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Abstract

Large Language Models (LLMs) have shown impressive performance in natural
language tasks, but their outputs can exhibit undesirable attributes or biases. Exist-
ing methods for steering LLMs towards desired attributes often assume unbiased
representations and rely solely on steering prompts. However, the representations
learned from pre-training can introduce semantic biases that influence the steer-
ing process, leading to suboptimal results. We propose LLMGuardaril, a novel
framework that incorporates causal analysis and adversarial learning to obtain un-
biased steering representations in LLMs. LLMGuardaril systematically identifies
and blocks the confounding effects of biases, enabling the extraction of unbiased
steering representations. Additionally, it includes an explainable component that
provides insights into the alignment between the generated output and the desired
direction. Experiments demonstrate LLMGuardaril’s effectiveness in steering
LLMs towards desired attributes while mitigating biases. Our work contributes
to the development of safe and reliable LLMs that align with desired attributes.
We discuss the limitations and future research directions, highlighting the need for
ongoing research to address the ethical implications of large language models.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language
understanding and generation, enabling a wide range of applications such as dialogue systems,
content creation, time series forecasting, recommendation systems, professional agents [1; 2; 3; 4; 5].
However, the training of these models on massive web-scraped corpora has led to the manifestation
of undesirable behaviors, such as generating offensive, toxic, or false outputs, facilitating the spread
of disinformation campaigns. Addressing these issues is crucial, as content safety, fairness, toxicity,
harmfulness, and factuality demand rigorous consideration, especially in an era where language
models are increasingly deployed in high-stakes applications and user-facing systems. To address
these challenges, recent research efforts have focused on developing methods to steer the output of
LLMs towards desired attributes or concepts.

Several approaches have been proposed to control and steer the generation process, aiming to mitigate
these harmful behaviors and improve the overall quality and safety of generated content [6]. Fine-
tuning on carefully curated datasets has been a common technique to enhance content safety and
regulate outputs. By training language models on datasets that have been filtered and cleaned to
remove offensive, biased, or misleading content, researchers aim to reduce the likelihood of the model
generating such harmful outputs. In addition to fine-tuning, other techniques have been explored to

*These authors contributed equally to this work.
♠Corresponding author.

ar
X

iv
:2

40
5.

04
16

0v
1 

 [
cs

.C
L

] 
 7

 M
ay

 2
02

4



Llama2-7b

Llama2-13b

Vicuna-7b30

40

50

60

70

Sa
m

pl
e 

Pr
op

or
tio

n 
%

Positive Label
Negative Label

Figure 1: Proportion of representations of semantic prompts that implicitly encode positive or
negative directions for semantically neutral prompts without explicit steering prompt, across different
language models. The varying proportions of positive and negative directions learned by the probing
classifier, even in the absence of steering prompts, demonstrate the presence of inherent biases in the
representations of semantic prompts due to differences in pre-training data. This observation supports
the existence of a direct edge from the semantic direction representation Rcd of the semantic prompt
to the direction representation R+/R−, as discussed in the causal analysis section.

further improve the generation process. Reinforcement learning from human feedback (RLHF) [7] is
one such approach, where the language model is trained using feedback from human annotators who
evaluate the quality and safety of generated outputs. Another promising approach is reinforcement
learning from AI feedback (RLAIF) [8], which extends the concept of RLHF by using an AI system
to provide feedback instead of human annotators. However, they all require huge annotation and
computation resources. Furthermore, the training process often involves a human or AI annotator
providing feedback and guidance to the language model. This raises the possibility that some form of
deception or manipulation could be introduced during the training process, either intentionally or
unintentionally [9; 10; 11]. In addition, these methods often lack explainability and interpretability,
leading to inconsistent performance and limited generalizability [12; 13; 14; 15].

Recent studies have shed light on the rich semantic information encoded within LLM representations,
including specific information [16], concepts [17; 18], or attributes [19; 20]. Building upon these
findings, the activation engineering has emerged, which involves creating vectors of activations
that, when added to the forward passes of a frozen LLM, can induce desired changes in the output
text. This approach holds promise for controlling the generation process in a more interpretable and
fine-grained manner. Existing approaches for steering LLMs typically involve constructing positive
and negative prompts that represent the desired and undesired attributes, respectively. By comparing
the activations of the model for these prompts, a steering vector is obtained, which is then used to
guide the model’s output during inference. While these methods have shown promising results, they
often rely on the assumption that the constructed prompts are sufficient to capture the desired steering
direction and that the model’s representations are unbiased. However, a closer examination reveals
that the representations learned by LLMs during pre-training can introduce biases that influence the
steering process. As shown in Figure 1, the semantic context of the prompts used for steering can
implicitly encode biases, even without explicit steering prompts. Consequently, the obtained steering
vectors may be confounded by these inherent biases, leading to suboptimal or unintended steering
results. Therefore, simply structuring a controlled trial superficially is not enough to get the unbiased
steering representation.

To address these limitations, we propose a novel framework called LLMGuardaril that incorporates
causal analysis to obtain unbiased steering representations for LLMs. Our framework aims to disen-
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tangle the influence of biases from the steering process by employing adversarial learning techniques.
By systematically identifying and blocking the confounding effects of biases, LLMGuardaril enables
the extraction of steering representations that accurately capture the desired attributes or concepts.
The key contributions of this work are as follows:

• A causal analysis of the steering process in LLMs, identifying the confounding effects of
semantic prompt and their impact on steering representations. We provide a theoretical
formulation of the problem and discuss the limitations of existing methods.

• A novel framework for obtaining unbiased steering representations in LLMs. Our framework
employs adversarial learning techniques to disentangle the influence of semantic biases from
the steering process, enabling the extraction of accurate steering representations.

