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In this work, we consider quantum unital Otto heat engines. The latter refers to the fact that both the unitaries
of the adiabatic strokes and the source of the heat provided to the engine preserve the maximally mixed state.
We show how to compute the cumulants of either the dephased or undephased engine. For a qubit, we give
the analytical expressions of the averages and variances for arbitrary unitaries and unital channels. We do a
detailed comparative study between the dephased and undephased heat engines. More precisely, we focus on
the effect of the parameters on the average work and its reliability and efficiency. As a case study of unital
channels, we consider a quantum projective measurement. We show on which basis we should projectively
measure the qubit, either the dephased or undephased heat engine, to extract higher amounts of work, increase
the latter’s reliability, and increase efficiency. Further, we show that non-adiabatic transitions are not always
detrimental to thermodynamic quantities. Our results, we believe, are important for heat engines fueled by
quantum measurement.

Keywords : Cumulants of the unmonitored engine, Kirkwood-Dirac quasi-probability, Measurement-based
quantum engine, Universal thermodynamic bounds.

I. INTRODUCTION

Quantum mechanics and thermodynamics are two of the best theories that humankind has developed. With today’s ability of
experimentalists to control quantum systems—something that one even could not imagine at the time of Schrödinger—one starts
wondering if and how these two great theories can be fit together into a single framework. Thermodynamics has emerged as a
consequence of people’s interest in understanding heat engines. More precisely to answer the question of how one can use heat
and efficiently convert it into useful energy, i.e., work. Nowadays, our technologies are getting smaller, so we want to know how
we can manage heat at the small scale, e.g., can heat generated at the quantum scale be used advantageously for useful things
such as cooling quantum systems? These kinds of questions have led to the field known today as quantum thermodynamics[1–8].

Inspired by Maxwell demon and Szilard engine [9], quantum thermal machines based on quantum measurement [10–31]
are now under extensive study. The fact that quantum measurement can fuel quantum thermal machines and do quantum
computation, see, e.g., Ref. [31], has no classical analogy. This is because, in principle, a measurement in the classical world
can extract information without disturbing the state of the measured system. On the other hand, this is not the case when we
consider quantum systems such as electrons and photons—their state gets changed after the measurement. It is this change in
the state of the system that is responsible for the possibility of thermal machines fueled by quantum measurement.

Recently, in Ref. [32], we have considered a single qubit quantum Otto cycle where we neither assumed the cycle to be
time-reversal symmetric nor specified the unital channel replacing the hot heat bath. Similarly to some works [33–40], we have
proved that the ratio of the fluctuations of the stochastic work (W ) and the stochastic heat absorbed (QM ) is lower and upper
bounded. The lower bound was the square of the efficiency of the engine, and the upper bound was 1. In Ref. [41], we put
forward this work and we considered also the fluctuations of the stochastic heat released (QC), which was not obvious how
to compute its cumulants. We have proved that the relative fluctuations (RFs) of W , QM , and QC obey a thermodynamic
uncertainty relation given by 2/⟨⟨Σ⟩⟩ − 1 (see Ref. [42] and Refs. [43–53] for more details about thermodynamic uncertainty
relations). We analytically showed that the RFs of QC always bound the RFs of W and QM , which is better than the bound
2/⟨⟨Σ⟩⟩ − 1. The latter has the flaw that it becomes negative when ⟨⟨Σ⟩⟩ > 2. Actually, a lot of thermodynamic uncertainty
relations have the flaw that when entropy production diverges, i.e., in the low-temperature regime, they tend to zero. However,
we know that even in this regime, thermodynamic quantities such as work and heat have non zero relative fluctuations. We show
this below, numerically.

One should note that because of the strong measurement between the strokes in Refs. [32, 41], coherence was erased. Thus,
one would wonder what is the fate of those bounds and the relationship between the RFs of W , QM , and QC in the presence
of quantum coherence, and if and how the latter can be used to enhance work and its reliability as well as efficiency. Here,
we consider the quantum Otto cycle, where the working medium is a single two-level system, similar to what we did in Refs.
[32, 41]. In this paper, the main things that we focus on are:
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1. We show how to derive the cumulants — in the presence of quantum coherence — of all thermodynamic quantities from
the characteristic function (CF) of the stochastic energies. In Ref. [41], we have shown how one can do this for the
strongly measured engine. In the presence of coherence, we see that the cumulants follow from a quasiprobability.

2. We analytically show how one can derive the first and second cumulants only in terms of six transition probabilities (to
be defined below), independently of the Hamiltonians, the unitaries, and the unital channel. More precisely, we give the
compact expressions of the averages and fluctuations of work and heat (absorbed and released).

3. Considering as a unital channel a quantum projective measurement, we give a detailed comparison between the dephased
and undephased engines. More precisely, we focus on the effect of the parameters (i.e., inverse temperature β, gaps 2ν1
and 2ν2, angles of measurement χ and α, the angle ϕ, and the non-adiabatic parameter δ′), on the average work and its
reliability, and also on efficiency. In the main text below, it will be clear what the difference is between the dephased and
undephased engines. In general, it is shown that contrary to common wisdom, non-adiabatic transitions are not always
detrimental to thermodynamic quantities such as work and efficiency.

4. We also comment on the relationship between the RFs proved in Refs. [32, 41] when coherence is not erased.

This paper has been organized as follows: In Section II, we explain what we mean by dephased and undephased engines,
and we show how one can derive the cumulants of the latter engines and prove that both of these engines can never work as a
refrigerator. In Section III, we give the qubit model to which we apply our analytical results. In Section IV, we explain in detail
which parameters have a good influence on the average work, work reliability, and efficiency of the dephased engine. We show
that their highest values are only achieved in the adiabatic regime. Then, in Section V, we focus on the undephased engine. We
compute the averages and fluctuations of work and heat for an arbitrary unital channel, then we apply them to the qubit model
that we show in Section III. We also give the common and different features between the two engines. In Section VI, we give a
summary of our results. Finally, in the appendices, we give proof of some analytical results presented in the main text. We set
ℏ = kB throughout this paper.

II. DEPHASED AND UNDEPHASED QUANTUM OTTO HEAT ENGINES

Although there are many different thermodynamic cycles, the quantum cycle that we consider in this paper is the quantum
version of the Otto cycle [54–59]. This is because heat and work exchanges are separated under the assumption of the weak
coupling limit between the working medium and its environment. Also, when the heat and work exchanges are separated, this
helps in considering their higher cumulants without troubles. The Otto cycle is composed of two adiabatic strokes and two
isochoric strokes. In the adiabatic strokes, we have an exchange of work with the external world, while in the isochoric strokes,
we have an exchange of heat with the external world.

A B

CD

Figure 1. Schematic of the four steps of the quantum Otto cycle. The four strokes of the cycle are: A → B, B → C, C → D, and D → A.
See the main text for details.

A. Undephased engine

The cycle steps of the undephased engine are as follows; see Fig. 1. A : First, we assume that the system with Hamiltonian
H1, is initialized in thermal equilibrium with a heat bath at inverse temperature β, thus the state is given by ρ1 := e−βH1/Z.
Z := Tr

[
e−βH1

]
is the partition function, and Tr is the trace. Without loss of generality, and for this moment, let’s not specify

the expression of H1. The initial average energy of the system is given by: ⟨E1⟩ := Tr [ρ1H1]. From A to B, we apply the
first unitary transformation given by U . The Hamiltonian gets changed from H1 into H2 and the state into ρ2 := Uρ1U

†.
After this unitary transformation, the average energy of the system becomes ⟨E2⟩ := Tr [ρ2H2]. Since U is entropy preserving,
this change in energy is work. That is, we have, ⟨W1⟩ := ⟨E2⟩ − ⟨E1⟩ = Tr [ρ2H2] − Tr [ρ1H1]. Then, from B to C,
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we fix the Hamiltonian at H2, but we apply a unital channel denoted by Φ to fuel the system. In this case, the state of the
system evolves into ρ3 := Φ(ρ2). The average energy after applying Φ is given by ⟨E3⟩ := Tr [ρ3H2]. In this case, the
change in energy is classified as heat, and it is given by, ⟨QM ⟩ := ⟨E3⟩ − ⟨E2⟩ = Tr [ρ3H2] − Tr [ρ2H2]. Then, from
C to D, we bring back the Hamiltonian from H2 into H1. In this second adiabatic stroke, the state of the system becomes
ρ4 := V ρ3V

†. The average energy is given by ⟨E4⟩ = Tr [ρ4H1] and the change in energy is classified as work, and it is
given by, ⟨W2⟩ := ⟨E4⟩ − ⟨E3⟩ = Tr [ρ4H1] − Tr [ρ3H2]. Note that it is not necessary for V to be the time-reversal of U ,
i.e., not necessarily V := ΘU†Θ†, where Θ is the time-reversal operator. Finally, from D to A, we let the system interact
with the initial bath until it is fully in equilibrium, thus closing the cycle. The change in energy in this stroke is classified
as heat, and it is given by, ⟨QC⟩ := ⟨E1⟩ − ⟨E4⟩ = Tr [ρ1H1] − Tr [ρ4H1]. The first law of thermodynamics states that
⟨W1⟩+ ⟨W2⟩+ ⟨QM ⟩+ ⟨QC⟩ = 0. From this, the total amount of work extracted is given by,

⟨W ⟩ := ⟨QM ⟩+ ⟨QC⟩ = −(⟨W1⟩+ ⟨W2⟩). (1)

Note that by unital channel we mean that it preserves the maximally mixed state, i.e., for an arbitrary finite dimension d,
we have Φ(1d/d) = 1d/d, where 1d is the identity matrix of dimension d × d. For the undephased engine, the state and the
Hamiltonian of the system in the cycle evolve as follows:

{
ρ1
H1

→
{

ρ2 = Uρ1U
†

H2
→

{
ρ3 = Φ(ρ2)
H2

→
{

ρ4 = V ρ3V
†

H1
→

{
ρ1
H1

. (2)

Remark 1. Until now, we were talking about the undephased engine and for an arbitrary finite dimensional working medium.
But before we continue, let’s clarify the nature of the energy change after applying the unital channel Φ, i.e., the nature of
⟨E3⟩ − ⟨E2⟩. When the channel Φ is unitary, then in this case, the energy change is work, since it preserves the entropy of the
system. In this paper, on the other hand, we are considering unital channels (not unitary channels) that change the entropy of
the system, and thus the energy provided is heat.

B. Dephased engine

As above, consider as a working medium a quantum system with a finite dimension d, i.e., d < ∞. The Hamiltonian of the
working medium can be expressed as follows:

H :=

d∑
i=1

νiΠi =

d∑
i=1

νi|i⟩⟨i|. (3)

Where νi and Πi are, respectively, the corresponding eigenvalues and eigenvectors of H . Even though not explicitly written,
the eigenvalues and eigenvectors can be a function of parameters such as time, coupling, or magnetic field. But let’s not go into
details.

Now let’s define what we mean by the dephased engine. Following the two-point measurement scheme [60–62], the system
is now monitored between the strokes. Below, we use the (un)monitored and (un)dephased engines interchangeably. First
measuring the initial Hamiltonian H1 at A in Fig. 1, gives one of its eigenvalues denoted from now on by ν

(1)
n (see, Eq. (3)),

where the superscript (1) refers to the fact that we are measuring H1. In this case, according to the postulates of quantum
mechanics, the system would be projected into Π

(1)
n (:= |n⟩11⟨n|). Following the same reasoning, we denote the measured

eigenvalues of the Hamiltonians at B, C, and D in Fig. 1, by ν
(2)
m , ν(2)k , and ν

(1)
l , respectively. Since we are considering

projective measurements, the system would be in one of the eigenstates of the measured Hamiltonian after the measurement.
Note that the quantum numbers n, m, k, and l vary from 1 into d. We call four successive measured energies, i.e., ν(1)n , ν(2)m ,
ν
(2)
k , and ν

(1)
l , a stochastic cycle. Then, the collapsed states of the system in an arbitrary stochastic cycle are given as follows:

Π(1)
n → Π(2)

m → Π
(2)
k → Π

(1)
l . (4)

In this case, the stochastic work, the stochastic heat absorbed, and the stochastic heat released are defined, respectively, as
follows: W := ν

(1)
n −ν

(2)
m +ν

(2)
k −ν

(1)
l , QM := ν

(2)
k −ν

(2)
m and QC := ν

(1)
n −ν

(1)
l . Note that here we have energy conservation

even for the stochastic work and heat, and not only at the average level. See Ref. [41] for more details on this statement. Further,
the probability (denoted by pn,m,k,l from now on) of an arbitrary stochastic cycle to be followed by the working medium is given
by

pn,m,k,l :=
e−βν(1)

n

Z
|2⟨m|U |n⟩1|2 (2⟨k|Φ(|m⟩22⟨m|)|k⟩2) |1⟨l|V |k⟩2|2. (5)
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It should be emphasized that pn,m,k,l verifies the next two properties: 0 ≤ pn,m,k,l ≤ 1 for all stochatic cycles, and∑
n,m,k,l pn,m,k,l = 1. Equation (5) can be further compressed into a nice equation written as,

pn,m,k,l = Tr
[
Π

(1)
l VΠ

(2)
k Φ

(
Π(2)

m UΠ(1)
n ρ1Π

(1)
n U†Π(2)

m

)
Π

(2)
k V †

]
. (6)

We define the next four stochastic energies by: E1 := ν
(1)
n , E2 := ν

(2)
m , E3 := ν

(2)
k , and E4 := ν

(1)
l . The joint probability

distribution (PD) that describes the measured energies E1, E2, E3, and E4 of our engine is given by

P (E1, E2, E3, E4) :=
∑

n,m,k,l

pn,m,k,lδ(E1 − ν(1)n )δ(E2 − ν(2)m )δ(E3 − ν
(2)
k )δ(E4 − ν

(1)
l ). (7)

From a computational point of view, it is easier to work with the characteristic function than with the PD. Nevertheless,
note that they contain the same information. The CF, denoted from now on by χ(γ1, γ2, γ3, γ4), is the fourier transform of
P (E1, E2, E3, E4), i.e.

