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Abstract In this paper, the authors propose the utilization of Fibonacci Neural Networks (FNN)
for solving arbitrary order differential equations. The FNN architecture comprises input, middle,
and output layers, with various degrees of Fibonacci polynomials serving as activation functions in
the middle layer. The trial solution of the differential equation is treated as the output of the FNN,
which involves adjustable parameters (weights). These weights are iteratively updated during the
training of the Fibonacci neural network using backpropagation. The efficacy of the proposed
method is evaluated by solving five differential problems with known exact solutions, allowing for
an assessment of its accuracy. Comparative analyses are conducted against previously established
techniques, demonstrating superior accuracy and efficacy in solving the addressed problems.
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1. Introduction

Differential equations have long served as a foundational tool for describing diverse physical
phenomena across engineering, mathematics, physics, and economics. Despite their utility, ob-
taining solutions for nonlinear differential equations, which often govern these phenomena, poses
a significant challenge. The complexity inherent in many of these equations frequently precludes
exact analytical solutions. Consequently, numerical methods have emerged as indispensable tools
for tackling such equations. These numerical approaches offer avenues for approximating so-
lutions to differential equations, enabling the exploration and understanding of a wide range of
real-world problems. Many researchers have contributed to developing efficient and accurate nu-
merical methods to solve differential equations viz, Runge Kutta, Finite difference, Finite element
methods, and so on. In the modern era, researchers are focused not only on developing a nu-
merical method, but also it performs better than previously existing methods. Zhao et al. [1]
solved backward stochastic differential equations by discretizing them in time-space discrete grids
and then used the Monte Carlo scheme to approximate mathematical expectations. Rehman et al.
[2] employed Haar wavelet operational matrices for solving differential equations very efficiently.
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Yan et al. [3] have solved the fractional order differential equation(FDEs) by direct discretization
of the fractional differential operator and discretization of the integral form of the FDEs. Li et
al. [4] solved variable-order differential equations by reproducing kernel method. Baleanu et al.
[5] solved fractional differential equations with Chebyshev operational matrix. etc. Shiri et al.
[6] in 2019, solved the system of FDEs, and the same author [7] in 2020 solved tempered FDEs
with collocation method. Khiabani et al. [8] used spline collocation method to solve fractional
models. Dadkhah et al. [9] modeled the FDEs for Visco-elastic dampers and solved it with spline
collocation methods.

Artificial neural network (ANN) is gaining attention due to its capability of doing outstanding
tasks viz., fitting into complex data to predict the future outcome, speech recognition, in building
virtual assistants like google home and Alexa, deep fake, image conversion. It even helping ma-
chines to become more productive and intelligent. This is all possible because the building block
of ANN is to mimic the human brain. This is why ANN is performing very efficiently than hu-
mans in many areas with no errors. The present work is just a contribution to show that ANN can
be used to solve fractional differential equations (FDEs) very efficiently than previously existing
methods. Due to its popularity, many authors have used the ANN for solving the FDEs in the
last few years, viz, Balasubramaniam et al. [10] solved the matrix Riccati differential equation by
using ANN. Reynaldi et al. [11] solved the differential equation and the inverse problem of differ-
ential equation with ANN. Jafarian et al. [12] used ANN to solve a class of FDEs. Zúñiga-Aguilar
et al. [13] solved variable-order differential equation by using ANN with Mittag-Leffler kernel.

In this study, the authors introduce a novel approach developed using FNN, which incorpo-
rates various degrees of Fibonacci polynomials as activation functions in the hidden layer. The
FNN architecture consists of one input layer, one hidden layer, and one output layer. Each per-
ceptron in the hidden layer is constructed using different degrees of Fibonacci polynomials with
unit weights. The output layer aggregates the outputs of all perceptrons after applying different
weights. Initially, these weights are assigned randomly, and then they are updated using an ap-
propriate backpropagation algorithm during the training process, which will be elaborated on in
subsequent sections. The motivation behind using the FNN lies in approximating the desired so-
lution of the FDEs by assigning the output of FNN as the solution, which is constructed using
different degrees of Fibonacci polynomials. After that, residual will be formed with the help of
considered FDE and its initial or boundary conditions. Lastly, the aim is to minimize the resid-
ual to get the solution of the taken FDES. The proposed method is applied to various differential
equations, demonstrating its effectiveness compared to existing schemes through comprehensive
comparisons and analyses.