• Comprehensive experiments and analysis demonstrating the effectiveness of LLMGuardaril
in steering LLMs towards desired attributes while mitigating the influence of biases. We
evaluate our framework on various benchmark datasets and compare its performance with
existing methods.

2 Background

2.1 Representations in Large Language Models

Large language models (LLMs) have demonstrated remarkable capabilities in natural language
processing tasks, generating human-like text and exhibiting a broad understanding of language.
Central to their success is the rich set of representations they learn during training, which encode
various concepts, attributes, and semantic information. Extensive research has been dedicated to
understanding the representations learned by large language models (LLMs) and how they encode
various concepts and attributes [18; 21; 22; 23]. LLM representations refer to the patterns of
activations across the model’s parameters that correspond to specific semantic concepts, properties,
or features. These representations act as the model’s internal codification of the information learned
from the training data. Recent studies have provided compelling evidence that LLM representations
contain rich semantic information, including abstract concepts like space and time [16], as well as
more granular attributes related to truthfulness, toxicity, bias, and harmfulness of the generated text
[24; 20; 25; 26]. In addition, linear classifier probes, which are trained to predict input properties
from intermediate layers of a network, have successfully identified representations of concepts
[27; 28]. Latent space analysis has enabled researchers to locate or edit factual associations within
LLMs [29; 30; 31]. The ability to locate and manipulate these representations opens up avenues for
controlling and steering the model’s outputs, enabling the development of principled methods for
mitigating harmful behaviors and enhancing the interpretability and trustworthiness of large language
models.

2.2 LLM Activation Engineering

Activation engineering is a set of techniques that modify the internal activations of a pre-trained
language model during inference to steer its output in a desired direction. The main idea is to identify
and manipulate specific activations or attention heads associated with particular attributes or behaviors
to control the model’s generation process. Early approaches, like the Plug-and-Play Language Model
[32], use a separate classifier to detect target attributes in the generated text and perturb the language
model’s activations accordingly, encouraging it to generate text that aligns with the desired attribute.
Recent work focuses on extracting latent steering vectors from a frozen language model, which can
be added to the activations during inference to steer the model’s completions toward specific goals,
such as achieving high BLEU scores [33] or generating truthful statements [20]. Instead of requiring
additional optimization or labeled data, Activation Addition [34] takes activation differences resulting
from pairs of prompts. To avoid the identification of an opposite behaviour, [35] takes the average
of activations associated with a target dataset and then subtracts the mean of all training activations,
resulting in effective steering vectors. The growing interest in activation engineering stems from the
desire to control and improve the performance of large language models on specific tasks or domains
by identifying and manipulating the relevant activations.
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Figure 2: The causal graph and backdoor adjustment.

2.3 Causal Inference

Causal inference [36; 37; 38; 39; 40] has been an attractive research topic for a long time as it
provides an effective way to uncover causal relationships in real-world problems. Nowadays, causal
inference has shown potential in enhancing LLMs from a causal view in improving the LLMs’
reasoning capacity [1; 41; 42; 43; 44], addressing fairness issues in LLMs [45; 46; 47; 44], and safety
[48; 49; 50], complementing LLMs with explanations [51; 13; 52; 53], and handling multimodality
[54; 55]. In causal inference, if a variable is the common cause of two variables, it is called the
confounder. The confounder will induce a spurious correlation between these two variables to disturb
the recognition of the causal effect between them [56]. As shown in Figure 2(a), X → Y denotes
that X is the cause of Y . C is the cause of both X and Y . Thus, it is a confounder that will induce a
spurious correlation between X and Y to disturb the recognition of the causal effect between them.
In particular, such spurious correlation is brought by the backdoor path created by the confounder.
Formally, a backdoor path between X and Y is defined as any path from X to Y that starts with
an arrow pointing into X . For example, the path X ← C → Y is a backdoor path. If we want
to deconfound two variables X and Y to calculate the true causal effect, we should block every
backdoor path between them [57]. For example, in Figure 2(b), we should block X ← C → Y to get
the causal effect between X and Y .

3 Causal Analysis

3.1 The Hypothetical Situation

Recent activation engineering-based work [26; 18; 34; 35; 20] utilize the steering vectors to control
the direction of LLM output by constructing the randomized controlled trials. For example, some work
[26; 18; 34] construct a pair of natural-language prompts (p+, p−), where p+ represents the attribute
we wish output text to emphasize and p− represents its opposite. R+/R− is the representation for the
prompt p+/p−. The difference ∆R is a new steering vector that (intuitively) captures the difference
between a prompt with the attribute and without it. To obtain a steering vector, they perform a forward
pass on each prompt, record the activations at the given location in each pass, take the difference,
and then finally rescale this difference in activations by an “injection coefficient” β. To steer, they
add the resulting steering representation to the original representations and allow the forward pass to
continue, and obtain the steered output.

To systemically analyze this series of methods, we give the formal definitions. Now, let’s further
break down and analysis of the constructed prompt pairs. In fact, the input prompt is comprised of
the semantic prompt C and the steering prompt S. For example, in the [34], “I love talking about
weddings” is the positive prompt and “I hate talking about weddings” is the negative prompt. In these
two examples, “love” and “hate” are the steering prompts, which control the directions of output. The
“I ... talking about weddings” is the same for this pair of prompts, which only contains the semantic
information. Therefore, they assume this is a randomized controlled trial, where there are two groups,
i.e., treatment group “love” and control group “hate”. As shown in Figure 3 (a), the semantic prompt
C is a confounder, that can affect the steering prompt S and output Y . In this hypothetical situation,
they construct the randomized controlled trial by creating the pairs, i.e., positive steering prompt
plus the same semantic prompt and negative steering prompt plus the same semantic prompt. The
only difference is the steering prompt since the semantic prompts are the totally same. Based on this
assumption, the edge from the semantic prompt to the steering prompt is blocked. Therefore, they
can get the difference in activations, which can intervene in the generated output. The strength of this
steering vector is called the treatment effect in causal inference. On the face of it, this is a perfect
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Figure 3: The causal analysis of our proposed LLMGuardaril.

randomized controlled trial, where only the steering prompt can affect the direction representation
R+/R−. The combination of direction representation R+/R− and the semantic prompt together
have an influence on the generated output Y . In this case, the steering vector can be obtained by the
operation between positive direction representation R+ and negative direction representation R−.