χ(γ1, γ2, γ3, γ4) :=

∫
P (E1, E2, E3, E4)e

i(γ1ν
(1)
n +γ2ν

(2)
m +γ3ν

(2)
k +γ4ν

(1)
l )dE1dE2dE3dE4. (8)

Here, γ1, γ2, γ3, and γ4 are the Fourier conjugates of E1, E2, E3, and E4, respectively. Since the outcomes of our engine are
discrete, the integral would be replaced by a summation. Therefore, after simple algebra, one can arrive at the next expression:

χ(γ1, γ2, γ3, γ4) =
∑

n,m,k,l

Tr
[
Π

(1)
l VΠ

(2)
k Φ

(
Π(2)

m UΠ(1)
n ρ1Π

(1)
n U†Π(2)

m

)
Π

(2)
k V †

]
ei(γ1ν

(1)
n +γ2ν

(2)
m +γ3ν

(2)
k +γ4ν

(1)
l ). (9)

The cumulants of E1, E2, E3, and E4 and their covariances can be derived from Eq. (9) as follows:

⟨⟨Es1
1 Es2

2 Es3
3 Es4

4 ⟩⟩c :=
∂s1∂s2∂s3∂s4log(χ(γ1, γ2, γ3, γ4))

∂(iγ1)s1∂(iγ2)s2∂(iγ3)s3∂(iγ4)s4

∣∣∣∣
γ1,γ2,γ3,γ4=0

. (10)

Here, s1, s2, s3, and s4 are positive integers. Note that we reserve the notations ⟨.⟩ and ⟨(.)2⟩c, respectively, for the first and
second cumulants of the undephased engine, while for the cumulants of the dephased engine, we use the notations ⟨⟨.⟩⟩ and
⟨⟨(.)2⟩⟩c. The subscript c refers to the fact that this is a cumulant and not a moment. This statement will become clear in the
following discussions.

We should emphasize that the first derivative, with respect to, e.g., γ1 in Eq. (9), gives the average of E1, and the second
derivative gives its variance since we have the log function. The same thing applies to γ2, γ3, and γ4. While other derivatives
give the correlations between them. Mathematically we have,

⟨⟨E1⟩⟩ =
∂log(χ(γ1, γ2, γ3, γ4))

∂(iγ1)

∣∣∣∣
γ1,γ2,γ3,γ4=0

. (11)

This is for the average of E1, while for its variance, also so-called second cumulant, we have,

⟨⟨E2
1⟩⟩c =

∂2log(χ(γ1, γ2, γ3, γ4))

∂(iγ1)2

∣∣∣∣
γ1,γ2,γ3,γ4=0

. (12)

In this latter equation, if we eliminate the log function, we obtain the second moment of E1 instead of its second cumulant. The
latter is defined as the second moment minus the square of the average of E1. Further, for example,

⟨⟨E1E2⟩⟩c =
∂2log(χ(γ1, γ2, γ3, γ4))

∂(iγ1)∂(iγ2)

∣∣∣∣
γ1,γ2,γ3,γ4=0

, (13)

gives the covariance of E1 and E2.
Actually, we note that one can compress Eq. (9) to obtain,

χ(γ1, γ2, γ3, γ4) = Tr
[
eiγ4H1V eiγ3H2∆2

(
Φ
(
∆2

(
eiγ2H2Uei(γ1+iβ)H1U†

)))
V †

]
/Z. (14)

Here ∆2 (.) :=
∑d

i=1 |i⟩22⟨i|(.)|i⟩22⟨i| is a complete dephasing channel in the eigenbasis of the Hamiltonian H2. This shows
the effect of the projective measurement. From Eq. (14) the average energies along the cycle are given by: ⟨⟨E1⟩⟩ = Tr [ρ1H1],
⟨⟨E2⟩⟩ = Tr [ρ2H2], ⟨⟨E3⟩⟩ = Tr

[
Φ(∆2(Uρ1U

†))H2

]
and ⟨⟨E4⟩⟩ = Tr

[
V∆2(Φ(∆2(Uρ1U

†)))V †H1

]
. We see that only the

third and fourth averages are affected by measurement. That is, the averages ⟨⟨E3⟩⟩ and ⟨⟨E4⟩⟩ are computed with respect to the
evolution of the dephased states. This is because the initial state is incoherent with respect to H1, and thus the average energy
⟨⟨E2⟩⟩ is not affected.

Till this point, we were only talking about stochastic energies and their cumulants. Let’s show how one can derive the
cumulants of work and heats from Eq. (9).
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Definition 1. The cumulants of work and heats follow from Eq. (9) as follows:

1. QM cumulants: we set γ1 = γ4 = 0 and −γ2 = γ3 = γM ,

2. QC cumulants: we set γ2 = γ3 = 0 and γ1 = −γ4 = γC ,

3. W cumulants: we set γ1 = −γ4 = γW and γ3 = −γ2 = γW .

Analogously to γ1, γ2, γ3, and γ4, γM , γC , and γW are the Fourier conjugates of QM , QC , and W , respectively. The work
and heat averages for the monitored engine are defined as follows:

⟨⟨QM ⟩⟩ = Tr
[
Φ(∆2(Uρ1U

†))H2

]
− Tr

[
Uρ1U

†H2

]
,

⟨⟨QC⟩⟩ = Tr [ρ1H1]− Tr
[
V∆2(Φ(∆2(Uρ1U

†)))V †H1

]
,

⟨⟨W ⟩⟩ = Tr [ρ1H1]− Tr
[
V∆2(Φ(∆2(Uρ1U

†)))V †H1

]
+Tr

[
Φ(∆2(Uρ1U

†))H2

]
− Tr

[
Uρ1U

†H2

]
.

(15)

C. Cumulants of the undephased engine

In the previous subsection, we showed how one could obtain the cumulants of the thermodynamic quantities from the charac-
teristic function. However, from Eqs. (14) and (15), we see that the cumulants are computed with respect to the dephased states
of the system. This is a result of measuring strongly the working medium between the strokes. Actually, in this case, all the
coherence created in the energy eigenbasis gets killed by the measurement. Thus, the important question now is: how can one
compute the cumulants of the undephased engine?

A quick answer to this question is: for the averages, one can see that when we eliminate the dephasing channel in Eq. (14),
then we would obtain the average energies of the undephased engine, given in section (II A). This would motivate us to do the
same thing for higher cumulants. In this situation, the CF Eq. (9) becomes,

χUDE(γ1, γ2, γ3, γ4) := Tr
[
eiγ4H1V eiγ3H2Φ

(
eiγ2H2Uei(γ1+iβ)H1U†

)
V †

]
/Z. (16)

The subscript UDE refers to the fact that this CF is for the undephased engine. Similarly to Eq. (7), the CF in Eq. (16) follows
from the next quasiprobability distribution,

PUDE(E1, E2, E3, E4) :=
∑

n,m,k,l

pUDE
n,m,k,lδ(E1 − ν(1)n )δ(E2 − ν(2)m )δ(E3 − ν

(2)
k )δ(E4 − ν

(1)
l ), (17)

with pUDE
n,m,k,l := Tr

[
Π

(1)
l VΠ

(2)
k Φ

(
Π

(2)
m UΠ

(1)
n ρ1U

†
)
V †

]
. The fact that PUDE(E1, E2, E3, E4) is a quasiprobaility and not a

true probability, is because pUDE
n,m,k,l is not positive in general, and even more, it can be a complex number. Note that Eq. (17)

is known in the literature as Kirwkood-Dirac quasiprobability [63–74]. However, note that this quasiprobability still satisfies,∑
n,m,k,l p

UDE
n,m,k,l = 1. Therefore, while the cumulants of the dephased engine follow from Eq. (14) those of the undephased

engine follow from Eq. (16).
The cumulants of the energies of the undephased engine follow from Eq. (16) as follows:

⟨Es1
1 Es2

2 Es3
3 Es4

4 ⟩c :=
∂s1∂s2∂s3∂s4log(χUDE(γ1, γ2, γ3, γ4))

∂(iγ1)s1∂(iγ2)s2∂(iγ3)s3∂(iγ4)s4

∣∣∣∣
γ1,γ2,γ3,γ4=0

. (18)

Finally, note that the cumulants of work and heat follow from this equation, similarly to the dephased engine (see definition 1).
However, note that the second cumulants of W and QM have a real and imaginary part. In what follows, this statement will be
clear.

D. Can the cycle work as a refrigerator?

In Ref. [32], we have shown that when the working medium is a single qubit, and independently of the parameters, the system
can never work as a refrigerator. The question now is: is this valid for any finite-dimension system?

To answer this question, we should define the next stochastic quantity, Σ := −β(ν
(1)
n − ν

(1)
l ). This latter is simply the

stochastic entropy production. In Ref. [41], we have proved that the RFs of work and heat have a lower bound as a function of
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the average of Σ. When taking its average, we obtain ⟨Σ⟩ = −β⟨QC⟩ for the undephased engine and ⟨⟨Σ⟩⟩ = −β⟨⟨QC⟩⟩ for the
dephased engine. For the monitored engine, one can show that:

⟨⟨e−Σ⟩⟩ =
∑

n,m,k,l

eβ(ν
(1)
n −ν

(1)
l )pn,m,k,l = 1. (19)

Since pn,m,k,l is always positive, we can apply Jensen inequality safely to obtain e−⟨⟨Σ⟩⟩ ≤ ⟨⟨e−Σ⟩⟩ = 1, from which one obtains
that ⟨⟨Σ⟩⟩ ≥ 0. From the fact that ⟨⟨Σ⟩⟩ = −β⟨⟨QC⟩⟩, and for β ≥ 0 one has ⟨⟨QC⟩⟩ ≤ 0. Thus, we proved that regardless of the
dimension, whenever the channel is unital, the system cannot work as a refrigerator. When β < 0, we have ⟨⟨QC⟩⟩ ≥ 0. But
note that this is not in contradiction with the second law since this is not a refrigerator but a heat engine with unit efficiency; see
Refs. [75, 76].

Similarly to the dephased engine, for the undephased engine we have,

⟨e−Σ⟩ =
∑

n,m,k,l

eβ(ν
(1)
n −ν

(1)
l )pUDE

n,m,k,l = 1. (20)

But note that in this case, the Jensen inequality cannot be applied directly to pUDE
n,m,k,l since it is not positive and even it can be a

complex number. That is, care should be taken here. But one can show that there is a beautiful way to prove that ⟨Σ⟩ ≥ 0 even
for the unmonitored engine. We have,

⟨e−Σ⟩ =
∑

n,m,k,l

eβ(ν
(1)
n −ν

(1)
l )pUDE

n,m,k,l =
∑
n,l

eβ(ν
(1)
n −ν

(1)
l )

∑
m,k

pUDE
n,m,k,l = 1. (21)

Here
∑

m,k p
UDE
n,m,k,l = Tr

[
Π

(1)
l V Φ(UΠ

(1)
n ρ1U

†)V †
]
. One can prove that the latter is a true probability since it is always

positive. Therefore, in this case, we can apply Jensen inequality safely, and we obtain ⟨Σ⟩ ≥ 0, from which we have ⟨QC⟩ ≤ 0.
This proves that the heat exchanged with the cold bath is always ≤ 0 in accordance with the second law. This generalizes the
results of Refs. [21, 32], where the proof was only limited to qubit systems. In contrast, this proof is valid for an arbitrary
finite-dimensional working medium.

Now let’s return to the interpretation of
∑

m,k p
UDE
n,m,k,l. The latter’s expression is given by:∑

m,k

pUDE
n,m,k,l = Tr

[
Π

(1)
l V Φ(UΠ(1)

n ρ1U
†)V †

]
= Tr

[
Π

(1)
l V Φ(UΠ(1)

n ρ1Π
(1)
n U†)V †

]
. (22)

Here we used the fact that Π(1)
n ρ1 = ρ1Π

(1)
n , since ρ1 is incoherent in the eigenbasis of H1. The interpretation of Eq. (22) is

nothing but: first we projectively measure the working medium at A in the cycle (see Fig. 1), then evolve the projected state
by V Φ(U(.)U†)V † and finally projectively measure the system again at D (see Fig. 1). In this case, even though the system
is projectively measured at the beginning and at the end of the cycle, these two measurements do not influence the cumulants
of QC . This is because the cumulants are given with respect to the undephased states and not the dephased ones. This shows
that it is the projective measurement at B and C that influences the cumulants of work and heats. This is because they kill the
coherence created in the eigenbasis of the Hamiltonian H2.

