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NON-ESCAPE OF MASS FOR ARITHMETIC QUANTUM LIMITS ON

HYPERBOLIC 4-MANIFOLDS

ALEXANDRE DE FAVERI AND ZVI SHEM-TOV

Abstract. We make progress on the quantum unique ergodicity (QUE) conjecture for Hecke–
Maass forms on a congruence quotient of hyperbolic 4-space, eliminating the possibility of “escape
of mass” for these forms.

1. Introduction

1.1. Background. Let M be a compact Riemannian manifold of negative sectional curvature and
consider a sequence φj ∈ L2(M) of eigenfunctions of the Laplace–Beltrami operator ∆ with unit
norm and eigenvalues going to infinity. Let µj denote the probability measure on M defined

by µj = |φj |2 d volM , where d volM is the uniform Riemannian probability measure on M . The
quantum unique ergodicity (QUE) conjecture of Rudnick and Sarnak [12] asserts that every weak-*
limit of the µj is equal to d volM . See [13] for a survey of the subject.

In its original form, the conjecture is open for any manifold M as above. However, significant
progress has been made for arithmetic manifolds, that is for M = Γ\S where S is a symmetric
space and Γ is an arithmetic lattice of isometries of S. In this case it is natural to consider joint
eigenfunctions of both ∆ and the Hecke operators, which are discrete averaging operators coming
from the arithmetic structure of M .

In the seminal work of Lindenstrauss [8], QUE was proved for such eigenfunctions on certain
(arithmetic) compact quotients of the hyperbolic plane H2. For SL2(Z)\H2, which is not compact,
Lindenstrauss proved that any weak-* limit as above must be proportional to the uniform probability
measure. To complete the proof of QUE in that case it was necessary to rule out the possibility of
“escape of mass”, i.e. to show that the constant of proportionality is equal to 1. This was achieved
by Soundararajan [16]. His work was later generalized by Zaman [18] to quotients of H3, a case in
which arithmetic QUE was recently established by Silberman and the second named author [14].
In a subsequent paper [15] they obtained certain homogeneity results for weak-* limits on quotients
of H4. In this paper we prove non-escape of mass for such limits.

1.2. Statement of results. As a model for the hyperbolic 4-space we take the upper half-space

H4 = {z = (x0, x1, x2, y) ∈ R4 | y > 0},
with the metric ds2 = y−2(dx2

0+dx2
1+dx2

2+dy2). Let G denote the group of orientation-preserving
isometries of H4. Then G is generated by translations tβ and the inversion s given by

tβ : z 7→ z + β and s : z 7→ − z

‖z‖2
,

where β ∈ V 3 := {z ∈ R4 | y = 0}, z := (x0,−x1,−x2,−y), and ‖·‖2 is the usual ℓ2-norm in R4.
1
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Let Γ denote the subgroup of G generated by s and tβ , where β ranges over integral vectors
(that is x0, x1, x2 ∈ Z). Then Γ is a non-uniform lattice in G and we can endow the quotient space

X := Γ\H4

with the probability measure dx coming from the Riemannian measure on H4. In fact, G is naturally
identified as the central quotient of SV2(R) ≃ Spin(1, 4) (see Section 2.1 for a discussion of SVn).
Under this identification, Γ corresponds to SV2(Z). Let H denote the corresponding algebra of
Hecke operators on X at primes p 6= 2 (see Section 2.4 for the definition). We are ready to state
our main result.

Theorem 1. Let φj ∈ L2(X) be a sequence of joint eigenfunctions of H and ∆ with unit norm
and Laplace eigenvalues λj → ∞. Suppose the probability measures µj = |φj(x)|2dx converge to µ
in the weak-* topology. Then µ is a probability measure.

Combining Theorem 1 with [15] gives the following.

Theorem 2. Let µ be a limit measure as in Theorem 1. Then µ is a countable convex combination
of measures, each of which is either the Riemannian probability measure on X or the Riemannian
probability measure on a totally geodesic hyperbolic submanifold of codimension 1.

We remark that for SL2(Z)\H2 and SL2(Z[i])\H3, arithmetic QUE (with a quantitative rate of
convergence) follows from GRH, since the Watson–Ichino triple product formula [6, 17] reduces it
to subconvexity for certain L-functions (see [2, 10] for details). As far as the authors are aware,
no such formula is available for congruence quotients of Hn when n ≥ 4, since they are no longer
naturally identified with an adelic quotient of SL2 over a number field. To illustrate this difference,
we remark that there are violations of the Ramanujan conjecture on the space X = SV2(Z)\H4

considered in this paper [11]. We refer to [3, 5] and references therein for more on the relevant
spectral theory.

1.3. Sketch of the argument. The proof of Theorem 1 follows the basic strategy of [16], which
is based on arithmetic relations between the Fourier coefficients. However, in our context these
relations are significantly more complicated. For instance, unlike in the cases of H2 or H3, they
involve an unbounded number of terms. After recalling the argument of Soundararajan (which
we present with slight differences from the original), we will describe in more detail the main
difficulties which arise in our setup and how we overcome them. The discussion in this subsection
will be imprecise for conceptual clarity.

1.3.1. Soundararajan’s proof for SL2(Z)\H2. In [16] non-escape of mass is deduced from a uniform
inequality for the Fourier coefficients a(n) of a Hecke–Maass form, of the shape

s(x/y) ≪ s(x)√
y

for s(x) :=
∑

n≤x

|a(n)|2 .

Let λ(m) denote the eigenvalue of the Hecke operator Tm, so that λ(m)a(n) =
∑

d|(m,n) a(mn/d2).

Consider primes p ≍ √
y. By the relation

(1) λ(p)2 = λ(p2) + 1,

at least one of λ(p) and λ(p2) is bounded away from zero. For simplicity assume |λ(p)|2 ≍ L ≫ 1
for all p ≍ √

y. Soundararajan splits s into two sums s<K and s≥K , depending on whether n has
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< K or ≥ K prime factors p ≍ √
y, for some parameter K. Then

(2) L
√
y · s<K (z) ≈

∑

n≤z
#{p≍√

y : p|n}<K

|a(n)|2
(
∑

p≍√
y

p∤n

|λ(p)|2
)

≤ K · s<K+1 (z
√
y)

since there are ≈ √
y primes p ≍ √

y (we are ignoring log factors) and K will be small . Applying

this for z = x/y and again for z = x/
√
y gives s<K (x/y) ≪ s(x)/

√
y as long as K ≪ Ly1/4.

Each n present in s≥K(x/y) is a multiple of some product d = p1 · · · pK of K primes pi ≍ √
y.

Note that d ≈ (
√
y)K , and there are ≈

(√y
K

)
such d. Ignoring lower order terms in the Hecke

relation, each one contributes

(3)
∑

m≤ x
yd

|a(dm)|2 ≈ |λ(d)|2 · s
(

x

yd

)
≈ LK · s

(
x

yd

)
≈ LK · s

(
x

y(
√
y)K

)
.

Fixing x and using induction for the shorter sum s(x/y(
√
y)K), where the base case is trivial since

s(x/y) = 0 for y > x, leads to

s≥K

(
x

y

)
≪
(√

y

K

)
LK · s

(
x

y(
√
y)K

)
≪
(
10

√
yL

Ky1/4

)K
s(x)√

y
.

This succeeds if K ≥ 20Ly1/4, which is consistent with the restriction K ≪ Ly1/4.

1.3.2. Our proof for SV2(Z)\H4. The Fourier coefficients A(β) are now indexed by β ∈ Z3, and we
follow the strategy of deducing non-escape of mass from an inequality of the form

S(x/y) ≪ S(x)

y1/8
, for S(x) :=

∑

|β|2≤x

|A(β)|2 .

Instead of (1) we have a relation involving three Hecke operators, as SV2 has rank 2 over Qp≥3.
There are two algebraically independent Hecke operators, with eigenvalues λ1(p) and λ2(p), and we
consider a third (natural) one with eigenvalue λ3(p) and obtain a relation of the form

λ1(p)
2 − λ2(p)− λ3(p) ≈ 1,

which forces maxℓ |λℓ(p)| ≫ 1. As in [16], we split S into two sums S♯ and S♭ corresponding
respectively to β divisible by few or many primes p ≍ y1/8 (we must also control prime powers but
ignore this point for the sketch).

We will now highlight two obstructions which arise in the proof. First, assume for simplicity
that |λ1(p)|2 ≍ 1 for all p ≍ y1/8 (the case when the |λ1(p)|2 localize around a larger value turns
out to be easier, and the case when they are small will be addressed below). Identify β ∈ Z3 with
β = b1i+ b2j + b3k. The first Hecke operator acts by

λ1(p)A(β) ≈ A(pβ) +A

(
β

p

)
+

1√
p

∑

|α|2=p

A

(
αβα

p

)
,(4)

where α runs over integral quaternions. To deal with S♭ as in (3), it is crucial to obtain for instance

(5)
∑

|β|2≤z

|A(pβ)|2 ≪ |λ1(p)|2 · S(z) ≍ S(z).

