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Abstract—Radio frequency (RF) wireless power transfer
(WPT) is a promising technology for sustainable support of
massive Internet of Things (IoT). However, RF-WPT systems
are characterized by low efficiency due to channel attenuation,
which can be mitigated by precoders that adjust the transmission
directivity. This work considers a multi-antenna RF-WPT system
with multiple non-linear energy harvesting (EH) nodes with
energy demands changing over discrete time slots. This leads
to the charging scheduling problem, which involves choosing the
precoders at each slot to minimize the total energy consumption
and meet the EH requirements. We model the problem as a
Markov decision process and propose a solution relying on
a low-complexity beamforming and deep deterministic policy
gradient (DDPG). The results show that the proposed beamform-
ing achieves near-optimal performance with low computational
complexity, and the DDPG-based approach converges with the
number of episodes and reduces the system’s power consumption,
while the outage probability and the power consumption increase
with the number of devices.

Index Terms—Radio frequency wireless charging, energy
beamforming, near-field channels, charging scheduling.

I. INTRODUCTION

THE massive growth of the Internet of Things (IoT)
networks threatens to skyrocket the maintenance cost of

these systems, especially those related to battery replacement
and waste. This calls for practical alternatives such as relying
on radio frequency (RF) wireless power transfer (WPT) tech-
nology. RF-WPT can provide wireless charging capabilities
to prevent IoT devices from battery depletion and increase
their lifespan [1], [2]. Also, it can potentially charge multiple
devices over large distances and use the same infrastructure as
wireless communications by utilizing the broadcast nature of
the wireless channel. However, the inherently low efficiency
of RF-WPT systems is still an open challenge, demanding
significant attention [3], [4]. One of the main inefficiency
sources is channel attenuation, which can be mitigated by
energy beamforming (EB). Furthermore, there is a need to
properly allocate charging resources in a multi-node IoT
system to avoid interruptions during the system operation time.

EB techniques can compensate for the channel losses by
focusing the energy beams on the devices [3]. For example, the
authors in [5] propose EB designs to power multiple devices
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in a radio stripe system, while the deployment problem of the
radio stripes using maximum ratio transmission beamformers
is investigated in [6]. In [7], [8], the authors propose EB
approaches for near-field RF-WPT with dynamic metasurface
antennas as the transmitter. Moreover, a low-complexity EB
design is proposed in [9] to power single-antenna devices.

There are some works in the literature on improving the
performance of energy harvesting (EH)-assisted wireless sys-
tems over a time horizon. For example, the authors in [10]
consider a wireless-powered sensor network and utilize deep
reinforcement learning (DRL) to select a node to charge
and its corresponding allocated power at each time slot to
minimize the packet loss caused by insufficient energy. In
[11], deep deterministic policy gradient (DDPG) is used
to tune the transmit power to minimize long-term energy
consumption. The authors in [12] utilize DDPG to improve
the energy efficiency in a heterogeneous network by tuning
transmit/harvest strategies for macro or small cells at each
time slot. Interestingly, DRL is used in [13] to split the
channel resources between EH and information transmission
using DRL aiming to minimize the outage probability of
the information transmission phase. Moreover, in [14], the
authors consider a WPCN with reflective intelligent surfaces
and unmanned aerial vehicles and jointly optimize the transmit
power, trajectory, and phase shifts using DRL.

Although there are many works considering DRL-based
approaches for intelligent charging, no work has yet addressed
the joint beamforming and charging scheduling problem in
RF-WPT systems. Herein, we aim to precisely fill this research
gap by considering a multi-antenna RF-WPT system with
multiple non-linear EH devices with energy requirements at
each time slot. Our main contributions are: i) we formulate
the charging scheduling problem, which consists of choosing
precoders at each time slot aiming to minimize the average
power consumption and meet the EH requirements of the
nodes; ii) we propose a solution relying on DDPG and a low-
complexity beamforming design; iii) the results evince that
the proposed beamforming achieves near-optimal performance
with much less complexity, while the power consumption
decreases and the reward function converges to a suboptimal
solution with the number of episodes in the DDPG algorithm.