III. A QUBIT AS A WORKING MEDIUM

The above discussion was for an arbitrary finite-dimensional working substance. In what follows, we limit ourselves to a
single qubit. However, even with a single qubit, we will see that the results are not trivial. For a two-level system, |e⟩ and |g⟩
are, respectively, the excited and ground states. The first Hamiltonian in the Otto cycle, see Fig. 1, is given by H1 := ν1σz ,
where σz is the z-Pauli operator. The expression of H1 in the computational basis {|e⟩, |g⟩} is,

H1 = ν1(|e⟩⟨e| − |g⟩⟨g|). (23)

We see that the gap between the excited and ground states is 2ν1. For the second Hamiltonian, i.e., H2, we choose it to be
H2 := ν2σx, where σx is the x-Pauli operator. In what follows, we take ν2 ≥ ν1. H2 can be written as follows:

H2 = ν2(|e⟩⟨g|+ |g⟩⟨e|). (24)

Its eignestates are |+⟩ := (|e⟩ + |g⟩)/
√
2 and |−⟩ := (|e⟩ − |g⟩)/

√
2, with their corresponding eigenvalues being ν2 and −ν2,

respectively. Following Refs. [24, 77–80], the unitary operator U that governs the first adiabatic transformation, i.e., A → B in
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Fig. 1, is given by U :=
√
1− δ

(
e−iϕ|+⟩⟨e|+ eiϕ|−⟩⟨g|

)
+
√
δ (|−⟩⟨e| − |+⟩⟨g|). And written in the basis {|e⟩, |g⟩} we have,

U =

(√
1− δe−iϕ +

√
δ

√
1− δeiϕ −

√
δ√

1− δe−iϕ −
√
δ −

√
1− δeiϕ −

√
δ

)
/
√
2. (25)

δ ∈ [0, 1] here is the degree of the non-adiabaticity, and ϕ ∈ [0, 2π] is a phase. When δ = 0, then in this case we are in the
adiabatic regime. In this situation, the unitary operator reduces to e−iϕ|+⟩⟨e|+ eiϕ|−⟩⟨g|. We see that after U acts on ρ1, only
it changes the eigenstates without changing the populations of the ground state and the excited state since the initial state is a
thermal state. On the other hand, when δ = 1, in this case, U becomes a swap operator since it reduces to |−⟩⟨e|− |+⟩⟨g|. From
these two cases, we see that the phase ϕ would be relevant only when 0 < δ < 1.

Limiting ourselves to the case when the cycle is time-reversal symmetric, the unitary operator V characterizing the second adi-
abatic stroke, i.e., the stroke C → D, is defined by, V := C∗U†C =

√
1− δ

(
e−iϕ|g⟩⟨+|+ eiϕ|g⟩⟨−|

)
−
√
δ (|g⟩⟨+| − |e⟩⟨−|),

where C here is the complex conjugation operator. The expression of V in the computational basis {|e⟩, |g⟩} is given by,

V =

( √
1− δeiϕ +

√
δ

√
1− δeiϕ −

√
δ√

1− δe−iϕ −
√
δ −

√
1− δe−iϕ −

√
δ

)
/
√
2. (26)

Note that for the purpose of the paper, we do not need to specify the expressions of δ and ϕ as a function of the parameters.
Further note that the operators U and V are elements of the special uniray group SU(2).

Figure 2. Scheme of the Bloch sphere. The vector drawn here is |π1⟩ for χ = 0 and ϕ = π/4. |+i⟩ = (|e⟩ + i|g⟩)/
√
2 and |−i⟩ =

(|e⟩ − i|g⟩)/
√
2 are the eigenstates of σy , i.e., the y-Pauli operator. The states |+⟩, [−⟩, |+i⟩, and |−i⟩ are some of the states that belong to

the xy-plane. Similarly, the states |+⟩, [−⟩, |e⟩, and |g⟩ are one of the states that belong to the xz-plane, and the states |+i⟩, [−i⟩, |e⟩, and |g⟩
are one of the states that belong to the yz-plane.

For the unital channel fueling the engine, we consider the quantum projective measurement channel Φ(.) =
∑2

j=1 πj(.)πj

with π1(:= |π1⟩⟨π1|), and π2(:= |π2⟩⟨π2|) are projective operators. By projective, we mean that they verify: π1 + π2 = 12

(where 12 is the identity operator of dimension 2× 2), π1π1 = π1, π2π2 = π2, and π1π2 = 02, where 02 is the zero operator of
dimension 2× 2. The expressions of |π1⟩ and |π2⟩ are given as follows:

|π1⟩ = cos (α/2) |e⟩+ eiχ sin (α/2) |g⟩, (27)

and

|π2⟩ = e−iχ sin (α/2) |e⟩ − cos (α/2) |g⟩, (28)

with 0 ≤ α ≤ π and 0 ≤ χ < 2π. Written in the computational basis, we have

π1 =

(
cos2(α/2) sin(α/2) cos(α/2)e−iχ

sin(α/2) cos(α/2)eiχ sin2(α/2)

)
, (29)

and,

π2 =

(
sin2(α/2) − sin(α/2) cos(α/2)e−iχ

− sin(α/2) cos(α/2)eiχ cos2(α/2)

)
. (30)
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We note that because the operators in Eqs. (29)-(30) satisfy π1(α, χ) = π2((−α+π, χ+π)) and π2(α, χ) = π1((−α+π, χ+π))
then all cumulants satisfy this symmetry relation.

At the next values of χ and α, we have the next bases and planes (see Fig. 2): χ = 0 and α = π/2 corresponds to the x-basis,
χ = π/2 and α = π/2 corresponds to the y-basis, α = 0 (and independently of χ) corresponds to the z-basis, for arbitrary α and
for χ = 0 corresponds to the xz-plane, for arbitrary α and for χ = π/2 corresponds to the yz-plane, and finally for arbitrary χ
and for α = π/2 corresponds to the xy-plane. What this means is that when set, e.g., χ = π/2 and α = π/2, we are measuring
the qubit in the y-basis.

Remark 2. Please note that the projective measurement defined by Eqs. (25)-(26) is used to fuel the engine with heat. When
we were talking about projective measurements in Sec. II, we meant the quantum projective measurements applied between the
strokes to assess the fluctuations of the thermodynamic quantities.

A. Main quantities of interest

After showing how one can derive the cumulants of the dephased and undephased engines, presenting detailed information
about the working substance that we apply our analytical results to, and fixing the notation, let’s now give in detail the main
quantities that we are going to focus on.

In this paper, after deriving our analytical results, our main interest is on the influence of the parameters: β, ν1, ν2, ϕ, δ, χ, and
α, on the next three quantities of the dephased and undephased engines: work averages ⟨W ⟩ and ⟨⟨W ⟩⟩, efficiencies ⟨η⟩ and ⟨⟨η⟩⟩
(defined respectively, by ⟨η⟩ := ⟨W ⟩/⟨QM ⟩ and ⟨⟨η⟩⟩ := ⟨⟨W ⟩⟩/⟨⟨QM ⟩⟩) and work reliabilities RWUD(:= ⟨W ⟩/

√
Re [⟨W 2⟩c])

and RWD(:= ⟨⟨W ⟩⟩/
√
⟨⟨W 2⟩⟩c). Here, Re refers to the fact that we are considering only the real part of the second cumulant of

work that follows from Eq. (16). This is because the second cumulants of W and QM that follow from Eq. (16) have a real and
imaginary part, in contrast to the second cumulant of QC , which is always real. In the text below, we explain in detail the origin
of this complex part. Furthermore, note that by ⟨η⟩ and ⟨⟨η⟩⟩, we do not mean the average of the stochastic efficiency W/QM ,
since the latter can diverge, see Refs. [80, 81]. That is, ⟨W/QM ⟩(⟨⟨W/QM ⟩⟩) is different from ⟨W ⟩/⟨QM ⟩ (⟨⟨W ⟩⟩/⟨⟨QM ⟩⟩) that
we consider in our paper. In general, we want to know on which basis in Fig. 2 we should measure the qubit such that our three
quantities can achieve their best possible values.

Finally, one can show from the first law and the second of thermodynamics, i.e., ⟨⟨Σ⟩⟩ ≥ 0 and ⟨Σ⟩ ≥ 0 (see Subsection II D),
that ⟨⟨η⟩⟩ ≤ 1 and ⟨η⟩ ≤ 1. In Ref. [32], we proved that for a single qubit, the efficiency of the monitored engine is always
≤ 1 − ν1/ν2; however, when increasing the dimension of the working medium, efficiency can exceed the Otto bound even
without the presence of coherence. For example, in Ref. [14], efficiency attained 1, even without any coherence or correlations.
The point is that, while in the single-qubit case, coherence is necessary for efficiency to attain 1, it is not necessary for higher-
dimensional working systems.

IV. DEPHASED ENGINE

In this section, we focus on the dephased engine.

A. First and second cumulants

Now let’s forget about the unitaries and the unital channel in Sec. III. Let’s consider an arbitrary initial qubit Hamiltonian H1

(Fig. 1) given by,

H1 := ν1(|+⟩11⟨+| − |−⟩11⟨−|), (31)

where |+⟩1(|−⟩1) is the excited state (ground state) of H1. Similarly to Eq. (31), the second Hamiltonian in Fig. 1 is given by,

H2 := ν2(|+⟩22⟨+| − |−⟩22⟨−|). (32)

We define the next transition probabilities:

δ′ := |2⟨+|U |−⟩1|2, (33)

θ := 2⟨−|Φ (|+⟩22⟨+|) |−⟩2, (34)
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and

ζ := |1⟨+|V |−⟩2|2. (35)

Here δ′ is the transition probability from the ground state of H1 into the excited state of H2 after applying U . θ and ζ can be
defined similarly. After long but straightforward algebra, the exact analytical expression of the forward CF (see Ref. [41]), Eq.
(9), is given by:

χ(γ1, γ2, γ3, γ4) =(1− δ′)(1− θ)(1− ζ) cos((γ1 + γ4 + iβ)ν1 + (γ3 + γ2)ν2) + (1− δ′)(1− θ)ζ cos((γ1 − γ4 + iβ)ν1 + (γ3 + γ2)ν2)

+ (1− δ′)θζ cos((γ1 + γ4 + iβ)ν1 + (−γ3 + γ2)ν2) + (1− δ′)θ(1− ζ) cos((γ1 − γ4 + iβ)ν1 + (−γ3 + γ2)ν2)

+ δ′θ(1− ζ) cos((γ1 + γ4 + iβ)ν1 + (γ3 − γ2)ν2) + δ′θζe(γ1−γ4+iβ)ν1+(γ3−γ2)ν2

+ δ′(1− θ)ζ cos((γ1 + γ4 + iβ)ν1 − (γ3 + γ2)ν2) + δ′(1− θ)(1− ζ) cos((γ1 − γ4 + iβ)ν1 − (γ3 + γ2)ν2).

(36)

From this equation, one can derive the averages and variances of QM , QC , and W . We have:

⟨⟨QM ⟩⟩ = 2(1− 2δ′)θν2 tanh(βν1), (37)

⟨⟨Q2
M ⟩⟩c = 4θν22 − ⟨⟨QM ⟩⟩2, (38)

⟨⟨QC⟩⟩ = −2(θ + (1− 2θ)(δ′ + ζ − 2δ′ζ))ν1 tanh(βν1), (39)

⟨⟨Q2
C⟩⟩c = −⟨⟨QC⟩⟩(2ν1 coth(βν1) + ⟨⟨Qc⟩⟩), (40)

⟨⟨W ⟩⟩ = ⟨⟨QM ⟩⟩+ ⟨⟨QC⟩⟩ = 2((1− 2δ′)θν2 − (θ + (1− 2θ)(δ′ + ζ − 2δ′ζ))ν1) tanh(βν1), (41)

and,

⟨⟨W 2⟩⟩c = −2ν1 coth(βν1)⟨⟨QC⟩⟩+ 8θ(δ′ + ζ − 1)ν1ν2 + 4θν22 − ⟨⟨W ⟩⟩2. (42)

When ζ = δ′, in Ref [41], we proved that, ⟨⟨W 2⟩⟩c/⟨⟨W ⟩⟩2 ≥ ⟨⟨Q2
C⟩⟩c/⟨⟨QC⟩⟩2 ≥ 2/⟨⟨Σ⟩⟩ − 1 and ⟨⟨Q2

M ⟩⟩c/⟨⟨QM ⟩⟩2 ≥
⟨⟨Q2

C⟩⟩c/⟨⟨QC⟩⟩2 ≥ 2/⟨⟨Σ⟩⟩ − 1 independently of the operation regime, i.e., this is valid when the system is working as a heat
engine, heater, and accelerator. In the heat engine region, we have shown that

⟨⟨W 2⟩⟩c
⟨⟨W ⟩⟩2

≥
⟨⟨Q2

M ⟩⟩c
⟨⟨QM ⟩⟩2

≥
⟨⟨Q2

C⟩⟩c
⟨⟨QC⟩⟩2

≥ 2

⟨⟨Σ⟩⟩
− 1, (43)

and ,

⟨⟨η⟩⟩2 =
⟨⟨W ⟩⟩2

⟨⟨QM ⟩⟩2
≤

⟨⟨W 2⟩⟩c
⟨⟨Q2

M ⟩⟩c
< 1. (44)

The fact that the ratio of fluctuations is always less than 1 can be seen from the fact that: ⟨⟨Q2
M ⟩⟩c − ⟨⟨W 2⟩⟩c = (⟨⟨W ⟩⟩ +

⟨⟨QM ⟩⟩)(2ν1 + ⟨⟨QC⟩⟩ tanh(βν1)) coth(βν1). Thus, we see from the heat engine conditions that the ⟨⟨Q2
M ⟩⟩c > ⟨⟨W 2⟩⟩c.

