arXiv:2405.04300v1 [cs.Al] 7 May 2024

Behaviour Planning: A Toolkit for Diverse
Planning

Mustafa F Abdelwahed', Joan Espasa', Alice Toniolo!, Ian P. Gent!

"University of St Andrews, School of Computer Science, UK
2Helwan University, Faculty of Engineering, Egypt
{ma342, jea20, a.toniolo, ian.gent} @st-andrews.ac.uk

May 8, 2024

Abstract

Diverse planning is the problem of generating plans with distinct
characteristics. This is valuable for many real-world scenarios, includ-
ing applications related to plan recognition and business process au-
tomation. In this work, we introduce Behaviour Planning, a diverse
planning toolkit that can characterise and generate diverse plans based
on modular diversity models. We present a qualitative framework for
describing diversity models, a planning approach for generating plans
aligned with any given diversity model, and provide a practical imple-
mentation of an SMT-based behaviour planner. We showcase how the
qualitative approach offered by Behaviour Planning allows it to over-
come various challenges faced by previous approaches. Finally, the ex-
perimental evaluation shows the effectiveness of Behaviour Planning
in generating diverse plans compared to state-of-the-art approaches.

L. Introduction

Diverse planners’ primary objective is to find diverse plans for a given task. Domain
modellers may require diverse plans for several reasons. One of those reasons is to ac-
count for possible future situations |[Haessler and Sweeney|(1991). Another vital reason
is the challenges a modeller would face when trying to account for side-information,
such as preferences, which sometimes are hard to model [Nguyen et al.| (2012). One
more reason is from a practical viewpoint, where sometimes a single optimal solution
could be practically hard to implement; thus, having a set of different solutions be-
comes more practical for the modeller to pick from [Ingmar et al.| (2020); |Cully and
Demiris|(2017). Furthermore, a lot of real-world applications such as business process
automation |Chakraborti et al.| (2020), malware detection |[Boddy et al.| (2005); |Sohrabi
et al. (2013)), plan recognition|Sohrabi et al.[(2016), and machine learning pipeline gen-



’/7‘\ Bzhav‘nour Rovers:% %
Lander:g
Soil: A
l% Rock: Q
Image:

N\ 53

Bob ‘-T
y
Bs
Bt

Samples order

Figure 1: A 2D space defined by the domain modeller for the rover domain. The hori-
zontal dimension shows the sample ordering (e.g. soil, rock, image), while the vertical
dimension shows the number of used rovers. Ordering for the samples is read from top
to bottom.

eration learning Katz et al.|(2020) drive the need for new diverse planning frameworks
and planners.

This paper introduces Behaviour Planning, a diverse planning toolkit that can gen-
erate diverse plans based on a modular diversity model. We present a novel frame-
work for modelling diversity that overcomes the challenges the current diverse plan-
ning framework faces when modelling diversity and use those models to generate plans
that align with them. The current approach to model diversity relies on similarity func-
tions, presenting two primary challenges for the domain modeller when defining their
diversity model. The first challenge is to encode all relevant information to the user into
a single numeric function |Coman and Munoz-Avila (2011)), thus limiting the level of
details the domain modeller can use when comparing plans. Even if the user succeeded
in encoding this, another challenge arises: explaining why two plans are different when
the user searches for plans based on specific criteria or compares plan sets. Similarity
functions fail to explain why two plans are different because they are one-way func-
tions that receive two plans and produce a number without a reversible computation,
meaning that similarity functions have low expressivity. Therefore, our main objective
is to offer users higher expressivity, allowing them to account for more details when
modelling and comparing plans.

Our toolkit for behaviour planning comprises Behaviour Sorts Suite (BSS) and For-
bid Behaviour Iterative (FBI). BSS is a qualitative-based framework that can describe
a diversity model (i.e., the difference between two plans) and either generate diverse
cost-bounded (i.e., optimal and suboptimal) plan sets or evaluate any given plan set
diversity. FBI is a planning approach that uses a diversity model described by BSS to
generate diverse plans.

To show the advantages of behaviour planning over the current diverse planning
framework, assume a domain modeller for the rover planning task requires a set of di-



verse plans to select ones that collect samples (i.e., soil, rock and image) with specific
orders (e.g. taking images first) and various rovers used. Hence, the modeller consid-
ers that two plans will differ based on the number of used rovers in a plan |Mantik
et al.| (2022) and the collected samples order|Abdelwahed et al.| (2023)).|Vadlamudi and
Kambhampatifs [Vadlamudi and Kambhampati| (2016) bi-level framework generates a
substantial number of plans and then extracts a subset of plans. For the first phase, the
domain modeller can use a diverse or top-k planner, such as FI [Katz et al.| (2018) or
SymK Speck et al.| (2020) to generate plans. In the second phase, a similarity function
that reflects the difference between two plans based on a property is selected (e.g. the
plan’s actions), and the MaxSum model is computed, thus quantifying the diversity
of the plan set Nguyen et al|(2012). The MaxSum model is the sum of the pairwise
similarity between plans. Projecting similarity functions’ limitations on the motivating
example, the domain modeller may or may not get plans that account for required fea-
tures (e.g., the number of rovers or sampling ordering). In addition, it is difficult for the
domain modeller to filter out plans, for example, with a specific sample ordering.

BSS overcomes these challenges by offering more expressivity to the domain mod-
eller when defining their diversity model. Such expressivity is achieved by defining a
set of discrete features and constructing a diversity model. Using the behaviour plan-
ning toolkit, the domain modeller discretises the solution space based on the two afore-
mentioned criteria (Figure [T). This is called Behaviour Space, where each box is a
behaviour, containing a set of plans that share the same properties defined by the do-
main modeller. Therefore, by combining this space with any planner that accounts for
preferences and constraints |Gerevini and Long| (2005)), such as OPTIC |Tierney et al.
(2012) or OMTPIlan |Leofante| (2023), the domain modeller can generate the required
set of plans by forcing the planner to create a plan that satisfies certain behaviours until
reaching the desired number of plans. On top of higher expressivity, behaviour planning
uses less computational resources as it accounts for the diversity model while generat-
ing a set of plans, unlike [Vadlamudi and Kambhampati|Vadlamudi and Kambhampati
(2016)’s framework, which requires a second phase to extract a subset of diverse plans
using an NP-hard procedure Kuo et al.| (1993).

