model for the count of each atomic species within the structure,
from which we construct the chemical formula.

The molecular fingerprint model is an adaptation of EfficientNet-B0 [52], where we change the first
convolutional layer from 3 to 10 channels so it accepts stacks of 10 constant-height HR-AFM images as
input, allowing the model to take the whole z–range at once. The final layer consists of a Dense layer of size
1024 with sigmoid activation. A critical step for improving the model’s performance on experimental images
was to substitute the first BatchNorm layer of the EfficientNet model for a Dropout layer with dropout
probability p = 0.5. The dropout layer prevents co-adaptation of neurons [53], what makes the model
robust against experimental conditions (noise, plane tilting, etc.) which are not present in the simulated
images used for the training (see below). The chemical formula model is constructed in the same way, but
using as the final layer a Dense layer of 10 neurons with ReLu activation.

2.4 Training and evaluation

This work aims to create an end–to–end molecular identification tool that uses a 3D stack of experimental
AFM images as input. However, training neural networks requires a high amount of labeled samples and
there is currently no such dataset for experimental images. For this reason, we train and evaluate our models
primarily on simulated images from the QUAM–AFM [41] dataset, containing 165 million HR-AFM images
theoretically generated from a selection of 685,513 isolated quasi-planar molecules from PubChem [51] that
span the most relevant bonding structures and chemical species in organic chemistry. The QUAM–AFM can
be freely downloaded [54]. For each molecule, HR-AFM images were simulated for 10 tip–sample distances
considering six different values of cantilever oscillation amplitude and four values of the tilt stiffness of the
CO molecule to cover a wide range of experimental operation conditions.
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We performed data curation by removing the non–live molecules [55] from our dataset. These molecules
were accessible through the PubChem API at the date of creation of QUAM–AFM, but have since then
become inaccessible. After this step, our train/validation/test split consisted of 285k/15k/280k randomly
sampled molecules respectively. As the training set is so huge, we divide each epoch in 10 virtual epochs
and compute validation metrics at the end of each of these virtual epochs (see Supplementary Information,
Fig. S1).

For the molecular fingerprint model, the binary cross-entropy with logits loss function, equipped with
balanced positive weights, was used as the training criterion:

L = − 1

N

N∑

i=1

[
pc · yi · log(σ(xi)) + (1− yi) · log(1− σ(xi))

]
, (2)

where yi is the ground truth for the i-th bit of the fingerprint, σ is the sigmoid function and σ(xi) the
probability predicted by the model for that same bit. The pc parameter is used to give more weight to
correctly predicting the on bits (see section S3). Molecular fingerprints are quite sparse and without this
term, the network could be trained into only predicting 0’s.

Regarding the training strategy, we initialized the fingerprint model from pre-trained weights [52]. The
bias of the last layer is initialized with a prior to accelerate the convergence of the model (see section S1 for
details). Then, the model was trained until a plateau at mean Tanimoto similarity S = 0.88 is reached in
the validation set (Figure S1a). We select the last checkpoint as our models’ weight.

For the model that predicts the chemical formula, we followed a transfer learning strategy: we cloned
the weights from the backbone of the fingerprint model to the backbone of the chemical formula model and
trained it end-to-end (Figure S1b). Since we had a very good pre-training, the model is almost converged
on the first virtual epoch (MSE: 0.1 atoms2), after which our validation oscillates for the rest of the training.
The training hyperparameters of both models were chosen to be the standard for classification and regression
tasks (Table S1). For the chemical formula model, we define accuracy as the probability of perfect prediction,
a very hard metric on our model as a miscounting in the number of hydrogens is considered a failed prediction.

It is important to stress that, during the training of both models, strong data augmentations were applied
in order to regularize the model and to reproduce the effect of experimental conditions on the HR–AFM
images. These augmentations include rotations, translations, shears, in/out zooms, and gaussian noise (see
Table S2 for details).

2.5 DFT calculations and simulation of HR–AFM images

The HR–AFM images in the QUAM–AFM dataset were simulated using the gas phase molecular structure
available from PubChem. However, when molecules are deposited in a substrate, the interaction with the
surface changes the molecule corrugation, which translates into differences in the contrast of the images.

To study the ability of the model to identify molecules in a substrate, we simulated the adsorption of
PTCDA on Cu(111) and Ag(111) surfaces. For the Cu(111) slab, we used a unit cell of size 20.4 x 22.08
x 30.83 Å (including about 25.49 Å of vacuum). The slab model contained 3 layers of copper, making
238 atoms in total. As starting geometry, we placed the PTCDA molecule in its gas phase structure at
2.86 Å above the slab. For the geometry relaxation, DFT calculations were carried out using the VASP
package [56] with a cutoff energy of 425 eV for the plane-wave basis set. The projector augmented wave
method [57, 58] was used to build the pseudopotentials of all constituent species. We use the PBE generalized
gradient approximation [59] for the exchange-correlation part of the energy and the semiempirical DFT-D3
dispersion correction [60] to model the Van der Waals interaction. The PTCDA structure adsorbed on
Cu(111) was converged using a conjugate gradient algorithm until forces upon atoms were smaller than
0.01 eV/Å while each electronic self-consistent loop was calculated with a precision of 10−5 eV. A vertical
vacuum region of 22.4 Å was established between the periodical images and a dipole correction along the
z-axis was also used. As we were only interested in the effect of the substrate on the molecular corrugation,
we left the substrate fixed and sampled the Brillouin zone using only the Γ point.
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Figure 2: Tanimoto similarity distributions between predicted and ground truth fingerprints (red) and
randomly drawn molecules fingerprints (blue). We can extract enough chemical information to distinguish
a molecule from the bulk.