B. The influence of the parameters on work and its reliability and efficiency

Consider now the case when ζ = δ′, and let’s now analyze the effect of the parameters on our main quantities. From Eqs.
(37)-(38)-(39)-(40)-(41)-(42), we have the next conclusions:
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1. Influence of β : Independently of the other parameters, we see that increasing β increases work average ⟨⟨W ⟩⟩ and heat
absorbed ⟨⟨QM ⟩⟩, but note that efficiency ⟨⟨η⟩⟩ is always independent of the inverse temperature. The latter is because the
inverse temperature has the same effect on work and heat averages; thus, when taking their ratio, the influence cancels out.

For fluctuations of work and heat, we see that increasing β decreases them. The latter can be explained by the fact that
while the average work is temperature-dependent, the second moment is not. Fluctuations of a given stochastic quantity
are defined by its second moment, minus the square of its average. So when increasing β, we increase the averages
without affecting the second moments, thus decreasing fluctuations. This is also in agreement with the intuition that when
we lower temperature, i.e., increase β, the outcomes of the thermodynamic quantities become less random. To make
this clear, consider, e.g., the fluctuations of QM . From Eq. (38), we see that the second moment (i.e., 4θν22 ) is inverse
temperature independent, while the inverse temperature dependency only comes from the square of the average of QM .

To resume, the effect of inverse temperature on cumulants is that increasing β (equivalent to decreasing the temperature
of the bath) increases work, heats (but not efficiency), and decreases their fluctuations. From the fact that increasing β
increases work and decreases its fluctuations, we conclude that increasing β would increase the reliability of work, which
is desirable.

2. Influence of δ′: In figure 3, we plot the work average, efficiency, fluctuations of work, and work reliability as a function
of δ′ for five values of θ. We see that increasing δ′ decreases work, decreases efficiency, increases work fluctuations, and
decreases the reliability of W . More specifically, we see that the highest values of work, efficiency, and work reliability
are achieved only when δ′ = 0, and this is independent of the parameters. This shows that non-adiabatic transitions are
detrimental to the important thermodynamic quantities of the engine. Already, we proved in Ref. [32] that the highest
possible efficiency is that of the Otto, and it is achieved in the adiabatic regime. One can prove the same for work and
reliability.

3. Influence of ϕ : Now consider the unitaries (25) and (26) considered in Sec. III. First note that since δ′ (Eq. (33)) is
independent of ϕ, the CF (Eq. (36)) is also independent of it. This means that the cumulants are also independent of the
phase ϕ. This is because ϕ has an influence only on the off-diagonal elements of the state ρ2; see Fig. 1. And because the
latter state is dephased, the phase ϕ will not influence the next states, thus having no influence on the cumulants of work
and heats.

4. Influence of θ : In figure 3, we plot work, efficiency, work fluctuations, and work reliability as a function of δ′ for five
values of θ. We see that when we increase θ towards 1/2, it has a positive influence on our work and its reliability
and efficiency. We only consider θ ≤ 1/2 since for the quantum projective measurement channel in Sec. III we have
0 ≤ θ ≤ 1/2; see Ref. [41] for the proof. Further, the difference between work at θ = 1/2 and 0 ≤ θ < 1/2 is given by:

⟨⟨W ⟩⟩θ=1/2 − ⟨⟨W ⟩⟩ = (1− δ′)(1− 2θ)(ν2 − ν1 + 2ν1δ
′) tanh(βν1). (45)

From 0 ≤ θ ≤ 1/2, ν2 ≥ ν1, and the condition δ′ ≤ 1/2 for the system to work as a heat engine, we see that ⟨⟨W ⟩⟩θ=1/2 ≥
⟨⟨W ⟩⟩. From the influence of δ′ and θ, one can show that the maximal amount of the extracted work is achieved when
θ = 1/2 and δ′ = 0 and is given by:

⟨⟨W ⟩⟩ = (ν2 − ν1) tanh(βν1). (46)

For efficiency we have,

⟨⟨η⟩⟩θ=1/2 − ⟨⟨η⟩⟩ = 4(1− δ′)δ′(1− 2θ)ν1
(1− 2δ′)θν2

≥ 0. (47)

From this equation, we see that in the heat engine region, we have ⟨⟨η⟩⟩θ=1/2 ≥ ⟨⟨η⟩⟩.

5. Influence of ν2 : Fixing ν1 and independently of the other parameters, one can see that increasing ν2 has a positive
influence on work and efficiency. This is because when we fix ν1 and increase ν2, we increase the heat absorbed without
(see Eq. (37)) affecting the heat released (see Eq. (39)), thus enhancing work and efficiency. On the other hand, increasing
ν2 also increases the fluctuations. However, numerically, one can show that ν2 has a positive influence on the reliability
of work; that is, even though it increases fluctuations, it also increases the average, such that reliability increases as we
increase ν2. Furthermore, from Eqs. (37)-(38)-(39)-(40), note that the RFs of QM and QC are independent of ν2, thus
increasing ν2 does not influence the reliability of the heats.
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Figure 3. Plot of work ⟨⟨W ⟩⟩, efficiency ⟨⟨η⟩⟩, work fluctuations ⟨⟨W 2⟩⟩c, and work reliability RWD , as a function of δ′ for five values of θ. The
other parameters are: β = 0.6, ν1 = 1, and ν2 = 2.

C. Upper bounds on work reliability

In Ref. [41], we proved that the relative fluctuations of work and heats verify Eq. (43). However, one can easily see that the
bound 2/⟨⟨Σ⟩⟩ − 1 becomes useless when ⟨⟨Σ⟩⟩ exceeds 2, since this lower bound 2/⟨⟨Σ⟩⟩ − 1 becomes negative. More precisely,
note that in the lower temperature regime, i.e., when β → +∞, the average entropy production ⟨⟨Σ⟩⟩ diverges, thus the lower
bound in Eq. (43) goes to -1, i.e., becomes informationless, since the RFs of work are already ≥0 by definition. By defining
the reliability of the stochastic heat QM to be RQMD := ⟨⟨QM ⟩⟩/

√
⟨⟨Q2

M ⟩⟩c, one can prove that work reliability is bounded as
follows:

Theorem 1. For arbitrary U , V , and Φ that satisfy ζ = δ′ and 0 ≤ θ ≤ 1/2, one can show that work reliability is bounded as
follows:

RWD ≤ RQMD ≤ 1. (48)

And the upper bound 1 is attained in the adiabatic limit.

Proof. We have:

⟨⟨Q2
C⟩⟩c − ⟨⟨QC⟩⟩2 = 4ν21(1− θ + 2δ′(1− δ′)(1− 2θ) tanh2(βν1))(θ + 2δ′(1− δ′)(1− 2θ)) ≥ 0. (49)

Where the inequality follows from the fact that θ ≤ 1/2. From ⟨⟨Q2
C⟩⟩c − ⟨⟨QC⟩⟩2 ≥ 0 we have ⟨⟨Q2

C⟩⟩c/⟨⟨QC⟩⟩2 ≥ 1. Using this
proved fact and plugging it into Eq. (43), one obatins

⟨⟨W ⟩⟩2

⟨⟨W 2⟩⟩c
≤ ⟨⟨QM ⟩⟩2

⟨⟨Q2
M ⟩⟩c

≤ ⟨⟨QC⟩⟩2

⟨⟨Q2
C⟩⟩c

≤ 1 (50)
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Therefore in the heat engine region, i.e., ⟨⟨W ⟩⟩ > 0, the reliability of work RWD is upper-bounded as follows:

RWD ≤ RQMD ≤ 1. (51)

In the adiabatic limit, one can show that we have,

⟨⟨W 2⟩⟩c − ⟨⟨W ⟩⟩2 = 4θ(ν2 − ν1)
2(1− 2θ tanh2(βν1)) ≥ 0. (52)

Therefore, one can easily show that the highest bound of the work reliability, i.e., 1, can be reached when θ = 1/2 and β = +∞.
In this case, we have RWD = RQMD = 1.

From this theorem, we see that because the unitaries and the unital channel of Sec. III satisfy ζ = δ′ and 0 ≤ θ ≤ 1/2, the
work reliability is upper-bounded by 1. One can see from Eq. (43), that one can also derive an upper bound on work reliability
using 2/⟨⟨Σ⟩⟩−1. However, this bound has the drawback that it becomes undefined when the average entropy production exceeds
2. On the other hand, our upper bound does not suffer from this issue.

D. The main features of the dephased engine

Let’s conclude this section by stating all the main features of the dephased engine:

1. For 0 ≤ δ′ ≤ 1/2, the system can either work as a heat engine or an accelerator. For δ′ ≥ 1/2, only a heater is possible.

2. The average work is ≤ 0 when ν2 = ν1. Thus, we need ν2 > ν1 for a positive work condition. See our previous work in
Ref. [32].

3. The maximum of work, efficiency, and work reliability are achieved when δ′ = 0, θ = 1/2, and β = +∞. The maximum
of work, efficiency, and work reliability are, respectively: ⟨⟨W ⟩⟩ = ν2−ν1 (see Eq. (46)), ⟨⟨η⟩⟩ = 1−ν1/ν2, and RWD = 1.
What this shows is that our three important quantities are strictly monotonically decreasing as we increase δ′ towards 1/2;
see, e.g., Fig. 3.

4. From Eqs. (29)-(30), the expression of θ (i.e., Eq. (34)) is given by,

θ = (1− cos2(χ) sin2(α))/2(≤ 1/2). (53)

When θ = 1/2, this corresponds to the case when we set χ = π/2 and let α be arbitrary. This is nothing but the yz-plane
in the Bloch sphere; see figure 2. In this case, we see that any quantum projective measurement in the yz-plane is better.

5. In general, we see that lowering δ′ towards 0, increasing θ towards 1/2, increasing β (i.e., low-temperature regime), and
increasing ν2 have a positive influence on work and its reliability and efficiency. On the other hand, the phase ϕ does not
influence the cumulants because of the measurement between the strokes.

V. UNDEPHASED ENGINE

In the previous section, we showed in detail which parameters should be increased and which should not, for a positive
influence on our three main quantities. In this section, we give our analytical and numerical results for the undephased engine,
and we show in detail which features are present, like in the case of the dephased engine, and what advantage quantum coherence
can provide.

A. Expression of the average work and heat and the contributions coming from coherence

Before we compute the expressions of work and heat for arbitrary unitaries and unital channels, considering the unitaries and
the unital channel in Sec. III, the expression of the heat absorbed ⟨QM ⟩ for the undephased engine is given by

⟨QM ⟩ = (1− 2δ)(1− cos2(χ) sin2(α))ν2 tanh(βν1)

+ ν2
√

δ(1− δ) sin(α)(sin(α) sin(ϕ) sin(2χ)− 2 cos(α) cos(ϕ) cos(χ)) tanh(βν1).
(54)

By plugging the expression of θ (Eq. (53)) into Eq. (37), we see that the first term in Eq. (54) is the heat absorbed by the
dephased engine; see Eq. (37). Let’s now show the origin of the second term in Eq. (54).
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Consider the general case, i.e., U , V , and Φ are arbitrary. The expression of ρ2 when written in the eigenbasis of H2 (Eq.
(32)) is given by

ρ2 := 12ρ212 = (|+⟩22⟨+|+ |−⟩22⟨−|)ρ2((|+⟩22⟨+|+ |−⟩22⟨−|)) = ∆2(ρ2) +Off2(ρ2). (55)

Where 12 is the identity matrix of dimension 2 × 2. ∆2(ρ2) = 2⟨+|ρ2|+⟩2|+⟩22⟨+| + 2⟨−|ρ2|−⟩2|−⟩22⟨−| and Off2(ρ2) =

2⟨+|ρ2|−⟩2|+⟩22⟨−|+ 2⟨−|ρ2|+⟩2|−⟩22⟨+|, are respectively, the diagonal and off-diagonal elements of ρ2 in the eigenbasis of
H2. Now let’s return to the average ⟨QM ⟩. Mathematically, we have

⟨QM ⟩ = Tr [(ρ3 − ρ2)H2]

= Tr [(Φ(ρ2)− ρ2)H2]

= Tr [(Φ(∆2(ρ2) +Off2(ρ2))− ρ2)H2]

= Tr [(Φ(∆2(ρ2))− ρ2)H2] + Tr [Φ(Off2(ρ2))H2]

= ⟨⟨QM ⟩⟩+Tr [Φ(Off2(ρ2))H2] .

(56)

Where in the second line we use ρ3 = Φ(ρ2), in the third line we employ Eq. (55), in the fourth line we use the linearity
property of the trace and of Φ, and in the last line we use the first equation in Eq. (15). Now it is clear that the second term in
Eq. (54) comes from Tr [Φ(Off2(ρ2))H2]. Further, note that this latter term contributes to heat only when δ′ ̸= 0, i.e., in the
non-adiabatic regime. This is because when δ′ = 0, then in this case ρ2 would be diagonal in the eigenbasis of H2.