Structure: Section II introduces the system model and the
problem formulation. The proposed optimization framework
is discussed in Section III, while Section IV provides the
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Fig. 1: The abstract system (left) and the buffer model (right).
Case I: there is not sufficient energy to satisfy the EH
requirement; case II: the device is in idle mode; and case III:
all the incident power cannot be harvested due to buffer size
limitation (Bmax).
numerical analysis, and Section V concludes the paper. Nota-
tions: Bold-face and non-Bold-face characters refer to vectors
and scalars, respectively, (·)H denotes the Hermitian operator,
ℜ{·} is the real operator, 1(·) is the indicator function, while
0 and 1 refer to all-zeros and all-ones vector, respectively.

II. SYSTEM MODEL

The system operates in T time slots, where a fully-digital
antenna array with N elements charges K EH nodes with
di,k being the energy demand of the kth device in the ith slot,
which is unknown to the transmitter.

A. Signal & Channel Model
We consider M ≤ min(N,K) energy symbols with xi,m

being the mth normalized energy symbol at slot i such that
E{xi,mxHi,n} = 0, E{xi,mxHi,m} = 1, and wi,m ∈ CN×1

being the corresponding digital precoder. Thus, the transmit
signal at time slot i is ztx

i =
∑M
m=1 wi,mxi,m. Motivated

by the common use of RF-WPT in indoor environments with
line-of-sight (LOS) and near-field communication, as in smart
homes, automated warehousing, and medical instruments [1],
we utilize the near-field LOS channel model from [8].

Let us define the Cartesian coordinate of the lth radiating
element as gl. The channel coefficient between user k and the
lth element is given by al,k = Al,ke

−j2π
λ hl,k , where 2π

λ hl,k
is the phase shift caused by the propagation distance, with
wavelength λ, from the transmitter to the receiver and hl,k =
||ek − gl|| is the Euclidean distance between the element and
the user located at ek. Moreover,

Al,k =
√
F (Θl,k)

λ

4πhl,k
(1)

is the channel gain coefficient. Here, Θl,k = (θl,k, ψl,k) is the
elevation-azimuth angle pair, and F (Θl,k) is the corresponding
radiation profile of each element, given by [15]

F (Θl,k) =

{
Gt cos (θl,k)

Gt
2 −1

, θl,k ∈ [0, π/2],

0, otherwise,
(2)

where Gt = 2(g + 1) is the transmit antenna gain, and g
denotes the boresight gain, which depends on the antenna
technology. Notably, the channel becomes Ake−jψl,k for far-
field communications, where Ak depends on the kth user
distance and ψl,k is determined by the user direction and the
relative disposition of the array elements.

B. Received Signal & EH Device Model

We consider ak = [a1,k, . . . , aN,k]
T is the channel vector

between user k and the transmitter. Then, the kth device’s
received signal at time slot i is zrx

i,k =
∑M
m=1 a

H
k wi,mxi,m,

and the corresponding RF power is given by

P rf
i,k = Em{zrx

i,kz
rx
i,k
H} =

M∑
m=1

||aHk wi,m||2, (3)

while P tx
i =

∑M
m=1 ||wi,m||2 is the ith slot’s transmit power.

In practice, the EH device is not ideal and this RF power
cannot be fully utilized due to RF-to-direct current (DC)
conversion inefficiencies. Specifically, there are saturation and
decrements in conversion efficiency as we move toward higher
input powers. Thus, we utilize the practical non-linear model
presented in [16] with the harvested DC power of the kth
device at slot i given by

P dc
i,k =

Ψk − P sat
k /(1 + eφkωk)

1− 1/(1 + eφkωk)
, (4)

where Ψk = P sat
k /

(
1 + e−φk(P

rf
i,k−ωk)

)
, P sat

k is the saturation
power, while φk and ωk are the parameters related to the EH
circuit obtained by curve fitting on the measurement data.