2. Preliminaries

2.1. Fractional order derivative in Caputo sense
The fractional order derivative of the function f (t) in Caputo sense is defined as [14]

(C0 Dα
t f )(t) =

1
Γ (n−α)

∫ t

0
(t − τ)(n−α−1) f (n)(τ)dτ, α > 0,τ > 0,
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where n−1 < α < n, n ∈ N,
The Caputo fractional order derivative of order α of the polynomial tk is

C
0 Dα

t tk =

{
0 k ∈ 0,1,2, ...,⌈α⌉,

Γ (k+1)
Γ (k+1−α)t

k−α , k ∈ N, k ≥ ⌈α⌉,
(1)

where symbol ⌈·⌉ indicates the ceiling function, which is expressed by the set of equation
⌈α⌉= min{n ∈ Z|n ≥ α}, Z represents the set of integers.

2.2. Characteristic of Fibonacci Polynomial
The Fibonacci polynomial of arbitrary order can be obtained with the help of following recur-

rence relation

Fm+2(x) = xFm+1(x)+Fm(x), m ≥ 0,

with initial conditions (IC) as

F0(x) = 0, F1(x) = 1.

From the above relations we can obtain the Fibonacci polynomial of order m as

Fm(x) =
⌊m−1

2 ⌋

∑
r=0

(
m− r−1

r

)
xm−2r−1 , (2)

where ⌊·⌋ indicates the floor function, which is expressed by the relation ⌊α⌋=max{n∈ Z|n≤α},
Z denotes the set of integer numbers.
Above discussed equation can be reformulated as

Fi(x) =
i

∑
j=0

( j+i)=odd

( i+ j−1
2 )!

j!( i− j−1
2 )!

x j, i ≥ 0. (3)

Fractional order derivative of the Fibonacci polynomial of degree i in Caputo sense can be
obtain with the help of above equations (1) and (3) as

C
0 Dα

x Fi(x) =C
0 Dα

x

( i

∑
j=0

( j+i)=odd

( i+ j−1
2 )!

j!( i− j−1
2 )!

x j
)
,

=
i

∑
j=0

( j+i)=odd

( i+ j−1
2 )!

j!( i− j−1
2 )!

C
0 Dα

x (x
j). (4)
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Now from the equation (1), we have

C
0 Dα

x (x
j) = 0, If ⌈α⌉< j, (5)

C
0 Dα

x (x
j) =

j!
Γ( j+1−α)

x j−α , If ⌈α⌉ ≥ j. (6)

Now using above equations (5) and (6) in the equation (4), we have

C
0 Dα

x Fi(x) =


0 i = 0,1,2, ...,⌈α⌉,

∑
i
j=⌈α⌉

( j+i)=odd

( i+ j−1
2 )!

( i− j−1
2 )!( j−α)!

x j−α , i ∈ N, i ≥ ⌈α⌉, (7)

3. Architecture of FNN

Figure 1 depicts the architecture of the FNN, which consists of input, hidden layer, and output
layers. Input and output layers have one, and the hidden layer has n numbers of perceptrons. The
quantity of perceptrons in the hidden layer, denoted by n, varies based on the specific FDE being
addressed for solution. Various degrees of Fibonacci polynomial are being used as an activation
function in the hidden layer of the FNN. FNN will operate in the following ways:

• From input layer, a input x will be given.
• In the hidden layer the inputs from the input layer is activated through the different degrees of
Fibonacci polynomials.
• The output layer is formed by combining inputs from the preceding layer using distinct weights
w.
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Figure 1: Structure of FNN to solve FDEs
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4. Method to use FNN to solve FDEs

In this section, the authors elaborate on a method for solving the general form of fractional
order differential equations using the FNN. Let us consider the general form of FDE