The geometry of the PTCDA molecule adsorbed on Ag(111) was obtained from ref [61], which was
calculated with the same parameters but an energy cutoff of 400 eV and convergence criterium of 10−6 eV
for the SCF calculation.

HR–AFM images are simulated with the same model used to generate the QUAM–AFM data set [41]:
an approximate implementation of the full density based model (FDBM) [13] in the latest version of the
PPMAFM code [62, 41]. Only the molecular structures obtained from the adsorption calculations are
included in the corresponding HR–AFM simulations.

3 Results and discussion

3.1 Predicting ECFP4 from HR–AFM images.

First, we evaluate the performance of our chemical fingerprint prediction model. We use our model to pre-
dict the chemical fingerprints from the 3D stacks of HR–AFM images for the 279905 molecules in the test
set and plot the histogram of the Tanimoto similarity (red histogram in Fig. 2) between the predicted and
ground truth fingerprints. This histogram has a median Tanimoto similarity equal to 0.95, demonstrating
that we can predict the chemical fingerprints from HR–AFM image stacks very accurately. To compare with
a baseline, we also compute a control histogram (blue histogram on Fig. 2) corresponding to the Tanimoto
similarity of pairs of randomly chosen molecules. This control histogram has median 0.11 and a very low
density for values of Tanimoto greater than 0.4. From Fig. 2 we can conclude that, in most cases, we won’t
be able to predict the molecular fingerprints perfectly (S=1). Nevertheless, a not-perfectly predicted still
can store enough information of the molecule to be identified. Statistically, a prediction with Tanimoto
similarity higher than 0.5 should be enough to identify a molecule from the HR–AFM images.

The chemical information provided in the predicted fingerprint outperforms previous models [34, 35,
36, 38]. Alldrit et al. [34] focused on structural elucidation and only presented few preliminary results for
chemical recognition. Later work [35] addressed molecular identification using GNNs but showed modest
accuracy compared to this work. In our work with M-RNNs [36], we presented a model that was able to
identify the chemical groups in a molecule from a stack of simulated HR-AFM images with 95% precision,
comparable to the present work. However, the retrieved ECFP4s contain more information as they encode

7



both molecular moieties and structural information. Finally, in our recent CGAN model for balll-and-stick
prediction [38], although remarkable in its prediction for either the structure or composition (∼95%), the
combined performance dropped to ∼ 76%. Furthermore, the visual character of the information retrieved
by the CGAN is not suitable for its subsequent use for the prediction of other molecular properties, as
structure–activity relationships and similarity searching where the ECFPs have already shown their po-
tential. Thus, the outstanding precision demonstrated by our novel model in forecasting ECFP4 marks a
significant advancement in HR-AFM image analysis.

3.2 Molecular Identification via virtual screening

One of the main goals of this work is to automate molecular identification. Our hypothesis is that a molecule
can be identified through its predicted ECFP4 performing a virtual screening: we calculate the Tanimoto
similarity of the predicted fingerprint against the fingerprints of all the molecules from the reference dataset
and retrieve the top candidates, i.e., those with the highest Tanimoto.

On our test-dataset of simulated images of 279905 molecules, we achieve a top1 and top5 retrieval
accuracy of 95.43% and 97.92% respectively (see Fig. 3). This means that our model is able to correctly
identify the molecule in practically all the cases of our dataset which includes a large variety of homo- and
hetero- acyclic or cyclic compounds with the most relevant functional groups including alkanes, alkenes,
alkyne, alcohols, thiols, ethers, aldehydes and ketones, carboxylic acids, amines, amides, imines, esters,
nitriles, nitro and azo compounds, halocarbons, and acylhalide. Figures 4, 5, 6 show a few examples of
correct identification on different sets of molecules.

Our first test is on polyaromatic hydrocarbons (PAHs) (Fig. 4), which include only two chemical species
(carbon and hydrogen). Independently of the number of rings or the bond order distribution, the model
correctly identifies these molecules. All these PAHs have correctly been identified, even if the predicted
fingerprints weren’t 100% correct (Tanimoto S = 1). This highlights the robustness of the virtual screening,
where even partially correct predictions of the fingerprints is enough to correctly identify the molecule
(Fig. 2). In the first row, the top and second candidates have quite different topologies and the difference
in tanimoto similarity is ∆S = 0.14. In comparison, the second and third rows candidates with very similar
topologies, which is why the difference in tanimoto is less than a third (∆S = 0.04 in both cases). Since the
topologies are so similar, the model is less confident in predicting if the correct molecule is one or the other
(even if in the end recognizes the correct structure).

top1 acc top1 acc w 
chem formula

top5 acc top5 acc w 
chem formula

86

88

90

92

94

96

98

100

A
cc

u
ra

cy
 (

%
)

95.4

97.6 97.9
98.4

Figure 3: Identification accuracy versus corrugation. We compute the accuracy for molecules with corru-
gation < 25 pm (green), 25–75 pm (orange) 75–125 pm (purple) and > 125 pm (magenta). Dashed black
lines represent the accuracy over all corrugation groups. Enriching the virtual screening with the chemical
formula improves accuracy across all corrugation groups.
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The molecule in the last row, Tetramethyl-Undecacyclo-Tetraconta-Icosaene (CID: 59721948), shows
that the model not only works for perfectly flat cases, but it correctly identifies the presence of methyl
groups. The tanimoto (S = 0.54) is relatively low, comparing with the two previous examples, meaning
that the corrugation had an effect on the accuracy of the model.