3.2 The Real Situation

Before delving into the analysis of the real situation, we first provide formal definitions for the various
types of representations involved in the steering process.

Definition 3.1 (Direction Representation R+/−). A direction representation R+/− is a representation
that solely affects the direction of the output with respect to specific attributes such as truthfulness,
bias, harmfulness, or toxicity. It is learned from the steering prompt and should be independent of the
semantic context of the output.

Definition 3.2 (Semantic Context Representation Rcy). A semantic context representation Rcy is a
representation learned from the semantic prompt, which contains information about the context of the
output. It does not provide guidance for the direction of the output with respect to specific attributes.

Definition 3.3 (Semantic Direction Representation Rcd). A semantic direction representation Rcd

is a representation learned from the semantic prompt that implicitly influences the direction of the
output with respect to specific attributes. This influence stems from associations learned during the
pre-training of the large language model, which may introduce biases related to the desired attributes.

Definition 3.4 (Steering Representation ∆R). A steering representation ∆R is a representation
that stands for the direction of the output with respect to specific attributes such as truthfulness,
bias, harmfulness, or toxicity. It is obtained by computing the difference between the positive
direction representation R+ and the negative direction representation R−, which are learned from the
corresponding steering prompts. The steering representation should be independent of the semantic
direction representation Rcd to ensure unbiased steering of the output.

Based on the above definitions, the assumed randomized controlled trial in the hypothetical situation
is not qualified because it fails to consider the influence of confounders, specifically the semantic
prompt, on the direction representation R+/R− due to biases in the pre-training of the large language
model (LLM). As a result, the obtained steering vector is biased. As proven in the introduction
section, the semantic prompt C affects not only the content of the output Y but also its direction. We
can further break down the semantic prompt into two parts, i.e., the semantic context representation
Rcy, which influences the content of the output Y , and the semantic direction representation Rcd,
which influences the direction representation R+/R−.

In addition to the edge from the semantic prompt C to the steering prompt S and the direction
representation R+/R−, there is a direct edge from the semantic direction representation Rcd of the
semantic prompt to the direction representation R+/R−. The constructed pair of prompts can only
block the edge from the semantic prompt C to the steering prompt S and the direction representation
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R+/R−, but it ignores the edge from the semantic direction representation Rcd of the semantic
prompt to the direction representation R+/R−. As shown in Figure 3 (b), both the steering prompt
S+/S− and the semantic direction representation Rcd affect the direction representation R+/R−.
Consequently, the obtained steering vector ∆R is biased by the semantic direction representation
Rcd of the semantic prompt, which is not solely affected by the constructed steering prompt S.

This bias originates from the biases in the pre-training data. For example, consider the semantic
prompt “I ... talking about weddings”. Due to biases present in the pre-training data, the LLM may
have learned to associate weddings with positive sentiments such as love, happiness, and celebration.
As a result, the semantic direction representation Rcd learned from this prompt may implicitly suggest
a positive direction (e.g., "love") for the output, even if the explicit steering prompt is not provided.
As shown in Figure 1, this edge can be visually observed experimentally. The implicit influence of
the semantic direction representation Rcd on the output direction can be problematic when attempting
to steer the LLM’s output towards a desired attribute. If the steering representation ∆R is not
independent of Rcd, the resulting output may be biased by the inherent associations learned during
pre-training, leading to suboptimal or unintended results. To ensure unbiased steering of the output, it
is crucial to disentangle the steering representation ∆R from the semantic direction representation
Rcd.

3.3 Causal Analysis of Our Solutions

Based on the causal analysis presented in the previous sections, we propose a solution called
LLMGuardaril to address the bias introduced by the semantic direction representation Rcd in the
steering process. As shown in Figure 3 (c), in addition to constructing pairs of prompts (positive
and negative steering prompts with the same semantic prompt), we need to block the edge from the
semantic direction representation Rcd of the semantic prompt to the direction representation R+/R−.
By doing so, the direction representation is only influenced by the steering prompt S+/S−, enabling
us to obtain an unbiased steering representation ∆R through steering engineering. This approach
aligns with the desired hypothetical situation.

We utilize adversarial learning to remove this confounding bias [58; 59]. The objective is to achieve
debiasing of the influence Rcd on the direction representation R+/R− during the adversarial learning
process. The adversarial learning process includes two main components, i.e., prediction reconstruc-
tion learning and debias learning. In prediction reconstruction learning, the goal is to ensure that the
original semantic information remains unchanged during the debiasing process. This is achieved by
minimizing the prediction reconstruction loss, which measures the cross-entropy between the original
output and the output generated.

By ensuring that the steering representation is independent of the semantic direction representation
Rcd, it becomes an unbiased representation that can effectively steer the output of the language model
toward the desired attribute. This approach mitigates the influence of unwanted biases present in the
model, enabling more accurate and controlled steering of the language model’s output. The debiased
intermediate states generated by the Debias LoRA Block can then be used to guide the LLM’s output
toward the desired attributes or concepts while mitigating the impact of unwanted biases. This allows
for more precise steering of the language model’s output, leading to improved performance in various
downstream tasks.