C
0 Dαm

x y(x) = f (x,y(x),C0 Dα1
x y(x),C0 Dα2

x y(x), ...,C0 Dαm−1
x y(x)), αm > αm−1, ...,α1 > 0 (8)

with the ICs, y(k)(0) = yk
0, For k = 0,1,2...,⌈α⌉. The authors have considered the above problem

with IC for the demonstration of the method but this technique can be used to solve the above
problem with any type of conditions. Let’s denote the trial solution of the FDE (8) as ut(t) = N(x),
where N(x) represents the output of the FNN and is defined as

N(x) =
n

∑
i=i

wiFi(x). (9)

where, wi’s are weights which are later be updated during the training of the FNN with appropriate
method. Now the problem (8) will be transformed in to the following equation on using (9) in it.

C
0 Dαm

x N(x) = f (x,N(x),C0 Dα1
x N(x),C0 Dα2

x N(x)), (10)

with the following initial conditions

N(k)(0) = yk
0, For k = 0,1,2...,⌈α⌉, (11)

where,
C
0 Dαm

x N(x) =
n

∑
i=1

wi

(
C
0 Dαm

x Fi(x)
)
.

C
0 Dαm

x Fi(x) can easily be calculated from the equation (7). Now to train the FNN, the authors have
transformed the above problem (10) with the initial conditions (11) in to the following minimiza-
tion problem.

min
w

{
∑
xp

(
C
0 Dαm

x N(x)− f (x,N(x),C0 Dα1
x N(x),C0 Dα2

x N(x))
)2

+
⌈α⌉

∑
k=0

(
N(k)− yk

0

)2}
(12)

where, xp’s the training points. Minimizing the above cost function (12) with respect to weights
w’s is the training of neural network. In the forthcoming section, Marquardt’s method has been
discussed to update the values of weights w’s to minimize the cost function.

5. Training of FNN

Through the combination of Newton’s and Cauchy’s optimization method, we can obtain
Marquardt’s [15]. This is a second order method because it consist of Newton’s method. The
working procedure of Marquardt’s method is as fallows
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Assign w(0)

(Choose the entries of w(0) non-identical and random)
M = Maximum number of iteration

ε = convergence criteria
Take k = 0, λ (0) = 104

Calculate ∇E(w(k))

If E(w(k))< ε? and M ≤ k

Calculate
s(w(k)) =

[
H(k)+λ (k)I

]−1
∇E(w(k))

and w(k+1) = w(k)− s(w(k))

If E(w(k))> E(w(k+1))?

Take
λ (k+1) = λ (k)/4 and k = k+1 λ (k) = 2λ (k)

Print the result and stop

Yes

No

Yes

Yes
No

Where, E(w(k)), ∇E(w(k)) and H(k) denotes the values at kth iteration.

E(w(k)) =
1

2n ∑
xp

(
C
0 Dαm

x N(k)(x)− f (x,N(k)(x),C0 Dα1
x N(k)(x),C0 Dα2

x N(k)(x))
)2

+
1
2

⌈α⌉

∑
k=0

(
N(k)− y(k)0

)2
,
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∇E(w(k)) =



∂E(w(k))
∂w1

∂E(w(k))
∂w2

...
∂E(w(k))

∂wl
...

∂E(w(k))
∂wn


, H(k) =



∂ 2E(w(k))

∂w2
1

∂ 2E(w(k))
∂w1∂w2

· ∂ 2E(w(k))
∂w1∂wn

...
... ·

...
∂ 2E(w(k))
∂wl∂w1

∂ 2E(w(k))
∂wl∂w2

· ∂ 2E(w(k))
∂wl∂wn

...
... ·

...
∂ 2E(w(k))
∂wn∂w1

∂ 2E(w(k))
∂wn∂w2

· ∂ 2E(w(k))
∂w2

n


,

where,

∂E(w(k))