Notably, each device has a buffer to store the harvested
energy. The amount of available energy in the buffer of user
k at the beginning of time slot i is written as

bi,k = min
{
bi−1,k + P dc

i−1,k

− (di−1,k + Po)1(bi−1,k ≥ di−1,k + Po), Bmax

}
, (5)

where Bmax is the maximum buffer size and Po is the fixed
power required for keeping the EH device’s circuit operational
in idle mode. Equation (5) indicates that devices need Po to
keep functionality in the idle mode (di,k = 0). Moreover, the
energy demand is deducted from the buffer if there is sufficient
stored energy. Without loss of generality, we have normalized
the time slot duration, which leads to dealing with the average
harvested power during each time slot. Fig. 1 further clarifies
the system and buffer model.

C. Problem Formulation

The goal is to design the beamformers at each time slot
to meet the EH requirements while minimizing the system’s
energy consumption. Thus, the optimization problem is

minimize
wi,m

1

T

M∑
m=1

T∑
i=1

||wi,m||2 (6a)

subject to Bmax ≥ bi,k ≥ di,k + Po, ∀k, i, (6b)
P tx
i ≤ Pmax, ∀i, (6c)

where Pmax is the maximum transmit power at each time slot.
This problem captures the charging scheduling by tuning the
beamformers’ direction and power toward the devices at each
time slot, leading to different charging priorities and selections.
Notably, (6) is a complex decision-making problem due to the
EH non-linearity, the randomness of the EH requirements, and
the correlation between the decisions in different time slots.



III. OPTIMIZATION FRAMEWORK

The Markov decision process (MDP) is used to model a
problem of such nature, which leads to efficiently handling
the complexity caused by the correlation between decisions in
different time slots. MDP models can be optimized to derive
suboptimal decisions using DRL-based approaches. For this,
MDP models rely on three main components: the action space,
the state space, and the reward function. Notably, for a high-
dimensional action space, one may encounter the ‘curse of
dimensionality’ when optimizing the model using DRL, i.e.,
the inability of the algorithm to find proper solutions [17].
This may also happen in our scenario if the action space
consists of precoders (wi,m), leading to a drastic increase in
the dimension of the action space, scaling with the array size.

A. MDP Model

We proceed by defining αi,k as a charging weight for the
kth device and P tx

i as the transmit power of the ith slot. Hereby
and by considering given values for αi,k and P tx

i , we formulate
the beamforming problem at slot i as

maximize
wi,m,∀m

K∑
k=1

αi,kP
dc
i,k (7a)

subject to
M∑
m=1

||wi,m||2 ≤ P tx
i . (7b)

Now, the action space of the MDP model only consists of
the charging weights, i.e., αi,k, and the transmit power, i.e.,
P tx
i , at each time slot. Considering this action space leads our

proposed MDP model to inherently capture the beamforming
design. Let us proceed by defining the main components of
the MDP model in our setup: i) Action Space: the action at
time slot i is denoted by αi = [αi,1, . . . , αi,K , αi,K+1], where
αi,K+1 is the action that determines the transmit power, such
that P tx

i = αi,K+1Pmax, and the action space is Ai =
{
αi ∈

RK+1|0 ≤ αi ≤ 1
}

; ii) State Space: the system state at time
slot i is determined by the available energy in the buffers and
is given by si = [bi,1, . . . , bi,K ] and the state space can be
written as Si =

{
si ∈ RK |0 ≤ si ≤ Bmax1

}
; iii) Reward

Function: the reward function should be able to capture (6a)
and (6b). Thus, the immediate reward at time slot i is

ri = −ρ1eN̄i+ρ2∆B − e
P tx
i

Pmax , (8)

where ρ1 ≥ 1 and 0 ≤ ρ2 ≤ 1 are the weighting terms,

∆B =
1

Bmax

K∑
k=1

(di,k + Po − bi,k)1(di,k + Po > bi,k), (9)

is the normalized total deficiency of energy in the devices,
and N̄i =

∑K
k=1 1

(
di,k + Po > bi,k

)
is the number of devices

that were unable to meet their requirements at the ith slot.
This reward indicates that the system is penalized based on
the number of unsatisfied devices and their buffer state, and
compels the system to reduce energy outage before minimizing
the transmit power. Hereby, the discounted cumulative reward
at the end of the time slot i is Ri =

∑∞
u=i γ

u−iru, where

0 ≤ γ ≤ 1 is the discount factor, i.e., a lower γ puts more
emphasis on the immediate reward.