Note that isolating A(pβ) in (4), we now have to contend with the sum over α, of length ≍ p.
A naive application of Cauchy–Schwarz would lead to terms of the form |A(pδ)|2 appearing with
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multiplicity ≫ p (from each choice β = αδα). We remedy this by adding appropriate weights:
setting

I(β) = {α : |α|2 = p and vp(αβα) > vp(β)},
unique factorization of quaternions gives |I(β)| ≤ 16, so

∣∣∣∣∣∣

∑

|α|2=p

A

(
αβα

p

)∣∣∣∣∣∣

2

≪
∑

α∈I(β)

∣∣∣∣A
(
αβα

p

)∣∣∣∣
2

+ p
∑

α/∈I(β)

∣∣∣∣A
(
αβα

p

)∣∣∣∣
2

.(6)

This dampens the problematic terms, so that denoting bym1(δ) andm2(δ) the multiplicities coming
respectively from the first and second terms in the RHS of (6) leads to the desired bound

1

p

∑

|β|2≤z

∣∣∣∣∣∣

∑

|α|2=p

A

(
αβα

p

)∣∣∣∣∣∣

2

≪
∑

|δ|2≤z

(
m1(δ)

p
+m2(δ)

)
|A(δ)|2 ≪ S(z),

since we show the crucial estimate m2(δ) ≪ 1 using the restriction α 6∈ I(β).
Let us now mention another issue when we are forced to use the λ2(p). For that, assume

|λ1(p)| ≪ 1 and |λ2(p)|2 ≍ L ≫ 1 for all p ≍ y1/8. The second Hecke operator acts roughly by

λ2(p)A(β) ≈
1√
p

∑

|α|2=p

[
A (αβα) +A

(
αβα

p2

)]
.(7)

The amplification scheme of (2) leads to

Ly1/8 · S♯

(
x

y

)
≪

∑

|β|2≤ x
y

β∈M( ~K)

|A(β)|2 ·
(
∑

p≍y1/8

p∤β

|λ2(p)|2
)

≈
∑

|β|2≤ x
y

β∈M( ~K)

∑

p≍y1/8

p∤β

∣∣∣∣∣∣

∑

|α|2=p

A (αβα)

∣∣∣∣∣∣

2

(8)

for a certain set M( ~K) defining S♯, where we applied (7) and the terms A(αβα/p2) were ignored
since they can be directly treated by the argument in (6).

At this point, using Cauchy–Schwarz as in [16] (with any choice of weights) is a bad move: it
leads to terms |A(δ)|2 with very large weighted multiplicity (on average ≈ y1/8) for many large δ
(|δ|2 ≍ x/y3/4) with little detectable structure (vp(δ) = 0 for all p ≍ y1/8). Indeed, one considers

the δ which are a conjugate by one α for each p ≍ y1/8 in certain congruence classes. This issue

would not arise if M( ~K) were defined to control multiplicity of representations as a conjugate by
each α, but this would require the bound (5) with pβ replaced by αβα, which seems difficult since
isolating A(αβα) in (4) or (7) becomes wasteful due to the small coefficient 1√

p .

Instead, we trade conjugation by α for powers of p by observing from (4) and (7) that

λ2(p)A(β) ≈ λ1(p)A(pβ) −A(p2β)−A(β),(9)

λ2(p)A(β) ≈ λ2(p)A(p
2β) + λ1(p)A(p

3β)−A(p4β)−A(p2β).(10)

Then (9) leads to the required bound, provided that L is sufficiently large so that the contribution
of the terms A(β) is subsumed by the LHS of (8). Similarly, (10) leads to the required bound as
long as L ≪ 1, since then the factor of λ2(p) on the RHS does not nullify the required gain of L in
(8). The case which requires using λ3(p) presents no further obstructions.
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2. Preliminaries

2.1. The group SVn(R) and its action on Hn+2. In this section we recall how to use Clifford
algebras to describe orientation-preserving isometries of hyperbolic spaces. We begin by reviewing
the basic definitions and facts about Clifford algebras, which will be used throughout the paper.
The material below is standard; proofs may be found in [1] and [4], which we mostly follow.

2.1.1. Clifford algebras. The Clifford algebra Cn is the (unital) associative algebra over R generated
by elements i1, . . . , in with the relations igih = −ihig for g 6= h, i2h = −1, and no others. Note
that C0 can be identified with R, C1 with C, and C2 with the Hamilton quaternions H. In the
last case, i, j, and k correspond respectively to i1, i2, and i1i2. Each element a ∈ Cn has a unique
representation of the form a =

∑
aII, where aI ∈ R and the sum is over all products I = ih1 · · · ihr

with 1 ≤ h1 < · · · < hr ≤ n. The empty product is included and identified with the real number
1, and its coefficient is referred to as the real part Re(a). The norm of a is N(a) :=

∑
a2I ∈ R≥0.

Clearly Cn is a vector space over R of dimension 2n.

2.1.2. Clifford vectors. The Clifford elements of the form x = x0 + x1i1 + · · · + xnin are called
vectors. They form an (n + 1)-dimensional subspace V n+1 which we shall identify with Rn+1.
There are three involutions in Cn, similar to complex conjugation. The main involution is the
automorphism a 7→ a′ obtained by replacing every ih by −ih. The reverse involution a 7→ a∗ is
obtained by reversing the order of the factors in each I = ih1 · · · ihp . It is an anti-isomorphism, so

(ab)∗ = b∗a∗. These involutions can be combined into the anti-isomorphism a 7→ a := a′∗ = a∗′. If
x is a vector then x = x∗ and x′ = x, so all three involutions preserve V n+1. If x and y are vectors
one verifies that xy + yx = 2〈x, y〉, where 〈·, ·〉 is the usual inner product on Rn+1. In particular

N(x) = |x|2 = xx, so that every non-zero vector x is invertible with x−1 = |x|−1
x. It follows that

the set Γn of all products of vectors is a multiplicative group, called the Clifford group. Another
characterization of Γn is the set of all invertible elements a ∈ Cn so that aV n+1a′−1 = V n+1. In
fact, the map x 7→ axa′−1 is an Euclidean isometry of V n+1.

2.1.3. Hyperbolic isometries and the group SVn(R). To describe the connection between Clifford
algebras and hyperbolic isometries, let Hn+2 denote the upper half-space model for the hyperbolic
(n+ 2)-space, which is

Hn+2 = {x = x0 + x1i1 + · · ·+ xnin + xn+1in+1 ∈ V n+2 | xn+1 > 0}
with the hyperbolic metric ds2 = x−2

n+1

(
dx2

0 + · · ·+ dx2
n+1

)
.

We let SVn(R) denote the set of all (2 × 2)-matrices g =

(
a b
c d

)
with entries in Γn ∪ {0},

satisfying ab∗, cd∗ ∈ V n+1 and µ(g) := ad∗ − bc∗ = 1 (µ is called the pseudo-determinant). Then
it turns out SVn(R) is a group, with the usual matrix multiplication, and it acts by isometries on
Hn+2 by

(11) g · x := (ax+ b)(cx+ d)−1,
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where we used the obvious embedding Cn ⊂ Cn+1. In fact, (11) induces a short exact sequence

1 → {±1} → SVn(R) → Iso+(Hn+2) → 1,

where Iso+(Hn+2) is the group of orientation-preserving isometries of Hn+2. Using the hyperboloid
model for Hn+2 we also have Iso+(Hn+2) ≃ SO+(1, n+2) (the identity component of SO(1, n+2))
and SVn(R) ≃ Spin(1, n+ 2).

2.2. The lattice SV2(Z). We now restrict the discussion to the case n = 2. In other words,
we consider the action of SV2(R) on the upper half-space model for the hyperbolic 4-space H4.
By convention we will identify an element z ∈ H4 with its coordinates with respect to the basis
{1, i1, i2, i3} of V 4, writing

(12) z = (x0, x1, x2, y) with y > 0

for an element x0 +x1i1+x2i2+ yi3 ∈ H4. In this case, SV2(R) consists of matrices with entries in
Γ2 ∪ {0}. It is easy to check that Γ2 ∪ {0} = C2, which from now on we identify with the Hamilton
quaternions H. This readily leads to

SV2(R) =

{(
a b
c d

)
∈ M2(H) |

(
a b
c d

)(
0 1
−1 0

)(
a∗ c∗

b∗ d∗

)
=

(
0 1
−1 0

)}
.

Thus it is clear how to view SV2(R) as the group of R-points of an affine algebraic group SV2 over
Z. We consider the group of Z-points SV2(Z) ⊂ SV2(R). Concretely, SV2(Z) is the subgroup of
SV2(R) consisting of matrices whose entries belong to the Lipschitz integral quaternions

H(Z) = Z+ Zi + Zj + Zk.

Then SV2(Z) is a non-uniform lattice in SV2(R), and we let X denote the quotient space1

X = SV2(Z)\H4

with the probability measure dz coming from the Riemannian measure d vol(z) = dx0dx1dx2dy/y
4

on H4. By [7, Proposition 1], the set

F =

{
z ∈ H4 | −1

2
≤ x0 ≤ 1

2
, 0 ≤ x1, x2 ≤ 1

2
, |z| ≥ 1

}

is a fundamental domain for the action of SV2(Z) (or more precisely of PSV2(Z)) on H4. In
particular, we have dz = d vol

vol(F) . For T ≥ 1 consider the regions

ST = {z ∈ F | y ≥ T }
and

S̃T =

{
z ∈ H4 | −1

2
≤ x0, x1, x2 ≤ 1

2
, y ≥ T

}
.

While ST (for T → ∞) parametrizes the cusp, it will be more convenient to work with S̃T as it is
more symmetric. We can easily do so since

(13) S̃T = ST ∪
(
i 0
0 i′

)
ST ∪

(
j 0
0 j′

)
ST ∪

(
k 0
0 k′

)
ST ,

where the four components above are pairwise disjoint away from their boundaries, which have
Riemannian volume zero.

1This definition is consistent with the one given in Section 1.2, since the image of SV2(Z) on Isom+(H4) is the
group Γ described there [11, Proposition 3.1].
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2.3. Maass forms and their Fourier expansion. With our usual choice of coordinates (12) the
Laplace–Beltrami operator is given by

∆ = y2
(
∂2
x0

+ ∂2
x1

+ ∂2
x2

+ ∂2
y

)
− 2y∂y.

In our context, an automorphic form φ is an SV2(Z)-invariant eigenfunction of ∆ satisfying the
moderate growth condition |φ(z)| ≪ yM as y → ∞, for some constant M . Writing λ = (3/2)2 + r2

for the ∆-eigenvalue, φ has a Fourier expansion (see e.g. [9])

(14) φ(z) = φ0(y) +
∑

06=β∈V 3(Z)

A(β)y3/2Kir

(
2π
√
N(β)y

)
e (Re(βz)) ,

where V 3(Z) := Z+ iZ+ jZ, Kir denotes the K-Bessel function, and

φ0(y) =

{
A1y

3/2+ir +A2y
3/2−ir if r 6= 0,

A1y
3/2 +A2y

3/2 log y if r = 0.

