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Abstract: Subspace identification methods (SIMs) have proven very powerful for estimating
linear state-space models. To overcome the deficiencies of classical SIMs, a significant number
of algorithms has appeared over the last two decades, where most of them involve a common
intermediate step, that is to estimate the range space of the extended observability matrix.
In this contribution, an optimized version of the parallel and parsimonious SIM (PARSIM),
PARSIMopt, is proposed by using weighted least-squares. It not only inherits all the benefits of
PARSIM but also attains the best linear unbiased estimator for the above intermediate step.
Furthermore, inspired by SIMs based on the predictor form, consistent estimates of the optimal
weighting matrix for weighted least-squares are derived. Essential similarities, differences and
simulated comparisons of some key SIMs related to our method are also presented.
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1. INTRODUCTION

Subspace identification methods (SIMs) are attractive for
their numerical robustness and general parametrization
for multiple-input multiple-output (MIMO) systems. As
summarized in Qin (2006), most classical SIMs can be
unified into the theorem proposed in Van Overschee and
De Moor (1995), such as canonical variate analysis (CVA)
(Larimore, 1990), N4SID (Van Overschee and De Moor,
1994), subspace splitting (Jansson and Wahlberg, 1996)
and MOESP (Verahegen and Dewilde, 1992). To be spe-
cific, they involve the following steps: First, a high-order
model is estimated by regression or projection. Second,
the previous high-order model is reduced to an observable
low-dimensional subspace using weighted singular value
decomposition (SVD). Third, a balanced realization of
state-space matrices is obtained based on the structure
of the reduced observability matrix and the framework
of maximum likelihood (ML). Despite the tremendous
development of SIMs in both theory and practice, some
drawbacks of classical SIMs should be emphasized (Qin,
2006). The first one is that the model format used in SIMs
during the above projection step is non-causal. As a result,
the estimated parameters have inflated variance due to the
fact that extra and unnecessary terms are included in the
model. The second one is that some SIMs are biased for
closed-loop data, which require special treatments. Third,
due to that SIMs are composed of several steps, including
the projection and the weighted SVD step, it is difficult
to analyze their statistical properties. There are some
significant contributions on this problem, such as Bauer
(2005); Bauer and Jansson (2000); Chiuso and Picci (2004,
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2005), but a complete statistical analysis and comparison
of different weighting matrices regarding optimality is still
unavailable. For example, the question of whether there are
subspace methods that are asymptotically efficient is still
unresolved some 50 years after this family of methods was
introduced. Furthermore, SIMs are generally not believed
to be as accurate as the prediction error method (PEM).

To address those problems, especially the first two, a
significant number of SIMs has appeared over the last two
decades. For a comprehensive overview of these methods,
we refer to Qin (2006), Chiuso (2007a) and Van der Veen
et al. (2013). This paper concentrates on the first problem.
In particular, we propose an optimized version of the
parallel and parsimonious SIM (PARSIM) (Qin et al.,
2005). In addition to inheriting all the benefits of PARSIM,
the problem of estimating the range space of the extended
observability matrix is fitted into the ML framework. As
a result, it attains the best linear unbiased estimator
(BLUE) and subsequently implies smaller variances for
estimating system matrices.

Besides standing on the shoulders of PARSIM, our method
is also inspired by other closed-loop SIMs, such as subspace
and ARX modeling (SSARX) (Jansson, 2003), and SIMs
based on the predictor identification (PBSID) (Chiuso
and Picci, 2005; Chiuso, 2007b) and its optimized version
PBSIDopt (Chiuso, 2007a). In the following section, we will
integrate models and formulations to illustrate essential
similarities and differences among those methods, along
with how they relate to our method. In Section 3, the im-
plementation of our method is presented. Some numerical
examples are provided in Section 4 to compare our method
with the state-of-the-art, which suggest that our method
should be considered as one of the most appealing SIMs.
The paper is then concluded in Section 5.
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2. PRELIMINARIES

2.1 Problem Formulation and Assumptions

Consider the following discrete linear time-invariant (LTI)
system on innovations form:

xk+1 = Axk +Buk +Kek, (1a)

yk = Cxk +Duk + ek, (1b)

where xt ∈ Rnx , ut ∈ Rnu , yt ∈ Rny and et ∈ Rny are
the state, input, output and innovations, respectively. We
are interested in estimating the system matrices A, B, C,
D and the Kalman gain K using input and output data.
System (1) can be represented in predictor form as

xk+1 = Āxk + B̄uk +Kyk, (2a)

yk = Cxk +Duk + ek, (2b)

where Ā = A−KC and B̄ = B −KD.