Next, we consider molecules including nitrogen, oxygen and sulfur atoms besides carbon and hydrogen.
The three chosen molecules (see Fig. 5) display a variety of bonding configurations and include a number of
different chemical groups: carboxylic, methyl, and amide groups, thiophene, thiadiazole or oxadiazole rings.
Despite the presence of several atomic species and the structural complexity, our model correctly identified
the target molecule with high confidence. In the first row, the model correctly predicts the two thiadiazole
groups. In the second row, the top two candidates only differ by a triazole vs a thiodiazole (this means a N-H
vs a S atom), while in the third row, the model correctly discriminates between a Pyrazolo[1,5-a]pyridine
and a Pyrazolopyrimidine (a C for an N).

Lastly, we test whether we can distinguish between different bonding coordinations for the same chemical
species or among elements in the same chemical family (same column in the Periodic Table). Fig. 6 shows
(first row) how the model is able to recognize and discriminate the furan and thieno groups in the molecule
3-Methylthieno[3,2-b]furan (CID:58899415). We can also discern different halogens (Fig. 6, second row) as
seen for the 2-Bromo-4-chloro-3-iodopyridine (CID: 59332995) molecule. Finally, in the third row, we see
how, for the 4-Oxo-4-(quinolin-3-ylamino)butanoic acid (CID: 861757) molecule formed by a chain with
methylene, amide and carboxyl groups, the ECFP4 was perfectly predicted.

As the interaction is so sensitive to the tip–sample distance, the internal corrugation of the molecule is one
of the key contributors to the HR–AFM contrast. Disentangling this effect from the bonding configuration
and the chemical composition to achieve molecular identification is a major challenge. In our study, we
have restricted ourselves to molecules with corrugations smaller 185 pm, that include the presence of methyl
groups and are within the height range from where information can be retrieved with the common constant–

zts = 290 pm zts = 310 pm zts = 330 pm Ground Truth

S: 0.89, z: 1pm

Top candidate

S: 0.75, z: 1pm

Second candidate

S: 0.74, z: 1pm S: 0.70, z: 0pm

S: 0.54, z: 0pm S: 0.50, z: 0pm

Figure 4: Examples of identification of polycyclic aromatic hydrocarbons over theoretical 3D stacks.
Columns from left to right, constant-height AFM images (1-3), ground truth molecule (4) and top (5)
and second (6) candidates. Under each candidate, tanimoto similarity, S and corrugation, ∆z is ex-
pressed. Molecules from first to last row are Tetrabenzo(a,c,g,s)heptaphene (CID:143932), Benzo[1,2,3-
bc:4,5,6-b’c’]dicoronene (CID:636081) and Tetramethyl-Undecacyclo-Tetraconta-Icosaene (CID: 59721948),
where methyl groups have been highlighted. The model identifies the correct molecules with high confidence.
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zts = 290 pm zts = 310 pm zts = 330 pm Ground Truth

S: 0.81, z: 0pm

Top candidate

S: 0.64, z: 71pm

Second candidate

S: 0.97, z: 4pm S: 0.62, z: 4pm

S: 0.97, z: 0pm S: 0.70, z: 0pm

Figure 5: Examples of identification of molecules with nitrogen, oxygen and sulfur atoms. From first
to last row: 4,4’-Bi[1,2,3-thiadiazole] (CID:2748722), 5-methyl-2-(2H-triazole-4-carbonylamino)thiophene-
3-carboxylic acid (CID:63616469) and 5-Pyrazolo[1,5-a]pyridin-3-yl-1,2,4-oxadiazole-3-carboxylic acid
(CID:103122053). IN the last two rows, the differences between candidate molecules have been highlighted
to guide the reader.

zts = 290 pm zts = 310 pm zts = 330 pm Ground Truth

S: 0.62, z: 0pm

Top candidate

S: 0.41, z: 0pm

Second candidate

S: 0.78, z: 0pm S: 0.58, z: 0pm

S: 1.00, z: 4pm

Cl Cl

Br
I I

I

S: 0.78, z: 15pm

Figure 6: Examples of identification of molecules with chemical species of the same group. Columns orga-
nized as in Figure 4. From first to last row: 3-Methylthieno[3,2-b]furan (CID:58899415), 2-Bromo-4-chloro-
3-iodopyridine (CID: 59332995) and 4-Oxo-4-(quinolin-3-ylamino)butanoic acid (CID: 861757).
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height operation mode for HR–AFM [34]. This limitation arises from both the strength of the Pauli repulsion
on the higher atoms and the deflection of the CO probe, that contributes to sharpen the features associated
to the higher atoms, but, at the same time, veils the access to the lower ones, effectively creating regions
that are inaccessible to the tip. Figure 3 plots the accuracy of the model for molecular identification for
molecules from our test set of 279905 molecules with corrugations in four different ranges. We do see a drop
in accuracy when we move to larger corrugations, but the reduction is rather small (≃3.5% for the group
with larger corrugation).

Our fingerprint–based identification pipeline has very few misidentifications (less than 5% of the cases).
In Figure 7, we explore four typical failures that help us unveil the limitations of our model and illustrates
how some of them can be easily fixed.

The case shown in the first row of Fig. 7 is archetypical: the retrieval fails because the molecular
fingerprints of the ground truth molecule (Methyl 12-oxobenzo[b]xanthene-9-carboxylate, CID:135178930)
and the top candidate (Methyl 12-oxobenzo[b]xanthene-8-carboxylate, CID:135178929) are indeed the same.
Since the radius used to create the fingerprints is limited to next nearest neighbors (the two closest atoms),
they cannot capture the switching in the relative position of radicals that are far away. In this case, there
is a tie in the Tanimoto similarity and the order of the candidates is arbitrary.