∂wl
=

1
n ∑

xp

(
C
0 Dαm

x N(k)(x)− f (x,N(k)(x),C0 Dα1
x N(k)(x),C0 Dα2

x N(k)(x))
)(

∂
(C

0 Dαm
x N(k)(x)

)
∂wl

−
∂ f (x,N(k)(x),C0 Dα1

x N(k)(x),C0 Dα2
x N(k)(x))

∂wl

)
+

⌈α⌉

∑
k=0

(
N(k)− yk

0

)
∂N(k)

∂wl
,

∂ 2E(w(k))

∂wlwm
=

1
n ∑

xp

(
∂
(C

0 Dαm
x N(k)(x)

)
∂wm

−
∂ f (x,N(k)(x),C0 Dα1

x N(k)(x),C0 Dα2
x N(k)(x))

∂wm

)(
∂
(C

0 Dαm
x N(k)(x)

)
∂wl

−
∂ f (x,N(k)(x),C0 Dα1

x N(k)(x),C0 Dα2
x N(k)(x))

∂wl

)
+

⌈α⌉

∑
k=0

∂N(k)

∂wm

∂N(k)

∂wl
.

In the subsequent section, the authors employed the discussed method on five examples hav-
ing exact solutions to verify its accuracy numerically. They further demonstrated its superiority
over previously established methods by comparing the absolute errors obtained with those of the
proposed approach and the earlier methods.

6. Numerical Examples

In this section, the authors showed the reliability of the discussed numerical technique by using
it to solve FDES having the exact solutions. Further, compared the numerical results obtained from
this method and the previously solved method to reveal the reliability of the discussed method. The
authors use the Python-3.7.9 version to use the discussed method in the following examples.

For Python code of following example visit "https://github.com/Kushaldhardwivedi/Differential-
Equation-articles"

Example 1. The subsequent FDE

C
0 Dα

t y(t)+ y(t) = f (t), 0 < α ≤ 1, (13)

with IC y(0) = 0 have the exact solution y(t) = t2, where

f (t) = t2 +
2t2−α

Γ(3−α)
.
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this problem has been solved with n= 3 perceptrons in the hidden layer of the FNN and trained
the FNN with 10 training points of the domain 0 ≤ x ≤ 1 over 18 iterations. Further, compared the
numerical results obtained by solving this problem with the suggested technique in the following
Table 1.

Table 1: Comparison of absolute error of example 1 with different method.
α = 0.25 α = 0.5 α = 0.75
Proposed Method Proposed Method Proposed Method

t method [16] Method [16] Method [16]
0.1 6.93889e-18 0.0000e-4 6.93889e-18 0.0000e-4 1.04083e-16 0.0000e-4
0.2 2.77556e-17 1.0000e-4 2.77556e-17 1.0000e-4 2.77556e-17 0.0000e-4
0.3 5.55112e-17 1.0000e-4 5.55112e-17 1.0000e-4 1.66533e-16 0.0000e-4
0.4 1.11022e-16 0.0000e-4 1.11022e-16 0.0000e-4 2.22045e-16 0.0000e-4
0.5 0.00000 3.0000e-4 2.22045e-16 3.0000e-4 0.0000 2.0000e-4
0.6 0.000000 1.0000e-4 2.22045e-16 1.0000e-4 1.11022e-16 0.0000e-4
0.7 1.11022e-16 1.0000e-4 1.11022e-16 0.0000e-4 1.11022e-16 1.0000e-4
0.8 0.00000 1.0000e-4 0.00000 1.0000e-4 1.11022e-16 0.0000e-4
0.9 0.00000 0.0000e-4 0.00000 0.0000e-4 0.00000 0.0000e-4

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.5

1.0

1.5

2.0

Ab
so

lu
te

 E
rro

r

1e 16

=0.25 =0.5 =0.75 =1.00

Figure 2: Absolute Error for distinct values of α of Example 1.

This problem has also been solved by many other authors for different values of α , viz., Kai
Diethelm [17] solved this problem with the best absolute error of order e− 4, Shah et al. [16]
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solve this problem by employing HaarWavelet Operational Matrix Method with the lowest error
of order e−4 and Li [18] solved this problem with the minimum error of order e−12, etc. From
Table 1 and Fig 2, it is clearly visible that our method is performing far better than previously
solved methods.