As pointed out in Qin (2006), most SIMs use one of the
above forms. The advantage of the predictor form over the
innovations form is that Ā is guaranteed to be stable even
if A is unstable, which facilitates the estimation of both
stable and unstable processes. However, the drawback is
that, for a finite number of samples, the optimal Kalman
gain K is time-varying, which results in a time-varying Ā
even though A is time-invariant.

Next, we recap the state-of-the-art in SIMs to expose
their essential similarities and differences. Since their key
variations are rooted in obtaining Markov parameters and
the range space of the extended observability matrix, while
the remaining steps to estimate the model parameters are
similar, we will only cover these steps. Before proceeding
further, we introduce the following assumptions commonly
used in SIMs:

Assumption 1. (1) The system is stable, i.e., the eigen-
values of A are strictly inside the unit disk.

(2) The system is minimal, i.e., (A, [B,K]) is controllable
and (A,C) is observable.

(3) The innovations sequence {ek} is a stationary, zero-
mean, white noise with E(ekel) = Rδkl, where δkl
is the Kronecker delta. For simplicity, we assume
R = σ2

eI throughout the paper, but we believe that
our method can be adapted to arbitrary covariance
matrices R.

(4) The input sequence {uk} is quasi-stationary and
independent of {ek}.

(5) The input {uk} is persistently exciting of order f +p,
where the future and past horizons f and p will be
defined later.

2.2 SIMs Based on Innovations Form

Here we provide a short review on classical SIMs using the
innovations form (1), with focus on PARSIM. An extended
state-space model for (1) can be derived as

Yf = ΓfXk +GfUf +HfEf , (3a)

Yp = ΓpXk−p +GpUp +HpEp, (3b)

where f and p denote future and past horizons, respec-
tively. Also, the extended observability matrix is

Γf =
[
C⊤ (CA)

⊤ · · ·
(
CAf−1

)⊤]⊤
, (4)

and Gf with Hf are Toeplitz matrices of Markov param-
eters with respect to the input and innovations,

Gf =


D 0 · · · 0
CB D · · · 0
...

...
. . .

...
CAf−2B CAf−3B · · · D

 , (5a)

Hf =


I 0 · · · 0

CK I · · · 0
...

...
. . .

...
CAf−2K CAf−3K · · · I

 . (5b)

Past and future inputs are collected in the Hankel matrices

Up =


uk−p uk−p+1 · · · uk−p+N−1

uk−p+1 uk−p+2 · · · uk−p+N

...
...

. . .
...

uk−1 uk · · · uk+N−2

 , (6a)

Uf =


uk uk+1 · · · uk+N−1

uk+1 uk+2 · · · uk+N

...
...

. . .
...

uk+f−1 uk+f · · · uk+f+N−2

 . (6b)

(6c)

The matrices Γp, Gp, Hp, Yp, Yf , Ep and Ef are defined
in a similar way, see Qin et al. (2005). The state sequences
are defined as

Xk = [xk xk+1 · · · xk+N−1] , (7a)

Xk−p = [xk−p xk−p+1 · · · xk−p+N−1] . (7b)

Although the state Xk is unknown, it can be recovered
from past inputs Up and outputs Yp using the relation

Xk = LpZp + ĀpXk−p, (8)

where Zp =
[
Y ⊤
p U⊤

p

]⊤
and Lp is the extended controlla-

bility matrix of the predictor form (2), i.e.,

Lp =
[
Āp−1K · · · ĀK K Āp−1B̄ · · · ĀB̄ B̄

]
. (9)

When p is sufficiently large, Āp ≈ 0, hence, the bias term
ĀpXk−p is omitted. Combining (3a) and (8), we have

Yf = ΓfLpZp +GfUf +HfEf . (10)

Most SIMs use (10) to first estimate the extended observ-
ability matrix Γf , and then obtain a realization of the
system parameters up to a similarity transformation. To
begin with, since Gf is a lower-triangular Toeplitz matrix
whose structure is difficult to be preserved with least-
squares, this term is eliminated by projecting out Uf as

YfΠ
⊥
Uf

= ΓfLpZPΠ
⊥
Uf

+HfEfΠ
⊥
Uf

, (11)

where Π⊥
Uf

= I − U⊤
f (UfU

⊤
f )−1Uf . For the open-loop

case, Uf is uncorrelated with Ef , so we have EfΠ
⊥
Uf

≈
Ef . Furthermore, since Ef is uncorrelated with Zp, i.e.,
1
NEfZ

⊤
p ≈ 0, by multiplying Z⊤

p on both sides of (11) we
have

YfΠ
⊥
Uf

Z⊤
p ≈ ΓfLpZPΠ

⊥
Uf

Z⊤
p . (12)