The second row of Fig. 7 illustrates another case where molecular identification is hampered by the local
character of the fingerprints: the difference between the predicted Naphthacene (CID:7080) and the second

zts = 290 pm zts = 310 pm zts = 330 pm Ground Truth

S: 0.95, z: 114pm

Top candidate

S: 0.95, z: 113pm

Second candidate

S: 1.00, z: 0pm S: 1.00, z: 0pm

S: 0.19, z: 51pm S: 0.15, z: 77pm

S: 0.30, z: 0pm S: 0.29, z: 0pm

Figure 7: Examples of incorrect identifications. Molecules from first to last row are
Methyl 12-oxobenzo[b]xanthene-9-carboxylate (CID:135178930), Hexacene, (CID:123044), Resorcinoxide
(CID:129866873) and N-(3-hydrazinylidene-1H-inden-2-ylidene)hydroxylamine (CID:137221883). In Resor-
cinoxide, there is an oxygen atom inaccessible to the tip, as it is under the benzene ring (highlighted in
purple). The identification fails not because of the model, but rather because the AFM doesn’t have access
to this region of the molecule.
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candidate (and, in this case, ground truth) Hexacene (CID:123044) molecules is the number of benzene
rings. Our fingerprints are binary, which means that they represent the presence or absence of certain
molecular substructures, but they don’t retain information about the number of times they are present.
This information is lost in the hashing step, subsection 2.1, in the construction of the ECFP4 fingreprints.
In these cases, different molecules can have the same ECFP4 while having different chemical formula. The
retrieval failure cannot be attributed to the performance of the CNN to extract the chemical information
from the HR-AFM image stack but to the fingerprint codification.

On the third row we present a failure with a completely different origin. The Resorcinoxide (CID:129866873)
molecule is corrugated (175 pm). In the configuration we have used to calculate the HR-AFM images, an
oxygen atom is under the benzene ring, inaccessible to the tip. As the AFM tip is not able to sense the
full structure, the HR-AFM images cannot provide enough chemical information, and the prediction of the
network fails. In this case, the accuracy is not limited by the model or the choice of molecular descriptor,
but the intrinsic limitation of the HR–AFM operated on the constant-height mode to retrieve information
for complex 3D structures from a single adsorption configuration.

Finally, in the last row, we show a case where the model has problems extracting the fingerprints
from the HR–AFM image stack, as shown by the low Tanimoto similarity of the two top candidates. In
particular, the model did recognize the hexagonal and pentagonal rings and the presence of an OH group,
but failed to identify the nitrogen atoms in the ground-truth molecule N-(3-hydrazinylidene-1H-inden-2-
ylidene)hydroxylamine, CID:137221883) and predicted a molecule with carbons and oxygens instead (3H-
indene-1,2-dicarbaldehyde, CID: 129814712) as the top candidate. However, the second candidate, with a
very similar Tanimoto similarity, is the ground truth. Given the success of the model with other molecules
containing N atoms, we attribute the failure in this case to the fact that the presence of OH and NH2 groups
linked through an additional N atom is quite rare in organic compounds, and, in particular, in our training
set.

The limitations posed by the hashing step (due to the associated information loss) can be solved with
an additional model trained to predict the chemical formula from the HR–AFM stack. The accuracy of this
model is near perfect (above 99.5%, Table S3), except for phosphorus atoms (78.5%), which are underrepre-
sented compared to the rest of the chemical species in the dataset. This additional model immediately solves
the misidentification between Naphthacene (7 rings) and Hexacene (6 rings) (Fig. 7, second row). Thus, the
final pipeline for molecular identification consists of a virtual screening using the predicted ECFP4, which
outputs k–candidates with decreasing Tanimoto similarity, and a posterior re–ranking of the candidates by
calculating the mean squared error of the predicted and ground truth chemical formula. With this strategy,
that combines local (fingerprint) and global (chemical formula) features, the identification accuracy jumps
from 95.43% to 97.59%, almost reducing misidentifications by half.

3.3 Effect of the adsorption-induced molecular corrugation

Our final goal is to develop a model capable of retrieving the molecular fingerprints from experimental
HR–AFM images. In experiments, the molecules are necessarily adsorbed on a substrate, and, due to the
molecule-substrate interaction, the adsorption configuration will differ from their gas phase structure. As
the data set used for the training of the model is based on HR–AFM images calculated for the gas–phase
configuration, it is important to test the ability of the model to identify a molecule from images corresponding
to their structure upon adsorption on different substrates or on different configurations within the same
substrate.