Convention 1. We will always view the function A(·) as a function on all of V 3, rather than just
on V 3(Z), by setting A(β) = 0 whenever β /∈ V 3(Z).

The form φ is called cuspidal, or a cusp form, if A1 = A2 = 0, so that φ0 is identically zero.

2.4. Hecke–Maass cusp forms. To define Hecke operators we will use the group of similitudes,

GSV+
2 (R) =

{
g =

(
a b
c d

)
∈ M2(H) | ad∗ − bc∗ = µ(g) ∈ R+, ab∗, dc∗ ∈ V 3

}
.

Like SV2(R), it acts on H4 by (11). Suppose that g ∈ GSV+
2 (R) belongs to the commensura-

tor CommGSV+
2 (R)(SV2(Z)) of SV2(Z) in GSV+

2 (R), i.e. SV2(Z)\(SV2(Z)gSV2(Z)) is finite. The

corresponding Hecke operator T on L2(X) is defined by

(15) Tf(x) =
∑

s∈S

f(sx),

where S ⊂ SV2(Z)gSV2(Z) is a fixed set of representatives for SV2(Z)\SV2(Z)gSV2(Z). We will
occasionally use the notation T ∼ g.

To each prime number p 6= 2 we shall associate two Hecke operators T1(p) and T2(p); they will
play a central role in the proof of Theorem 3. To define them we follow the presentation of Pitale
from [11] and choose, for a fixed odd prime p, an element α̂ (= α̂(p)) of H(Z) such that N(α̂) = p
and p does not divide α̂n for all n ≥ 1. Let T1(p) and T2(p) denote the operators corresponding to
the following diagonal matrices:

(16) T1(p) ∼
(
1 0
0 p

)
and T2(p) ∼

(
α̂ 0
0 α̂′p

)
.

(Note that T1(p) is what Pitale calls Tp and T2(p) is what Pitale calls Tp2 .)
Let Hp denote the C-algebra of operators generated by T1(p), T2(p), and the identity operator I.

We have T1(p) ·T2(p) = T2(p) ·T1(p), so that Hp is commutative. Also, Hecke operators correspond-
ing to different primes commute, so that the C-algebra generated by all the Hp is commutative.
We denote this algebra by H and call it the Hecke algebra. The Hecke operators, being defined
by isometries, commute with ∆. A cusp form φ is called a Hecke–Maass cusp form if it is a joint
eigenfunction of H (thus a joint eigenfunction of ∆ and H).

For what comes next it will be convenient to define a third operator T3(p) by the relation

(17) T1(p)
2 − (p+ 1)T2(p)− T3(p) =

(
1 + p+ p2 + p3

)
I.
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Remark 1. In fact T3(p) corresponds to a double coset, namely

(18) T3(p) ∼
(
1 0
0 p2

)
,

and this forms our main motivation for using T1(p), T2(p), T3(p). However, we will not use (18).

3. The comparison inequality

3.1. Statement of result. As noted in the introduction, to prove Theorem 1, we closely follow
the strategy of [16]. The main technical result of the paper is the following theorem, which is the
analog of [16, Theorem 3] in our context.

Theorem 3. There exist absolute constants C,R > 0 such that the following holds. Let A(β) be
Fourier coefficients of a Hecke–Maass cusp form on X as in (14). Then for any 1 ≤ y ≤ x,

∑

06=β∈V 3(Z)
N(β)≤x/y

|A(β)|2 ≤ C
(1 + log y)R

y1/8

∑

06=β∈V 3(Z)
N(β)≤x

|A(β)|2 .

3.2. Theorem 3 implies Theorem 1. The proof of Theorem 3 will occupy most of the remainder
of the paper; before going any further, let us show how to derive Theorem 1 from it. We shall make

use of the regions ST and S̃T defined in Section 2.2.

Proposition 1. There exist R,C > 0 such that for every T ≥ 1 and Hecke–Maass cusp form
φ ∈ L2(X) with ‖φ‖2 = 1, ∫

ST

|φ(z)|2 dz ≤ C
(1 + logT )R

T 1/4
.

Proof. Let φ be as above and for each T ≥ 1 set IT (φ) :=
∫
ST

|φ(z)|2 dz. Using (13) and the Fourier

expansion (14) of φ we obtain

4 vol(F) · IT (φ) =
∫

S̃T

|φ(z)|2 d vol(z)

=

∫ ∞

T

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

|φ(z)|2 dx0dx1dx2
dy

y4

=

∫ ∞

T

∑

06=β∈V 3(Z)

|A(β)|2
∣∣∣Kir

(
2π
√
N(β)y

)∣∣∣
2 dy

y

=
∑

06=β∈V 3(Z)

|A(β)|2
∫ ∞

T
√

N(β)

|Kir (2πy)|2
dy

y

=

∫ ∞

1

(
∑

06=β∈V 3(Z)

N(β)≤y2/T 2

|A(β)|2
)

· |Kir (2πy)|2
dy

y
.

Applying Theorem 3 to the sum over β shows that there are absolute constants R,C > 0 such
that

(19) IT (φ) ≤ C
(1 + logT )R

T 1/4
I1(φ).
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On the other hand I1(φ) ≤ ‖φ‖22 = 1. Thus the result follows from (19).
�

Proof of Theorem 1. Let φj ∈ L2(X) be a sequence of joint eigenfunctions of H and ∆ with unit

norm and Laplace eigenvalues λj → ∞. Suppose that the probability measures µj = |φj(x)|2 dx
converge weak-* to a measure µ. Since the φj are in the discrete spectrum of ∆ and the residual
spectrum is finite2, by passing to a subsequence we may assume that the φj are all Hecke–Maass
cusp forms. Thus the result follows from Proposition 1 by approximating the µ-measure of X by
the measures of the bounded sets X \ ST as T → ∞.

�

4. Two lemmas on integral quaternions

We collect some facts on integral quaternions that will be used in the sequel. For γ ∈ H(Z) and
m ∈ Z, write m | γ if m divides each of the four coordinates of γ. If q is a prime, vq(γ) denotes the

largest integer such that qvq(γ) | γ. Now fix a prime number p > 2. Recall that there are 8(p+ 1)
integral quaternions (that is, elements of H(Z)) of norm p, and fix a set of representatives

{α1, . . . , αp+1} ⊂ H(Z)

for the orbits of the left action of the group of unit quaternions {±1,±i,±j,±k} on them.

Lemma 1. Let β ∈ V 3(Z).

• For all α ∈ H(Z) with N(α) = p we have

vp(β) ≤ vp(α
′βα) ≤ vp(β) + 2.

• For all α as in the previous item and any odd prime q 6= p we have

vq(β) = vq(α
′βα)

• There are at most two distinct i ∈ {1, 2, . . . , p+ 1} such that

vp(α
′
iβαi) 6= vp(β).

Proof. This follows directly from [11, Proposition 5.8 (2)].
�

As a corollary we get the following useful fact.

Lemma 2. Let δ ∈ V 3(Z). If there exists a subset S ⊂ {α ∈ H(Z) | N(α) = p} with |S| > 16 such
that p2 | α∗δα for each α ∈ S, then p2 | δ.

Proof. Since each orbit of the unit quaternions as above has size 8, it follows that S := {α | α ∈ S}
must intersect at least three distinct such orbits. Then there are three distinct i ∈ {1, 2, . . . , p+ 1}
such that p2 | (αi)

∗δαi = α′
iδαi. Thus the result follows from the last item of Lemma 1.

�

2In fact, from the Fourier expansion of the Eisenstein series given in [7, Eqs. (12) and (14)] it follows that the
only residual form for SV2(Z)\H4 is the constant function.
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5. The arithmetic structure of Fourier coefficients of Hecke–Maass cusp forms

From now on we will work with a single Hecke–Maass cusp form φ, and p will denote an odd
prime number. Let λℓ(p) denote the eigenvalue of φ under the normalized operator p−eℓTℓ(p), i.e.

p−eℓTℓ(p)φ = λℓ(p)φ,

where e1 = 3/2, e2 = 2, and e3 = 3. For future reference we state the Hecke relation (17) in terms
of these eigenvalues, where it becomes

(20) λ1(p)
2 −

(
1 +

1

p

)
λ2(p)− λ3(p) = 1 +

1

p
+

1

p2
+

1

p3
.

The proof of Theorem 3 crucially (and in some sense solely) relies on the following consequence
of (20), giving an arithmetic structure on the Fourier coefficients of a Hecke–Maass cusp form. We
view it as the analog of the Hecke multiplicativity property that was used in [16]. To state it, retain
the notation of Section 4 and let {α1, . . . , αp+1} be a fixed choice of representatives for the orbits
of the left action of the unit quaternions on the set of integral quaternions of norm p.

Lemma 3. Let φ be a Hecke–Maass cusp form with Fourier expansion

φ(z) =
∑

06=β∈V 3(Z)

A(β)y3/2Kir

(
2π
√
N(β)y

)
e (Re(βz)) .

(a) For each β ∈ V 3(Z) and odd prime p,

λ1(p)A(β) = A(pβ) +A(β/p) +
1√
p

p+1∑

i=1

A

(
α′
iβαi

p

)
.

(b) For each β ∈ V 3(Z) and odd prime p,

λ2(p)A(β) =
1√
p

p+1∑

i=1

[
A(α′

iβαi) +A

(
α′
iβαi

p2

)]
+ E(β, p)A(β),

where

E(β, p) := 1

p2
×






p2 − 1 if p | β,
−1 if p | N(β) and p ∤ β,

p− 1 if
(

−N(β)
p

)
= 1,

−p− 1 if
(

−N(β)
p

)
= −1.