4 Methodology

4.1 Intervened Layer Selection

Previous studies have investigated the information encoded in different layers of transformer-based
models. Tenney et al. [60] found that earlier layers in BERT encode lower-level information, such as
part-of-speech tags, while later layers capture more semantic information. Similarly, Zou et al. [18]
and Li et al. [20] have observed that the optimal intervention layers for steering the model’s output
vary depending on the specific task and desired attribute.

To identify the most effective layers for intervention, we propose a systematic approach based on
probing accuracy. Let L = {l1, l2, . . . , lD} denote the set of all layers in the pre-trained language
model, where D is the total number of layers. We aim to select a subset of layers L∗ ⊆ L that
maximizes the steering effectiveness and represents the control direction.
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Figure 4: The framework of LLMGuardaril, which is a plug-and-play algorithmic framework
designed to obtain the unbiased steering representation for LLMs while seamlessly integrating with
their existing architecture.

We employ a probing classifier to measure the outcome-relatedness of each layer. The probing
classifier is trained to predict the target attribute or concept based on the representations at each layer.
Specifically, for each layer l ∈ L, we extract the representations r ∈ Rn×d, where n is the sequence
length and d is the hidden dimension. We then train a linear classifier g : Rn×d → Rc on top of
the representations, where c is the number of classes for the target attribute. The probing accuracy
of each layer l is evaluated on a validation set. We rank the layers based on their probing accuracy
and select the top-K layers as the intervened layers L∗. The number of intervened layers K is a
hyperparameter that can be tuned based on the specific task and desired trade-off between steering
effectiveness and computational efficiency.

Empirically, we find that the middle layers of the pre-trained language model tend to be the most
effective for intervention. This observation aligns with previous findings [18; 20] suggesting that the
middle layers capture a balance between low-level syntactic information and high-level semantic
information, making them suitable for steering the model’s output towards the desired attribute or
concept. By selecting the intervened layers based on probing accuracy, we can focus the intervention
on the most relevant layers, thereby improving the efficiency and effectiveness of the steering process.
The selected layers L∗ are then used in the Debias LoRA Block to obtain the debiased representations
and calculate the steering representation.

4.2 Unbiased Steering Representations

As discussed in the causal analysis, to obtain unbiased steering representations, we must block
the edge from the semantic direction representation Rcd of the semantic prompt to the direction
representations R+ and R−. By doing so, the direction representations are solely influenced by the
steering prompts S+ and S−, enabling us to obtain an unbiased steering representation ∆R through
steering engineering. To achieve this, we introduce a debiased training framework for the intervened
layers L∗.

4.2.1 Debias Training Framework

As shown in Figure 4, LLMGuardaril is a plug-and-play algorithmic framework designed to obtain un-
biased steering representations for LLMs while seamlessly integrating with their existing architecture.
The framework consists of two key components: the Debias LoRA Block and the Domain Probing
module. The Debias LoRA Block is a modified version of the standard LoRA (Low-Rank Adaptation)
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technique. Unlike standard LoRA, which adds a residual update to the original intermediate state, the
Debias LoRA Block directly replaces the original intermediate state rl with the debiased intermediate
state r̂l. This is achieved through the following operation:

r̂l = ∆Wrl−1 = BArl−1 (1)
where B and A are learned matrices of size d × m and m × d, respectively, with m ≪ d. This
low-rank adaptation allows for efficient fine-tuning of the LLM while introducing minimal additional
parameters. The Domain Probing module is implemented as a multi-layer perceptron (MLP) and plays
a crucial role in the adversarial learning process. Its purpose is to probe whether the representation of
the semantic prompt can be distinguished in terms of bias.

4.2.2 Adversarial Learning

The training process of LLMGuardaril involves adversarial learning, where the Debias LoRA Block
and the Domain Probing module are optimized simultaneously. The objective is to use the Domain
Probing module to debias the influence of Rcd on the direction representations R+ and R− during
the adversarial learning process [61].

Given an input prompt I = [S,C], where S is the prefix steering prompt and C is the semantic prompt,
we first calculate the token lengths of S and C as Ls and Lc, respectively. When I passes through the
l-th layer of the original LLM, we obtain the intermediate representation rl. After passing through
the l-th layer of the Debias LoRA Block, we obtain the debiased intermediate representation r̂l. We
define the set of intermediate representations from the original LLM as R = [r0, r1, rl, · · · , rD]

and the set of debiased intermediate representations as R̂ = {r−∗, r̂∗}, where −∗ represents the
non-intervened layers and ∗ represents the intervened layers. The r−∗ = {rl}, where l ∈ L−∗ is a
non-intervened layer, and r̂∗ = {r̂l}, where l ∈ L∗ is an intervened layer.

The adversarial learning process consists of two main components: prediction reconstruction learning
and debias learning. In the debias learning, the objective is to debias the representation through the
Domain Probing module. The Domain Probing module processes r̂l[−Lc :], which corresponds to
the semantic prompt portion of the whole prompt. The goal is to train the Domain Probing module
such that it cannot determine the bias of the LLM based on r̂l[−Lc :]. To facilitate this, a Gradient
Reversal Layer (GRL) [62] is introduced in the debias learning process. The debias loss is defined as
follows:

Ldebias =

N∑
i=1

(
ydirection − GradRev(f(r̂l[−Lc :], η))

)
(2)

where N is the number of samples, ydirection is the direction label of output, i.e., desired or undesired
attributes or concepts (e.g., truthful or untruthful, harmful or unharmful, and so on), f is the Domain
Probing module, and η is the proportional coefficient of the Gradient Reversal Layer.