This paper has three primary contributions: (i) a new diverse planning approach for
generating diverse plans, (ii) a qualitative framework for describing diversity models,
and (iii) an experimental SMT-based diverse planner. This planner uses the diversity
model described by BSS to generate cost-bounded diverse plans.

I1. Related work

Srivastava et al.|/Srivastava et al| (2007) is one of the first attempts to generate di-
verse plans in a domain-independent manner. They proposed generating diverse plans
through a local search-based planner (e.g., LGP |Gerevini et al.|(2003)). They used LGP
with distance functions to force the planner to generate different plans. Even though
they succeeded, they converged to non-optimal solutions. Roberts et al|Roberts et al.
(2014) suggested using a multi-queue A* algorithm to find diverse plans while ensur-
ing optimal results. One queue was for optimality, and the other for diversity. However,
the two heuristics interfered with each other, thus affecting the overall quality of the



results.

Vadlamudi and Kambhampati|Vadlamudi and Kambhampati|(2016) suggested split-
ting the problem into two optimisation phases: planning and diversity extraction phases.
Their bi-level optimisation approach, where the first phase generates a substantial num-
ber of plans and then the second extracts a subset of diverse plans. This framework re-
ceived much attention since it guaranteed cost-bounded diverse plan sets. Diverse/top-k
planners were utilised to generate several plans. State-of-the-art diverse and top-k plan-
ners are F I |Katz et al.|(2018)) and SymK Speck et al.|(2020) respectively. FI produces
several plans through a plan-forbid loop, which generates a plan and then reformu-
lates the planning task to force the planner to find another solution. On the other hand,
SymK is a symbolic search planner that groups similar states and keeps exploring the
search space till it finds a goal state. Such grouping enables SymK to search for several
solutions easily. Regarding the diversity problem, Nguyen et al.|Nguyen et al.[(2012)
showed that it is possible to compare plan sets based on Max Sum, which is the sum of
pairwise similarity functions selected by the domain modeller. Katz and Sohrabi||Katz
and Sohrabi| (2020)) suggested a greedy method for extracting a diverse set of plans
while maximising the Max Sum value.

Other works focused on modelling diversity for planning using similarity functions
such as stability (J,), state (65) and uniqueness (J,,) Nguyen et al.|(2012); Roberts et al.
(2014). Stability and state metrics are Jaccard measures between two plans’ actions and
states. On the other hand, uniqueness is a discrete function that returns 1 if one action is
present in one plan but not the other and 0 otherwise.|Goldman and Kuter|Goldman and
Kuter| (2015) suggested the Normalised Compression Distance (NCD) distance metric
to approximate Kolmogorov complexity.

I11. Behaviour planning

Behaviour planning is an approach for generating diverse plans based on a diversity
model defined by the domain modeller. This section formulates the diverse planning
problem, followed by the Behaviour Sorts Suite and Forbid Behaviour Iterative formu-
lations.

A planning task is a tuple of II = (P, A, I,G), where P is a set of fluents, A
denotes a set of actions, I represents the initial state while G is the goal formula. An
action a; is described in terms of preconditions (pre) and effects (eff). A solution for I1
is a plan (7) which is defined as a sequence of actions a1, as, . . . , a,, such that a; € A.
A plan’s cost is computed by cost(7w) — R, which accumulates the actions’ costs in
7. A diverse planning task is a task where the solution is W, a set of different plans of
size k with a quality bound c. A quality bound c is a real number that indicates that all
plans’ costs in U are less than ¢ (i.e. cost(m) < ¢ Vrr € W). k represents the number of
required plans (i.e. |¥| = k). Thus, we extend I = (P, A, I, G, ¢, k) to include ¢ and
k.



II1.A Behaviour Sorts Suite

Here, we describe the Behaviour Sorts Suite’s components. The core component is
behaviour spaces, which allows domain modellers to describe the diversity model based
on features of interests. Behaviour count is a metric that evaluates the diversity of a
given set of plans based on a given diversity. The last component is a behaviour features
library, a collection of features gathered from the literature.

II1.A.1 Behaviour Spaces

Lehman and Stanley|L.ehman and Stanley|(2011) collapsed the search space for combi-
natorial optimisation problems into a finite space (behaviour space) to model solutions’
characteristics. Their motivation was to keep track of different generated solutions by
evolutionary algorithms. They used behaviour spaces to include or discard solutions
into an archive based on their objective values in case the behaviour was already in-
cluded. Inspired by such ideas, we use behaviour space as a guide for the planner to
search for plan(s) that satisfy a desired property, guaranteeing the generation of a di-
verse plan set that accounts for the domain modeller’s definition of diversity.
Behaviour space is constructed using dimensions corresponding to the domain
modeller’s set of features F', so a dimension is generated by discretising the values
of a feature. A feature f; € F includes a feature descriptor &; and, since a dimension
can be domain-dependent, we use u; to represent a set of additional information, such
as domain-dependent information required to construct that dimension (e.g. resource
usage). Hence, each feature is a tuple f; = (&;, ;). For features that do not require ad-
ditional information, p; is an empty set. We define a dimension constructor as follows:

Definition 1 (Dimension constructor). A function DimensionConstructor(II, f) — Dy
gets a diverse planning task 11 and a feature f, and returns a tuple

Dy = (valsy, @5, ©p)

where valsy is a set of all possible discretised values for f, @(v); — v is a dis-
cretisation function that takes a value v then computes its discretised value v', and
Of(m) — v is a function that receives a plan T and extracts the feature value v from
.

Using the dimension constructor’s definition, we define the behaviour space config-
uration, behaviour space, behaviour (i.e., the blue box shown in Figure and behaviour
planning as follows:

Definition 2 (Behaviour space configuration). Given a diverse planning task 11, and a
set of features F', a Behaviour space configuration is defined as

= = (DimensionConstructor(Il, f/)Vf € F)

a tuple containing the set of dimensions constructing the behaviour space created using
F.