B. Beamforming Design
It is important to solve problem (7) given a specific action

with low computation complexity since the system is time-
sensitive. Let w⋆

i,m be the optimal solution of (7). It has been
proven [18], [19] that there exists µ⋆k and β⋆k values such that
w⋆
i,m is the optimal solution to the following problem:

argmax
wi,m∈F,∀m

K∑
k=1

αi,kµ
⋆
k

[
P sat
k − β⋆k(1 + e−φk(P

rf
i,k−ωk))

]
,

(10)

where F is the set of feasible precoders satisfying (7b), while
P rf
i,k =

∑M
m=1 ||aHk wi,m||2 satisfies the following equations:

β⋆k(1 + e−φk(P
rf
i,k

⋆−ωk))− P sat
k = 0, (11a)

µ⋆k(1 + e−φk(P
rf
i,k

⋆−ωk))− 1 = 0. (11b)

This problem can be solved by an iterative algorithm including
an inner loop for finding wi,m given µk and βk, and an outer
loop for updating µk and βk. One possible approach to solve
the inner loop’s problem is to reformulate the problem as a
semi-definite program (SDP), as in [16]. However, this is not
computationally/time efficient, especially for large N since
SDP deals with Hermitian matrix subspaces with size N2.

1) Suboptimal precoders given µk & βk: We consider w(l)
i,m

as the initial point and approximate (10) by defining P rf
i,k as

auxiliary variable and using the first-order Taylor expansion
of the right-hand side of (3) as

minimize
wi,m∈F,P rf

i,k

Ω = −
K∑
k=1

αi,kµ
⋆
k

[
P sar
k − β⋆k(1 + e−φk(P

rf
i,k−ωk))

]
(12a)

subject to P rf
i,k ≤

M∑
m=1

[
2ℜ

{
wH
i,maka

H
k w

(l)
i,m

}
−

w
(l)
i,m

H
aka

H
k w

(l)
i,m

]
, (12b)

which is convex in the neighborhood of the initial point. Then,
the problem can be solved using successive convex approxima-
tion [20]. Note that (12) deals with complex vector subspace
with size N , leading to less computational complexity in
a single iteration compared to SDP. However, it still might
challenge the system’s real-time operation since the transmitter
has to solve multiple subproblems in the inner loop.

Let us proceed by writing the Lagrangian for (12) as

Li = −
K∑
k=1

αi,kµ
⋆
k

[
P sat
k − β⋆k(1 + e−φk(P

rf
i,k−ωk))

]
+

ν̄i(

M∑
m=1

|wi,m|2 − P tx
i ) +

M∑
k=1

νi,k

(
P rf
i,k−

M∑
m=1

[
2ℜ

{
wH
i,maka

H
k w

(l)
i,m

}
−w

(l)
i,m

H
aka

H
k w

(l)
i,m

])
, (13)



where νi,k and ν̄i are the associated dual variables. Then,
using Karush–Kuhn–Tucker conditions [20] and setting the
derivative of (13) w.r.t. wi,m equal to zero, we can write

w⋆
i,m =

1

ν̄(l−1)

K∑
k=1

νi,kai,ka
H
k w

(l−1)
i,m . (14)

Notably, we introduce an additional parameter κ to control
the convergence of the proposed iterative method. Hereby,
the precoders at the lth iteration are updated using w

(l)
i,m =

w
(l−1)
i,m + κ(w⋆

i,m −w
(l−1)
i,m ). Obviously, the optimal solution

of (7) utilizes the total amount of transmit power such that∑M
m=1 ||wi,m||2 = P tx

i , thus, ν̄i can be updated using

ν̄
(l)
i =

√√√√ 1

P tx
i

M∑
m=1

∣∣∣∣∑
k

νi,kakakHw
(l)
i,m

∣∣∣∣2. (15)

Moreover, setting the derivative of (13) w.r.t. P rf
i,k equal to

zero gives us

ν
(l)
i,k = αi,kµkβkφke

−φk(P
rf
i,k

(l)−ωk), (16)

and P rf
i,k

(l) is obtained by substituting w
(l)
i,m in (3). These

updating rules lead to low complexity since the beamformers
can be derived using closed-form expressions.