(c) For each β ∈ V 3(Z) and odd prime p,

λ3(p)A(β) = A(p2β) +A(β) ·
(
1p(β)−

p+ 1

p
E(β, p)− p2 + p+ 1

p3

)
+A

(
β

p2

)

+
1√
p

p+1∑

i=1

[
A (α′

iβαi) ·
(
1p (α

′
iβαi)−

1

p

)
+A

(
α′
iβαi

p2

)
·
(
1p(β)−

1

p

)]

+
1

p

p+1∑

j=1

p+1∑

i=1

A

(
α′
jα

′
iβαi αj

p2

)
· 1p(α

′
iβαi),

where 1p(γ) denotes the indicator function of p | γ.
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Proof. The first two items are Propositions 5.8 and 5.11 of [11]. The last item follows from a direct
computation combining the first two items and the Hecke relation (20).

�

6. Bounding Fourier coefficients along multiples of an integer

For a positive integer d and z > 0 we set

Sd(z) :=
∑

06=β∈V 3(Z)
N(β)≤z

d|β

|A(β)|2 =
∑

06=δ∈V 3(Z)

N(δ)≤z/d2

|A(dδ)|2 and S(z) := S1(z).

The following proposition is the main result of this section.

Proposition 2. There exists an absolute constant A > 0 such that for any prime number p > 2,
integers k, c ≥ 1 with p ∤ c, and real number z > 0 we have

Scpk(z) ≤ Ak

(
∑

a,b≥0
a+2b≤k

|λ1(p)|2a |λ2(p)|2b
)
Sc

(
z

p2k

)
.

Before turning to the proof of Proposition 2, we record the following immediate consequence.

Corollary 1. There exists an absolute constant A > 0 such that for every odd integer d ≥ 1 and
real number z > 0 we have

Sd(z) ≤



∏

p|d
Avp(d)

(
∑

a,b≥0
a+2b≤vp(d)

|λ1(p)|2a |λ2(p)|2b
)

S

( z

d2

)
.

Proof. Follows directly from repeated application of Proposition 2 for each prime factor of d.
�

The main idea for the proof of Proposition 2 is to use the Hecke relations to reduce the size of
the common divisor. This is done via the recursive inequalities in the next result. To state it, for
a prime number p > 2 and an integer ℓ ≥ 0 denote

Rp,ℓ
d (z) :=

1

p

∑

06=β∈V 3(Z)
N(β)≤z

d|β

∣∣∣∣∣

p+1∑

i=1

A

(
α′
iβαi

pℓ

)∣∣∣∣∣

2

.

Lemma 4. For any prime number p > 2, integers d ≥ 1, ℓ ≥ 0, and real number z > 0 we have:

(a)

Sdp(z) ≪ |λ1(p)|2 Sd

(
z

p2

)
+ S d

(d,p)

(
z

p4

)
+Rp,1

d

(
z

p2

)
.

(b)

Rp,ℓ
dpℓ(z) ≪

(
|λ2(p)|2 + 1

)
Sd

(
z

p2ℓ

)
+Rp,2

d

(
z

p2ℓ

)
.
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(c) For any integers k ≥ 0 and c ≥ 1 with p ∤ c,

Rp,ℓ
cpk(z) ≪ Scpmax(0,k−ℓ)

(
z

p2(ℓ−1)

)
.

We emphasize that the implied constants in Lemma 4 are absolute.

Proof. Using Lemma 3 (a) and Cauchy–Schwarz, we get

Spd(z) =
∑

06=β∈V 3(Z)

N(β)≤z/p2

d|β

|A(pβ)|2 =
∑

06=β∈V 3(Z)

N(β)≤z/p2

d|β

∣∣∣∣∣λ1(p)A(β) −A(β/p)− 1√
p

p+1∑

i=1

A

(
α′
iβαi

p

)∣∣∣∣∣

2

≤ 3
∑

06=β∈V 3(Z)

N(β)≤z/p2

d|β


|λ1(p)|2 |A(β)|2 + |A(β/p)|2 + 1

p

∣∣∣∣∣

p+1∑

i=1

A

(
α′
iβαi

p

)∣∣∣∣∣

2



≪ |λ1(p)|2 · Sd

(
z

p2

)
+ S d

(d,p)

(
z

p4

)
+

1

p

∑

06=β∈V 3(Z)

N(β)≤z/p2

d|β

∣∣∣∣∣

p+1∑

i=1

A

(
α′
iβαi

p

)∣∣∣∣∣

2

,

where for the middle term we changed variables β 7→ pβ and used the fact that d | pβ if and only
if d

(d,p) | β. This gives Lemma 4 (a).

To prove the second item, note first that Rp,ℓ
dpℓ(z) = Rp,0

d

(
z/p2ℓ

)
. Using Lemma 3 (b) we obtain

Rp,0
d

(
z

p2ℓ

)
=

∑

06=β∈V 3(Z)

N(β)≤z/p2ℓ

d|β

∣∣∣∣∣
1√
p

p+1∑

i=1

A (α′
iβαi)

∣∣∣∣∣

2

=
∑

06=β∈V 3(Z)

N(β)≤z/p2ℓ

d|β

∣∣∣∣∣∣
λ2(p)A(β) − E(β, p)︸ ︷︷ ︸

≪1

A(β) − 1√
p

p+1∑

i=1

A

(
α′
iβαi

p2

)∣∣∣∣∣∣

2

≪
∑

06=β∈V 3(Z)

N(β)≤z/p2ℓ

d|β



|λ2(p)|2 |A(β)|2 + |A(β)|2 + 1

p

∣∣∣∣∣

p+1∑

i=1

A

(
α′
iβαi

p2

)∣∣∣∣∣

2


 ,

and this immediately gives Lemma 4 (b).
Finally, we prove the last item. For 0 6= β ∈ V 3(Z) denote

I(β) := {1 ≤ i ≤ p+ 1 : vp(α
′
iβαi) ≥ vp(β) + 1} .
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Then Lemma 1 gives |I(β)| ≤ 2. Using this and Cauchy–Schwarz we obtain

∣∣∣∣∣

p+1∑

i=1

A

(
α′
iβαi

pℓ

)∣∣∣∣∣

2

≪
∑

i∈I(β)

∣∣∣∣A
(
α′
iβαi

pℓ

)∣∣∣∣
2

+ p
∑

i6∈I(β)

∣∣∣∣A
(
α′
iβαi

pℓ

)∣∣∣∣
2

,

so that

(21) Rp,ℓ
cpk(z) ≪

∑

06=β∈V 3(Z)
N(β)≤z

cpk|β



1
p

∑

i∈I(β)

∣∣∣∣A
(
α′
iβαi

pℓ

)∣∣∣∣
2

+
∑

i6∈I(β)

∣∣∣∣A
(
α′
iβαi

pℓ

)∣∣∣∣
2


 .

Observe that for each i ∈ {1, . . . , p + 1} and β as above we have cpmax(0,k−ℓ) | α′

iβαi

pℓ , since

(c, p) = 1, and N
(

α′

iβαi

pℓ

)
= N(β)p−2(ℓ−1) ≤ zp−2(ℓ−1). Thus the RHS of (21) is equal to

(22)
∑

06=δ∈V 3(Z)

N(δ)≤z/p2(ℓ−1)

cpmax(0,k−ℓ)|δ

h(δ) · |A(δ)|2 ,

for certain quantities h(δ) ≥ 0, and to finish the proof it suffices to show that h(δ) ≪ 1. For each
δ appearing in (22) we see from (21) that

(23) h(δ) ≤ m1(δ)

p
+m2(δ),

where

m1(δ) = #

{
(β, i) : β ∈ V 3(Z), i ∈ I(β) satisfy

α′
iβαi

pℓ
= δ

}

= #
{
i ∈ {1, . . . , p+ 1} : vp(δ) + 1 ≥ vp(α

∗
i δαi) ≥ 2− ℓ

}

and

m2(δ) = #

{
(β, i) : β ∈ V 3(Z), i 6∈ I(β) satisfy

α′
iβαi

pℓ
= δ

}

≤ #
{
i ∈ {1, . . . , p+ 1} : vp(α

∗
i δαi) > vp(δ) + 1

}
.

Form1(δ) we use the obvious bound m1(δ) ≤ p+1. Applying Lemma 2 to δ̃ := p−vp(δ)δ ∈ V 3(Z),

since vp(δ̃) = 0, it follows that m2(δ) ≤ 16. Therefore (23) implies h(δ) ≪ 1, which completes the
proof of Lemma 4 (c).

�

Proof of Proposition 2. We will prove the stronger statement that if B is a sufficiently large absolute
constant, then for any integers k ≥ 0 and c ≥ 1 with p ∤ c, and real number z > 0,

(24) max
(
Scpk(z), Rp,2

cpk(z)
)
≤ Bk+1

(
∑

a,b≥0
a+2b≤k

|λ1(p)|2a |λ2(p)|2b
)
Sc

(
z

p2k

)
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and

(25) Rp,1
cpk(z) ≤ Bk+1

(
∑

a,b≥0
a+2b≤k+1

|λ1(p)|2a |λ2(p)|2b
)
Sc

(
z

p2k

)
.

The proof is by induction on k. For the base cases k = 0 and k = 1, first note that Lemma 4 (c)
implies

Rp,1
c (z) ≪ Sc(z),(26)

Rp,2
c (z) ≪ Sc

(
z/p2

)
,(27)

Rp,2
cp (z) ≪ Sc

(
z/p2

)
.

From (27) and Lemma 4 (b) we also obtain

Rp,1
cp (z) ≪ (|λ2(p)|2 + 1) · Sc

(
z/p2

)
.

Furthermore, by Lemma 4 (a) and (26) we have

Scp(z) ≪ |λ1(p)|2 · Sc

(
z

p2

)
+ Sc

(
z

p4

)
+ Sc

(
z

p2

)
.

Combining those five inequalities, we see that (24) and (25) hold for k = 0 and k = 1, as long as B
is a sufficiently large absolute constant.