We have addressed this question with the PTCDA molecule, considering HR-AFM images simulated
for its gas phase structure and for the adsorption configurations on both Cu(111) and Ag(111) surfaces, as
determined from DFT calculations (see section 2.5 for details). Fig. 8 displays some of the simulated images
in the HR–AFM 3D stack for the three cases and the predictions of the model over PTCDA on gas phase
(first row), adsorbed on Cu(111) (second row) and Ag(111) (third row). In the gas phase, PTCDA has a
perfectly planar geometry and the model achieves a perfect prediction of the molecular fingerprints, with a
Tanimoto similarity S=1. As shown there, virtual screening produces a tie between two structures with the
same fingerprints, but the addition of the chemical formula model, that accurately retrieves the chemical
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zts = 290 pm zts = 310 pm zts = 330 pm Ground Truth

S: 1.00
C  H O24 8 6

C  H O24 8 6

C  H O
Cu(111)

Gas phase

Ag(111)

25 8 6

Top candidate

S: 1.00

Second candidate

S: 0.80 S: 0.71

S: 0.89 S: 0.89

Figure 8: Chemical identification of theoretically generated PTCDA molecules on gas phase (first row)
and adsorbed on Cu(111) (second row) and Ag(111) (third row). Tanimoto similarity for each candidate
and predicted chemical formula under the candidate images. In gas phase, the fingerprints are predicted
perfectly while in Cu(111), the tanimoto drops by 0.1. In Ag(111), the surface pushes away the middle
oxygens, increasing their contrast with respect to the gas phase image. The differences in contrast can be
clearly seen at zts = 310 and 330 pm (purple). The model interprets this contrast as NH groups (blue) and
predict the Perylimid molecule as first candidate instead of the PTCDA.

composition C24H8O6 from the 3D stack, leads to the proper identification.
In the case of Cu(111), the interaction with the substrate corrugates the PTCDA structure, pulling the

oxygen atoms in the corner towards the surface by 11 pm with respect to the central carbon ring, while the
central oxygen is pushed 6 pm above (Fig. S3). This corresponds well with the contrast of our simulated
HR-AFM image stacks, where the middle oxygen is brighter in the case of Cu(111)–adsorbed molecule
than the rest of the O atoms and also brighter than in the images for the gas–phase structure. The outer
hexagonal rings are also slightly deformed, with the vortex occupied by the O atom protruding beyond the
real O position due to its lone pair [29], as we have also observed in the case of substitutional nitrogen
atoms [13]. Our model extracts quite accurately the fingerprints (Tanimoto similarity S = 0.89) while the
chemical formula predicts C25H8O6, not perfect, but good enough to achieve an unambiguous identification.

For PTCDA on Ag(111), the central O atom is pushed up by 5 pm (Fig. S3), making them brighter than in
the images for the gas–phase structure. The fingerprint model retrieves two molecules with a high Tanimoto
similarity, Perylimid (S = 0.80) –where the central atoms are replaced by NH groups– as the first candidate,
and 1H-2-Benzopyrano[6’,5’,4’:10,5,6]anthra[2,1,9-def]isoquinoline-1,3,8,10(9H)-tetrone (CID: 118580) (S =
0.71) as the second one, while the chemical formula model predicts the correct composition. This is a
tough case, where it is difficult to disentangle the effect of corrugation and chemical composition. The
simulated HR–AFM images for Perylimid (some of them are shown in Fig. S2) are very similar to those
calculated for the adsorption configuration of PTCDA on Ag(111), with only subtle differences in the outer
areas beyond the O (or N) position. From our experience with other molecular systems [38], O and NH
substitutionals produced very similar charge density distributions and, thus, HR–AFM contrast, slightly
more repulsive in the NH case. However, the small upward displacement of the central oxygen results on
image features that are very difficult to be discerned from NH groups. In summary, this example shows the
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2nd image 4th image 6th image Ground Truth

S: 0.86

Top candidate

S: 0.73

Second candidate

S: 0.85 S: 0.85

S: 0.44 S: 0.44

S: 0.33 S: 0.29

C   H

C H  N O

1119

4829 14

Figure 9: Chemical identification on experimental images. Molecules from first to last row are 1-Bromo-
3,5-dichlorobenzene [63] (CID: 29766), 2-iodotriphenylene [64] (CID: 88955426), PTCDA [63] (3,4,9,10-
Perylenetetracarboxylic dianhydride CID: 67191) and 2,7-Dibromopyrene [65] (CID: 13615479). The pre-
dicted chemical formula correctly solves the tie for the 2-iodotriphenylene molecule, predicting the GT
molecule, but fails for PTCDA. In all cases, we extract meaningful chemical information from the experi-
mental image stack..

ability of our identification procedure, combining the fingerprint and chemical formula models, to cope with
the corrugation induced by the molecular adsorption, although further work is needed to assess its accuracy
for certain chemical groups.

3.4 Experimental images

In previous sections, we demonstrated that our strategy for molecular identification, combining the finger-
print and chemical formula models, works exceptionally well for simulated images (as illustrated in Fig. 3),
achieving, on our large test set, a retrieval accuracy of 97.59%. In Fig. 9, we benchmark our model over a
limited set of experimental cases: 1-Bromo-3,5-dichlorobenzene (CID: 29766) [63], 2-iodotriphenylene (ITP,
CID: 88955426) [64], PTCDA [63] and 2,7-Dibromopyrene [65] (CID:13615479). 2-Iodotriphenylene was
adsorbed on a Ag(111) surface while the rest of the molecules were deposited on Cu(111). Figures S4 and
S5 show the complete stack of 10 constant–height images measured in the experiments. These experimental
images clearly display the changes in the molecular configuration induced by the interaction with the sub-
strate that we have already discussed from a theoretical perspective in section. 3.3. For example, HR–AFM
images for PTCDA on Cu(111) in the third row of Figure 9 clearly show a brighter contrast on the left side
of the molecule, at variance with the symmetry that we could expect from the gas–phase structure. This
effect stems from the non–planar adsorption of the molecule to the substrate.
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A key point when applying our model to experimental images and assessing its accuracy is the height
range on which the molecules are imaged. In our dataset, the tip–sample distance ranges from 280 to 370
pm. This range, where the interaction changes from being slightly attractive to strongly repulsive, covers
the typical imaging conditions. In experiments, the height range explored is determined with respect to a
specific set point (the position of maximum approach or where a referenced value of the tunneling current
is measured by STM), but the absolute tip–sample distance is not known. Figures S4 and S5 compare
the experimental image stacks used in Fig. 9 to their corresponding simulations, with the same method our
dataset [41] was generated. From the comparison, we can conclude that, for 1-Bromo-3,5-dichlorobenzenethe,
experiments are exploring in a tip–sample distance range similar to the one considered in the training of
the model, while, for ITP (with an experimental range of 72 pm) and PTCDA, images are sampled much
closer than what the model expects based on the training data. For 2,7-Dibromopyrene, the experimental
range is 135pm, 45 pm greater than the theoretical range of 90 pm. Our model has generalized to distances
outside its training data to correctly predict the fingerprints of the molecule.