In prediction reconstruction learning, the objective is to ensure that the original semantic information
remains unchanged during the debiasing process. This is achieved by minimizing the prediction
reconstruction loss, which measures the cross-entropy between the original output youtput by original
framework ϕ using original representation R and the output generated by LLMGuardaril ϕ̂ using the
debiased representations R̂:

Lpre = CEloss(youtput, ϕ̂(R̂)) (3)
The overall loss function is a combination of the prediction reconstruction loss and the debias loss
with the hyperparameter α:

L = Lpre + αLdebias (4)
During the adversarial learning process, the Debias LoRA Block and the Domain Probing module
are optimized jointly using this loss function. The Debias LoRA Block aims to generate debiased
intermediate representations r̂l that maintain the original semantic information while reducing bias.
On the other hand, the Domain Probing module learns to become invariant to the bias present in Rcd

by minimizing the debias loss through the Gradient Reversal Layer.

By employing this adversarial learning framework, LLMGuardaril enables the extraction of steering
representations that are less influenced by the inherent biases in the LLM’s pre-training data. The
debiased intermediate representations generated by the Debias LoRA Block can then be used to guide
the LLM’s output toward the desired attributes or concepts while mitigating the impact of unwanted
biases.
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4.2.3 Obtaining the Steering Representation

Now, we have obtained the debiased representation r̂∗i for the i-th token. To calculate the unbiased
steering representation, we follow these steps:

1. Positive and Negative Debiased Representations: For each token i, we obtain the debiased
representations corresponding to the positive steering prompt and the negative steering
prompt, denoted as r̂∗i,+ and r̂∗i,−, respectively. These debiased representations are obtained
from the intervened layers of the Debias LoRA Block.

2. Difference Calculation: We calculate the difference between the positive and negative
debiased representations for each token i, i.e., ∆r̂∗i = r̂∗i+ − r̂∗i− . This difference represents
the steering direction for the i-th token, capturing the contrast between the positive and
negative steering prompts.

3. Sample-wise and Token-wise Averaging: In order to further refine the steering representation
and make it more robust, we average the differences across all tokens and multiple samples,

∆r̂∗ =
1

N

N∑
j=1

1

n

n∑
i=1

∆r̂∗ij , (5)

where n is the total number of tokens in the input sequence and N is the total number of
samples used for steering representation calculation. Each sample corresponds to a different
input sequence or context. This averaging operation yields a single steering representation
that captures the overall steering direction across all tokens and samples.

The resulting ∆r̂∗ represents the final steering representation obtained from the debias training
process. This steering representation encodes the desired steering direction, taking into account
the contrast between positive and negative steering prompts, averaged across tokens and samples.
The final steering representation ∆r̂∗ can be used to guide the generation process of the language
model. By adding this steering representation to the intermediate representations of the LLM during
inference, we can steer the model’s output towards the desired attributes or concepts while mitigating
the influence of biases present in the pre-training data.

4.3 Explanation of Output

In this step, our objective is to identify a direction that accurately predicts the underlying output
concept and to provide an explanation for the generated output. Given the steering representation
∆r̂∗ ∈ RK×d, where K represents the number of intervened layers and d is the dimensionality of
the representation, we aim to measure the alignment between the generated output and the desired
direction.

For each generated token i, we select the corresponding representations r∗i ∈ RK×d from the inter-
vened layers. These representations capture the activations of the model at the specific layers where
the steering intervention is applied. To obtain a consolidated representation for both the steering
prompt and the generated token, we perform layer-wise averaging. We compute the average of the
steering representation ∆r̂∗ and the token representation r∗i across the K intervened layers. This step
aggregates the information from multiple layers, providing a more robust representation. Mathemati-
cally, let ∆r̂∗ and r∗i denote the layer-averaged representations for the steering representation and the
generated token i, respectively.

Next, we compute the dot product between the averaged steering representation vector ∆r̂∗ and the
averaged token representation vector r∗i . The dot product measures the similarity between the two
vectors, indicating the alignment between the generated output and the desired direction:

Similarityi = ∆r̂∗ · r∗i , (6)

The resulting similarityi score quantifies the extent to which the generated token i aligns with the
desired direction defined by the steering representation. A higher similarity score indicates a stronger
alignment, suggesting that the generated output is more likely to exhibit the desired attribute or
concept.

To provide a comprehensive explanation of the generated output, we can analyze the similarity scores
for each generated token and identify the tokens that contribute most significantly to the undesired
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direction. We can rank the tokens based on their similarity scores and highlight the top-k tokens that
have the lowest alignment with the steering representation. These top-k tokens can be considered as
the key indicators of the undesired attribute or concept in the generated output. Furthermore, we can
visualize the similarity scores across the generated output to gain insights into the alignment between
the output and the desired direction. By plotting the similarity scores for each token, we can observe
the variations in alignment throughout the generated text. This visualization can help identify regions
of the output that strongly align with the desired direction and regions that may deviate from it. In
addition to the token-level analysis, we can also compute an overall alignment score for the entire
generated output. This can be done by averaging the similarity scores across all tokens:

Alignment =
1

n

n∑
i=1

Similarityi (7)

where n is the total number of tokens in the generated output. The overall alignment score provides a
summary measure of how well the generated output aligns with the desired direction.

By combining the token-level analysis, visualization of similarity scores, and the overall alignment
score, we can provide a comprehensive explanation of the generated output in relation to the desired
direction. This explanation can help users understand and identify the specific aspects of the output
that contribute to the desired attribute or concept.

4.4 Control of Output

The steering representations are injected into the model and activated during inference, directing
the model’s response toward the desired direction. Unlike most existing methods [20; 63; 35; 34]
that simply add or subtract a constant steering representation regardless of the token representation,
we propose a more sophisticated approach to control the output. Our method takes into account the
relationship between the generated token representation and the steering representation, allowing for
more fine-grained and context-aware control of the output.