Example 2. The following differential equation

d2y(t)
dt2 +C

0 D
1
2
t y(t)+ y = t3 +6t +

3.2
Γ(0.5)

t2.5 (14)

with ICs y(0)= 0, y′(0)= 0 have the exact solution y(t)= t3. Authors have solved this problem
with n = 4 perceptrons in the hidden layer of the FNN and trained the FNN with 10 training points
of the domain 0 ≤ t ≤ 1 over 17 iterations.

Table 2: Maximum absolute error of example 2.
Numerical Exact Error

t Solution Solution
0.0 3.94594e-17 0.00 3.94594e-17
0.1 0.001 0.001 5.48606e-17
0.2 0.008 0.008 5.0307e-17
0.3 0.027 0.027 1.04083e-17
0.4 0.064 0.064 4.16334e-17
0.5 0.125 0.125 0.00
0.6 0.216 0.216 8.32667e-17
0.7 0.343 0.343 1.11022e-16
0.8 0.512 0.512 1.11022e-16
0.9 0.729 0.729 2.22045e-16
1.0 1.000 1.000 0.00
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Figure 3: Comparison of numerical and exact solution of Example 2.
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Figure 4: Absolute Error of Example 2.

In Table 2, the authors compared the numerical solution obtained from the discussed and exact
solution of the problem. It is clearly visible From Table 2 that the proposed method is performing
accurately. Ford et al. [19] solved this problem with Systems-based decomposition schemes with
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the best error of order e−7. Shiralashetti et al. [20] also solved this problem using Haar wavelet
collocation method with best error of order e−9. From Fig 4, it is clearly visible that the proposed
method is performing far better than previous methods.

Example 3. The following nonlinear differential equation

C
0 D2.2

t y(t)+C
0 D0.75

t y(t)+C
0 D1.25

t y(t)+ y3 = f (t), (15)

with the ICs y(0) = 0, y′(0) = 0 and y′′(0) = 0 have the exact solution y(t) = t3

3 , where

f (t) =
2t0.8

Γ(1.8)
+

2t2.25

Γ(3.25)
+

2t1.75

Γ(2.75)
+

t9

27
.

The authors have solved this problem with n = 4 perceptrons in the hidden layer of FNN and
trained the FNN with 10 training point of the domain 0 ≤ t ≤ 1 over 16 iterations.

Table 3: Comparison absolute error of example 2 with distinct methods.
Proposed [21] [20]

t Method Method Method
0.1 1.87025e-17 1.530e-05 5.052e-06
0.2 1.0842e-17 3.690e-05 1.020e-05
0.3 3.1225e-17 5.420e-05 1.478e-05
0.4 3.1225e-17 5.91e-05 1.871e-05
0.5 2.08167e-17 9.10e-05 2.197e-05
0.6 8.32667e-17 8.28e-05 2.459e-05
0.7 4.16334e-17 1.140e-04 2.660e-05
0.8 8.32667e-17 1.263e-04 2.808e-05
0.9 2.77556e-17 1.119e-04 2.914e-05
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Figure 5: Comparison of numerical and exact solution of Example 3.
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Figure 6: Absolute Error of Example 3.

From Fig 5 and Fig 6 it clear that the discussed method is giving very accurate result. Many
authors have also solved this problem with the different methods viz., El-Mesiry et al. [22] solve
this problem with the best error of order e−3, Li et al. [21], and Shiralashetti et al. [20] have also
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solved this problem with Haar wavelet. This comparison between numerical results obtained from
these methods and our from our discussed method is depicted through Table 3. From Table 3 it is
clearly visible that our method is performing far more accurately than these methods.

Example 4. The following FDE
C
0 Dα

t y(t)+ y(t) = f (t), (16)

with IC y(0) = 1, have the exact solution y(t) = 1−4t +5t2, where

f (t) = 1−4t +5t2 − 4
Γ(2−α)

t1−α +
10

Γ(3−α)
t2−α .