Despite the differences in the tip height range sampled in some of the experiments and the internal
corrugation induced by the substrate, the model is able to generalize and provide meaningful information
about the chemical composition and bonding topology of the molecules. For 1-Bromo-3,5-dichlorobenzene
(Fig. 9, 1st row), the fingerprint model correctly identifies the molecule with a very high Tanimoto similarity,
S = 0.86. Notice that the model is capable of discriminating among the different halogen species, identifying
the presence of two Cl and one Br atom, and retrieving the correct molecule. For the ITP and PTCDA
molecules, the fingerprint model arrives at a tie because the first and second candidates both have the same
fingerprints. In the case of PTCDA, it is rather remarkable that the model is able to retrieve the fingerprints
(although with a low Tanimoto similarity S=0.44) from the low quality of the experimental image. In both
cases, the tie stands from the fact that the frequency (number of occurrences) of a certain substructure is
removed from the fingerprints.

In the case of ITP, although the predicted chemical formula is not completely correct (predicted C19H11

vs the true chemical formula C18H11I), it provides enough information to break the tie and achieve molecular
identification. This is not the case for PTCDA, where the prediction is C29H14N8O4 while the true chemical
formula is C24H8O6. In the last row, the low values for the Tanimoto similarity indicate that the model
has problems retrieving the fingerprints. It correctly predicts the overall topology of the molecule and the
presence of two bromine atoms, but interchanges the position of one of the Br atoms with a neighboring
H atom. The chemical formula model correctly predicts the presence of the two Br atoms (predicted
C14H7Br2N vs the true chemical formula C16H8Br2), but in this case it is not useful to choose between the
two top candidates.

In the case of ITP and 1-Bromo-3,5-dichlorobenzene, we found that small variations in the scan size and
pixel resolution of the experimental images caused huge changes in the ability of the model to retrieve the
molecular fingerprints, as shown by the changes in the Tanimoto (of the order of 0.4). This sensitivity was
absent from both the remaining experimental images and the simulated images.

We have tried to understand this sensitivity looking at the attention maps of the images generated using
Grad-CAM [66] (see section S8). After a careful exploration, we found that, for the scan size and pixel
resolutions where the model performs the best, the model is paying more attention to the regions where
the heteroatoms are located (Fig. S6). Although further work, exploring systematically more experimental
cases, is clearly needed, these two examples suggest that attention maps, that do not require any other
input as the ground truth fingerprints, should provide a powerful protocol for the validation of the model’s
predictions on experimental images.

To conclude, the fingerprint model shows a very promising performance, while the results from the
chemical formula model are more modest but good enough in some cases to break the ties associated with
the loss of information in the construction of the fingerprints. Despite these good results, a larger, systematic
analysis with proper experimental data is necessary to further address the accuracy of our model.
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4 Conclusions

A pipeline for automated molecular identification has been presented in this study. The pipeline predicts
both molecular structure and chemical composition from HR-AFM image stacks. To achieve this, a convo-
lutional neural network was trained using the QUAM–AFM dataset. The network retrieves the molecular
fingerprint, ECFP4, with high accuracy, 0.95 median Tanimoto similarity in the test set. This accuracy is
attributed to the choice of molecular descriptor. ECFP4 captures a lot of structural information and, unlike
other codifications such as IUPAC names, SMILES, or SELFIES, ECFP4 uses binary vectors, making their
prediction the well-studied problem of multilabel classification. Knowledge of a molecule’s fingerprints has a
wide range of applications. Designed for high-throughput screening, these fingerprints are particularly good
at encoding the presence or absence of specific substructures. Beyond molecular identification, they can be
useful for other downstream tasks, such as predicting quantum mechanical properties [44], thermodynamic
properties [67] and even finding new antibiotics with specific properties [46]. We have shown how it is possi-
ble to determine the molecule among a list of candidates by a virtual screening process done by ranking the
possible candidates by decreasing order of Tanimoto similarity. To compensate the loss of the frequency of
the identified substructures during the hashing process, we can re–rank the final candidates using another
CNN designed to predict the chemical formula, boosting the accuracy of the prediction up to a 97.6%

Although trained and tested with simulated HR–AFM images, the final goal of our model is to retrieve
the molecular fingerprints and achieve molecular identification from experimental images. To that end,
we have proved that our model can distinguish chemical contrast from the structural changes induced by
molecular adsorption and performed few identification tests with experimental images that have shown very
promising results.

A systematic collaboration between theory and experiment is needed to further develop the model to
work under real experimental conditions. Particularly promising in this direction is the possibility to use
attention maps to improve and to validate of the models’ predictions on experimental images. Even with
its current limitations, our model provides an accurate, straightforward method for automated molecular
identification that can boost the chemical analysis and characterization of complex molecular materials such
as intermediates and products of on-surface reactions, soot molecules, fuel pyrolysis products, dissolved
organic carbon, or other petroleum products as well as materials of interest for catalysis or astrochemistry.
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molecular identification by atomic force microscopy. https://doi.org/10.21950/UTGMZ7 (2021). URL
https://doi.org/10.21950/UTGMZ7.