2) Updating µk & βk given wi,m: For this, we rely on the
well-known damped Newton method [16], [19]. Let us define
ϕk = βk(1 + e−φk(P

rf
i,k−ωk)) − P satk and ϕM+k = µk(1 +

e−φk(P
rf
i,k−ωk)) − 1. It has been proven in [18], [19] that the

unique optimal solution µ⋆k and β⋆k is obtained if and only if
ϕ(µ, β) = [ϕ1, . . . , ϕ2K ] = 0, where µ = [µ1, . . . , µK ] and
β = [β1, . . . , βK ]. Therefore, µk and βk can be updated at the
nth outer iteration using

µ(n+1)=µ(n)+ζ(n)q
(n)
[K+1:2K], β

(n+1)=β(n)+ζ(n)q
(n)
[1:K], (17)

where q
(n)
[1:K] refers to the first to Kth element of q(n),

q(n) = [ϕ′(µ,β)]−1ϕ(µ, β) , ϕ′(µ,β) is the Jacobian matrix
of ϕ(µ,β), and ζ(n) is the largest ϵt satisfying

||ϕ(µ+ϵtq(n)
[K+1:2K],β+ϵ

tq
(n)
[1:K])||≤(1−σϵt)||ϕ(µ,β)||, (18)

where t ∈ {1, 2, . . .}, ϵ ∈ [0, 1], and σ ∈ [0, 1].
Algorithm 1 illustrates the proposed beamforming approach

at time slot i. Therein, the derived closed-form solutions are
used to update the beamformers and the dual variables in the
inner loop (lines 4-10) until (12a) converges, while µk and βk
are updated in the outer loop (lines 3-12). This procedure is
repeated until a convergence criterion is satisfied.

C. DDPG-based Joint Beamforming & Charging Scheduling

The goal is to maximize the long-term commutative reward
by training a policy. For this, we utilize DDPG [21], a model-
free off-policy algorithm for learning continuous actions, as in
our case. Let us denote the Q-value function as the expected
commutative reward given by Q(si,αi) = E

{
Ri

}
, while the

target Q-network isQ⋆. DDPG approximates the policy and Q-
value functions utilizing two neural networks (NNs), defined

Algorithm 1 Iterative beamforming for the ith slot (IT-BF).

1: Input:{αi,m}∀m, P tx
i , ϵ, ζ, σ, Φ, ρ Output: w(l)

i,m,∀m
2: Initialize: w(l)

i,m,∀m, ν̄, νk,∀k, ξ = 0
3: repeat (outer loop)
4: repeat (inner loop)
5: ξ⋆ ← ξ
6: Obtain w⋆

i,m,∀m using (14)
7: w

(l)
i,m ← w

(l)
i,m + ρ(w⋆

i,m −w
(l)
i,m),∀m

8: Update ν̄ and νk,∀k using (15) and (16)
9: P rf

i,k

(l)
=

∑M
m=1 ||aHk w

(l)
i,m||2, compute ξ using (12a)

10: until |1− ξ
ξ⋆ | < Φ

11: Obtain ζ(n), update µ(n) and β(n) using (18) and (17)
12: until convergence

as the actor and the critic (see details on the operation of
the actor-critic approach in [21]). The following outlines our
DDPG implementation of the formulated MPD.