Similarly, to ⟨QM ⟩ for ⟨QC⟩ we have,

⟨QC⟩ = Tr
[
(V Φ(ρ2)V

† − ρ2)H2

]
= Tr

[
(V (∆2(Φ(ρ2)) +Off2(Φ(ρ2)))V

† − ρ2)H2

]
= Tr

[
(V (∆2(Φ(∆2(ρ2))) +Off2(Φ(∆2(ρ2))) + ∆2(Φ(Off2(ρ2))) +Off2(Φ(Off2(ρ2))))V

† − ρ2)H2

]
= Tr

[
(V (∆2(Φ(∆2(ρ2))))V

† − ρ2)H2

]
+Tr

[
V (Off2(Φ(∆2(ρ2))) + ∆2(Φ(Off2(ρ2))) +Off2(Φ(Off2(ρ2))))V

†H2

]
= ⟨⟨QC⟩⟩+Tr

[
V (Off2(Φ(∆2(ρ2))) + ∆2(Φ(Off2(ρ2))) +Off2(Φ(Off2(ρ2))))V

†H2

]
.

(57)

In the second line, we decompose the state Φ(ρ2) in the eigenbasis of H2 as we did for ρ2; see Eq. (55). In the third line, we
use the decomposition of the state ρ2 in the eigenbasis of H2, and in the last line, we use the second equation in Eq. (15). From
equations (57) and (54), the average work is given by,

⟨W ⟩ = ⟨⟨W ⟩⟩+Tr [Φ(Off2(ρ2))H2] + Tr
[
V (Off2(Φ(∆2(ρ2))) + ∆2(Φ(Off2(ρ2))) +Off2(Φ(Off2(ρ2))))V

†H2

]
.

(58)
Please note that the expressions of work and heats in Eqs. (56)-(57)-(58) are valid for any finite d, i.e., not only for qubit
systems, since the decomposition (55) can be generalized to arbitrary finite dimension d. These expressions show that when we
are monitoring the system between the strokes, the coherence generated in the energy eigenbasis is removed.

Now let’s compute Eqs. (56)-(57)-(58) for qubit systems in terms of the parameters. First, in addition to δ′, θ, and ζ, we
define the next two transition probabilities, θc and ζc, which are given by,

θc := 2⟨−|Φ(U |+⟩11⟨+|U†)|−⟩2, (59)

and,

ζc := 1⟨−|V Φ(U |+⟩11⟨+|U†)V †|−⟩1. (60)

Their interpretation is similar to δ′, θ, and ζ. Using them, one can compress the work and heat averages into simpler expressions,
given by

⟨QC⟩ = −2ζcν1 tanh(βν1), (61)

⟨QM ⟩ = 2(θc − δ′)ν2 tanh(βν1), (62)

and,

⟨W ⟩ = 2((θc − δ′)ν2 − ζcν1) tanh(βν1). (63)

See Appendix A for details about the derivation. Please note that Eqs. (59)-(60) are not independent of δ′, θ, and ζ. We define
them to compress the expressions of the averages into simpler formulas. Their role would become even more important when
we consider the second cumulants.
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B. Variance of W , QM , and QC

In Appendix B, we give in detail the derivation of the variances. In addition to δ′, θ, ζ, θc, and ζc, we define another transition
probability given as follows:

ζc := 1⟨−|V (Φ(|+⟩22⟨+|))V †|−⟩1. (64)

Again, note that ζc can be written in terms of θ and ζ. Now the expressions of the variances are given as follows:

⟨Q2
C⟩c = 4ζcν21 − ⟨QC⟩2, (65)

⟨Q2
M ⟩c = 4θν22 − ⟨QM ⟩2 = 4ν22(θ − ((θc − δ′) tanh(βν1))

2), (66)

and,

⟨W 2⟩c = 4ν1ν2(δ
′ + ζ − θc − ζc) + 4(ν21ζ

c + ν22θ)− ⟨W ⟩2. (67)

In the previous sections, we have mentioned that the second cumulants of work and heat QM following from Eq. (17) have a
real and imaginary part. One can show that because of the next averages: ⟨E2E3⟩, ⟨E2E4⟩, and ⟨E3E4⟩, the second cumulants
of work W and heat QM , have real and imaginary parts. On the other hand, the next three averages, ⟨E1E2⟩, ⟨E1E3⟩, and
⟨E1E4⟩, have only a real part, thus the second cumulant of QC would be real. And because the second cumulant of work has an
imaginary part, we defined the reliability of the undephased engine only with the real part. On the other hand, numerically, we
found that the imaginary part can be negative.

Finally, one can prove that ⟨Q2
C⟩c/⟨QC⟩2 ≥ 2/⟨Σ⟩−1, see Appendix C. In the same appendix, we prove that ⟨Q2

C⟩c/⟨QC⟩2 ≥
1 when 0 ≤ ζc ≤ 1/2. Now let’s look at the influence of the parameters on our main quantities.

C. Effect of the parameters on the undephased engine

1. Influence of β : Even though the expressions of work and heat QM and QC are cumbersome, when we use Eqs. (33)-(34)-
(35)-(59)-(60)-(64), still inverse temperature β and ν2 have the same effect on them as in the case of the dephased engine.
More precisely still, ⟨QC⟩, ⟨QM ⟩, and ⟨W ⟩ ∝ tanh(βν1), as we see from Eqs. (61)-(62)-(63). This is because β has the
same effect on average energies (see Appendix A), and therefore the average work and heat. These averages are maximal
when β = +∞. This means that when the system is initialized in the ground state, the work extracted is maximal. Also,
note that the efficiency is still independent of β.

From Eqs. (65)-(66)-(67), we see that the fluctuations of thermodynamic quantities are lowered when we increase β. This
is because the effect of inverse temperature on fluctuations only comes from averages and not second moments, as in the
case of dephased engines. Thus, we see that the temperature of the bath does not give us a difference between the dephased
and undephased engines. The important thing is that lowering the temperature of the bath has a good influence on average
work and its reliability. That is, when we initialize the qubit in the ground state, we are getting rid of thermal fluctuations
due to the heat bath. In this case, if we consider the model in Sec. III, the engine is purely driven by quantum fluctuations,
i.e., the unitaries and the projective measurement. Of course, initializing the qubit in the ground state is not that simple
assumption, since in this case, the third law comes into play, which would prevent us from doing this using a finite amount
of resources, such as time and energy. Nevertheless, from a computational point of view, there is no problem assuming
zero temperature.

2. Influence of ν2 : Concerning ν2, one can see from Eqs. (61)-(62)-(63) that still only the heat absorbed and work are
dependent on ν2. This dependence is linear. Thus, when increasing ν2, we increase work and efficiency.

Now consider the model of Sec. III as a case study. Numerically, one can show that increasing ν2 has a positive influence
on work reliability. Further, note that the condition ν2 > ν1 is no longer necessary for the system to work as a heat
engine. See Refs. [21, 25, 32], where a heat engine is possible also when ν2 = ν1. Finally, note that, as in the case of the
incoherent engine, the RFs of QM and QC are also independent of ν2.

3. Influence of ϕ : Let’s comment on the effect of this phase. From extensive numerical analysis, not necessarily to be
presented here, we found that taking ϕ = 0 has a better influence on the higher values of work, its reliability, and
efficiency. Of course, sometimes ϕ ̸= 0 has a better influence on our main thermodynamic quantities. But our point is that
the highest possible values of work, efficiency, and work reliability are only achieved when we set ϕ = 0. Please note that
the highest value of efficiency and work reliability is 1. Already, we proved this for efficiency in Section III. Below, we
comment on the upper bound of work reliability.
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Figure 4. Plot of the average work ⟨W ⟩, efficiency ⟨η⟩, and work relibality RWUD as a function of δ′ for ν1 = 1, ν2 = 2, χ = ϕ = 0,
β = 10, and α = 3π/4. We see that they can be increasing or decreasing as we increase δ′. Furthermore, note that the system can still work
as an engine even when δ′ ≥ 1/2. Below, we explain the reason behind this. Note that in this plot we are considering the qubit model of Sec.
III. In this case, we have δ′ = ζ = δ.
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Figure 5. Plot the average work ⟨W ⟩ as a function of α and χ for β = +∞, ν1 = 1, ν2 = 2, δ = 0.1, 0.3, 0.5, 0.7, 0.9, and 0.96, and ϕ = 0.
Note that in this plot we are considering the qubit model of Sec. III. In this case, we have δ′ = ζ = δ.

4. Influence of δ′ : In the case of the dephased engine, we found that heat, work, efficiency, and work reliability are mono-
tonically decreasing functions as we increase δ′ towards 1/2. For the undephased engine, this is no longer the case; see
Fig. 4. For example, from the average of the heat absorbed, Eq. (54), we see that while the first term is monotonically
decreasing as we increase δ′ towards 1/2, the second can be increasing depending on the three angles ϕ, χ, and α. That
is, while the highest value of the first term in Eq. (54) is at δ′ = 0, the second term in Eq. (54) is attained when δ′ = 1/2.
Furthermore, from Fig. 4, note that a heat engine is possible when δ′ ≥ 1/2 due to the term Tr [Φ(Off2(ρ2))H2] in Eq.
(54).

5. Influence of χ and α : In figure 5, we plot the average work as a function of α and χ for β = +∞, ν1 = 1, ν2 = 2,
δ = 0.1, 0.3, 0.5, 0.7, 0.9 and 0.96, and ϕ = 0. From this figure, we have the next two observations: 1) The highest
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possible value of work is achieved when we project the qubit in some basis in the xz-plane. For example, for δ = 0.1, this
value is approximately 0.97. 2) We see that the more we increase δ towards 1, the more it is better to project the qubit
close to the x-basis than to the z-basis. By close, we mean that the angle between the best basis in the xz-plane and the
x-basis is less than the angle between the best basis in the xz-plane and the z-basis.

We have repeated the same plots as those of Fig. 5 for average work for ϕ = π/2, and we found that in this case, the best
plane is the xy-plane. However, note that a positive work condition was only verified for δ = 0.1 and not for δ=0.3, 0.5, 0.7, 0.9,
and 0.96. Further, for δ = 0.1, the highest possible value of work was found to be 0.6 achieved in the xy-plane, which is smaller
than the best achieved in the case when ϕ = 0, which is 0.97.

We have also plotted the efficiency and reliability of work as a function of α and χ, and we found that when we set ϕ = 0,
then efficiency and work reliability can achieve their best values also in the xz-plane. But note that the maximum of work,
its reliability, and efficiency are not necessarily achieved on the same basis in the xz-plane. On the other hand, when setting
ϕ = π/2, it is better to measure the qubit in the xy-plane instead of the xz-plane. However, note that the highest values of work
and its reliability and efficiency are always better in the xz-plane than those when we measure the qubit in the yz-plane. Please
note that these conclusions are not affected by the values of β, ν1, or ν2.

In our work in Ref. [32], we found numerically that a heat engine is possible even when δ′ ≥ 1/2, in contrast to the case
when the Otto cycle is based on two completely thermalizing baths. Nevertheless, we did not give the reason behind this. In the
next subsection, we explain this.

D. Why is work extraction possible for δ ≥′ 1/2 for the undephased engine?

When δ′ ≥ 1/2, the probability to find the qubit in the excited state of the Hamiltonian H2 at B (in the cycle; see Fig. 1)
is given by, peB := (⟨E2⟩/ν2 + 1)/2 = (1 − (1 − 2δ′) tanh(βν1))/2. So when δ′ ≥ 1/2, then we have peB ≥ 1/2. This
means that the excited level of H2 at C—(after the quantum projective measurement channel Φ being applied)— must be more
populated than at B in the cycle. This is the minimum condition to ensure that the system will absorb heat. This is not possible
using a hot thermal bath with a positive inverse temperature since it can’t populate higher levels with higher probabilities than
lower levels. Thanks to quantum measurement, we could fuel the system even when δ′ ≥ 1/2.

On the other hand, note that the dephased engine cannot work for δ′ ≥ 1/2. This is because the projective measurement
between the strokes kills coherence. Thus, we see that coherence can be advantageous when present. However, we should
mention that even though the dephased engine cannot work for δ′ ≥ 1/2, the dephased engine is different from the case of
thermal baths. For example, while the highest probability of occupation of the excited state at C for the Otto cycle when it is
based on two thermal baths is 1/2, the probability of occupation of the higher level of the dephased engine at C can exceed this.
More precisely, at C in the cycle, the occupation probability of the excited state of the dephased engine is given by,

peC := (⟨⟨E3⟩⟩/ν2 + 1)/2 = (1− (1− 2δ′)(1− 2θ) tanh(βν1))/2. (68)

Thus, we see that when δ′ exceeds 1/2, so does peC . However, we have peC ≤ peB for δ′ ≥ 1/2, thus a heat engine is not
possible in this regime. Thus, to resume, we see that when the coherence is not erased, a heat engine is possible even in the
usually not allowed regime in the literature.

E. Comparison between the work extracted in the x, y, and z bases of the dephased and undephased engines

For the qubit model of Sec. III, we have the next results:
x-basis: In this basis, both the dephased and undephased engines cannot extract work since the system cannot absorb heat.

Thus, all the work consumed by the engine is transformed into useless heat dumped into the cold bath. In general, we have

⟨W ⟩ = ⟨⟨W ⟩⟩ = −4δ(1− δ)ν1 tanh(βν1) ≤ 0. (69)

y-basis: In this basis we have,

⟨W ⟩ − ⟨⟨W ⟩⟩ = −4δ(1− δ) sin2(ϕ)ν1 tanh(βν1) ≤ 0. (70)

We see that the dephased engine can enhance the undephased when ϕ ̸= 0 or π, i.e., ⟨W ⟩ ≤ ⟨⟨W ⟩⟩. On the other hand, when
ϕ = 0 or π, we have ⟨W ⟩ = ⟨⟨W ⟩⟩. When ν2 = ν1 we have,

⟨W ⟩ = −2δν1(1 + 2(1− δ) sin2(ϕ)) tanh(βν1) ≤ 0. (71)

This shows that when measuring the qubit in the y-basis, work cannot be extracted when ν2 = ν1.