[55] Kim, S. Getting the Most out of PubChem for Virtual Screening. Expert Opin. Drug Discovery 11,
843 (2016).

[56] Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a
plane-wave basis set. Phys. Rev. B - Condensed Matter and Materials Physics 54, 11169–11186 (1996).
URL https://journals.aps.org/prb/abstract/10.1103/PhysRevB.54.11169.
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S1 Initialization of the Fingerprint and Chemical formula models

Here, we provide information about the choice for the initial parameters in the two models. Since in our
adaptation of EfficientNet-B0 [1], we change the first convolution from 3 color channels to 10, we are increas-
ing the number of parameters in this layer. Since we know from Yosinski et al. [2] and Zeiler and Fergus [3]
that filters in the initial layers of Convolutional Neural Networks (CNNs) often correspond to low-level
representations such as edges and color blobs, we have initialized our model effectively by replicating the
weights from the original Conv2D layer across the new channels in the modified EfficientNet-B0 architecture.

Another trick for accelerating convergence of the model is to initialize the last layer’s bias weights with a
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Figure S1: Validation losses and metrics for both a) the molecular fingerprints and b) the chemical formula
models. In a), the monitored metrics are the precision, recall, F1 score and Tanimoto similarity, the last
one being the most important for chemical identification. There are diminishing returns in training after
epoch 10. For b), since we start from the pre-trained backbone from the molecular fingerprints model, the
model almost immediately reaches a very good performance (MSE loss < 0.1 atoms). The loss oscillates
during training, indicating that we reached a stable local minima.
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Training Parameter Molecular Fingerprint Model Chemical Formula Model

Optimizer Adam Adam

Learning rate 1× 10−3
√
2× 10−3

Batch size 50 100

Loss function Binary Cross Entropy Mean Squared Error

Table S1: Training parameters for the molecular fingerprint and the chemical formula models.

prior. For the fingerprints model, this prior is the logit of the probability of appearance of each substructure
in the training set. For the chemical formula model, we have chosen the mean count of each atom in the
training set.

S2 Training hyperparameters

Augmentation Method Probability Augmentation Range (Unit)

Rotation 0.5 [-180, 180) (degrees)

Zoom (in/out) 0.7 [0.3, 1.7]

Translation (vertical/horizontal) 0.3 [-20, 20] (pixels)

Shear 0.3 [-10, 10] (degrees)

Gaussian Noise 1 µ = 0, σ = 2

Table S2: Data augmentation parameters for the training of both models. For each HR-stack, the same
rotation, zoom translation and shear transformations are applied to all the constant–height images, while
the gaussian noise is applied individually to each image.

Both the molecular fingerprint and chemical formula models employ the Adam optimizer with the pa-
rameters shown in Table S1. Learning rates were set to 1 × 10−3 for the molecular fingerprint model and√
2 × 10−3 for the chemical formula model as we doubled the batch size for the chemical formula model

(Table S1). Finally, we select the loss functions to be Binary Cross Entropy for the molecular fingerprint
model and Mean Squared Error for the chemical formula model as they are the most commonly used for
multilabel classification and regression respectively. Figure S1 displays the validation losses and metrics
for both models, showing that 10 epochs are enough for the training of fingerprint model, while, for the
chemical formula, since we start from the pre-trained backbone from the molecular fingerprints model, the
model almost immediately reaches a very good performance (MSE loss < 0.1 atoms).

S3 Balancing precision and recall during training

The pc parameter in the Binary Cross Entropy loss function introduces a trade–off between precision and
recall, where pc < 1 increases precision and pc > 1 increases recall. Usually, we choose this weight to be
the negative cases divided by the positives and carry out the computation for each label (each bit on the
molecular fingerprint).

We observed that the values of pc were very high using this method, resulting in recalls too big, what
decreased the F1 score. To improve the precision in these labels, we applied a penalty to values of pc greater
than 1:

p′c =

{
1 + pc−1

10 if pc > 1

pc if pc ≤ 1
(1)

This penalty marginally improved the F1 metric, while it had little effect on the Tanimoto similarity, which
is the most important metric in this study.
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Ground truth zts = 290 pm zts = 310 pm zts = 330 pm zts = 350 pm

Figure S2: Simulated image stacks of PTCDA adsorbed on Ag(111) (first row) and Perylimid (CID: 66475)
gas phase. The visual features of the AFM images corresponding to the oxygens of PTCDA and to the NH
groups are very similar.

S4 Data augmentations

We incorporate several data augmentation with two intentions:

• Increase the number of different training samples.

• Make the model robust against experimental conditions.