The induction step for k ≥ 2 follows directly from Lemma 4 (a) and Lemma 4 (b), as long as B
is large enough in terms of the implied constants in that lemma (which are absolute), concluding
the proof.

�

7. Proof of Theorem 3: auxiliary results

The proof of Theorem 3 requires the following three lemmas, which we derive from the results
of Section 6.

Lemma 5. For any prime p > 2, real number z > 0, and ℓ ∈ {1, 2},
|λℓ(p)|2 · S (z) ≪ S

(
zp2
)
.

Proof. The case ℓ = 1 follows by applying Lemma 3 (a), Cauchy–Schwarz, and Lemma 4 (c) to get

|λ1(p)|2 · S (z) ≪ S
(
zp2
)
+ S(z/p2) +Rp,1

1 (z) ≪ S
(
zp2
)
+ S(z/p2) + S(z) ≪ S(zp2).

The case ℓ = 2 follows by applying Lemma 3 (b), Cauchy–Schwarz, and Lemma 4 (c) to get

|λ2(p)|2 · S (z) ≪ Rp,0
1 (z) +Rp,2

1 (z) + S (z) ≪ S(zp2) + S(z/p2) + S(z) ≪ S(zp2).

�

For the rest of this section, consider a real parameter P ≥ 1, and an arbitrary subset

P ⊂
{
p ∈

[
P

2
, P

]
: p is an odd (rational) prime

}
.

Following [16], to bound the sums S(z), we will distinguish between A(β) with β divisible by “many”
elements of P and those with β divisible by “not as many” elements of P . To make this distinction
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precise we define the following subsets of V 3(Z), analogous to the sets Nj(k) in [16, Section 3]. For
K > 0 and a positive integer ℓ, set

(28) Mℓ(K) :=
{
0 6= β ∈ V 3(Z) : there are ≤ K primes p ∈ P such that pℓ | β

}
.

Lemma 6. For any real numbers z > 0 and K ≥ 1,

(29)
∑

β∈M1(K)
N(β)≤z

∑

p∈P
p∤β

∣∣∣∣∣
1√
p

p+1∑

i=1

A

(
α′
iβαi

p

)∣∣∣∣∣

2

≪ K · S (z)

and

(30)
∑

β∈M1(K)
N(β)≤z

∑

p∈P
p∤β

∣∣∣∣∣
1√
p

p+1∑

i=1

A

(
α′
iβαi

p2

)∣∣∣∣∣

2

≪ |P| · S
(

z

(P/2)2

)
.

Proof. By Lemma 1, the inner sum in both (29) and (30) has at most two non-zero terms. Thus
by Cauchy–Schwarz (29) and (30) are

≤
∑

β∈M1(K)
N(β)≤z

∑

p∈P
p∤β

2

p

p+1∑

i=1

∣∣∣∣A
(
α′
iβαi

pℓ

)∣∣∣∣
2

,(31)

where ℓ = 1, 2 respectively. Lemma 1 also yields that each of the elements
α′

iβαi

pℓ appearing in (29)

and (30) belongs to M1(K + 1), so the quantity in (31) is

(32) ≪ 1

P

∑

δ∈M1(K+1)

N(δ)≤z/(P/2)2(ℓ−1)

m(δ, ℓ) · |A(δ)|2,

where

m(δ, ℓ) = #

{
(β, p, i) : β ∈ V 3(Z), p ∈ P , 1 ≤ i ≤ p+ 1 satisfy p ∤ β and

α′
iβαi

pℓ
= δ

}
.

We now treat the cases ℓ = 1 and ℓ = 2 separately, starting with the former one. Fix 0 6= δ ∈
V 3(Z). Note that there are at most p+1 ≤ P+1 pairs (β, i) with

α′

iβαi

p = δ, since p and i determine

β. For each choice of p ∈ P , either there are in fact at most 16 pairs (β, i) with
α′

iβαi

p = δ, or

Lemma 2 implies that p | δ, since p2 | α∗
i (pδ)αi for each of these pairs. Thus if δ ∈ M1(L) then

m(δ, 1) ≤ (P + 1)L+ 16(|P| − L).

Since K ≥ 1 this leads to

1

P

∑

δ∈M1(K+1)
N(δ)≤z

m(δ, 1) · |A(δ)|2 ≪ KP + |P|
P

∑

δ∈M1(K+1)
N(δ)≤z

|A(δ)|2 ≪ K · S (z) ,

concluding the proof of (29). For the case ℓ = 2 we use the obvious bound

m(δ, 2) ≤ (P + 1) · |P|,
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which (since P ≥ 1) yields

1

P

∑

δ∈M1(K+1)

N(δ)≤z/(P/2)2

m(δ, 2) · |A(δ)|2 ≪ P |P|
P

∑

δ∈M1(K+1)

N(δ)≤z/(P/2)2

|A(δ)|2 ≪ |P| · S
(

z

(P/2)2

)
.

�

Denote

(33) S♭
ℓ(z,K) :=

∑

β/∈Mℓ(K)
N(β)≤z

|A(β)|2.

Lemma 7. There exists an absolute constant B such that the following holds. For any integers
ℓ,K ≥ 1 and real number z > 0 we have

S♭
ℓ(z,K) ≤

(
Bℓ · |P| · supp∈P Lℓ(p)

K + 1

)K+1

S

(
z

(P/2)2ℓ(K+1)

)
,

where

Lℓ(p) :=
∑

a,b≥0
a+2b≤ℓ

|λ1(p)|2a |λ2(p)|2b .

Proof. Since every element β which appears in S♭
ℓ(z,K) is a multiple of at least K +1 distinct ℓ-th

powers of primes in P ,

S♭
ℓ(z,K) ≤

∑

d=(p1p2···pK+1)
ℓ

p1<p2<···<pK+1

pi∈P

∑

06=β∈V 3(Z)
N(β)≤z

d|β

|A(β)|2 =
∑

d=(p1p2···pK+1)
ℓ

p1<p2<···<pK+1

pi∈P

Sd(z).

Observe that d ≥ (P/2)ℓ(K+1). Applying Corollary 1 gives, for some absolute constant A > 0,

S♭
ℓ(z,K) ≤

( |P|
K + 1

)
Aℓ(K+1)

(
sup
p∈P

Lℓ(p)

)K+1

S

(
z

(P/2)2ℓ(K+1)

)

≤
(
e · |P| · Aℓ · supp∈P Lℓ(p)

K + 1

)K+1

S

(
z

(P/2)2ℓ(K+1)

)
.

�

8. Concluding the proof of Theorem 3

We are finally ready to prove Theorem 3. Recall that the partial sums S were defined using an
eigenfunction φ. The content of Theorem 3 is that the functions y 7→ S(x/y)/S(x) decay uniformly
in φ. The following general result provides a uniform rate of decay for any collection of compactly
supported functions f : [1,∞) → [0, 1] satisfying a single recursive inequality of a certain kind.

We will prove Theorem 3 by showing that our functions f(y) = S(x/y)
S(x) satisfy such a recursive

inequality.
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Lemma 8. Let f : [1,∞) → [0, 1] be a compactly supported function with f(1) = 1. Consider real
numbers ∆ > 0, ε ∈ (0, 1), and A ≥ 10, integers M,N ≥ 0, and functions am, bn : [1,∞) → R, for
each 1 ≤ m ≤ M and 1 ≤ n ≤ N , satisfying

1 ≥ am(y) ≥ ε and bn(y) ≥ ε(1 + log y)ε.

Assume that for every y ≥ A we have

f(y) ≤ A

[
(log y)A

y∆
+ f

(
y1+ε

)
+

M∑

m=1

y−∆am(y) · f
(
y1−am(y)

)
+

N∑

n=1

e−εbn(y)y∆bn(y) · f
(
y1+bn(y)

)]
.

Then there exist parameters C and R which depend only on {A,M,N,∆, ε} such that

f(y) ≤ C · (1 + log y)R

y∆

for every y ≥ 1. In particular, if A,M,N,∆, ε are all absolute constants, then so are C and R.

Remark 2. Lemma 8 holds under the weaker assumption that bm(y) ≥ h(y) for an arbitrary
function satisfying h(y) → ∞ as y → ∞, in which case the parameters C and R would also depend
on h. We state the result as above for concreteness.

Proof. Define g : [1,∞) → R≥0 by g(y) = y∆ · f(y). Then for every y ≥ A,

(34) g(y) ≤ A

[
(log y)A · g(1) + g

(
y1+ε

)

yε∆
+

M∑

m=1

g
(
y1−am(y)

)
+

N∑

n=1

e−εbn(y) · g
(
y1+bn(y)

)]
.

Since f is compactly supported and bounded, for any real number r ≥ 0 there exists a real
number zr ≥ 1 such that

g(zr)

(1 + log zr)r
≥ 1

2
· sup
y≥1

g(y)

(1 + log y)r
.

Thus for any y ≥ 1,

(35) g(y) ≤ 2

(
1 + log y

1 + log zr

)r

g(zr).

We have g(zr) > 0, since g(1) = 1.
Let R denote the smallest integer satisfying R ≥ A ≥ 10,

2A(logA)A−R ≤ 1

4
, and 2AM

(
1− ε

2

)R
≤ 1

4
,

so that R ≪A,M,ε 1.

Case 1: zR ≥ max
(
A,
[
8A(1 + ε)R

] 1
ε∆

)
.
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In this case we may apply (34) followed by (35) to obtain

g(zR) ≤ 2A

[
(log zR)

A

(1 + log zR)R
+

(
1 +

ε log zR
1 + log zR

)R
1

(zR)ε∆
+

M∑

m=1

(
1− am(zR) ·

log zR
1 + log zR

)R

+

N∑

n=1

e−εbn(zR) ·
(
1 + bn(zR) ·

log zR
1 + log zR

)R
]
g(zR)

≤ 2A

[
(logA)A−R +

(1 + ε)
R

8A (1 + ε)
R
+M

(
1− ε

2

)R
+

N∑

n=1

e−εbn(zR) ·
(
1 + bn(zR)

)R
]
g(zR).