Definition 3 (Behaviour space). Given a diverse planning task 11, we define a be-
haviour space with configuration = as an n-dimensional grid (valsy X --- X vals,),
such that vals; is a set of all possible discretised values for dimension 1.

Definition 4 (Behaviour). Given a diverse planning task 11 with a behaviour space
configuration =, we define behaviour BB as an n-dimensional vector containing a discre-
tised value for each dimension in the space B = (v{, X - -+ X v},), such that v} € vals;.
A behaviour is valid if at least one valid plan has the extracted values; otherwise, it is
invalid.

Definition 5 (Behaviour planning). Given a diverse planning task 11 and a behaviour
space configuration E, we define behaviour planning as generating a set of plans ¥
with different behaviours defined by Z, such that | V| = k.

To locate a plan 7’s behaviour B for a given behaviour space configuration =, must
extract the dimensions’ values from 7 and construct its behaviour vector using Def. [T}
We define a plan’s behaviour as follows:

Definition 6 (Plan behaviour). Given a diverse planning task 11, 7 a valid plan for 1],
and a behaviour space with configuration =, plan behavior PlanBehaviour(Z, ) — B
is a function that extracts and computes the discrete values v of the dimensions for ©
where

PlanBehaviour(Z,7) = (®¢(Of(7)) VQ, ©Of € E).

Thanks to the plan behaviour operator, a plan is now labelled with a behaviour.
The domain modeller can use this information to evaluate the usefulness of this plan
against their requirements based on the diverse features characterising this behaviour.
For example, in Figure |1} plans on the blue box are characterised by collecting soil
samples first and using two rovers.

II1.A.2 Behaviour Count

Now, we propose two metrics to evaluate the diversity of a plan set. Recall the example
in Figure [1| Assume we have plan sets A and B, each with three plans, and each plan
has its behaviour as in Figure [2] We computed the MaxSum scores using the diversity
metrics (g, 05, 0, ). We see in Table [1] that A has higher values compared to B. Still,
when considering the behaviour space in Figure [T} B should be more diverse as it
contains three behaviours while A only has two.

Instead of using the MaxSum model to quantify diversity in BSS better, we sug-
gest evaluating any given plan set’s diversity by computing the number of included
behaviours. To calculate the behaviour count metric, we first infer the behaviour for
each plan 7 on a given set of plans ¥ using Def. [f] Then, we define behaviour count
as:

Definition 7 (Behaviour count). Given a diverse planning task 11, ¥ a valid plan set
Sor I and a behaviour space with configuration Z, behaviour count BC(Z, ¥) — N is
a function to compute the number of available behaviours in U where

BC(Z, ¥) = [{PlanBehaviour(=Z,7) V7 € U}



(@X-T4)
(=t ]

Figure 2: Two plan sets, each containing three plans for the rover problem, using the
same behaviour space presented in FigureEl

Planset A B
Stability (d,) 0.81 0.55
States (d,) 0.47 0.29

Metrics | Uniqueness (d,) | 1.00 1.00
Behaviour Count 2 3

Table 1: Normalised MaxSum scores computed using different metrics and behaviour
count for the set shown in FigureEl Higher numbers are in bold

IE%%

i

o

% u

o} 2 |2 s
4 £ ® @ o ©
w@éQA
BB & & 4L 4 fo

L
D ¥ |
SEN1:
z |2

JP%

Figure 3: Two plan sets with the same number of behaviours.



If two sets have the exact behaviour count, we suggest comparing their ranges of
values with plans for each dimension. For example, Figure [3| shows two sets of plans
C and D, and both sets include the same number of behaviours (i.e. four behaviours).
However, we can break such a tie by choosing the set with more dimension values
than the other based on preference. For example, if the domain modeller favours the
ordering of samples over the number of rovers, then C will be more diverse than D
and the other way around if the domain modeller favours the number of rovers of the
samples ordering. The domain modeller can tiebreak between C and D by computing
the vals size of each dimension for C = (4,1), D = (2,2) and decide on the order
of features based on their preferences. This metric is called dimension count, and it is
defined as:

Definition 8 (Dimension count). Given a diverse planning task 11, ¥ a valid plan set
Jor 11, and a behaviour space with configuration =, dimension count DC(Z, ¥) — N"
is a function mapping to a n-tuple where each element is a number that represents
the cardinality of the covered subset of values in a given dimension. DC(Z,¥) =
({v}| V v € PlanBehaviour(Z, ) V& € ¥)

III.A.3 Behaviours Features Library

The literature showed several attempts to differentiate between plans using domain-
independent features. Our features library is an initial collection of some of those
features and can be easily extended in the future. Mantik et al.||[Mantik et al.| (2022)
suggested two primary features: (i) plan length (f.;) and (ii) resource utilisation (f;-,).
The plan length feature distinguishes between plans based on the number of actions in
each plan. On the other hand, the resource utilisation feature computes the number of
used resources in a plan and then uses this information to differentiate between plans.
Note that the domain modeller provides information on the resources used. |Abdelwa-
hed et al.||Abdelwahed et al.|(2023) suggested differentiating between plans based on
the order of the goal predicates achieved by each plan (f,,). This feature reflects how
a plan tries to solve the planning problem. In section IV, we provide examples of im-
plementing and using those features.

II1.B Forbid Behaviour Iterative

FBI is a planning approach that uses a behaviour space to generate diverse plans by
generating a plan per behaviour. FBI is inspired by the plan-forbid loop approach sug-
gested by [Katz et al.||[Katz et al.| (2018). However, the major difference between the
FBI planner and F'T is that the FBI forbids behaviours instead of plans. To clarify this
statement, Figures d}5| illustrates how each planner explores the solution space when
solving a planning task where the goal is to find four plans. F T starts with finding one
plan and then forbids it together with its possible reorderings. Then, it keeps repeating
this operation until it reaches the number of required plans (Figure {). On the other
hand, FBI finds a plan, then uses behaviour space to infer this plan’s behaviour and to
acquire another plan, it forbids this behaviour then uses the updated formula to acquire
a different one (Figure[5).