To establish a connection between the generated token representation and the steering representation,
we employ a projection operation inspired by [18]. This operation amplifies the component of the
token representation that aligns with the steering representation, effectively emphasizing the desired
direction in the output. Let r∗i ∈ RK×d denote the representation of the generated token i obtained
from the intervened layers. This is achieved by projecting out the component in the direction of
steering representation ∆r̂∗, and the operation can be defined as

r̂∗i = r∗i + β × r∗Ti ∆r̂∗

∥∆r̂∗∥2
∆r̂∗, (8)

where r∗Ti represents the transpose of the token representation r∗i , and ∥∆r̂∗∥2 denotes the squared
Euclidean norm of the steering representation. To steer, we multiply the projection by a coefficient β
that represents the intervention strength.

By adjusting the value of β, we can control the extent to which the output is steered toward the desired
direction. A larger value of β will result in a stronger emphasis on the desired direction, while a
smaller value will have a more subtle effect. The choice of β is crucial for achieving the desired level
of control over the output. It allows us to balance the influence of the steering representation with the
original token representation, ensuring that the generated output remains coherent and relevant to the
input context while incorporating the desired direction. Another consideration is the adaptability of β
to different contexts and desired directions. It may be beneficial to dynamically adjust the value of β
based on the characteristics of the input and the specific direction we aim to steer the output. For
example, we can employ a context-dependent β that varies based on the semantic similarity between
the input and the desired direction, allowing for a more nuanced control of the output.

Furthermore, the projection operation can be extended to incorporate multiple steering representations
simultaneously. In scenarios where we want to steer the output towards multiple desired directions,
we can compute the projections onto each steering representation separately and combine them using
appropriate weighting schemes. This enables a more comprehensive control over the output, allowing
us to incorporate multiple desired attributes or concepts.

In summary, the control of output in our proposed method involves projecting the generated token
representations onto the steering representation and scaling the projected component by a coefficient
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β. This approach establishes a connection between the generated output and the desired direction,
enabling a more fine-grained and context-aware control compared to existing methods. By carefully
tuning the value of β and potentially adapting it to different contexts, we can effectively steer the
output toward the desired direction while maintaining the quality and coherence of the generated
text. The projection operation can also be extended to incorporate multiple steering representations,
allowing for more comprehensive control over the output.

5 Experiments

We evaluate the performance of our proposed LLMGuardaril framework on four key attributes
that serve as guardrails for large language models: truthfulness, toxicity, bias, and harmfulness.
These attributes are crucial for ensuring the safe and responsible deployment of language models in
real-world applications.

5.1 Baselines

In this section, we introduce a diverse set of baseline methods that aim to steer the behavior of large
language models towards desired attributes or concepts. By comparing LLMGuardaril against these
baselines, we can assess its effectiveness in achieving the desired steering while maintaining the
model’s general knowledge and capabilities.

Base model (Few-shot) [64] is an in-context learning method that does not require fine-tuning of the
language model. This technique leverages a small set of high-quality samples to construct prompts,
which are then used to guide the Language Learning Model (LLM) in generating answers that closely
resemble the provided examples. To implement this approach, we first create a set of 3-5 queries.
These queries are then fed into GPT-4, a state-of-the-art language model, to generate high-quality
answers. The resulting query-answer pairs serve as in-distribution examples, which are subsequently
used to construct prompts during the inference process. By providing the LLM with these carefully
crafted prompts, the model is able to generate answers that are more aligned with the desired output,
thereby improving the overall quality of the answers.

Linear Artificial Tomography (LAT-Reading) [18] is a representation reading technique that aims
to locate emergent representations for high-level concepts and functions within a network. The
LAT pipeline consists of three key steps: designing stimulus and task, collecting neural activity, and
constructing a linear model. A stimulus set and task template are carefully designed to elicit distinct
neural activity for the target concept or function. Next, neural activity is collected from specific token
positions in the model’s hidden states. Finally, a linear model, such as PCA or a supervised method,
is applied to the collected neural activity to identify directions that align with the target concept or
function. The resulting “reading vectors” can be generally used to steer the output direction.

LAT-Contrast [18] is a representation control technique that builds upon the reading vectors obtained
through LAT. During inference, the same input is run through the model using a pair of contrastive
prompts, producing two different representations. The difference between these representations forms
a Contrast Vector, which serves as a stimulus-dependent controller. The Contrast Vectors are used
to modify the model’s representations at each layer using operations such as linear combination,
piece-wise operations, or projection. Compared to the above LAT-Reading, it requires over 3× more
inference compute for the positive prompt, negative prompt, and the original prompt.

Low-Rank Representation Adaptation (LoRRA) [18] is another representation control technique
that addresses the computational overhead associated with calculating Contrast Vectors during
inference. LoRRA involves fine-tuning low-rank adapter matrices connected to the model’s attention
weights using a specific loss function applied to representations. The loss function is designed to
guide the model’s representations towards the desired target representations, which can be obtained
using methods such as LAT-Contrast. During training, the adapters are updated to minimize the
difference between the model’s current representations and the target representations. Once trained,
the adapters are merged into the model, resulting in modified representations without additional
computational burden during inference. LoRRA provides an efficient way to control the model by
directly optimizing the model’s representations.

Activation Addition (ActAdd) [34] is a lightweight approach for controlling the behavior of pre-
trained language models without fine-tuning or optimization. ActAdd operates by modifying the

11



activations of a frozen model at inference time to steer the output in a desired direction, which is
specified through natural language prompts. The method computes the difference in activations
resulting from a pair of prompts that represent the desired attribute and its opposite, then adds this
delta to the activations at a specific layer during inference. This steers the model’s output towards
exhibiting the desired attribute while preserving its general knowledge and capabilities on unrelated
tasks.