17

z-basis: In this basis we have,

⟨W ⟩ − ⟨⟨W ⟩⟩ = 4δ(1− δ) cos2(ϕ)ν1 tanh(βν1) ≥ 0, (72)

Thus, ⟨W ⟩ ≥ ⟨⟨W ⟩⟩. Note that they become equal for ϕ = π/2 and ϕ = 3π/2. However, differently from the y-basis, a heat
engine can be possible in the z-basis when ν2 = ν1. In general, we see that, when measuring the qubit in y-basis, the undephased
engine is better than the undephased one. On the other hand, when measuring the qubit in the z-basis, we have the inverse. This
is in agreement with what we said before in Sec. (V C), that taking ϕ different from 0 or π can be detrimental. When ϕ ̸= 0 or π,
one can also show that the efficiency of the dephased engine is better than the undephased engine when the qubit is measured in
the y-basis since both engines absorb the same heat but the dephased engine produces more work than the undephased engine;
see Eq. (70).

F. Not all the bases in the yz-plane are equivalent for the undephased engine

The yz-plane corresponds to χ = π/2 with α being arbitrary. For the dephased engine, we have seen that all the bases in the
yz-plane are equivalent, since when χ = π/2, θ is equal to 1/2, independently of the value of α. However, this is not the case for
the undephased engine. More precisely, we have

⟨W ⟩yz-plane − ⟨W ⟩y-basis = 4δ(1− δ)ν1 cos
2(α) tanh(βν1) ≥ 0, (73)

and,

⟨W ⟩z-basis − ⟨W ⟩yz-plane = 4δ(1− δ)ν1 sin
2(α) tanh(βν1) ≥ 0. (74)

Thus, the maximal amount of extracted work in the yz-plane is when the qubit is measured in the z-basis. Therefore, we have

⟨W ⟩z-basis ≥ ⟨W ⟩yz-plane ≥ ⟨W ⟩y-basis. (75)

From this equation, we see that measuring the qubit close to the z-basis is better than close to the y-basis. By close, we mean that
the angle between the basis on which the qubit is projected and the z-basis is small compared to the angle between the considered
basis and the y-basis. For the heat absorbed, we have

⟨QM ⟩z-basis = ⟨QM ⟩yz-plane = ⟨QM ⟩y-basis = (1− 2δ)ν2 tanh(βν1). (76)

Since the heat absorbed in all bases in the yz-plane is the same, and from Eq. (75) we have,

⟨η⟩z-basis ≥ ⟨η⟩yz-plane ≥ ⟨η⟩y-basis. (77)

From this equation and Eq. (75), we see that the best basis in the yz-plane is the z-basis.

G. High values of work and efficiency

Let’s now look at the previous results carefully. From Eqs. (62)-(61)-(63), the efficiency expression is given by,

⟨η⟩ = ⟨W ⟩
⟨QM ⟩

= 1 +
⟨QC⟩
⟨QM ⟩

= 1− ν1
ν2

ζc

θc − δ′
. (78)

From the expression of ⟨QC⟩ we see the heat released to the cold bath is minimal when ζc → 0. While from the expression of
⟨QM ⟩ we see the heat absorbed is maximal when θc − δ′ is maximal.

From Eq. (63), we see that for a given δ′ν2, the more we increase θcν2 − ζcν1, the more work can be extracted. Numerically,
for the model of Sec. III, we found that the best basis that verifies this condition is a part of the xz-plane. Further, from ν2 ≥ ν1,
one can see that work is lower-bounded as follows:

⟨W ⟩ ≥ 2((θc − ζc)− δ′)ν2 tanh(βν1) ≥ 2((θc − ζc)− δ′)ν1 tanh(βν1). (79)

For a given δ′, we see that for the lower bound ((θc − ζc)− δ′)ν1 tanh(βν1) to be as higher as possible, the difference θc − ζc

should be increased. When considering the qubit model of Sec. III, please note that the basis at which work is maximum when
ν2 = ν1 is not the same when ν2 > ν1.

Now let’s look at the maximum of the efficiency. We already showed that it is upper-bounded by 1. From its expression, we
see that for ⟨η⟩ to be higher, one has the following two possibilities:
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1. For ζc

θc−δ′ > 0 but still ζc

θc−δ′ finite, we have to make ν2 ≫ ν1.

2. For ν1/ν2 > 0, we have to make ζc

θc−δ′ → 0.

The first possibility may be challenging experimentally since we need ν1/ν2 → 0, i.e., we should increase ν2 to very high values
with respect to ν1. Thus, reaching 1 efficiency using this possibility may not be feasible experimentally.

For the second possibility, we have two sub-possibilities: a) For θc − δ′ > 0 (already satisfied in the heat engine region), we
need to make ζc → 0; b) Both θc − δ′ and ζc go to zero as efficiency → 1. The first sub-possibility means that we can reach
1 efficiency with finite work. In this case, all the heat gets converted into work, and thus no heat is released. For the second
sub-possibility, it means that as efficiency converges to 1, work also converges to 0. Numerically we found that only the second
subpossibility is possible, i.e., the greatest possible efficiency is achieved only in the case when all the heat and work averges
converge to 0. This is reminiscent of the case when, e.g., a heat engine reaches the Carnot bound and all the currents converge
to zero. In our case, it is 1 that plays the role of Carnot efficiency. Furthermore, one can actually show that because ν2 ≥ ν1
efficiency is lower-bounded, as follows:

⟨η⟩ ≥ 1− ζc

θc − δ′
. (80)

When considering the qubit model of Sec. III, contrary to the average work, the basis that maximizes the lower bound of
efficiency to reach 1 is the same independently of ν2 = ν1 or ν2 > ν1. This is because when efficiency converges to 1, the ratio
ζc/(θc − δ′) goes to zero independently of whether ν2 = ν1 or ν2 > ν1.

Remark 3. Of course, one can achieve unit efficiency with a non-zero value of work. In this case, we should take ν2 ≫ ν1, but
as we pointed out before, this may be challenging experimentally.

H. Do the Eqs. (43)-(44) derived for the dephased engine hold for the undephased engine?

Let’s ask the question about the validity of Eqs. (43)-(44) for the undephased engine. Already in Appendix C, we proved that
the RFs of QC are still lower-bounded by 2/⟨Σ⟩ − 1; this is independent of the unitaries and the unital channels.

Let’s limit ourselves to the case when V = U†. Consider the unital channel in Sec. III. In this case, one can prove that ζc = θc
and δ′ = ζ; see Appendix D. Using these two facts, one can arrive at the next theorem.

Theorem 2. Consider the unital channel in Sec. III. When ζc = θc and δ′ = ζ, one can prove that the ratio of work W and heat
QM fluctuations in the heat engine region satisfy,

⟨W 2⟩c
⟨Q2

M ⟩c
≤ 1. (81)

This theorem shows that even when coherence is present, the fluctuations of heat QM give an upper bound to the fluctuations
of work. However, while in the case of the dephased engine, we have ⟨⟨W 2⟩⟩c/⟨⟨Q2

M ⟩⟩c < 1, in the case of the undephased engine
we have ⟨W 2⟩c/⟨Q2

M ⟩c ≤ 1 even in the heat engine region. The fluctuations become equal when efficiency goes to 1. To show
this, from Appendix D we have

⟨Q2
M ⟩c − ⟨W 2⟩c = 2ν1 coth(βν1)(⟨W ⟩+ ⟨QM ⟩)(1− ζc tanh2(βν1)). (82)

Thus, we see that when work and heat QM go to zero, their fluctuations become equal. Please note that similarly to the
depahsed engine, Eq. (82) can still be ≥ 0 even in the accelerator region. On the other hand, in the heater region we have
⟨Q2

M ⟩c − ⟨W 2⟩c ≤ 0, since both ⟨W ⟩ and ⟨QM ⟩ are ≤ 0.
Now let’s go back to the difference between the RFs. When V = U†, in Appendix F we compute the difference between the

RFs of W and QM and between the RFs of W and QC . Their expressions are

⟨W 2⟩c
⟨W ⟩2

− ⟨Q2
M ⟩c

⟨QM ⟩2
=

8ν1ν
2
2 tanh(βν1)(⟨QM ⟩+ ⟨W ⟩)(θζc − (θc − δ′)2)

⟨W ⟩2⟨QM ⟩2
, (83)

and,

⟨W 2⟩c
⟨W ⟩2

− ⟨Q2
C⟩c

⟨QC⟩2
=

(4ν1ν2 tanh(βν1))
2(θζc − (θc − δ′)2)

⟨W ⟩2⟨QC⟩2
. (84)
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Note that both differences are proportional to (θζc − (θc − δ′)2). Numerically, for the model of Sec. III, we always find that it
is ≥ 0. However, we could not prove it. This is because θ, ζc, θc, and δ′ are all linked to each other. Further, note that when
(⟨QM ⟩+ ⟨W ⟩) ≥ 0, the differences in Eqs. (83)-(84) have the same sign. Furthermore, even though we could not prove that,

⟨W 2⟩c
⟨W ⟩2

≥ ⟨Q2
M ⟩c

⟨QM ⟩2
≥ ⟨Q2

C⟩c
⟨QC⟩2

, (85)

we believe it holds for the undephased engine. However, while the inequalities in Eq. (43) becomes equalities only in the
adiabatic regime [32, 41]. For the undephased engine, the RFs can be equal even when δ′ ̸= 0. To show this, let’s consider the
model of Sec. III. We already pointed out that the highest values of work, efficiency, and work reliability are achieved when
ϕ = χ = 0. Under the later conditions we have,

θζc = (θc − δ′)2( ̸= 0). (86)

Plugging this into Eqs. (83)-(84), we have,

⟨W 2⟩c
⟨W ⟩2

=
⟨Q2

M ⟩c
⟨QM ⟩2

=
⟨Q2

C⟩c
⟨QC⟩2

. (87)

From the first equality in this equation, we see that

⟨η⟩2 =

(
⟨W ⟩
⟨QM ⟩

)2

=
⟨W 2⟩c
⟨Q2

M ⟩c
. (88)

Again, while the lower bound on the ratio of work and heat QM fluctuations in Eq. (44) is only achieved in the adibatic regime,
in the presence of coherence, this is not the case.

Finally we have,

⟨Q2
M ⟩c − ⟨QM ⟩2 = 4ν22(θ − 2((θc − δ′) tanh(βν1))

2). (89)

When ϕ = χ = 0 this equation becomes,

⟨Q2
M ⟩c − ⟨QM ⟩2 = 4θν22(1− 2ζc tanh2(βν1)). (90)

Where we use Eq. (86). Further note that in Sec. III, V = U†, when ϕ = 0. In Appendix C, we proved that for arbitray U and
for V = U† we have 0 ≤ ζc ≤ 1/2. In this case, we have ⟨Q2

M ⟩c ≥ ⟨QM ⟩2. From this, we have

RWUD ≤ 1. (91)

This shows that work reliability is still bounded by 1. Furthermore, note that while the reliability of the dephased engine needs
both δ′ = 0 and β = +∞ to reach 1, the reliability of the undephased engine needs only β = +∞. That is, as we see from Eq.
(90), when β = +∞ and ζc = 1/2, even when δ′ ̸= 0, we have RWUD = 1. In the future, we try to prove Eq. (91) for arbitrary
ϕ and χ. In Fig. 6, we give the plot of reliability and 2/⟨Σ⟩ − 1.

I. Main featues of the undephased engine

Here, let’s resume all the features of the undephased engine. We have,

1. ⟨QM ⟩ can still be positive even when δ′ ≥ 1/2. Thus, in the presence of coherence, a heat engine or an accelerator can
still be possible even when δ′ ≥ 1/2, which is not the case for the dephased engine. A heater also becomes possible when
δ′ ≤ 1/2. Thanks to the second term of the last equation in Eqs. (56).

2. The average work does not need the condition ν2 > ν1 for a positive work condition. Even when ν2 = ν1, we still have a
heat engine [21, 25, 32]. Further, we showed that the work extracted by the dephased heat engine is bounded by ν2 − ν1.
The latter becomes useless when ν2 = ν1 since it predicts that a heat engine is not possible.

3. The efficiency is bounded by 1, not by that of the Otto.

4. Consider the qubit model of Sec. III. When δ > 0, the best plane for a high amount of work, high reliability of work,
and high efficiency is the xz-plane. However, note that when δ = 0, both the dephased and undephased engines become
identical in terms of the averages and, in general, the cumulants.

5. The monotonic behavior of the cumulants of the dephased engine is no longer valid for the undephased engine. That is we
can see work, efficiency and work reliability increases when we increase δ.

6. Equality between the RFs does not need the adiabatic regime.
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Figure 6. Plot of the relibality RWUD and the bound 2/⟨Σ⟩ − 1 as a function of δ′ for ν1 = 1, ν2 = 2, χ = ϕ = 0, β = 10, and α = 3π/4.
We see from the plot of RWUD that the work reliability is ≤ 1, thus respecting our bound, in theorem (IV C) and Eq. (91). On the other hand,
we see that 2/⟨Σ⟩ − 1 becomes negative even in the heat engine (see Fig. (4)), showing that we can’t use it to bound the reliability of work.