Algorithm 1: FBI

Require: II: Planning task, =: Behaviour space configuration
Ensure: W: set of plans with different behaviours

1: U0, Sp 0

2: do
3. m + BehaviourGenerator(II, Z, Sg)
4: S+ SpU {7‘(’ }
5
6

. while 7 #£ ()
: return W

Let BehaviourGenerator(IL, 2, Sg) — {0, 7} be a function that receives a diverse
planning task II, a behaviour space configuration =, a set of behaviours Sp and re-
turns a plan with a behaviour B, ¢ Sp or an empty set in case it failed to find a
new behaviour. In a later section, we shall show how to realise such a function. Algo-
rithm[T] describes the FBI’s key operation. It starts with an empty set of plans (V) and
behaviours (Sg) (lineﬂ[), then it keeps generating and accumulating plans with new
behaviours until solver-b returns an empty set (lines 2}[3).

There could be a scenario where a domain modeller could require a specific num-
ber of plans that exceeds the number of behaviours. To resolve such a situation, let
PlanGenerator(II, =, Sg, ¥) — {0, 7} a function that receives a diverse planning

Figure 4: The white space represents all possible plans for a planning task II. FI op-
eration starts by finding a plan (i.e. red circle), then forbid this plan’s all possible re-
ordering (i.e. red box), then keeps repeating this until the required number of plans is
found or runs out of resources.

4 N [ N [ N 7 O

|——

g AN AN ) Y,
t=0 t=1 t=2 t=n

Figure 5: FBI operation starts with finding a plan that infers its behaviour (i.e. blue
circle), then forbids its, and keeps repeating this loop until there are no valid behaviours
remaining or it runs out of resources.



Algorithm 2: FBI-k

Require: II: Planning task, =: Behaviour space configuration, k: Required plans count
Ensure: U: the set of plans with different behaviours
1: ¥+ FBI(II, E)
: Sp + {PlanBehaviour(Z, 7) Vr € U}
do
7 < PlanGenerator(Il, =2, S, ¥)
U+ v U {r}
while |¥| < k and 7 # ()
return ¥

RS A 4

task IT, a behaviour space configuration =, a set of behaviours S, a set of plans ¥ and
returns a plan 7 if one exists with behaviour B € Sp and not belonging to 7 ¢ W.
Algorithm [2| can generate more plans if the required number of plans is bigger than
the number of available behaviours by forbidding plans rather than behaviours. Algo-
rithm 2] invokes Algorithm [I]to generate a plan per behaviour and collects those plans
behaviours (Lines [TI}2). Afterwards, FBI-k resumes the same loop as FBI except for
generating plans rather than behaviours (Lines 3}[6).

IV. Realisation of Behaviour Planning

We propose a Planning as Satisfiability approach to implement Behaviour Planning.
This approach allows us to incorporate arbitrary constraints into the problem, granting
us the flexibility to describe and reason over plan behaviours during search. The first
works that addressed Planning as Satisfiability (model finding) problem |[Kautz et al.
(1996) showed that off-the-shelf SAT solvers could effectively solve planning prob-
lems. In the last decade, various works followed by leveraging SMT |[Bofill et al.| (2016));
Leofante et al.| (2020), SAT Holler and Behnke| (2022)); [Rintanen|(2012)) or CP |Babaki
et al.| (2020); |Villaret et al.| (2021) solvers, amongst others. The problem II is generally
solved by considering a sequence of queries in the form of satisfaction problems ¢y,
¢1, @2, ..., where ¢; encodes the existence of a plan that reaches a goal state from
the initial state in exactly ¢ steps. The number of actions allowed per step would vary
based on the used encoding. A simple linear encoding allows exactly one action per
step, unlike other encodings such as Relaxed 3-step |Bofill et al.[|(2017)), which allows
more than one action per step.

The solving procedure will sequentially test the satisfiability of ¢g, ¢1, P2, ..., O,
until a satisfiable formula ¢,, is found, proving the existence of a valid plan of exactly
n steps. Each formula ¢,, is defined as

n—1

¢n=L(s0) [\ T(si,5i1) AG(sn)

=0

Where 7 and G respectively encode the formulas for the initial and goal states, and 7~
encodes the transition function in terms of both the action preconditions and effects

10



(i.e. (a; — pre), (a; — eff)) and the frame axioms. For further details on Planning as
Satisfiability, readers are encouraged to refer to|Rintanen| (2021}).

In our framework, to identify a plan, we abstract the creation of the formulas ¢,, by
defining the function Encoder(II,n) — ¢,,, which takes a planning task II, a number
of steps (n) and returns a formula that encodes the existence of a plan with exactly n
steps.

IV.A Behaviour space

Now we describe an example of behaviour space based on the planning as satisfiability
method and constructed over the three features presented in section III.A.3: cost bound
(fev), resource utilisation (fy,,) and goal predicate ordering (f4,). The configuration
of this space = is based on the corresponding dimensions and dimension constructors.
Following Def. [I} each dimension is characterised by the feature f, complemented
by the discretised values valsy, and the discretisation ® y(7) and extraction functions
Of(v). We assume ®;(v) = v for all the dimensions, where the discretised values
are the same as the extracted values. In other situations, the domain modeller may be
required to group some discrete values, e.g., in ranges.

By using planning as satisfiability we can encode the dimensions directly in the
formula ¢,, by updating it to ¢!, := ¢, AT A A A O where T, A, and O represent
the encodings for the cost bound, resource utilisation, and goal predicate ordering re-
spectively. If ¢/, is satisfied, then the extracted model contains a plan and its behaviour.
Below, we present the features’ descriptions and corresponding information to con-
struct the dimensions and encodings.

Feature I - Cost Bound (f.;). In this work, we only consider makespan-optimality,
and therefore our cost function cost(7) will be the plan length with no additional in-
formation required (i, = 0). The corresponding cost-bound dimension D, includes
valse, = {i.Vi € 1..n} is a set of integer values between 1 and the formula’s length
(n). ®cp(m) returns the number of actions in 7.