Now, the range space of the extended observability matrix
ΓfLp can be estimated by OLS, i.e.,

Γ̂fLp = YfΠ
⊥
Uf

Z⊤
p (ZPΠ

⊥
Uf

Z⊤
p )†, (13)

where [·]† is the Moore-Penrose pseudo-inverse. Then to
recover the extended observability matrix Γf , weighted
SVD is often used, i.e.,

W1Γ̂fLpW2 = USV ⊤ ≈ Unx
Snx

V ⊤
nx
, (14)



where Snx
contains the nx largest singular values. In this

way, a balanced realization of Γf is estimated as

Γ̂f = UnxS
1
2
nx . (15)

As pointed out in Van Overschee and De Moor (1995),
one of the main differences among various classical SIMs
regards the choice of weighting matrices used in the
SVD-step. It is further pointed out in Gustafsson and
Rao (2002) that W1 has no influence on the asymptotic
accuracy of the estimated observability matrix, and an
approximately optimal weighting for W2 is

W2 = (ZpΠ
⊥
Uf

Z⊤
p )1/2. (16)

There are two aspects to be mentioned:

(1) The lower-triangular Toeplitz matrix Gf guarantees
that the extended model is causal. Since it is elimi-
nated during the projection step (11), the projected
model becomes potentially non-causal. As a result,
the estimated parameters have inflated variance due
to the fact that unnecessary terms are included.

(2) For closed-loop data, Uf and Ef are correlated, i.e.,
EfΠ

⊥
Uf

̸= Ef , so as a result, many methods are biased

for closed-loop setups.

To enforce causal models, a parallel PARSIM is proposed
in Qin et al. (2005). Instead of doing the projection once,
PARSIM zooms into each row of (10) and equivalently per-
forms f OLS projections. To illustrate this, the extended
state-space model (10) can be partitioned row-wise as

Yfi = ΓfiLpZp +GfiUi +HfiEi, i = 1, 2, ...f, (17)

where

Γfi = CAi−1,

Yfi = [yk+i−1 yk+i · · · yk+N+i−2] ,

Ufi = [uk+i−1 uk+i · · · uk+N+i−2] ,

Efi = [ek+i−1 ek+i · · · ek+N+i−2] ,

Ui =
[
U⊤
f1 U⊤

f2 · · · U⊤
fi

]⊤
,

Ei =
[
E⊤

f1 E⊤
f2 · · · E⊤

fi

]⊤
,

Gfi =
[
CAi−2B · · · CB D

] ∆
= [Gi−1 · · · G1 G0] ,

Hfi =
[
CAi−2K · · · CK I

] ∆
= [Hi−1 · · · H1 H0] .

Then the parallel PARSIM uses a bank of OLS to estimate
ΓfiLp and Gfi simultaneously from the causal model (17):[

Γ̂fiLp Ĝfi

]
= Yfi

[
Zp

Ui

]†
. (18)

At last, the whole estimate of ΓfLp is obtained by stacking

the f values of Γ̂fiLp together asΓ̂f1Lp

...

Γ̂ffLp

 ∆
= Γ̂fLp. (19)

As we can see, by estimating the Markov parameters Gfi

in each row, the structure of the whole Toeplitz matrix Gf

is preserved. Furthermore, it is shown that regarding the
estimates of the Markov parameters and the range space
of the extended observability matrix, PARSIM generally
gives smaller variance than conventional SIMs(Qin et al.,
2005). However, to be consistent, PARSIM requires that
there is no correlation between future {uk} and future

{ek}, which is only valid for the open-loop case. To
make it applicable to the closed-loop case, an innovation
estimation method is proposed in Qin and Ljung (2003),
which utilizes the structure of the Toeplitz matrix Hf to
decouple the correlation between future {uk} and {ek}.

2.3 SIMs Based on Predictor Form

To address the bias issue in classical SIMs when applied
to closed-loop settings, several closed-loop SIMs have been
put forward. In this section, we introduce two techniques
that employ the predictor form (2), which provide inspi-
ration for our method.