Since g(zR) > 0, this implies

1

4
≤ 2A

N∑

n=1

e−εbn(zR) ·
(
1 + bn(zR)

)R
.

There is a parameter B > 0 depending only on R and ε, and therefore only on {A,M, ε}, such
that e−εx(1 + x)R ≤ Be−

ε
2x for every x ≥ 0. Therefore,

1

4
≤ 2AB

N∑

n=1

e−
ε
2 bn(zR) ≤ 2ABNe−

ε2

2 (1+log zR)ε .

This shows that zR ≪A,M,N,ε 1. Since f is bounded by 1, condition (35) for r = R shows that
for any y ≥ 1 we have

(36) f(y) ≤ 2 (1 + log y)
R

(
zR
y

)∆

f(zR) ≤ 2
(1 + log y)R

y∆
(zR)

∆ ≪A,M,N,∆,ε
(1 + log y)R

y∆
,

as desired.

Case 2: zR < max
(
A,
[
8A(1 + ε)R

] 1
ε∆

)
.

In this case, since R ≪A,M,ε 1 we have zR ≪A,M,∆,ε 1, so arguing as in (36) we conclude that

f(y) ≪A,M,∆,ε
(1 + log y)

R

y∆

and the result follows.
�

Proposition 3. There exists an absolute constant D > 0 such that the following holds. Let x ≥ 1,

y ≥ 1010
10

, and denote ν := 1
8 and P := yν . There exist positive integer parameters Kℓ satisfying

Kℓ ≥ logP

for each ℓ ∈ {1, 2, 3, 4} such that

S

(
x

y

)
≤ D

[
(logP )5

P
· S(x) + S

(
x

y(P/2)2

)
+

3∑

ℓ=1

P−2ℓν · S
(
xP 2ℓ

y

)

+

4∑

ℓ=1

e−(Kℓ+1)

(
P

2

)2ℓν(Kℓ+1)

· S
(

x

y(P/2)2ℓ(Kℓ+1)

)]
.

Let us see how to conclude once we have Proposition 3.
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Proof of Theorem 3. We will work with a single value of x ≥ 1 in the proof. If S(x) = 0 the result
is trivial, so we assume otherwise.

The theorem then follows from applying Lemma 8 to the compactly supported function f(y) :=
S(x/y)
S(x) , with parameters ∆ = 1

8 , A a sufficiently large absolute constant, ε > 0 a sufficiently small

absolute constant, M = 3, and N = 4. Indeed, Proposition 3 shows that f satisfies the required

conditions for Lemma 8 with (say) ε = 1
100 and A = max

(
D, 1010

10
)
.

�

Proof of Proposition 3. If x < y then S(x/y) = 0 and there is nothing to prove, so we assume

x ≥ y ≥ 1010
10

. Let Q denote the set of primes contained in the interval
[
P
2 , P

]
.

If there exists p ∈ Q such that |λℓ(p)|2 ≥ y for some ℓ ∈ {1, 2, 3}, then the Hecke relation (20)

implies that either |λ1(p)|2 or |λ2(p)|2 is greater than y1/3, so Lemma 5 gives

S

(
x

y

)
≪ y−1/3 · S

(
xP 2

y

)
,

and the desired inequality follows (with plenty of room). Thus from now on we assume that

(37) |λℓ(p)|2 < y

for all p ∈ Q and ℓ ∈ {1, 2, 3}. For i ≥ 1 and ℓ ∈ {1, 2, 3}, set

Qℓ
i :=

{
p ∈ Q :

2i−1

100
< |λℓ(p)|2 ≤ 2i

100

}
, Qℓ

0 :=

{
p ∈ Q : |λℓ(p)|2 ≤ 1

100

}
,

and

Pijk := Q1
i ∩Q2

j ∩ Q3
k.

By (37) we have

Q =
⊔

0≤i,j,k≤J

Pijk

for (say) J := 2 log y. From y ≥ 1010
10

it follows that

|Q| ≥ P

2 logP
,

so there exists a tuple (i, j, k) such that

|Pijk| ≥
|Q|

(J + 1)3
≥ P

2 logP · (3 log y)3 ≥ P

102 · (logP )4
.

We fix such a tuple and observe that (i, j, k) 6= (0, 0, 0), due to the Hecke relation (20). Denote
P := Pijk. The argument splits into three cases.

Case 1. i > 0.
Let L := 2i

100 , so that L ≥ 1
50 and

L

2
< |λ1(p)|2 ≤ L

for every p ∈ P . Let K1 be any integer satisfying

(38) 1 ≤ K1 ≤ |P|
2

,
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and denote

S♯(z) :=
∑

β∈M1(K1)
N(β)≤z

|A(β)|2 and S♭(z) :=
∑

β 6∈M1(K1)
N(β)≤z

|A(β)|2.

(Note that S♭(z) is S♭
1 (z,K1) from (33), but we set this more general notation for the cases ahead.)

Then S = S♯ + S♭ and we bound S(x/y) by bounding S♯(x/y) and S♭(x/y) separately, always
assuming (38).

To bound S♯(x/y), we will amplify using λ1(p). Consider the expression

A :=
∑

β∈M1(K1)
N(β)≤x/y

|A(β)|2 ·



∑

p∈P
p∤β

|λ1(p)|2


 .

Since |λ1(p)|2 ≥ L
2 for every p ∈ P and K1 ≤ |P|

2 ,

(39) A ≥ L(|P| −K1)

2
S♯

(
x

y

)
≫ L|P| · S♯

(
x

y

)
.

On the other hand, by the Hecke relation for λ1(p)A(β),

A =
∑

β∈M1(K1)
N(β)≤x/y

∑

p∈P
p∤β

∣∣∣∣∣∣
A(pβ) +A(β/p)︸ ︷︷ ︸

=0

+
1√
p

p+1∑

i=1

A

(
α′
iβαi

p

)∣∣∣∣∣∣

2

≪
∑

β∈M1(K1)
N(β)≤x/y

∑

p∈P
p∤β

|A(pβ)|2 +
∑

β∈M1(K1)
N(β)≤x/y

∑

p∈P
p∤β

1

p

∣∣∣∣∣

p+1∑

i=1

A

(
α′
iβαi

p

)∣∣∣∣∣

2

.

The first double sum is ≤ (K1 + 1) · S
(

xP 2

y

)
. Indeed, if β ∈ M1(K1) then δ = pβ ∈ M1(K1 + 1),

therefore for each such δ there are at most K1 + 1 choices for p ∈ P . The second double sum is
≪ K1 · S(x/y), due to Lemma 6. Combining this with (39) we conclude that

S♯

(
x

y

)
≪ K1

L|P| · S
(
xP 2

y

)
.(40)

To bound S♭(x/y) we first apply Lemma 7 and get

(41) S♭

(
x

y

)
= S♭

1

(
x

y
,K1

)
≤
(
BL|P|
K1 + 1

)K1+1

S

(
x

y(P/2)2(K1+1)

)

for some absolute constant B ≥ 1. If L ≥ P 2ν

1010B then Lemma 5 trivially implies the desired result,

so we assume otherwise. Then we can take K1 :=
⌈
e · BL|P|

(P/2)2ν

⌉
− 1 ≥ logP and (38) is satisfied.

Applying (40) and (41) we conclude that

S

(
x

y

)
≪ P−2ν · S

(
xP 2

y

)
+

(
BL|P|
K1 + 1

)K1+1

S

(
x

y(P/2)2(K1+1)

)

≤ P−2ν · S
(
xP 2

y

)
+ e−(K1+1)

(
P

2

)2ν(K1+1)

S

(
x

y(P/2)2(K1+1)

)
.
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This completes the proof of Case 1.

Case 2. i = 0 and j > 0.
In this case we have

|λ1(p)|2 ≤ 1

100
and

L

2
< |λ2(p)|2 ≤ L

for every p ∈ P , where L := 2j

100 ≥ 1
50 . Our argument depends on the size of L.

Subcase 2.1. L > 1010.
Consider integers

(42) 1 ≤ K1 ≤ |P|
2

and K2 ≥ 1

to be chosen later. Let M( ~K) := M1(K1) ∩M2(K2) and denote

S♯(z) :=
∑

β∈M( ~K)
N(β)≤z

|A(β)|2 and S♭(z) :=
∑

β 6∈M( ~K)
N(β)≤z

|A(β)|2.

To bound S♯(x/y), we will amplify using λ2(p). Consider the amplified expression

A :=
∑

β∈M( ~K)
N(β)≤x/y

|A(β)|2 ·



∑

p∈P
p∤β

|λ2(p)|2


 .

Since |λ2(p)|2 ≥ L
2 for every p ∈ P and K1 ≤ |P|

2 ,

A ≥ L(|P| −K1)

2
S♯

(
x

y

)
≥ L|P|

4
· S♯

(
x

y

)
.

Using the Hecke relations for λ2(p)A(β) and λ1(p)A(pβ),

λ2(p)A(β) =
1√
p

p+1∑

i=1

[
A (α′

iβαi) +A

(
α′
iβαi

p2

)]
+ E(β, p)A(β)

= λ1(p)A(pβ) −A(p2β) +
1√
p

p+1∑

i=1

A

(
α′
iβαi

p2

)
+ (E(β, p)− 1)A(β).
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Therefore, since |E(β, p)| ≤ 1 and |λ1(p)|2 ≤ 1
100 ,

A =
∑

β∈M( ~K)
N(β)≤x/y

∑

p∈P
p∤β

∣∣∣∣∣λ1(p)A(pβ) −A(p2β) +
1√
p

p+1∑

i=1

A

(
α′
iβαi

p2

)
+ (E(β, p)− 1)A(β)

∣∣∣∣∣

2

≤ 4
∑

β∈M( ~K)
N(β)≤x/y

∑

p∈P
p∤β



4 |A(β)|2 + |A(pβ)|2
100

+
∣∣A(p2β)

∣∣2 +
∣∣∣∣∣
1√
p

p+1∑

i=1

A

(
α′
iβαi

p2

)∣∣∣∣∣

2




≤ 16|P| · S♯

(
x

y

)
+

K1 + 1

25
· S
(
xP 2

y

)
+ 4(K2 + 1) · S

(
xP 4

y

)

+ 4
∑

β∈M( ~K)
N(β)≤x/y

∑

p∈P
p∤β

∣∣∣∣∣
1√
p

p+1∑

i=1

A

(
α′
iβαi

p2

)∣∣∣∣∣

2

.