Let us define the parameterized actor function µ as the
current policy by deterministically mapping states to a specific
action. By defining θµ and θQ as the parameters of the actor
and critic NNs, respectively, the actor NN parameters are
updated by applying the chain rule to the expected return from
the start distribution (J) such that [21]

∇θµJ≈E
{
∇αQ(s,α|θQ)

∣∣
s=si,α=µ(si)

∇θµµ(s|θµ)|s=si

}
. (19)

Meanwhile, the critic NN aims to learn Q(si, αi). It has
been proven that each Q-function for some policy obeys the
Bellman equation, thus, we write [17]

yi = ri + γQ⋆
(
si+1, µ

⋆(si+1|θµ
⋆

)|θQ
⋆)
, (20)

where µ⋆ is the target actor. The critic NN aims to minimize
a loss function of the temporal difference error given by

Li =
1

|Bi|
∑

(si,αi,si+1,ri)∈Bi

[Q(si,αi)− yi]2, (21)

where Bi ⊆ B is the minibatch of transitions and B is
the memory buffer. Notice that the system includes a replay
memory to store the transitions for future use.

To make the system observable, the active devices send a
cost-free reliable1 feedback message at the end of each time
slot declaring their past required energy and whether they
had sufficient energy to meet that. If the transmitter does
not receive any feedback, it assumes that the device is in
idle mode. Hereby, the system becomes observable and the
transmitter can update the states after each time slot.

Algorithm 2 illustrates the proposed DDPG-based joint
beamforming and charging scheduling. At first, the system
state and a random process N for the exploration noise are

1In practice, the feedback comes with an associated transmission error
and cost depending on the modulation and the message length. However,
for simplicity and without loss of generality, we assume successful message
delivery and that the devices always save energy for feedback.



Algorithm 2 DDPG-based joint beamforming and charging
scheduling (DDPG-BCS).

1: Input: γ, θµ, θµ
⋆

, θQ, Nep, θQ
⋆

, τ Output: µ⋆
2: Get the initial system state s1
3: for q = 1, 2, . . . , Nep do
4: Initialize a random process N for exploration
5: for i = 1, 2, . . . , T do
6: Generate a random noise n using N
7: Select an action using αi = µ(si|θµ) + n
8: Run IT-BF to obtain wi,m

9: Compute ri and si+1 using (5), and (8)
10: Store the transition (si,αi, si+1, ri) in B
11: Sample a random minibatch Bi ⊆ B with size Nb
12: Update the critic NN by minimizing Li in (21)
13: Update the actor NN by sampling (19) for Bi
14: θµ

⋆ ← τθµ+(1−τ)θµ⋆

, θQ
⋆ ← τθQ+(1−τ)θQ⋆

15: end for
16: s1 ← sT
17: end for

initialized. Each episode consists of T time slots and at the
beginning of each time slot, an action is selected using the
actor NN and a generated exploration noise. This noise leads
to a trade-off between exploration and exploration, leading to
better convergence. Then, Algorithm 1 is run to obtain the
beamformers for the selected action. Finally, the actor and
critic NNs are updated, and the corresponding target NNs’
parameters are softly updated using τ , which leads to small
changes in target NNs; thus, offering stability in training [21].

IV. NUMERICAL ANALYSIS

We consider a square uniform planar array with N = 64,
inter-element distance λ

2 , and λ = 12.5 cm, corresponding to
operation at 2.4 GHz. The transmitter is at the ceiling’s center
of a 5×5×5 m3 area, while the users are uniformly positioned
on a circle along the xy dimension with a 2 m radius such
that the position of kth device is [2.5 + 2 cos (2π/K), 2.5 +
2 sin(2π/K), 2]. Moreover, N follows a Ornstein-Uhlenbeck
process with parameters θN = 0.15, σN = 0.2 [21]. For
device activation, we utilize an alarm generation process based
on the spatial location of the devices, in which an alarm
activates a set of devices based on the activation probability
function f(χk) = e−χk with χk being the distance of the
kth device from the event epicenter. Notably, the epicenter
is generated using a uniform distribution across the area.
Moreover, when a device is activated, the required amount
of energy is selected using a geometric distribution with
parameter ϑ = 0.5. Thus, there is an energy demand burst ndb
for an activated device with probability ϑn−1(1 − ϑ), while
the maximum possible demand is 50 mW, db = 10 mW, and
Po = 10 µW [1]. The initial battery level of the devices is
50 mW, B = 200 mW , and Pmax = 10 W. The EH device
parameters are ϕk = 6400, ωk = 0.003, P sat