SSARX By defining the following Toeplitz matrices for
the predictor form (2),

Γ̄f =
[
C⊤ (CĀ

)⊤ · · ·
(
CĀf−1

)⊤]⊤
, (20a)

Ḡf =


D 0 · · · 0
CB̄ D · · · 0
...

...
. . .

...
CĀf−2B̄ CĀf−3B̄ · · · D

 , (20b)

H̄f =


0 0 · · · 0

CK 0 · · · 0
...

...
. . .

...
CĀf−2K CĀf−3K · · · 0

 , (20c)

we obtain the extended model

Yf = Γ̄fXk + ḠfUf + H̄fYf + Ef

= Γ̄fLpZp + ḠfUf + H̄fYf + Ef .
(21)

To remove the possible correlation between Uf , Yf and
Ef , SSARX (Jansson, 2003) first estimates the predictor
Markov parameters

{
CĀiB̄

}
and

{
CĀiK

}
from a high-

order ARX model, and then replaces Ḡf and H̄f with their

estimates ˆ̄Gf and ˆ̄Hf , leading to

Yf − ˆ̄GfUf − ˆ̄HfYf = Γ̄fLpZp + Ef . (22)

Here, as Ef is not correlated to Zp, OLS can be used to ob-
tain consistent estimates of Γ̄fLp. Putting the truncation
error of the high-order ARX model aside, as the estimates
ˆ̄Gf and ˆ̄Hf are consistent for both open-loop and closed-
loop data, SSARX is suitable for both cases.

PBSID Inspired from SSARX, PBSID, also known as
the whitening filter approach (Chiuso and Picci, 2005),
starts from the predictor form (2) and utilizes the structure
of the lower-triangular Toeplitz matrices Ḡf and H̄f to
carry out multi-stage projections row by row in (21).
In this way, no pre-estimation as in SSARX is required,
and causality is strictly enforced, similar to PARSIM. It
should be further pointed out that PBSID is asymptot-
ically equivalent to SSARX, in the sense of yielding the
same asymptotic distribution of the estimators (Chiuso,
2007b). Later on, PBSIDopt, an optimized PBSID algo-
rithm, was proposed in Chiuso (2007a). Besides sharing
the advantages of PBSID, it also considers the distribution
of the innovations Ef and attains BLUE for estimating
Γ̄fLp.



3. PARSIMOPT

In this section, we propose an optimized PARSIM al-
gorithm. Just as PBSIDopt refines PBSID, PARSIMopt

preserves all the merits of PARSIM while demonstrating
superior performance with reduced variance.

3.1 Weighted Least-Squares

Our method stands on the shoulders of PARSIM. For the
last term HfiEi in (17), since Ei is an unknown Hankel
matrix and Hfi contains unknown Markov parameters
with respect to the innovations, the correlation structure
of the noise in (17) is not used in PARSIM, where OLS is
used to estimate ΓfiLp and Gfi, which is consistent but
generally not BLUE. Our contribution is to benefit from
this structure to improve on the OLS estimate by way of
WLS. For simplicity’s sake, we now consider the SISO case,
whereas the MIMO case can be dealt with similarly.

Taking Hfi = [H1 H0] and Ei =

[
e0 e1
e1 e2

]
, since Hi and ek

are scalars, we can rewrite HfiEi as

HfiEi = EiT[Hfi], (23)

where Ei = [e0 e1 e2] is a row vector and T[Hfi] is a

Toeplitz matrix of Hfi, i.e., T[Hfi] =

[
H1 0
H0 H1

0 H0

]
. Substi-

tuting (23) into (17), we have

Yfi = [ΓfiLp Gfi]

[
Zp

Ui

]
+ EiT[Hfi]. (24)

In this way, there are no repeated elements in Ei, and
the problem can be fitted into the ML framework. To
be specific, since Ei ∼ N (0, σ2

eI), we have EiT[Hfi] ∼
N (0, σ2

eT ⊤
[Hfi]

T[Hfi]). With the optimal weighting matrix

W ∗
i = (T ⊤

[Hfi]
T[Hfi])

−1, we have the BLUE in each step

given by WLS as[
Γ̂fiLp Ĝfi

]
= Yfi

[
Zp

Ui

]⊤
W ∗

i

([
Zp

Ui

]
W ∗

i

[
Zp

Ui

]⊤)−1

.

(25)
Comparing with PARSIM that performs f OLS to obtain

Γ̂fLp, PARSIMopt performs f WLS. Since the estimates

Γ̂fiLp of PARSIMopt have smaller variances than PAR-

SIM, the overall Γ̂fLp of PARSIMopt has smaller variance.
Furthermore, it has been shown that PARSIM generally
gives smaller variance than other classical SIMs in terms
of estimating the range space of the extended observability
matrix. Thus, if the optimal weighting matrix is known,
then PARSIMopt is BLUE and gives a smaller variance
among those SIMs using the innovations form.