In the last step we used the fact that pβ is a multiple of at most K1 + 1 distinct primes in P , and

p2β is a multiple of at most K2 + 1 squares of distinct primes in P , since β ∈ M( ~K).

Applying Lemma 6 to the last term, since M( ~K) ⊂ M1(K1) we see that it is

≪ |P| · S
(

x

y(P/2)2

)
.

Since L > 1010, we have L
4 − 16 ≥ L

5 , so we obtain

(43) S♯

(
x

y

)
≪ K1

L|P| · S
(
xP 2

y

)
+

K2

L|P| · S
(
xP 4

y

)
+

1

L
· S
(

x

y(P/2)2

)
.

By Lemma 7, we also have

(44) S♭

(
x

y

)
≤ S♭

1

(
x

y
,K1

)
+ S♭

2

(
x

y
,K2

)
≤

2∑

ℓ=1

(
B|P|L
Kℓ + 1

)Kℓ+1

S

(
x

y(P/2)2ℓ(Kℓ+1)

)

for some absolute constant B ≥ 1.
Combining (43) and (44), we conclude that

S

(
x

y

)
≪ 1

L
· S
(

x

y(P/2)2

)
+

2∑

ℓ=1

Kℓ

L|P| · S
(
xP 2ℓ

y

)
+

(
B|P|L
Kℓ + 1

)Kℓ+1

S

(
x

y(P/2)2ℓ(Kℓ+1)

)

If L ≥ P 2ν

1010B then the desired result follows from Lemma 5. Otherwise, note that we can choose

Kℓ :=

⌈
e · B|P|L

(P/2)2ℓν

⌉
− 1 ≥ P 1−2ℓν

105(logP )4
≥ logP

for ℓ ∈ {1, 2}, and (42) is satisfied. Therefore, we obtain

S

(
x

y

)
≪ S

(
x

y(P/2)2

)
+

2∑

ℓ=1

P−2ℓν · S
(
xP 2ℓ

y

)
+ e−(Kℓ+1)

(
P

2

)2ℓν(Kℓ+1)

· S
(

x

y(P/2)2ℓ(Kℓ+1)

)
.

This finishes the proof of Subcase 2.1.
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Subcase 2.2. L ≤ 1010.
Similarly to the previous subcase, we consider integers

(45) 1 ≤ K1 ≤
|P|
2

, K2 ≥ 1, K3 ≥ 1, and K4 ≥ 1

to be chosen later. Let M( ~K) :=
⋂4

ℓ=1 Mℓ(Kℓ) and denote

S♯(z) :=
∑

β∈M( ~K)
N(β)≤z

|A(β)|2 and S♭(z) :=
∑

β 6∈M( ~K)
N(β)≤z

|A(β)|2.

To bound S♯(x/y), we will again amplify using λ2(p). Consider the amplified expression

A :=
∑

β∈M( ~K)
N(β)≤x/y

|A(β)|2 ·



∑

p∈P
p∤β

|λ2(p)|2


 .

Since |λ2(p)|2 > L
2 ≥ 1

100 for every p ∈ P and K1 ≤ |P|
2 ,

A ≥ L(|P| −K1)

2
S♯

(
x

y

)
≫ |P| · S♯

(
x

y

)
.

Using the Hecke relations for λ2(p)A(β), followed by λ2(p)A(p
2β) and λ1(p)A(p

3β),

λ2(p)A(β) =
1√
p

p+1∑

i=1

[
A (α′

iβαi) +A

(
α′
iβαi

p2

)]
+ E(β, p)A(β)

= λ2(p)A(p
2β) +

1√
p

p+1∑

i=1

[
A

(
α′
iβαi

p2

)
− A

(
p2α′

iβαi

)]

+ E(β, p)A(β) − E(p2β, p)A(p2β)

= λ2(p)A(p
2β) +

1√
p

p+1∑

i=1

A

(
α′
iβαi

p2

)
− λ1(p)A(p

3β) +A
(
p4β
)

−A(p2β) + E(β, p)A(β) − E(p2β, p)A(p2β).

We have |E(p2β, p)| ≤ 1, and since p ∤ β also |E(β, p)| ≤ p+1
p2 ≪ 1

p . Then using |λ1(p)|2 ≤ 1
100 and

|λ2(p)|2 ≤ 1010 ≪ 1, we apply Cauchy–Schwarz to obtain

A ≪
∑

β∈M( ~K)
N(β)≤x/y

∑

p∈P
p∤β



∣∣A(p4β)
∣∣2 +

∣∣A(p3β)
∣∣2 +

∣∣A(p2β)
∣∣2 + |A(β)|2

p2
+

∣∣∣∣∣
1√
p

p+1∑

i=1

A

(
α′
iβαi

p2

)∣∣∣∣∣

2




≤
4∑

ℓ=2

(Kℓ + 1) · S
(
xP 2ℓ

y

)
+

|P|
(P/2)2

· S
(
x

y

)
+

∑

β∈M( ~K)
N(β)≤x/y

∑

p∈P
p∤β

∣∣∣∣∣
1√
p

p+1∑

i=1

A

(
α′
iβαi

p2

)∣∣∣∣∣

2

.

In the last step we used the fact that for ℓ ∈ {2, 3, 4}, pℓβ is a multiple of at most Kℓ + 1 distinct

ℓ-th powers of primes in P , since β ∈ M( ~K) ⊂ Mℓ(Kℓ).
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Applying Lemma 6 to the last term, since M( ~K) ⊂ M1(K1) we see that it is

≪ |P| · S
(

x

y(P/2)2

)
.

Therefore

(46) S♯

(
x

y

)
≪

4∑

ℓ=2

Kℓ

|P| · S
(
xP 2ℓ

y

)
+

1

P 2
· S
(
x

y

)
+ S

(
x

y(P/2)2

)
.

By Lemma 7, we also have

(47) S♭

(
x

y

)
≤

4∑

ℓ=1

S♭
ℓ

(
x

y
,Kℓ

)
≤

4∑

ℓ=1

(
B|P|
Kℓ + 1

)Kℓ+1

S

(
x

y(P/2)2ℓ(Kℓ+1)

)

for some absolute constant B ≥ 1.
Combining (46) and (47), we conclude that

S

(
x

y

)
≪ 1

P 2
· S
(
x

y

)
+ S

(
x

y(P/2)2

)

+

4∑

ℓ=1

Kℓ

|P| · S
(
xP 2ℓ

y

)
+

(
B|P|
Kℓ + 1

)Kℓ+1

S

(
x

y(P/2)2ℓ(Kℓ+1)

)

If P 2ν ≤ 1010B, then trivially

S

(
x

y

)
≤ S

(
xP 2

y

)
≪ P−2ν · S

(
xP 2

y

)
,

and the result follows. Otherwise, note that we can choose

Kℓ :=

⌈
e · B|P|

(P/2)2ℓν

⌉
− 1 ≥ P 1−2ℓν

105(logP )4
≥ logP

for ℓ ∈ {1, 2, 3}, and (45) is satisfied. We also choose

K4 := max

(
⌈logP ⌉,

⌈
e · B|P|

(P/2)

⌉
− 1

)

so clearly logP ≫ K4 ≥ logP . Since P 8 = y, we can bound

K4

|P| · S
(
xP 8

y

)
≪ (logP )5

P
· S (x) .

Therefore,

S

(
x

y

)
≪ (logP )5

P
· S (x) + S

(
x

y(P/2)2

)
+

3∑

ℓ=1

P−2ℓν · S
(
xP 2ℓ

y

)

+

4∑

ℓ=1

e−(Kℓ+1)

(
P

2

)2ℓν(Kℓ+1)

· S
(

x

y(P/2)2ℓ(Kℓ+1)

)
.

This finishes the proof of Subcase 2.2.
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Case 3. i = j = 0 and k > 0.
In this case we have

max
(
|λ1(p)|2, |λ2(p)|2

)
≤ 1

100
,

so by the Hecke relation (20) we obtain

1 ≤ |λ3(p)|2 ≤ 4

for every p ∈ P . Consider integers

(48) 1 ≤ K1 ≤ |P|
2

and K2 ≥ 1

to be chosen later. Let M( ~K) := M1(K1) ∩M2(K2) and denote

S♯(z) :=
∑

β∈M( ~K)
N(β)≤z

|A(β)|2 and S♭(z) :=
∑

β 6∈M( ~K)
N(β)≤z

|A(β)|2.

To bound S♯(x/y), we will amplify using λ3(p). Consider the amplified expression

A :=
∑

β∈M( ~K)
N(β)≤x/y

|A(β)|2 ·



∑

p∈P
p∤β

|λ3(p)|2


 .

Since |λ3(p)|2 ≥ 1 for every p ∈ P and K1 ≤ |P|
2 ,

A ≥ (|P| −K1) · S♯

(
x

y

)
≫ |P| · S♯

(
x

y

)
.