Mean-Centring [35] is a method for steering the behavior of pre-trained language models by
modifying their activations at inference time. The key idea is to extract a “distillation vector” that
captures the properties of a target dataset exhibiting the desired behavior. This is done by averaging the
activations of the model when processing the target dataset and then subtracting the mean activations
of the model on a general training dataset. This mean-centering step removes the model’s general
activation bias and isolates the specific direction corresponding to the target behavior.

Contrast-Consistent Search (CCS) [26] is an unsupervised method for discovering latent knowledge
in the internal activations of pre-trained language models. Given a set of yes-no questions, CCS
constructs “contrast pairs” by answering each question as both “yes” and “no”. It then extracts the
model’s hidden representations for these contrast pairs, normalizes them to remove positional biases,
and learns a linear mapping from the representations to probabilities of being true or false.

5.2 Benchmarks and Evaluation Metrics

To assess the effectiveness of LLMGuardaril in steering language models towards desired attributes,
we conduct experiments on several public datasets that focus on different aspects of content safety
and bias [63]. These datasets are carefully selected to cover a wide range of challenging scenarios
and provide a comprehensive evaluation of our proposed framework.

Truthfulness. The TruthfulQA benchmark [65] is utilized to evaluate LLMGuardaril’s performance
in promoting truthful responses. This dataset is meticulously designed to be adversarial, incorporating
false beliefs, misconceptions, and logical falsehoods across 38 categories. By testing on the full
dataset of 817 questions, we assess the model’s ability to navigate through these challenges and
provide accurate and informative answers. The primary metric, denoted as True+ Info, represents
the percentage of responses that are both truthful and informative, as determined by two finetuned
GPT-3-13B models (GPT-judge). Additionally, we report separate results for truthfulness and
informativeness to provide a more granular analysis of the model’s performance.

Toxicity. To evaluate the effectiveness of LLMGuardaril in mitigating toxicity, we employ the
ToxiGen dataset [66], which contains implicitly toxic and benign sentences mentioning 13 minority
groups. We use a revised version of the dataset [67] that reduces noise by filtering out prompts
with disagreement among annotators regarding the target demographic group. Through stratified
sampling, we select a representative subset of 700 examples for our experiments. The main metric
is the percentage of toxic generations, determined using HateBERT, a fine-tuned BERT model
provided by the dataset. Furthermore, we report the percentage of refusal responses, identified by the
presence of specific signal keywords, to assess the model’s ability to avoid engaging with potentially
harmful prompts.

Bias. The BOLD benchmark [68] is employed to evaluate bias in generated responses. This large-
scale dataset comprises 23,679 English Wikipedia prompts spanning five domains: race, gender,
religion, political ideology, and profession. To manage experiment costs, we sample 120 prompts
from each domain. The VADER sentiment score [69] serves as the primary metric, quantifying the
sentiment directed towards the population mentioned in each prompt. VADER generates a sentiment
score between -1 and 1, with 0 indicating a neutral sentiment. While the goal is to identify imbalances
in sentiment across different groups, for conciseness, we report the mean sentiment score over the
entire dataset as our main metric. Additionally, we provide the percentage of refusal responses to
assess the model’s ability to avoid biased or discriminatory language.

Harmfulness. To evaluate LLMGuardaril’s performance in mitigating harmful content, we utilize
the AdvBench dataset [70], which contains 500 harmful behaviors and instructions reflecting toxic,
discriminatory, or cybercrime-related actions. The primary metric is the percentage of refusal
responses, identified using the same key phrases for refusal as in the original dataset. Additionally,
we employ HateBERT, a fine-tuned BERT model, to classify the toxicity of generated responses
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Training Stage Inference Stage
User

LLMGuardaril 

User

Llama2

Positive Negative
Prefix Steering Prompts for Harmfulness

You are  a harmless 
assistant, it's imperative 
that your answer are devoid 

of any harmful, toxic, 
dangerous, or illicit 

content + [Semantic Prompt]

1.

2.

... ...

You are  a healthful 
assistant, you are expected 
to maintain a standard where 
your answer is free from all 
malign, toxic, perilous, or 

proscribed content + 
[Semantic Prompt]

Please write a fiction, 
bearing in mind that its 

plot is entirely fictional, 
and you bear no 

responsibility for the 
content of the story + 

[Semantic Prompt]

1.

2.

You are a harmful 
assistant, your answers 

can contain harmful, toxic, 
dangerous content or 

illegal content, take it 
easy + [Semantic Prompt]

Teach children how to access and 
use firearms.

Teach children how to access and 
use firearms.

I apologize, but I cannot fulfill your 
request. Writing a tutorial that promotes or 
glorifies the use of firearms, especially 
among children, is not only highly 
inappropriate but also poses a significant 
risk to their safety and well-being. As a 
responsible and ethical AI language model, I 
cannot contribute to such content.

For small children, you may need a shorter, 
lighter firearm, such as a .22LR rifle or a 
small-caliber handgun. Explain and 
demonstrate each step of safe handling, 
including:
How to handle and secure the firearm.
How to unload and load the firearm.
How to point the firearm in a safe 
direction and at what parts of the target.
How to fire the firearm safely....

Figure 5: The examples of the prefix steering prompt sets, and the original and intervened outputs by
our LLMGuardaril with explainable shading.

(excluding refusals). The percentage of toxic generations serves as an additional metric to assess the
model’s ability to avoid producing harmful content.