Remark 2. Notice that, in principle, (23) can be omitted.
However, to perform WLS directly on (17) requires vector-
izing the Hankel matrix Ei resulting in a noise vector with
repeated entries and thus a singular covariance matrix,
which needs more careful investigations and computational
efforts. This is the approach taken in PBSIDopt.

3.2 Estimation of Weighting Matrices

The preceding section assumes that the optimal weighting
matrices W ∗

i are known, i.e., the terms Hi = CA(i−1)K,

i = 1, 2, ..., f − 1, are available, which is generally not the
case. To handle this, following the first step in SSARX,
we propose to use a high-order ARX model to obtain
consistent estimates of these Markov parameters. When
the order n is large enough, the ARX model captures the
system dynamics with arbitrary accuracy. It is important
to note that the order n should be selected at a suit-
able rate with respect to the sample size N in order to
achieve consistency and asymptotic normality (Ljung and
Wahlberg, 1992). Omitting the truncation error, consistent
estimates of predictor Markov parameters can be obtained
using OLS from the ARX model. Then, to form an es-
timate of the optimal weighting matrix W ∗

i , we need to
extract the estimates of Hi = CAi−1K from the estimates
of H̄i = CĀi−1K = C(A − KC)i−1K, i = 1, ..., f . Such
extraction can be implemented by the following recursive
algorithm (Juang et al., 1993):

H1 = H̄1, (26a)

Hi = H̄i +

i−1∑
j=1

H̄jHi−j , for i ≥ 2. (26b)

3.3 Estimation of System Parameters

As we already mentioned in Section 2, after obtaining

Γ̂fLp, the next step for SIMs is to choose weighting
matrices W1 and W2, and then perform SVD (14). For
PARSIMopt, we choose the same weighting matrix as

PARSIM, i.e., W1 = I and W2 = (ZpΠ
⊥
Uf

Z⊤
p )1/2. As for

the estimation of system matrices, it follows similar steps
as PARSIM. To conserve space, these steps are omitted,
and we refer readers to Qin et al. (2005) for more details.

4. SIMULATION EXAMPLES

Here we provide some numerical examples to compare
PARSIMopt with state-of-the-art. For implementations of
the methods included in the comparison, we use the follow-
ing resources: N4SID with CVA weighting (Van Overschee
and De Moor, 2012), SSARX (Jansson, 2003), PBSIDopt

(Chiuso, 2007a) and PARSIM (Qin et al., 2005). Here are
some common settings of the first two examples:

(1) The matrix D is constrained to be 0 in all methods.
(2) The comparison is under the open-loop case.
(3) The future horizon f is fixed, and the past horizon

p is selected according to the AIC criterion (Akaike,
1974) for all methods.

(4) PEM as implemented in the Matlab (R2021a) System
Identification Toolbox is used as a benchmark.

4.1 Example 1

The first example is used in Jansson (2003), which is

yt =
0.21q−1 + 0.07q−2

1− 0.6q−1 + 0.8q−2
ut +

1

1− 0.98q−1
et,

where uk ∼ N (0, 1) and ek ∼ N (0, 4). We first show that
WLS in PARSIMopt gives smaller variance than OLS in
PARSIM when estimating the Markov parameters and the
range space of the extended observability matrix. For this
purpose, we consider sample sizes N = 1000 : 500 : 3000
and f = 10, and the performance is evaluated by

Error(G) = ∥Ĝff −Gff∥/∥Gff∥,
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Fig. 2. FIT (Example 1).

where Gff is defined in (17), and ∥Gff∥ is the 2-norm

of Gff . We remark that here Ĝff is directly obtained
by solving WLS or OLS in (24), not from the identified
system matrices A,B and C indirectly. Figure 1 shows the
estimation error of the Markov parameters, where the solid
lines indicate average errors of each method in 50 Monte
Carlo trials, and the shadowed bars around them mean the
variances in 50 trials. It is clear that WLS in PARSIMopt

outperforms OLS in PARSIM.