To count the number of actions enabled in a given plan, we use an indicator function
Q(a,i) — {0,1} to indicate whether action a is enabled at step 4. In the formula, we
encode the plan length as the sum of all enabled actions.

n
F=cb= ZQ(aJ) Va e A
i=0

Feature II - Resource utilisation (f,.,,). This feature requires domain-specific in-
formation. We consider the set of problem objects ., representing the resources of
interest. Following the previous examples, (., could be a set of available rovers in the
planning task as shown in Figure[l|(e.g. ytr, = {RedRover, PurpleRover}). The
resource utilisation dimension D,., is formed by vals,, = {i.Vi € 0..|py|}, a set of
integers between 0 to the number of resources provided in piyy,. ©., (7) uses the pro-
vided information in ., to count the number of actions per resource and then return
how many resources are used in 7.

We encode the number of used resources in a plan 7 using an indicator function
Y(r,i) — {0, 1}, returning 1 if the resource r € fi,, is used at step 4, and 0 otherwise.

11



The resource utilisation feature then sums 1 for each r € p,, if 7 is used in any step of
the plan.

1 otherwise

A=ru= Z {0 if Z?:OT(Tai):O

TEUry

Notice in particular that how we model the resource utilisation impacts the implemen-
tation of ®,.,, (here ®,.,(v) = v). For example, for computing the ratio of the number
of actions using a resource r to the plan length, ®,.,,(v) must map the value v to a range
(i.e. min and max values), and the information of the available ranges will be provided
in p,, alongside the resources information. However, there is no widely known ap-
proach for modelling resource utilisation for a plan. Therefore, we adhere to Mantik
et al.[s Mantik et al.[(2022)) suggestion.

Feature III - Goal predicate ordering (f,,). This feature considers the total order
in which goal predicates are achieved. This feature does not require additional informa-
tion since the goal predicates can be extracted directly from the instance (4, = 0). The
goal ordering dimension D, includes valsqy, = {0.Yo € 0(G)} as a set containing all
permutations for goal predicates, where o(G) generates those permutations. ®g, ()
returns a number indicating the goal ordering.

To encode such a dimension, let PStep(p) — N be a function that maps a predicate
p to which step 1 it first became true. For a given goal predicate g € G and step 7, we
can encode its semantics using the formula

1—1
PStep(g) =i < (g9 /\ —9;)
=0

That is, PStep(g) = ¢ when goal predicate g is satisfied at step ¢ and not satisfied in
any step from O up to ¢ — 1. Note that g can become false after ¢ again, but we are not
concerned about that.

We now can encode a precedence relation between any two goal predicates g,, g, €
G by stating PStep(g,) < PStep(gs). To encode a total order, we only need to define
the binary precedence relation between all pairs of goal predicates. If we consider G
as a set of goal predicates, there are |G/|! different possible orders. Therefore, there is
an alternative way to compactly encode o (G) and avoid generating all possible permu-
tations by using a classical binary encoding operation [Frisch et al.[(2005) where each
binary number denotes a unique goal predicate ordering. We encode a single total or-
der using a formula composed of Boolean variables representing the order as a binary
number. More concretely, for each pair of goal predicates g,, g» € G and fresh Boolean
variable oy, we add the formula to,p < PStep(gq) < PStep(gs).

For example, having goal predicates G = {gq, g, 9.}, We create one Boolean to
variable per each pair of goal predicates: to,p, 04 and top. and add the formulas

toas <> PStep(ga) < PStep(gs)
toae ¢ PStep(g,) < PStep(gc)
tope <> PStep(gy) < PStep(g.)

12



To extract the total order from an assignment, we retrieve the value of variables to,, t04.
and top.. Now, the full encoding of the goal ordering feature © is then the conjunction
of the two following equations

PStep(g) /\ —g;) Viel.n,VgeG (1
]:
to;j <> PStep(g;) < PStep(yg,) Vgi,g; € G 2)

where eq[I] encodes the first step where any given goal predicate becomes true, and
eq[2|then maps the relative orders between goal predicates in to variables.

Behaviour extraction. Having defined the dimensions constituting our behaviour
space =, now consider ExtractModel(¢) — M, a function that given a formula ¢
gives a model M 4. Once the SMT solver finds a model for the augmented formula ¢/,,
we can extract both a plan and its behaviour. Given a model My, , we extract the plan
behaviour with the three dimensions by

PlanBehaviour(E, 71') = <M¢(n [Cb], M¢;L [ru], Mﬁﬁ'ﬂ [toij]Vgi, g; € G>

IV.B Forbid Behaviour Iterative Realisation

To realise FBI, we require two more functions: (i) one function to check if a for-
mula ¢,, is satisfiable or not and (ii) one to extract a plan from a satisfiable formula.
We use IsSatisfiable(¢,,) — {T, L} a function that returns true if ¢!, is satisfiable
and false otherwise. we use PlanExtractor(Mg, ) — 7 to construct a plan from
My . PlanExtractor is a function that iterates over the model and extracts the en-
abled actions (i.e., the actions that are part of the plan) in every step to construct a plan.
The BehaviourGenerator can now be implemented using Encoder, IsSatisfiable and
PlanExtractor. Algorithm [3|is an implementation for BehaviourGenerator. First, it
constructs ¢/, using Encoder, then append behaviour space encodings excluding Sp.
(Line . Afterwards, it checks whether it can find a model for ¢,. If it succeeds, then
it extracts and returns the plan (7); otherwise, it returns an empty set (Lines [2|-

Algorithm 3: BehaviourGenerator

Require: II: planning task, =: behaviour space configuration, Sp: set of behaviours,
n: formula length
Ensure: 7\/(
1: @), < ¢n = Encoder(ILn) AT AOAA N, g, —b
2: if IsSatisfiable(¢/,) then
3:  return PlanExtractor(ExtractModel(¢/,))
4: end if
5. return ()

PlanGenerator follows a similar implementation to Algorithm [3] Algorithm
starts with encoding the planning problem, behaviour space and available behaviours
in Sp into ¢ (Line . Afterwards, it forbids all plans in ¥, checks for satisfiability, and
returns a plan 7 if @), is satisfiable; otherwise, it is an empty set (Line .