VI. CONCLUSIONS

In this work, we have extended our previous one, Refs. [32, 41], more thoroughly by considering also quantum coherence. We
have shown how one can derive the cumulants of the undephased engine. We found that for coherence to be included, we should
use Kirkwood-Dirac quasiprobability. Then we explained in detail the influence of the parameters on average work, efficiency,
and work reliability on the monitored engine. For this latter engine, we found that the highest values of the main quantities are
achieved only in the adiabatic regime. For the undephased engine, we first showed how using Eqs. (33)-(34)-(35)-(59)-(60)-
(64), one can obtain all the averages and variances and compress them into simpler expressions; see Eqs. (61)-(62)-(63) and
(65)-(66)-(67) for arbitrary qubit unitaries and unital channels. Then, considering the qubit model of Sec. III, we have shown in
which plane we should fuel the engine for the best average work, efficiency, and work reliability. Our study explains in detail
which parameters should be increased and which should not for an enhancement of work, efficiency, and work reliability.

In addition to our analytical results, we showed that non-adiabatic transitions are not always detrimental to thermodynamic
quantities; see Refs. [82–84], where the negative role of non-adiabatic transitions was pointed out and explained. Our work
shows that we can take advantage of them to increase average work, efficiency, and work reliability. This advantage would
not be possible when the hot bath is completely thermalizing or when the working medium is monitored. Thanks to quantum
measurement that fuels the engine and having a positive influence on the engine’s coherence created in the first unitary stroke
A → B (cf. Fig. 1), non-adiabatic transitions become useful. Furthermore, we found that a heat engine becomes possible in
the usually not-allowed regime, i.e., ⟨W ⟩ > 0 even when δ ≥ 1/2; see Fig. 4 and Fig. 5. Numerical plots also showed that an
accelerator (a heater) becomes possible when δ ≥ (≤)1/2.

We proved that the ratio of the fluctuations of work W and heat QM is still bounded by 1 in the heat engine region, even for the
undephased engine. Further, we explained in detail the relationships between the RFs, i.e., Eqs. (43)-(44), for the undephased
engine. We hope this work sheds more light on quantum unital Otto heat engines [32, 41]. Our study has the advantage that
the majority of the results are proven analytically. And we believe that they can be pushed further. For example, one can look
at these results for higher-dimensional working mediums such as coupled spins [85]. One can also look at the implementation
of this engine experimentally and test the validity of these results and the previous ones in Refs. [32, 41], when the system
is subjected to external noises, i.e., when, e.g., the unitaries and the unital channel are not exact. Finally, one can relax the
assumption that the cold bath is completely thermalizing.
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Appendix A: Expression of the average energies for the undephased engine in terms of the transition probabilities: arbitrary
Hamiltonians, unitaries, and unital channels

The Hamiltonian H1, Eq. (31), can also be written as

H1 = 2ν1|+⟩11⟨+| − ν112. (A1)

Since at the beginning of the cycle, the system is assumed to start in thermal equilibrium, we have

ρ1 := pg|−⟩11⟨−|+ pe|+⟩11⟨+| = − tanh(βν1)|+⟩11⟨+|+ pg12, (A2)

where pe = e−βν1/Z(pg = eβν1/Z) is the excited (ground) state occupation. The second equality in Eq. (A2) can be proven
easily after simple algebra. Note that the partition function Z is given by Z := cosh(βν1). Similarly to Eq. (A1), H2 is given
by

H2 = 2ν2|+⟩22⟨+| − ν212. (A3)

Let’s now compute the average energies. We start with the average energy ⟨E1⟩. We have,

⟨E1⟩ = Tr [ρ1H1]

= Tr [(− tanh(βν1)|+⟩11⟨+|+ pg12)(2ν1|+⟩11⟨+| − ν112)]

= −2ν1 tanh(βν1)Tr [|+⟩11⟨+|] + ν1 tanh(βν1)Tr [|+⟩11⟨+|] + 2ν1pgTr [|+⟩11⟨+|]− ν1pgTr [12]

= −2ν1 tanh(βν1) + ν1 tanh(βν1) + 2ν1pg − 2ν1pg

= −ν1 tanh(βν1).

(A4)

In the second line, we replace H1 and ρ1 by their expressions, i.e., Eq. (A1) and Eq. (A2). In the fourth line, we use the fact that
Tr [|+⟩11⟨+|] = 1 and Tr [12] = 2.

For the average energy ⟨E2⟩ we have,

⟨E2⟩ = Tr [ρ2H2]

= Tr
[
(− tanh(βν1)U |+⟩11⟨+|U† + pg12)(2ν2|+⟩22⟨+| − ν212)

]
= −2ν2 tanh(βν1)Tr

[
U |+⟩11⟨+|U†|+⟩22⟨+|

]
+ ν2 tanh(βν1)Tr

[
U |+⟩11⟨+|U†]+ 2ν2pgTr [|+⟩22⟨+|]− ν2pgTr [12]

= −2ν2 tanh(βν1)(1− δ′) + ν2 tanh(βν1) + 2ν2pg − 2ν2pg

= −ν2(1− 2δ′) tanh(βν1).

(A5)

In the fourth line, we use Eq. (33) and the fact that δ′ = |2⟨+|U |−⟩1|2 = |2⟨−|U |+⟩1|2 and δ′ + |2⟨+|U |+⟩1|2 = 1. The latter
equality is nothing but probability conservation.

The third average enegy is given by,

⟨E3⟩ = Tr [ρ3H2]

= Tr
[
(− tanh(βν1)Φ(U |+⟩11⟨+|U†) + pg12)(2ν2|+⟩22⟨+| − ν212)

]
= −2ν2 tanh(βν1)Tr

[
Φ(U |+⟩11⟨+|U†)|+⟩22⟨+|

]
+ ν2 tanh(βν1)Tr

[
Φ(U |+⟩11⟨+|U†)

]
+ 2ν2pgTr [|+⟩22⟨+|]− ν2pgTr [12]

= −2ν2 tanh(βν1)(1− θc) + ν2 tanh(βν1) + 2ν2pg − 2ν2pg

= −ν2(1− 2θc) tanh(βν1).

(A6)

In the fourth line, we use Eq. (59) and the fact that θc + 2⟨+|Φ(U |+⟩11⟨+|U†)|+⟩2 = 2⟨−|Φ(U |+⟩11⟨+|U†)|−⟩2 +

2⟨+|Φ(U |+⟩11⟨+|U†)|+⟩2 = 1. Finally, we have

⟨E4⟩ = Tr [ρ4H1]

= Tr
[
(− tanh(βν1)V (Φ(U |+⟩11⟨+|U†))V † + pg1)(2ν1|+⟩11⟨+| − ν11)

]
= −2ν1 tanh(βν1)Tr

[
V (Φ(U |+⟩11⟨+|U†))V †|+⟩22⟨+|

]
+ ν1 tanh(βν1)Tr

[
V (Φ(U |+⟩11⟨+|U†))V †]+ 2ν1pgTr [|+⟩22⟨+|]

− ν1pgTr [1]

= −2ν1 tanh(βν1)(1− ζc) + ν1 tanh(βν1) + 2ν1pg − 2ν1pg

= −ν1(1− 2ζc) tanh(βν1).

(A7)
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In the fourth line, we use Eq. (60) and the fact that ζc+1⟨+|V (Φ(U |+⟩11⟨+|U†))V †|+⟩1 = 1⟨−|V (Φ(U |+⟩11⟨+|U†))V †|−⟩1+
1⟨+|V (Φ(U |+⟩11⟨+|U†))V †|+⟩1 = 1. From Eqs. (A4)-(A5)-(A6)-(A7), follow the averages of work and heat, which are given
by,

⟨QC⟩ = ⟨E1⟩ − ⟨E4⟩ = −2ζcν1 tanh(βν1), (A8)

⟨QM ⟩ = ⟨E3⟩ − ⟨E2⟩ = 2(θc − δ′)ν2 tanh(βν1), (A9)

and,

⟨W ⟩ = ⟨QM ⟩+ ⟨QC⟩ = 2((θc − δ′)ν2 − ζcν1) tanh(βν1). (A10)

Please note that ⟨QC⟩ ≤ 0 as expected, since ζc ≥ 0.

Appendix B: Expression of the second cumulants for the undepahed engine in terms of the transition probabilities: arbitrary
Hamiltonians, unitaries, and unital channels

Let’s now start with the variance of QC . From definition 1 and Eq. (16), it follows that

⟨Q2
C⟩c : =

∂2log(χUDE(γ1 = γC , γ2 = 0, γ3 = 0, γ4 = −γC))

∂(iγC)2

∣∣∣∣
γC=0

. (B1)

Let’s now make a := χUDE(γ1 = γC , γ2 = 0, γ3 = 0, γ4 = −γC). One can arrive at:

⟨Q2
C⟩c =

(
1

a

∂2a

∂(iγC)2

) ∣∣∣∣
γC=0

−
(
1

a

∂a

∂(iγC)

)2 ∣∣∣∣
γC=0

=

(
1

a

∂2a

∂(iγC)2

) ∣∣∣∣
γC=0

− ⟨QC⟩2.
(B2)

Using the fact that when γC = 0 we obtain a = 1 then the variance of QC is given by,

⟨Q2
C⟩c = Tr

[
H2

1V (Φ(Uρ1U
†))V †]+Tr

[
H2

1ρ1
]
− 2Tr

[
H1V (Φ(UH1ρ1U

†))V †]− ⟨QC⟩2

= 2ν21 − 2Tr
[
H1V (Φ(UH1ρ1U

†))V †]− ⟨QC⟩2.
(B3)

Note that in the second line, we use the fact that H2
1 = ν2112. Now let’s compute Tr

[
H1V (Φ(UH1ρ1U

†))V †]. We have,

Tr
[
H1V (Φ(UH1ρ1U

†))V †] = Tr
[
(ν1|+⟩11⟨+| − ν1|−⟩11⟨−|)V (Φ(U(ν1pe|+⟩11⟨+| − ν1pg|−⟩11⟨−|)U†))V †]

= ν21pe(1− ζc)− ν21pgζ
c − ν21peζ

c + ν21pg(1− ζc)

= ν21(1− 2ζc).

(B4)

In the first line, we replace H1 and ρ1 by their expressions, and in the second line, we use Eq. (60). Putting all things together,
i.e., Eqs. (B3)-(B4), one arrives at,

⟨Q2
C⟩c = 4ζcν21 − ⟨QC⟩2. (B5)

Using Eq. (A8), we have, ⟨Q2
C⟩c = 4ζcν21(1 − ζc tanh2(βν1)). Furthermore, from the fact that 0 ≤ ζc ≤ 1, one can see that

⟨Q2
C⟩c ≥ 0, in agreement with the fact that this is a variance.
Now let’s compute the fluctuations of QM . The latter are given as follows:

⟨Q2
M ⟩c := Re

{
∂2log(χUDE(γ1 = 0, γ2 = −γM , γ3 = γM , γ4 = 0))

∂(iγM )2

∣∣∣∣
γM=0

}
. (B6)

Re here refers to the real part of the second cumulant of QM . That is, in contrast to the second cumulant of QC , the second
cumulant of QM has a real and imaginary part. After simple algebra (as we did for the variance of QC), one can arrive at,

⟨Q2
M ⟩c = Tr

[
H2

2Φ(ρ2)
]
+Tr

[
H2

2ρ2
]
− 2Re{Tr [H2Φ(H2ρ2)]} − ⟨QM ⟩2

= 2ν22 − 2Re{Tr [H2Φ(H2ρ2)]} − ⟨QM ⟩2

= 2ν22 − Tr [H2Φ(H2ρ2 + ρ2H2)]− ⟨QM ⟩2.
(B7)
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In the second line, we use the fact that H2
2 = ν2212. In the last line, we use the fact that 2Re{Tr [H2Φ(H2ρ2)]} =

2(Tr [H2Φ(H2ρ2)] + Tr [H2Φ(H2ρ2)]
∗
)/2 = Tr [H2Φ(H2ρ2 + ρ2H2)], where Tr [H2Φ(H2ρ2)]

∗
(:= Tr

[
(H2Φ(H2ρ2))

†
]
) is

the complex conjugate of Tr [H2Φ(H2ρ2)]. Now let’s simplify the latter term using an important trick. One can prove the next
result:

Lemma 3. The anticommutator {H2, ρ2} := H2ρ2 + ρ2H2 can be simplified as follows:

{H2, ρ2} = H2ρ2 + ρ2H2 = 2ν2(2⟨+|ρ2|+⟩2|+⟩22⟨+| − ⟨−|ρ2|−⟩|−⟩22⟨−|) = 2H2∆2(ρ2). (B8)

Proof. Using the completeness relation in the eigenbasis of H2, i.e., |+⟩22⟨+|+ |−⟩22⟨−| = 12, we have

H2ρ2 + ρ2H2 = H212ρ212 + 12ρ212H2

= ν2(|+⟩22⟨+| − |−⟩22⟨−|)(2⟨+|ρ2|+⟩2|+⟩22⟨+|+ 2⟨+|ρ2|−⟩2|+⟩22⟨−|+ 2⟨−|ρ2|+⟩2|−⟩22⟨+|+ 2⟨−|ρ2|−⟩2|−⟩22⟨−|)
+ (2⟨+|ρ2|+⟩2|+⟩22⟨+|+ 2⟨+|ρ2|−⟩2|+⟩22⟨−|+ 2⟨−|ρ2|+⟩2|−⟩22⟨+|+ 2⟨−|ρ2|−⟩2|−⟩22⟨−|)ν2(|+⟩22⟨+| − |−⟩22⟨−|)
= ν2(2⟨+|ρ2|+⟩2|+⟩22⟨+|+ 2⟨+|ρ2|−⟩2|+⟩22⟨−| − 2⟨−|ρ2|+⟩2|−⟩22⟨+| − 2⟨−|ρ2|−⟩2|−⟩22⟨−|)
+ ν2(2⟨+|ρ2|+⟩2|+⟩22⟨+| − 2⟨+|ρ2|−⟩2|+⟩22⟨−|+ 2⟨−|ρ2|+⟩2|−⟩22⟨+| − 2⟨−|ρ2|−⟩2|−⟩22⟨−|)
= 2ν2(2⟨+|ρ2|+⟩2|+⟩22⟨+| − 2⟨−|ρ2|−⟩2|−⟩22⟨−|).