Second, we show the comparison between PARSIMopt and
other SIMs. The performance is evaluated by

FIT = 100

(
1− ∥go − ĝ∥

∥go −mean[g]∥

)
,

where go is a vector with the impulse response parameters
of the true transfer function from u to y, and similarly for ĝ
but for the estimated model of different SIMs. The sample
size N = 2000, and the FIT result based on 50 Monte
Carlo simulations is shown in Figure 2. We remark that,
for a clear representation, outliers are removed from the
boxchart. As we can see, for this example SIMs based on
innovations form (N4SID and PARSIM) are not as good as
SIMs based on the predictor form (SSARX and PBSIDopt).
In addition, PARSIMopt is better than PARSIM.

4.2 Example 2

The second example is used in Jansson and Wahlberg
(1998) and Qin et al. (2005). For this counterexample,
many SIMs are not consistent and have a poor perfor-
mance. The system is given by

xk+1 =

[
2γ −γ2

1 0

]
xk +

[
1
−2

]
uk +

[
−0.21
−0.559

]
ek,

yk = [2 −1]xk + ek,

where γ = 0.9184, ek ∼ N (0, 217.1), uk = (1− γq−1)2(1+
γq−1)2rk and rk ∼ N (0, 1). The sample size N = 2000
and f = 7, and the FIT result based on 50 Monte Carlo
simulations is shown in Figure 3. As we can see, for this
example SIMs based on innovations form (N4SID and
PARSIM) are better than SIMs based on the predictor
form (SSARX and PBSIDopt). In addition, PARSIMopt is

N4SID(CVA) SSARX PBSID_opt PARSIM_P PARSIM_opt PEM
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Fig. 3. FIT (Example 2).

slightly worse than PARSIM. The reason is that due to
the large variance in innovations, the pre-estimation step
is not good, which results in a bad estimate of the optimal
weighting matrix for PARSIMopt.

4.3 Example 3: Random systems

In order to test the robustness of PARSIMopt, we now
perform a simulation with sixth order random systems
generated by MATLAB as follows:

m = idss(drss(6, 1, 1));

m.d = zeros(1, 1);m.b = 5 ∗ randn(6, 1);
u = idinput([1000, 1],′ rbs′, [0 0.1]);

y = sim(m,u) + σe ∗ randn(1000, 1);
where σ2

e is the noise variance. In addition, according to
a critical view on the MATLAB command drss() (Rojas
et al., 2015), the magnitude of the sampled dominant pole
pmax is restricted to satisfy 0.78 < pmax < 0.9. As it
has been shown that PBSID is asymptotically equivalent
to SSARX, and PARSIM generally gives smaller variance
than classical SIMs Chiuso (2007b), we mainly evaluate
the performance of PARSIMopt with respect to PARSIM
and PBSIDopt. We believe that such comparison is inter-
esting to the field, as PARSIM and PBSID algorithms
both partition the extended state-space model row-wise
and estimate a bank of ARX models using multi-step
least-squares. Also, in terms of estimating the range space
of the extended observability matrix, PBSIDopt is BLUE
among those methods based on the predictor form, while
now PARSIMopt is BLUE among those methods based
on the innovations form. For a fair comparison, we use
three different noise levels, i.e., σ2

e = 1, 10, 100. For each
noise level, 50 independent random systems are generated.
The joint FIT distribution of PARSIMopt with respect to
PARSIM and PBSIDopt are presented in Figure 4, where
each blue ∗ marker means a random system, and the red
line is a bisector line. As shown in the left column of Figure
4, the improvement of PARSIMopt over PARSIM is quite
clear, as for different noise levels, PARSIMopt has higher
FIT than PARSIM on most systems. As shown in the right
column, when the noise level is small, the performance of
PARSIMopt and PBSIDopt is roughly equal, and when the
level of noise increases, PARSIMopt appears to perform
more effectively than PBSIDopt.

5. CONCLUSION

Standing on the shoulders of PARSIM and SSARX, this
paper presents an alternative way to handle processing
preceding the SVD-step in subspace identification. The
idea is to obtain a more accurate estimate of the ob-
servability matrix by replacing ordinary least-squares with
weighted-least squares, where the optimal weighting ma-
trix is substituted by a consistent estimate thereof. While
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Fig. 4. Joint FIT distribution of random systems.

the method follows PARSIM, the estimate of the optimal
weighting matrix is based on a high-order ARX model,
thus borrowing features from SSARX. Simulation exam-
ples suggest that this mixed use of both the innovations
form and the predictor form in the estimation method is
beneficial for the final state-space model estimate. In the
future, we will implement PARSIMopt for MIMO systems,
and extend it to the closed-loop case. Meanwhile, more
simulations will be done to reveal its potential benefits.
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