13



Algorithm 4: PlanGenerator

Require: II: planning task, =: behaviour space configuration, Spz: set of behaviours,
W: set of plans, n: formula length
Ensure: 7\/ ()
1. ¢, + Encoder(ILn) AT AOAAV, g, b
b, bn, /\we\P -
if IsSatisfiable(¢),) then
return PlanExtractor(ExtractModel(¢.,))
end if
return ()

AU

V. Experimental Evaluation & Discussion

We implemented behaviour planning using Python and the Z3 SMT solver |De Moura
and Bjgrner (2008) To examine the practicality of behaviour planning for generating
diverse plans and evaluating the diversity of sets of plans, we performed two experi-
ments: First, we validated the behaviour count metric on plan sets generated by both
a diverse and a top-k planner, showing it can distinguish between the two. Then, we
compare the diversity of plans generated by a state-of-the-art diverse planner with our
approach. In those experiments, we assumed makespan optimal planning.

Our experiments are configured as follows: we solved a set of planning tasks (i.e.
41 domains, 1450 tasks) on an AMD EPYC 7763 64-Core Processor@2.4GHz using
FI [Katz et al. (2018)E] Symk |Speck et al.[ (2020), and FBI for k£ plans, where k €
{5,10,100, 1000} and relative quality bounds ¢ € {1.0,2.0} (i.e. ¢ = round(q * 1),
where [ is the optimal length), where ¢ = 1.0 implies the generated set U has optimal
solutions only. On the other hand, ¢ = 2.0 indicates that ¥ contains plans with cost
more than the optimal value but less than double the optimal value. After generating
k plans, we compute the behaviour count for those k plans. Regarding the resource
utilisation information, we provided g, through external files since PDDL does not
allow us to provide such information. We restrict the resources used by each task to
one CPU core, 30 minutes, 16 GB of memory, and a 10-minute solver’s timeout.

FI assumes that it is used in conjunction with [Vadlamudi and Kambhampati/s
framework|Vadlamudi and Kambhampati/(2016). Such an assumption makes F I ignore
the k constraint, generating substantially more plans than requested. To have compa-
rable results with Symk and FBI, we have three configurations for FI. The F Iy,xsun
configuration uses Max Sum model with the stability metric (J,) to select & plans. The
F Iy configuration selects the first £ unique plans generated by F I. Finally, F I, selects
k plans that maximise behaviour count.

Table [2| shows the accumulated number of solved instances per k for a given ¢ for
all planners’ configurations after computing the behaviour count scores. F Iy,xsun has
the lowest number of solved instances compared to the other F I’s configurations due to
the extra computation required to extract k diverse plans. On the contrary, selecting the

!'Source in the additional material, will also be released upon publication
Zhttps://github.com/Al-Planning/classical-domains

14


https://github.com/AI-Planning/classical-domains

q k FIpe FIx Flpaxsum FBI Symk
5 559 587 404 213 746
1.0 10 466 497 339 194 688
’ 100 244 272 167 156 479
1000 67 74 43 114 243
5 603 631 443 65 758
20 10 548 583 409 64 727
’ 100 350 377 253 60 575
1000 95 102 65 58 375

Table 2: Number of solved instances by FI, FBI and Symk for various values of k
with different relative quality bounds q. Bold highlights the higher behaviour count.

q k CI FIx FlIvaxsum Symk
5 393 | 1301 1256 973
10 329 | 1933 1829 1295

1.0 100 | 161 | 6445 6648 2923
1000 | 42 | 4606 4263 1891
5 428 | 1455 1471 1057
20 10 393 | 2227 2271 1520

100 | 244 | 7881 7860 4012
1000 | 60 | 6833 7313 3306

Table 3: Columns FI and Symk denote the accumulated behaviour counts for different
values of quality bounds ¢ and number of extracted plans k for each planner. CI denotes
the number of commonly solved instances by FI and Symk. Bold highlights statistical
significance difference.

first k& plans or optimising on behaviour count configurations solved more instances,
showing less computational cost than MaxSum. First, Table 2] shows the number of
solved instances by planners on various k and different ¢ values. As expected, F I cov-
erage decreases as the number of plans increases due to the increase of work during the
plan forbidding phase. Table |3[shows the accumulated behaviour count for all planners
based on the commonly solved instances. To show that behaviour count meaningfully
captures plans’ diversity, we performed a pairwise t-test with a significance level of
0.05 (i.e. p < 0.05). To conduct the test, we constructed a vector of behaviour count
pairs (F Ix/F Iyaxsum,Symk) per commonly solved instance. E]

Q1: Does Behaviour Count capture diversity?

We consider the commonly solved set of instances by both diverse (F Ty /yaxsum)
and top-k (Symk) planners. If the behaviour count metric can capture diversity, it
should be able to meaningfully distinguish between the sets generated by both types
of planners, because diverse planners aim to create diverse plans instead of just sets of
plans. We leave F I, out of this comparison as it maximises behaviour count, and this

3Supplementary material contains additional stats due to space constraints.

15



first experiment is about validating that behaviour count is a diversity metric.

Table (3| shows that FI can generate more diverse plans compared to Symk in all
cases, and there is a significant difference between the number of plans generated by F T
compared to Symk (p < 0.05) in most cases. This result indicates that behaviour count
is a valid domain-independent measure for quantifying the diversity of a given plan
set since it can distinguish between a diverse and normal plan. The only case where
there is no significant difference (p(F I/Symk)=0.07,p(F Iyaxsun/Symk)=0.08) is for
k = 1000, where the number of common instances is very low (42). This occurred
because of FI solving fewer instances compared to its counterpart for large values of
k (i.e. q=1.0, k=1000, #FI1=74/43, #Symk=243 as shown in Table [2) indicating that
more samples are needed to investigate differences at £ = 1000.