For p ∤ β, observe that |E(β, p)| ≤ p+1
p2 and we have the Hecke relation

λ3(p)A(β) = A(p2β)−A(β) ·
(
p+ 1

p
E(β, p) + p2 + p+ 1

p3

)

+
1√
p

p+1∑

i=1

[
A (α′

iβαi) ·
(
1p (α

′
iβαi)−

1

p

)
− 1

p
· A
(
α′
iβαi

p2

)]

+
1

p

p+1∑

j=1

p+1∑

i=1

A

(
α′
jα

′
iβαi αj

p2

)
· 1p(α

′
iβαi)
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We can apply Cauchy–Schwarz to obtain

A ≪
∑

β∈M( ~K)
N(β)≤x/y

∑

p∈P
p∤β



∣∣A(p2β)
∣∣2 + |A(β)|2

p2
+

1

p

∣∣∣∣∣

p+1∑

i=1

A (α′
iβαi) ·

(
1p (α

′
iβαi)−

1

p

)∣∣∣∣∣

2

+
1

p2

∣∣∣∣∣
1√
p

p+1∑

i=1

A

(
α′
iβαi

p2

)∣∣∣∣∣

2

+
1

p2

∣∣∣∣∣∣

p+1∑

i=1

1p(α
′
iβαi) ·

p+1∑

j=1

A

(
α′
jα

′
iβαi αj

p2

)∣∣∣∣∣∣

2



≤ (K2 + 1) · S
(
xP 4

y

)
+

|P|
(P/2)2

· S
(
x

y

)
+

∑

β∈M( ~K)
N(β)≤x/y

∑

p∈P
p∤β



 1

p2

∣∣∣∣∣
1√
p

p+1∑

i=1

A

(
α′
iβαi

p2

)∣∣∣∣∣

2

+
1

p

∣∣∣∣∣

p+1∑

i=1

A (α′
iβαi) ·

(
1p (α

′
iβαi)−

1

p

)∣∣∣∣∣

2

+
1

p2

∣∣∣∣∣∣

p+1∑

i=1

1p(α
′
iβαi) ·

p+1∑

j=1

A

(
α′
jα

′
iβαi αj

p2

)∣∣∣∣∣∣

2

 .

In the last step we used the fact that p2β is a multiple of at most K2 +1 distinct squares of primes

in P , since β ∈ M( ~K) ⊂ M2(K2).

By Lemma 6, since M( ~K) ⊂ M1(K1) we see that

∑

β∈M( ~K)
N(β)≤x/y

∑

p∈P
p∤β

1

p2

∣∣∣∣∣
1√
p

p+1∑

i=1

A

(
α′
iβαi

p2

)∣∣∣∣∣

2

≪ |P|
P 2

· S
(

x

y(P/2)2

)
≤ |P|

P 2
· S
(
x

y

)
.

Also notice that for each β ∈ V 3(Z) with p ∤ β, there are at most two distinct i ∈ {1, 2, . . . , p+1}
such that p | α′

iβαi, by Lemma 1. Thus by Cauchy–Schwarz

∑

β∈M( ~K)
N(β)≤x/y

∑

p∈P
p∤β

1

p

∣∣∣∣∣

p+1∑

i=1

A (α′
iβαi) ·

(
1p (α

′
iβαi)−

1

p

)∣∣∣∣∣

2

≪ 1

P

∑

β∈M( ~K)
N(β)≤x/y

∑

p∈P
p∤β

p+1∑

i=1

|A (α′
iβαi) · 1p (α

′
iβαi)|2

+
1

P 2

∑

β∈M( ~K)
N(β)≤x/y

∑

p∈P
p∤β

p+1∑

i=1

|A (α′
iβαi)|2 .

For each δ ∈ V 3(Z) and p ∈ P there are at most p + 1 ≤ P + 1 pairs (β, i) with α′
iβαi = δ, as i

uniquely determines β. Also, by Lemma 1 we observe that if β ∈ M1(K1) then δ ∈ M1(K1 + 1).
This implies

1

P 2

∑

β∈M( ~K)
N(β)≤x/y

∑

p∈P
p∤β

p+1∑

i=1

|A (α′
iβαi)|2 ≪ 1

P

∑

p∈P

∑

δ∈M1(K1+1)

N(δ)≤xp2/y

|A(δ)|2 ≪ |P|
P

· S
(
xP 2

y

)
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and

1

P

∑

β∈M( ~K)
N(β)≤x/y

∑

p∈P
p∤β

p+1∑

i=1

|A (α′
iβαi) · 1p (α

′
iβαi)|2 ≪

∑

p∈P

∑

δ∈M1(K1+1)

N(δ)≤xp2/y
p|δ

|A(δ)|2 ≤ (K1 + 1) · S
(
xP 2

y

)
,

where we used the fact that δ is a multiple of at most K1 + 1 distinct primes in P , since δ ∈
M1(K1 + 1). In conclusion,

∑

β∈M( ~K)
N(β)≤x/y

∑

p∈P
p∤β

1

p

∣∣∣∣∣

p+1∑

i=1

A (α′
iβαi) ·

(
1p (α

′
iβαi)−

1

p

)∣∣∣∣∣

2

≪ K1 · S
(
xP 2

y

)
.

Finally, we must properly bound the sum

S :=
∑

β∈M( ~K)
N(β)≤x/y

∑

p∈P
p∤β

1

p2

∣∣∣∣∣∣

p+1∑

i=1

1p(α
′
iβαi) ·

p+1∑

j=1

A

(
α′
jα

′
iβαi αj

p2

)∣∣∣∣∣∣

2

.

As in the previous arguments, Lemma 1 shows that

S ≤ 2
∑

p∈P

1

p2

∑

β∈M( ~K)
N(β)≤x/y

p∤β

p+1∑

i=1

1p(α
′
iβαi) ·

∣∣∣∣∣∣

p+1∑

j=1

A




α′
j

(
α′

iβαi

p

)
αj

p





∣∣∣∣∣∣

2

,

and that δ :=
α′

iβαi

p ∈ V 3(Z) satisfies δ ∈ M1(K1 + 1) ∩M2(K2) ⊂ M1(K1 + 1) ∩M2(K2 + 1) =:

M( ~K + 1). Furthermore, vp(δ) = 0 or 1. Fix p ∈ P . If vp(δ) = 0, then Lemma 2 gives

#

{
(β, i) : 0 6= β ∈ V 3(Z), 1 ≤ i ≤ p+ 1 satisfy

α′
iβαi

p
= δ

}
≤ 16,

while if vp(δ) = 1 the set above trivially has size ≤ p+1, since i uniquely determines β. Therefore,

S ≪ 1

P

∑

δ∈M( ~K+1)
N(δ)≤x/y

∑

p∈P
p∤δ

∣∣∣∣∣∣
1√
p

p+1∑

j=1

A

(
α′
jδαj

p

)∣∣∣∣∣∣

2

+
∑

δ∈M( ~K+1)
N(δ)≤x/y

∑

p∈P
vp(δ)=1

∣∣∣∣∣∣
1√
p

p+1∑

j=1

A

(
α′
jδαj

p

)∣∣∣∣∣∣

2

.

By Lemma 6, for the first term we have

1

P

∑

δ∈M( ~K+1)
N(δ)≤x/y

∑

p∈P
p∤δ

∣∣∣∣∣∣
1√
p

p+1∑

j=1

A

(
α′
jδαj

p

)∣∣∣∣∣∣

2

≪ K1

P
· S
(
x

y

)
.
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For the second term, we can write δ = pγ for γ ∈ M( ~K + 1) with p ∤ γ. Then we can use the
Hecke relation for λ1(p)A(pγ) and the constraint |λ1(p)|2 ≤ 1

100 to obtain

∑

δ∈M( ~K+1)
N(δ)≤x/y

∑

p∈P
vp(δ)=1

∣∣∣∣∣∣
1√
p

p+1∑

j=1

A

(
α′
jδαj

p

)∣∣∣∣∣∣

2

≤
∑

p∈P

∑

γ∈M( ~K+1)
N(γ)≤ x

yp2

p∤γ

∣∣∣∣∣∣
1√
p

p+1∑

j=1

A
(
α′
jγαj

)
∣∣∣∣∣∣

2

≪
∑

p∈P

∑

γ∈M( ~K+1)
N(γ)≤ x

yp2

p∤γ

[∣∣A(p2γ)
∣∣2 + |λ1(p)|2 · |A(pγ)|2 + |A(γ)|2

]

≪ K2 · S
(
xP 2

y

)
+K1 · S

(
x

y

)
+ |P| · S

(
x

y(P/2)2

)
.

In the last step we used the fact that for ℓ ∈ {1, 2}, pℓγ is a multiple of at most Kℓ+2 distinct ℓ-th

powers of primes in P , since γ ∈ M( ~K + 1) ⊂ Mℓ(Kℓ + 1).
Therefore, combining all of the bounds described above we conclude that

(49) S♯

(
x

y

)
≪ K2

|P| · S
(
xP 4

y

)
+

K1

|P| · S
(
xP 2

y

)
+ S

(
x

y(P/2)2

)
.

To complement (49), we can apply Lemma 7 to get

S♭

(
x

y

)
≤

2∑

ℓ=1

S♭
ℓ

(
x

y
,Kℓ

)
≤

2∑

ℓ=1

(
B|P |
Kℓ + 1

)Kℓ+1

S

(
x

y(P/2)2ℓ(Kℓ+1)

)
(50)

for some absolute constant B ≥ 1.
If P 2ν ≤ 1010B, then trivially

S

(
x

y

)
≤ S

(
xP 2

y

)
≪ P−2ν · S

(
xP 2

y

)
,

and the result follows. Otherwise, note that we can choose

Kℓ :=

⌈
e · B|P|

(P/2)2ℓν

⌉
− 1 ≥ P 1−2ℓν

105(logP )4
≥ logP

for ℓ ∈ {1, 2}, and (48) is satisfied. Thus summing (49) and (50) gives

S

(
x

y

)
≪ S

(
x

y(P/2)2

)
+

2∑

ℓ=1

P−2ℓν · S
(
xP 2ℓ

y

)
+ e−(Kℓ+1)

(
P

2

)2ℓν(Kℓ+1)

· S
(

x

y(P/2)2ℓ(Kℓ+1)

)
.

This finishes the proof of Case 3.
�
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