k = 20 mW [16].
The actor NN consists of two fully connected layers with

128 neurons and a Rectified Linear Unit (ReLU) activation

function. Moreover, the output activation function is tangent
hyperbolic, leading to the range [−1, 1], thus, the outputs are
scaled to fit in the desired range [0, 1]. The critic NN has two
hidden layers with 64 neurons and ReLU activation function,
while the output utilizes linear activation. The IT-BF algorithm
convergence criterion is reaching 20 outer loop iterations or
ϕ(µ,β) ≤ 10−41. The optimization parameters are T = 100,
κ = 0.05, g = 2, τ = 0.001, Nb = 64, |B| = 106, γ = 0.99,
Φ = 10−6, ρ1 = ρ2 = 1, σ = 0.5, ϵ = 0.5, while actor
and critic learning rates are 10−4 and 2× 10−4, respectively.
We compare the performance of our proposed DDPG-BCS
approach with a heuristic aiming to keep the buffer state of the
devices above the maximum energy demand (50 mW). Thus,
at the ith time slot, the set of devices with the buffer value
below 50 mW, denoted as Ki, is charged with P tx

i = Pmax,
αi,k = b̄i,k/

∑
k∈Ki

b̄i,k, and b̄i,k = 50− bi,k.
Fig. 2 illustrates the average performance of the proposed

IT-BF using Monte Carlo simulations. It is seen that the IT-
BF performs near the optimal SDP solution and the bound
becomes tighter as N increases. Meanwhile, IT-BF requires
considerably less time 2 to converge and the complexity
increases with N and K. Note that the convergence perfor-
mance of IT-BF, presented in Fig. 3, shows that the algorithm
converges toward a suboptimal solution with outer iterations.

Fig. 4 showcases the reward function of DDPG-BCS
over learning episodes. It is seen that the reward gradu-
ally converges toward a suboptimal solution for each K.
Meanwhile, Fig. 5 shows the average outage probability,
i.e., (

∑T
i=1 N̄i)/KT , and the average transmit power over

episodes. Observe that the DDPG-BCS outperforms the heuris-
tic in terms of power consumption with a considerable gap.
However, as the number of devices increases, the heuristic
leads to fewer outages, but with much higher transmit power.
Instead, the proposed approach aims for the trade-off between
outage and transmit power, which can be modified by shaping
the reward function. In general, it is seen that the power
consumption increases with K, while more outages may
happen as K becomes larger. Notably, even for K = 6 the
outage probability is relatively small (≤ 10−2), while for lower
K, this value is near zero.

V. CONCLUSION AND FUTURE WORK

In this paper, we considered a multi-antenna RF-WPT
system to charge multiple non-linear EH devices over time.
Moreover, we formulated the joint beamforming and charging
scheduling problem to minimize the average transmit power
and meet the EH requirements and proposed a solution relying
on DDPG and a low-complexity beamforming design. The
results demonstrated that our proposed beamforming approach
achieves a near-optimal solution and that the DDPG-based
optimization converges after some episodes. It was shown that
the outage probability and the energy consumption increase
and decrease with the number of devices, respectively.

2Note that the convergence time is obtained using an average-performance
computer, and the purpose is to only show the relative time difference.
However, the convergence time can become significantly lower by using
proper hardware resources.
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Fig. 2: (a) The average sum harvested power (top) and (b) the
convergence time (bottom) as a function of N .
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Fig. 3: The Ω value as a function of the inner loop iterations
for K = 6, P tx = 10 W, and random αk.

As a prospect for future research, one may investigate the
system performance in a partially observable environment or
consider channel variations due to device mobility.

REFERENCES

[1] 3GPP, “Study on Ambient IoT (Internet of Things) in RAN,” Tech. Rep.
38.848, 2023.
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