Since behaviour count is computed based on a behaviour space configuration, it
benefits from quantitative and qualitative approaches for modelling diversity without
drawbacks. On the other hand, quantitative approaches rely on distance functions to
quantify diversity, such as stability and state Srivastava et al.| (2007); [Nguyen et al.
(2012). Even though such functions are domain-independent and have a straightfor-
ward implementation, they limit the details a domain modeller can encode |Coman
and Munoz-Avilal (2011). Moreover, |Goldman and Kuter|Goldman and Kuter| (2015)
showed that such distance functions might be suboptimal as they do not adhere to
distance function properties such as identity, symmetry and triangle inequality. As an
alternative, they proposed Normalized Compression Distance (NCD) as a domain-
independent distance function that adheres to these properties. NCD overcame the
problems associated with other distance functions but faced challenges differentiat-
ing between plans caused by naming and plan representation variations since their
approach relies on compression algorithms. We argue that qualitative approaches al-
low more details when describing a diverse model than its counterpart. However, this
comes at the cost of domain independence. A clear example is the approach by |Co-
man and Munoz-Avila|Coman and Munoz-Avilal (2011)), where they suggested a quan-
titative/qualitative plan distance function that requires the domain modeller to pro-
vide minimal domain-specific details when comparing plans. However, there is no
widely known method for measuring the minimal detail required by this distance func-
tion |Goldman and Kuter| (2015)). In summary, the domain modeller’s construction of a
behaviour space allows them to account for domain-dependent details if needed while
maintaining domain independence, removing the need for a distance function and thus
overcoming the aforementioned drawbacks. Therefore, behaviour count quantifies a
plan set’s diversity regarding a provided behaviour space configuration.

Q2: How diverse are plans generated via behaviour planning? To answer this
question, we compared FBT against all FI’s configurations regarding their behaviour
count and coverage scores. Table ] shows the accumulated behaviour count for the
commonly solved instances by the planners. From this table, we can conclude that
FBI generates more diverse plans compared to FI.

Since FBI is an experimental planner, it is not expected to solve more instances.
Yet, what is expected from it is to generate more diverse plans, especially compared
to the FI’s configuration that optimises on a behaviour count metric. Table 2] shows
that FBI solves fewer instances compared to F I, especially when the g increases. The
primary reason behind such performance is the used encoding for FBT, a simple linear

16



q k Cl | FBI FImawsum || CI | FBI FIx, Flpne
5 131 567 332 183 812 614 653

1.0 10 106 862 450 150 | 1247 897 973
’ 100 72 4576 2314 103 | 6395 3596 4175
1000 | 36 | 32590 2207 50 | 41029 8750 8877

5 49 237 145 61 297 201 255

20 10 48 442 210 60 558 336 433
’ 100 42 2002 669 55 2831 1326 1539
1000 16 3413 685 28 9383 5818 5875

Table 4: Columns FBI and FI, denote the accumulated behaviour counts comparison
for the different values of the quality bound ¢ and the number of extracted plans k
for each respective planner. CI denotes the number of commonly solved instances.
Bold highlights statistical significance difference. FIy . are grouped with FBI to
avoid duplication since they both had the same solved common instances and FBI’s
behaviour count.

encoding. Such encoding keeps incrementing steps until a valid plan is found, and
its performance is influenced by the problem size (i.e. # grounded actions). Yet, such
performance can be improved by adopting better encodings, such as lifted encodings
Holler and Behnke|(2022). However, Table[d|shows FBI superiority in generating more
diverse plans with statistical significance (p < 0.05) for k& > 5 compared to all FI’s
configurations.

The primary motivation behind selecting Planning as Satisfiability to implement
behaviour planning is due to the offered expressivity. Such expressivity made it possi-
ble to model information, such as ordering the goal predicates and asking the planner
to generate different plans that have different ordering. Encoding such information in
a heuristic function would be challenging, and Roberts||[Roberts| (2013)) showed that
optimal and diverse heuristic functions interfere and make it harder for the planner to
find diverse and cost-bounded plans in the same phase. To conclude this experiment,
we showed that the experimental FBT planner is a diverse planner that competes with
state-of-the-art diverse planner FI. Furthermore, FBI success proves the practicality
of behaviour planning as a proxy for diverse planning.

V1. Conclusions & Future work

In this paper, we introduced the behaviour planning framework, a proxy for diverse
planning that uses a discretised version of the solution space called behaviour space.
Moreover, we suggested a new metric called behaviour count to quantify diversity in
terms of behaviours. Behaviour count quantifies the diversity of a given plan set by
counting the number of behaviours included in this set based on the domain mod-
eller’s used behaviour space. We also showed the applicability of behaviour planning
by developing an experimental cost-bounded diverse planner called FBI. Finally, our
experiments show that behaviour count can quantify diversity based on a qualitative

17



diversity model provided by the domain modeller and the competitiveness of FBI in
generating diverse plans compared to F I, especially when a large number of plans is
required. In our future work, we aim to research better encodings to increase the num-
ber of solved instances by FBI and explore more possible diversity features to extend
the behaviour features library that domain modellers can use.

References

Abdelwahed, M., Espasa, J., Toniolo, A., and Gent, I. (2023). Bridging the gap between
structural and semantic similarity in diverse planning. In ICAPS 2023 Workshop on
PAIR.

Babaki, B., Pesant, G., and Quimper, C. (2020). Solving classical Al planning problems
using planning-independent CP modeling and search. In Harabor, D. and Vallati, M.,
editors, Proceedings of the Thirteenth International Symposium on Combinatorial

Search (SOCS). AAAI Press.

Boddy, M. S., Gohde, J., Haigh, T., and Harp, S. A. (2005). Course of action generation
for cyber security using classical planning. In ICAPS.

Bofill, M., Espasa, J., and Villaret, M. (2016). The RANTANPLAN planner: system
description. The Knowledge Engineering Review.

Bofill, M., Espasa, J., and Villaret, M. (2017). Relaxed 3-step plans in planning as smt.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence.

Chakraborti, T., Isahagian, V., Khalaf, R., Khazaeni, Y., Muthusamy, V., Rizk, Y., and
Unuvar, M. (2020). From robotic process automation to intelligent process automa-
tion: —emerging trends—. In Business Process Management: Blockchain and Robotic
Process Automation Forum: BPM 2020 Blockchain and RPA Forum, Seville, Spain,
September 13—18, 2020, Proceedings 18. Springer.