(B9)

In the second line, we use the decomposition Eq. (55). This shows that the result of the antricomutator {H2, ρ2} is something
that is diagonal in the eigenbasis of H2. It can also be written as: {H2, ρ2} = 2H2∆2(ρ2); see the diagonal part of ρ2 in Eq.
(55).

The latter proved result would be important to simplify the variances of QM and W . Using equation (B9), we have,

Tr [H2Φ(H2ρ2 + ρ2H2)] = 2Tr [(ν2|+⟩22⟨+| − ν2|−⟩22⟨−|)Φ(ν2(2⟨+|ρ2|+⟩2|+⟩22⟨+| − 2⟨−|ρ2|−⟩2|−⟩22⟨−|))]
= 2ν22 (2⟨+|ρ2|+⟩2(1− θ)− 2⟨−|ρ2|−⟩2θ − 2⟨+|ρ2|+⟩2θ + 2⟨−|ρ2|−⟩2(1− θ))

= 2ν22(1− 2θ).

(B10)

In the second line, we use Eq. (59), and in the third line, Tr [ρ2] = 2⟨+|ρ2|+⟩2 + 2⟨−|ρ2|−⟩2 = 1. Putting everything together,
we obtain the next compact equation,

⟨Q2
M ⟩c = 4ν22θ − ⟨QM ⟩2 = 4ν22(θ − ((θc − δ′) tanh(βν1))

2). (B11)

The imaginary part of the second cumulant of QM is given by −2Im{Tr [H2Φ(H2ρ2)]}.
Similarly to the variance of QC and QM we have,

⟨W 2⟩c := Re

{
∂2log(χUDE(γ1 = γW , γ2 = −γW , γ3 = γW , γ4 = −γW ))

∂(iγW )2

∣∣∣∣
γW=0

}
. (B12)

And, its explicit expression is given by

⟨W 2⟩c = Tr
[
H2

1ρ1
]
+Tr

[
H2

2ρ2
]
+Tr

[
H2

2ρ3
]
+Tr

[
H2

1ρ4
]
− 2Tr

[
H2U(H1ρ1)U

†]+ 2Tr
[
H2Φ(U(H1ρ1)U

†)
]

− 2Tr
[
H1V (Φ(U(H1ρ1)U

†))V †]− 2Re{Tr [H2Φ(H2ρ2)]}+ 2Re{Tr
[
H1V (Φ(H2ρ2))V

†]} − 2Re{Tr
[
H1V (H2ρ3)V

†]}
− ⟨W ⟩2.

(B13)

We see from the second cumulants of QM and W that the imaginary part comes from the average of the next products: E2E3,
E2E4, and E3E4. However, the average of the product of E1 with E2, E3, and E4 is always real, hence the nullity of the
imaginary part of the second cumulant of QC . Furthermore, following the same reasoning as we did for QC and QM , i.e., by
applying lemma 3, one can prove that the work fluctuations are given by

⟨W 2⟩c = 4ν1ν2(δ
′ + ζ − θc − ζc) + 4(ν21ζ

c + ν22θ)− ⟨W ⟩2. (B14)

Finally, note that Eqs. (A8)-(A9)-(A10) and Eqs. (B5)-(B11)-(B14) are important results of the paper since they compress the
expressions of the averages and the fluctuations into simple expressions.
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Appendix C: Lower bounds on the RFs of QC

From Eq. (A8) and Eq. (B5), we have,

⟨Σ⟩
(
⟨Q2

C⟩c
⟨QC⟩2

+ 1

)
= −β⟨QC⟩

(
⟨Q2

C⟩c
⟨QC⟩2

+ 1

)
= 2βν1 coth(βν1) ≥ 2. (C1)

The lower bound is achieved when β = 0, i.e., in the high-temperature regime. From equation (C1), we see that

⟨Q2
C⟩c

⟨QC⟩2
≥ 2βν1 coth(βν1

⟨Σ⟩
− 1 ≥ 2

⟨Σ⟩
− 1. (C2)

Furthermore, one can also show that when ζc ≤ 1/2, it follows that

⟨Q2
C⟩c ≥ ⟨QC⟩2. (C3)

Consider an arbitrary unitary U . When V = U† and for the unital channel of Sec. III, one can show that

0 ≤ ζc ≤ 1/2. (C4)

Proof. After simple lines of algebra, one can show that ζc is given as follows:

ζc =
∑
j

1⟨−|U†πjU |+⟩11⟨+|U†πjU |−⟩1

= |1⟨−|U†|π1⟩|2|⟨π1|U |+⟩1|2 + |1⟨−|U†|π2⟩|2|⟨π2|U |+⟩1|2.
(C5)

Where we replace πj by |πj⟩⟨πj | for j = 1 and 2. And by defining p1 := |⟨π1|U |+⟩1|2 and p2 := |⟨π2|U |+⟩1|2, one can find
that,

ζc = (1− p1)p1 + (1− p2)p2. (C6)

This follows from the microreversibility principle, i.e.,

|1⟨−|U†|π1⟩|2 = |⟨π1|U |−⟩1|2

= ⟨π1|U(12 − |+⟩11⟨+|)U†|π1⟩
= 1− |⟨π1|U |+⟩1|2

= 1− p1.

(C7)

In the same manner, we have |1⟨−|U†|π2⟩|2 = 1− p2. Further, one can also prove that p2 = 1− p1 as follows:

p2 = |⟨π2|U |+⟩1|2

= 1⟨+|U†|π2⟩⟨π2|U |+⟩1
= 1⟨+|U†(12 − |π1⟩⟨π1|)U |+⟩1
= 1− |⟨π1|U |+⟩1|2

= 1− p1.

(C8)

Putting everything together, we obtain

ζc = 2p1(1− p1). (C9)

And from the fact that 0 ≤ p1 ≤ 1, we conclude that

0 ≤ ζc ≤ 1/2. (C10)

The highest value is achieved when p1 = 1/2.
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Appendix D: Proof of ζc = θc and δ′ = ζ, when V = U†

Before we prove that, ⟨Q2
M ⟩c − ⟨W 2⟩c ≥ 0 in the heat engine region. Let’s first prove that ζc = θc for the unital channel

given in Sec. III and when V = U†. For arbitary U and V that satisfy V = U†, and for the unital channel of Sec. III, one can
show that ζc = θc.

Proof. We have,

ζc = 1⟨−|V Φ(|+⟩22⟨+|)V †|−⟩1
=

∑
j

1⟨−|U†πj |+⟩22⟨+|πjU |−⟩1

=
∑
j

2⟨+|πjU |−⟩11⟨−|U†πj |+⟩2

= 2⟨+|Φ(U |−⟩11⟨−|U†)|+⟩2
= θc.

(D1)

In the second line, we replace Φ by its expression and V by U†.

Now let’s prove thtat when V = U† we have δ′ = ζ.

Proof. We have,

ζ = |1⟨+|V |−⟩2|
= |1⟨+|U†|−⟩2|
= 2⟨−|U |+⟩11⟨+|U†|−⟩2
= 2⟨−|U(12 − |−⟩11⟨−|)U†|−⟩2
= 1− 2⟨−|U |−⟩11⟨−|U†|−⟩2
= 1− (1⟨−|U†(12 − |+⟩22⟨+|)U |−⟩1)
= 1− (1− 1⟨−|U†|+⟩22⟨+|U |−⟩1)
= |2⟨+|U |−⟩1|2

= δ′.

(D2)

Appendix E: Proof of theorem 2 (Eq. (81))

Proof. Using the results of Appendix D, one can show the next series of equalities;

⟨W 2⟩c = 4ν1ν2(δ
′ + ζ − θc − ζc) + 4(ν21ζ

c + ν22θ)− ⟨W ⟩2

= 4ν1ν2(2δ
′ − 2θc) + 4(ν21ζ

c + ν22θ)− ⟨W ⟩2

= 4ν1(−2ν2(θc − δ′) + ν1ζ
c) + 4ν22θ − ⟨W ⟩2

= 4ν1(− coth(βν1)⟨QM ⟩ − coth(βν1)⟨QC⟩/2) + 4ν22θ − ⟨W ⟩2

= −2ν1 coth(βν1)(⟨QM ⟩+ ⟨W ⟩) + 4ν22θ − ⟨W ⟩2.

(E1)

In the fourth line, we use Eqs. (62)-(61). Further, now consider the difference ⟨Q2
M ⟩c − ⟨W 2⟩c. One can show the next series of

equalities,

⟨Q2
M ⟩c − ⟨W 2⟩c = 4ν22θ − ⟨QM ⟩2 − (−2ν1 coth(βν1)(⟨QM ⟩+ ⟨W ⟩) + 4ν22θ − ⟨W ⟩2)

= 2ν1 coth(βν1)(⟨QM ⟩+ ⟨W ⟩+ (⟨W ⟩ − ⟨QM ⟩)(⟨QM ⟩+ ⟨W ⟩)
= (⟨W ⟩+ ⟨QM ⟩)(2ν1 + ⟨QC⟩ tanh(βν1)) coth(βν1)
= 2ν1 coth(βν1)(⟨W ⟩+ ⟨QM ⟩)(1− ζc tanh2(βν1)).

(E2)
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Now that the latter result is always ≥ 0 in the heat engine region. Further, the term (1 − ζc tanh2(βν1)) is always ≥ 0, since
0 ≤ ζc tanh2(βν1) ≤ 1. On the other hand, the term ⟨W ⟩+ ⟨QM ⟩ is ≥ (≤)0 when both ⟨W ⟩ and ⟨QM ⟩ are ≥ (≤)0. Of course,
⟨W ⟩+ ⟨QM ⟩ can still be ≥ 0 even when ⟨W ⟩ ≤ 0 is ≤ and ⟨QM ⟩ ≥ 0 such that their sum is ≥ 0. From all this, we see that in
the heat engine region, we have ⟨Q2

M ⟩c − ⟨W 2⟩c ≥ 0, thus

⟨W 2⟩c
⟨Q2

M ⟩c
≤ 1. (E3)

Note that they become equal at the point where efficiency goes to 1. In this case, W and QM converge to 0. But note that
numerically, we found that fluctuations of both W and QM are non-zero.

Appendix F: Difference between the relative fluctuations

Let’s compute the difference between the relative fluctuations of work W and heat QM . We have,

⟨W 2⟩c
⟨W ⟩2

− ⟨Q2
M ⟩c

⟨QM ⟩2
=

⟨W 2⟩c⟨QM ⟩2 − ⟨Q2
M ⟩c⟨W ⟩2

⟨W ⟩2⟨QM ⟩2

=
(−2ν1 coth(βν1)(⟨QM ⟩+ ⟨W ⟩) + 4ν22θ − ⟨W ⟩2)⟨QM ⟩2 − (4θν22 − ⟨QM ⟩2)⟨W ⟩2

⟨W ⟩2⟨QM ⟩2

=
−2ν1 coth(βν1)(⟨QM ⟩+ ⟨W ⟩)⟨QM ⟩2 + 4θν22(⟨QM ⟩2 − ⟨W ⟩2)

⟨W ⟩2⟨QM ⟩2

=
−2ν1 coth(βν1)(⟨QM ⟩+ ⟨W ⟩)⟨QM ⟩2 + 4θν22(⟨QM ⟩ − ⟨W ⟩)(⟨QM ⟩+ ⟨W ⟩)

⟨W ⟩2⟨QM ⟩2

=
(⟨QM ⟩+ ⟨W ⟩)(−2ν1 coth(βν1)⟨QM ⟩2 − 4θν22⟨QC⟩)

⟨W ⟩2⟨QM ⟩2

=
(⟨QM ⟩+ ⟨W ⟩)(8θζcν1ν22 tanh(βν1)− 8ν1ν

2
2 tanh(βν1)(θc − δ′)2)

⟨W ⟩2⟨QM ⟩2

=
8ν1ν

2
2 tanh(βν1)(⟨QM ⟩+ ⟨W ⟩)(θζc − (θc − δ′)2)

⟨W ⟩2⟨QM ⟩2
.

(F1)

In the second line, we use Eqs. (66)-(E1). In the sixth line, we use Eqs. (61)-(62). Similarly to those steps of calculus, one can
show that,

⟨W 2⟩c
⟨W ⟩2

− ⟨Q2
C⟩c

⟨QC⟩2
=

(4ν1ν2 tanh(βν1))
2(θζc − (θc − δ′)2)

⟨W ⟩2⟨QC⟩2
. (F2)
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