There are several sources of noise in an experiment: brownian motion of the tip due to thermal noise,
asymmetrical tips, drift, surface tilt of the molecule. etc. Since the QUAM-AFM images are simulated,
they do not reflect any of these conditions, so we need to add them in the form of data augmentations:
rotations, translations, zooming, shear and gaussian noise augmentations are performed during training.
The probability of occurrence and intensity of each augmentation is provided in Table S2.
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Figure S3: Visualization of the PTCDA molecule adsorbed on Ag(111) and Cu(111) surfaces. Panels a) and
d) show the top view, while b) and e) present the front view of the PTCDA molecule adsorbed on Ag111
and Cu111, respectively. Panels c) and f) depict the height distribution of the relaxed PTCDA molecule on
Ag111 and Cu111, illustrating the surface effect on the molecular corrugation.
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S5 Atom count model

To overcome the limitation posed by the hashing step in the generation of the chemical fingerprints, we
have developed a second model for atom count regression that we use to reorder top candidates. This new
CNN shares the same backbone of the molecular fingerprints network and only changes the last layer to be
a regression head with 10 neurons, one for each atomic species. Its performance is outstanding, correctly
predicting the atom frequency in most of the samples from the test set (Table S3), the only exception been
the case of P atoms. We attribute this to the limited number of molecules containing this atom in the
training set.

Classification Metrics Regression Metrics

Atom Precision Recall F1 Score MAE Pearson’s r

C 1.0000 1.0000 1.0000 0.0115 0.9996
Br 0.9994 0.9979 0.9986 0.0007 0.9983
Cl 0.9986 0.9991 0.9989 0.0008 0.9988
F 0.9985 0.9975 0.9980 0.0015 0.9971
I 0.9959 0.9973 0.9966 0.0004 0.9954
N 0.9994 0.9993 0.9994 0.0089 0.9977
O 0.9991 0.9991 0.9991 0.0058 0.9978
P 0.8884 0.6782 0.7692 0.0005 0.7854
S 0.9980 0.9973 0.9976 0.0018 0.9962
H 0.9999 1.0000 1.0000 0.0121 0.9993

Table S3: Atom Classification and Regression Metrics. Computed on the approximately 275k molecules in
the test set. We achieve nearly perfect accuracy for all atoms but phosphorus, which gives worse results
because it’s underrepresented in the molecules from QUAM–AFM dataset.

S6 Surface–induced corrugation

Fig. S2 compares some of the AFM images in the simulated 3D stacks for PTCDA adsorbed on silver (first
row) and Perylimid (CID: 66475) gas phase. When the PTCDA molecule is adsorbed on Ag(111), the
middle oxygen atom gets pushed away from the surface, which enhances its contrast on the images. This
surface–induced corrugation makes the model choose the Perylimid molecule as top candidate with high
confidence. Fig. S3 shows the adsorption geometry for PTCDA on Ag(111) and Cu(111) surfaces. The (c)
and (d) panels highlight the surface induced corrugation on the PTCDA molecule, which is completely flat
in gas phase.

S7 Comparing simulated and experimental images

Figures S4 and S5 present the experimental image stacks used in this article to test our model, along with
the corresponding simulations. The operational parameters for the simulations (oscillation amplitude and
lateral stiffness of the CO molecule) have been chosen, among those available in the QUAM–AFM dataset,
to better reproduce the experimental contrast. Notice that, in almost all cases, the height and the relative
scale of the molecule compared to the frame in the experimental images differ from what would be obtained
using the method of simulation of the dataset [4].

S8 Attention maps

In the identification of 2-iodotriphenylene and 1-Bromo-3,5-dichlorobenzene, we found that the Tanimoto
similarity retrieved by our model varied significantly when small changes in the pixel resolution, and therefore
in the scan size, were applied to the experimental images. As this sensitivity was not observed for theoretical
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a)

b)

c)

d)

e)

f)

Figure S4: Comparison of experimental and images and corresponding theoretical simulations. Jmol images
(a,d) experimental (b,e) and simulated (c,f) image stacks for 1-Bromo3,5-dichlorobenzene (CID: 29766) and
2-iodotriphenylene (CID: 88955426) respectively. The operational parameters for the simulations were set
to 140 pm for the amplitude and 0.4 N/m for the CO elastic constant in (c), and to 40 pm for the amplitude
and 0.4 N/m for the CO elastic constant (f).

images, we decided to check the attention maps produced by the model at several pixel resolutions using
the Grad-CAM algorithm [5].

To adapt Grad-CAM to a multilabel classification, we compute the attention map of the molecule for
each predicted ”on” label c using the standard Grad-CAM implementation. Each resulting heat-map Lc is
normalized individually:

Lc
norm =

Lc
i,j

max(Lc
i,j)

(2)
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a)
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f)

Figure S5: Comparison of experimental and images and corresponding theoretical simulations. Jmol images
(a,d) experimental (b,e) and simulated (c,f) image stacks for PTCDA (3,4,9,10- Perylenetetracarboxylic
dianhydride CID: 67191) and 2,7-Dibromopyrene (CID: 13615479) respectively. The operational parameters
for the simulations were set to 40 pm for the amplitude and 0.4 N/m for the CO elastic constant in (c), and
to 40 pm for the amplitude and 1 N/m for the CO elastic constant (f).

Finally, the mean of all normalized heat-maps yields the final heat-map per molecule:

Lfinal =
1

C

C∑

c=1

Lc
norm (3)

where C represents the total count of predicted ”on” labels. With Grad-CAM, we generate a 2D-heat-map
of the AFM image stack, where the intensity on each region corresponds to its importance in predicting the
molecular fingerprint.
Fig. S6 illustrates, for the case of 1-Bromo-3,5-dichlorobenzene (BCB), how decreasing the scan size by
a factor of 1.4 (zooms greater than one means dividing the scan size by the same factor) yields stronger
attention over the heteroatoms and the structure in general, explaining the significant change in the Tanimoto
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Figure S6: Grad-CAM algorithm applied to the BCB molecule for different zooms. The model pays more
attention in the images with the larger zoom to the heteroatoms, which are key for correctly predicting the
correct chemical fingerprints.

similarity obtained with our model.
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