Coman, A. and Munoz-Avila, H. (2011). Generating diverse plans using quantitative
and qualitative plan distance metrics. In Proceedings of the AAAI Conference on
Artificial Intelligence.

Cully, A. and Demiris, Y. (2017). Quality and diversity optimization: A unifying mod-
ular framework. IEEE Transactions on Evolutionary Computation, 22(2):245-259.

De Moura, L. and Bjgrner, N. (2008). Z3: an efficient smt solver. In Proceedings of
the Theory and Practice of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08.
Springer-Verlag.

Frisch, A. M., Peugniez, T. J., Doggett, A. J., and Nightingale, P. (2005). Solving
non-boolean satisfiability problems with stochastic local search: A comparison of
encodings. J. Autom. Reason., 35(1-3):143-179.

18



Gerevini, A. and Long, D. (2005). Plan constraints and preferences in pddl3. Technical
report, Technical Report 2005-08-07, Department of Electronics for Automation .. ..

Gerevini, A., Saetti, A., and Serina, I. (2003). Planning through stochastic local search
and temporal action graphs in lpg. Journal of Artificial Intelligence Research.

Goldman, R. and Kuter, U. (2015). Measuring plan diversity: Pathologies in existing
approaches and a new plan distance metric. In Proceedings of the AAAI Conference
on Artificial Intelligence.

Haessler, R. W. and Sweeney, P. E. (1991). Cutting stock problems and solution pro-
cedures. European Journal of Operational Research, 54(2):141-150.

Holler, D. and Behnke, G. (2022). Encoding lifted classical planning in propositional
logic. In Proceedings of the International Conference on Automated Planning and
Scheduling.

Ingmar, L., de la Banda, M. G., Stuckey, P. J., and Tack, G. (2020). Modelling diver-
sity of solutions. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34.

Katz, M., Ram, P, Sohrabi, S., and Udrea, O. (2020). Exploring context-free languages
via planning: The case for automating machine learning. In Proceedings of the In-
ternational Conference on Automated Planning and Scheduling.

Katz, M. and Sohrabi, S. (2020). Reshaping diverse planning. In Proceedings of the
AAAI Conference on Artificial Intelligence.

Katz, M., Sohrabi, S., Udrea, O., and Winterer, D. (2018). A novel iterative approach to
top-k planning. In Twenty-Eighth International Conference on Automated Planning
and Scheduling.

Kautz, H., McAllester, D., Selman, B., et al. (1996). Encoding plans in propositional
logic. KR.

Kuo, C.-C., Glover, F., and Dhir, K. S. (1993). Analyzing and modeling the maximum
diversity problem by zero-one programming. Decision Sciences.

Lehman, J. and Stanley, K. O. (2011). Abandoning objectives: Evolution through the
search for novelty alone. Evolutionary computation.

Leofante, F. (2023). Omtplan: A tool for optimal planning modulo theories. J. Satisf.
Boolean Model. Comput.

Leofante, F., Giunchiglia, E., Abrahém, E., and Tacchella, A. (2020). Optimal planning
modulo theories. In Bessiere, C., editor, Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2020. ijcai.org.

Mantik, S., Li, M., and Porteous, J. (2022). A preference elicitation framework for
automated planning. Expert Systems with Applications.

19



Nguyen, T. A., Do, M., Gerevini, A. E., Serina, 1., Srivastava, B., and Kambhampati,
S. (2012). Generating diverse plans to handle unknown and partially known user
preferences. Artificial Intelligence.

Rintanen, J. (2012). Engineering efficient planners with SAT. In Raedt, L. D., Bessiere,
C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., and Lucas, P. J. F., editors, Pro-
ceedings of the 20th European Conference on Artificial Intelligence (ECAI), volume
242 of Frontiers in Artificial Intelligence and Applications.

Rintanen, J. (2021). Planning and SAT. In Biere, A., Heule, M., van Maaren, H.,
and Walsh, T., editors, Handbook of Satisfiability - Second Edition, volume 336 of
Frontiers in Artificial Intelligence and Applications, pages 765-789. 10S Press.

Roberts, M. (2013). A tale of 'T’metrics: Choosing tradeoffs in multiobjective planning.
PhD thesis, Colorado State University.

Roberts, M., Howe, A., and Ray, 1. (2014). Evaluating diversity in classical plan-
ning. In Proceedings of the International Conference on Automated Planning and
Scheduling.

Sohrabi, S., Riabov, A. V., and Udrea, O. (2016). Plan recognition as planning revisited.
In IJCAL

Sohrabi, S., Udrea, O., and Riabov, A. (2013). Hypothesis exploration for malware
detection using planning. In Proceedings of the AAAI Conference on Artificial Intel-
ligence.

Speck, D., Mattmiiller, R., and Nebel, B. (2020). Symbolic top-k planning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence.

Srivastava, B., Nguyen, T. A., Gerevini, A., Kambhampati, S., Do, M. B., and Serina,
I. (2007). Domain independent approaches for finding diverse plans. In IJCAL

Tierney, K., Coles, A., Coles, A., Kroer, C., Britt, A., and Jensen, R. (2012). Automated
planning for liner shipping fleet repositioning. In Proceedings of the International
Conference on Automated Planning and Scheduling.

Vadlamudi, S. G. and Kambhampati, S. (2016). A combinatorial search perspective
on diverse solution generation. In Proceedings of the AAAI Conference on Artificial
Intelligence.

Villaret, M. et al. (2021). Exploring Lifted Planning Encodings in Essence Prime. In
Artificial Intelligence Research and Development: Proceedings of the 23rd Interna-
tional Conference of the Catalan Association for Artificial Intelligence.

20



	I. Introduction
	II. Related work
	III. Behaviour planning
	III.A Behaviour Sorts Suite
	III.A.1 Behaviour Spaces
	III.A.2 Behaviour Count
	III.A.3 Behaviours Features Library

	III.B Forbid Behaviour Iterative

	IV. Realisation of Behaviour Planning
	IV.A Behaviour space
	IV.B Forbid Behaviour Iterative Realisation

	V. Experimental Evaluation & Discussion
	VI. Conclusions & Future work