Table 4: Maximum absolute error of example 4.
α = 0.25 α = 0.5 α = 0.75
Proposed Method Proposed Method Proposed Method

t method [16] Method [16] Method [16]
0.1 1.22124e-15 6.0000e-4 5.55111e-16 1.0000e-4 3.33066e-16 6.0000e-4
0.2 8.32667e-15 4.0000e-4 5.55111e-16 1.0000e-4 2.10942e-15 4.0000e-4
0.3 1.33781e-14 2.0000e-4 5.55111e-17 1.0000e-4 3.60822e-15 2.0000e-4
0.4 1.69864e-14 2.0000e-4 9.99200e-16 2.0000e-4 4.55191e-15 2.0000e-4
0.5 1.59872e-14 5.0000e-4 0.00000e+00 9.0000e-4 4.44089e-15 5.0000e-4
0.6 1.26565e-14 3.0000e-4 6.66133e-16 5.0000e-4 3.77475e-15 3.0000e-4
0.7 8.88178e-15 1.0000e-4 0.00000e+00 0.0000e-4 3.55271e-15 1.0000e-4
0.8 1.33226e-15 1.0000e-4 4.44089e-16 1.0000e-4 2.22044e-15 1.0000e-4
0.9 9.32587e-15 1.0000e-4 1.33226e-15 0.0000e-4 1.33226e-15 1.0000e-4
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Figure 7: Absolute Error of Example 4.

The authors have solved this problem with n = 3 perceptrons in the hidden layer of FNN and
trained the neural network on 10 training points of the domain 0 ≤ x ≤ 1 over 28 iterations. It
can be observed from Table 4 that the discussed method gives far more reliable results than the
compared method.

Example 5. Let us consider the following initial value problem of Bagley– Torvik equation

Table 5: Comparison between absolute errors of example 5 with different methods.
Method Method Proposed

t [23] [24] Method
0.0 7.63e-06 0.00 0.00
0.1 8.73e-06 7.59e-08 6.93889e-18
0.2 1.12e-06 1.57e-07 2.77556e-17
0.3 1.08e-06 2.09e-07 5.55112e-17
0.4 8.19e-06 2.74e-07 1.11022e-16
0.5 7.06e-06 3.61e-07 0.00
0.6 1.01e-05 4.37e-07 0.00
0.7 1.60e-05 4.68e-07 1.11022e-16
0.8 2.03e-05 4.64e-07 0.00
0.9 1.86e-05 4.87e-07 0.00
1.0 1.24e-05 5.74e-07 0.00
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d2y(t)
dt2 +C

0 Dα
t y(t)+ y(t) = 2+4

√
t
π
+ t2, 0 ≤ t ≤ 1, (17)

with the initial conditions y(0) = 0 and y′(0) = 0. This problem have the exact solution y(t) = t2

for α = 1.5. This problem has been solved by taking n = 4 perceptron in the hidden layers of the
FNN with 10 training points of the domain 0 ≤ t ≤ 1 over 16 iterations.
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Figure 8: Comparison of numerical and exact solution of Example 5 for α = 1.5.

May 8, 2024



0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
 A

bs
ol

ut
e 

Er
ro

r

1e 16

Figure 9: Absolute Error of Example 5 for α = 1.5.

From the table 5 it can be clearly observe that the proposed method is performing far better than
the method discussed in [23] and [24]. Figures 8 and 9 have been plotted to compare the numerical
and exact solution and to observe the absolute error respectively after using the discussed method
on Example 5 for α = 1.5.

7. Conclusion

In this paper, the authors used three layers of the FNN to solve the FDEs. In the second layer,
different orders of the Fibonacci polynomial has been used as an activation function. To solve the
desired FDEs, the authors used the FNN as a trial solution of the problem and then trained the
weights by Marquardt’s method. After discussing the method, the authors used it in four examples
to reveal the efficiency of the proposed method. Furthermore, the author showed that the discussed
approach is giving more reliable numerical outcomes than the previously solving method.
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