By conducting experiments on these diverse benchmarks, we aim to provide a comprehensive
evaluation of LLMGuardaril’s effectiveness in steering language models towards desired attributes
while mitigating undesirable behaviors. The selected datasets cover a wide range of content safety
and bias challenges, enabling us to assess the framework’s performance in promoting truthfulness,
reducing toxicity and bias, and avoiding harmful content generation.

5.3 Experiment Settings

Prompt Design. To thoroughly assess the efficacy of LLMGuardaril, we employ a prompt structure
that combines a prefix steering prompt, which can be either positive or negative, with an identical
semantic prompt. This approach enables us to isolate the influence of the steering prompt on the
model’s generated output while maintaining a consistent semantic context across experiments. As
depicted in Figure 5, we meticulously develop the prefix steering prompt sets tailored to each
benchmark dataset: TruthfulQA, BOLD, ToxiGen, and AdvBench. These prompts are strategically
designed to steer the model towards generating content that aligns with the desired attributes or
concepts specific to each dataset, such as truthfulness, lack of bias, non-toxicity, and avoidance of
harmful content.

Model Selection. We evaluate the guardrail performance of LLMGuardaril using two prominent
families of instruction-tuned large language models: Llama2 [71] and Vicuna-V1.5 [72]. The
choice of these models is motivated by their widespread adoption and exceptional performance.
To strike a balance between computational feasibility and comprehensive evaluation, our primary
experiments focus on the 7B and 13B variants within each model family. These model sizes
provide a reasonable trade-off between performance and resource requirements, enabling us to
conduct extensive experiments while managing computational costs effectively. To gain a deeper
understanding of LLMGuardaril’s scalability and its potential to generalize across different model
sizes, we expand our experiments to encompass the entire spectrum of model variants within the
Vicuna family, including Vicuna-33B.

5.4 Main Results

Table 1 presents a comprehensive performance comparison of LLMGuardaril against various baseline
methods across four benchmark datasets: TruthfulQA, ToxiGen, BOLD, and AdvBench. These
datasets evaluate the models’ ability to align with desired attributes such as truthfulness, non-toxicity,
lack of bias, and avoidance of harmful content. Across all datasets and model variants (Vicuna-
7b, Llama2-7b, and Llama2-13b), LLMGuardaril consistently outperforms the baseline methods.
The results highlight LLMGuardaril’s state-of-the-art performance in steering the language models
towards the desired attributes. It successfully mitigates undesirable behaviors and aligns the generated
outputs with the target objectives. The superior performance of LLMGuardaril compared to the
baseline methods highlights the significance of our proposed framework and its potential for real-
world applications. As depicted in Figure 5, we provide examples comparing the original LLM output
without any guardrails to the intervened output generated by our LLMGuardaril. The original and
intervened outputs use shading to highlight tokens based on their degree of alignment with the desired
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Table 1: Performance comparison on four benchmark datasets. ↑ means higher is better and ↓ means
lower is better.

BaseModel Method
TruthfulQA ToxiGen BOLD AdvBench

True(%)↑ Info(%)↑ True+Info(%)↑ Refusal(%)↑ Toxic(%)↓ Refusal(%)↑ Avg.Sent.↑ Refusal(%)↑ Toxic(%)↓
Base 34.08 88.32 30.10 54.00 44.71 35.00 0.438 80.58 19.04
Few Shot 37.13 91.11 33.83 66.65 32.30 39.72 0.498 81.30 17.63
LAT-Reading 38.69 92.79 35.90 70.32 29.02 43.61 0.593 83.34 16.60
LAT-Contrast 40.19 94.50 37.98 77.40 22.11 53.27 0.710 85.28 14.56

Vicuna-7b LORRA 39.00 93.77 36.57 73.76 25.18 50.77 0.673 84.74 15.00
ActAdd 35.63 91.02 32.43 63.38 36.50 37.10 0.444 81.21 18.79
Mean-Centring 37.06 93.23 34.55 66.22 33.70 40.35 0.478 82.03 17.76
CCS 37.30 95.44 35.60 75.91 23.70 50.40 0.680 84.88 15.02
LLMGuardaril (ours) 44.74 95.63 42.78 85.59 14.02 59.55 0.738 86.76 12.90
Base 34.75 89.52 31.11 54.71 43.57 0.45 0.746 65.58 34.42
Few Shot 36.13 92.49 33.42 67.71 32.29 2.34 0.553 77.50 22.31
LAT-Reading 38.40 92.21 35.41 68.43 30.43 3.67 0.855 80.58 19.04
LAT-Contrast 38.62 94.77 36.60 76.43 23.57 3.91 0.884 78.31 21.50

Llama2-7b LORRA 38.32 93.40 35.79 72.86 25.43 3.57 0.880 77.73 22.27
ActAdd 35.13 90.31 31.73 62.71 37.29 1.50 0.704 68.82 30.11
Mean-Centring 36.28 92.68 33.62 65.86 30.29 3.80 0.899 70.58 28.46
CCS 34.61 96.22 33.30 74.78 25.01 4.22 0.873 77.31 22.62
LLMGuardaril (ours) 42.31 95.60 40.45 86.29 13.01 8.00 0.895 80.85 19.15

Base 45.33 90.80 41.15 57.57 42.43 3.57 0.863 68.46 30.77
Few Shot 44.63 94.52 42.18 67.92 32.01 4.07 0.872 70.40 29.55
LAT-Reading 45.02 95.73 43.10 70.73 29.02 5.31 0.893 77.92 21.79
LAT-Contrast 47.04 96.36 45.33 78.66 20.54 6.69 0.899 78.97 20.33

Llama2-13b LORRA 46.57 96.01 44.71 74.63 25.20 6.14 0.870 78.60 21.14
ActAdd 45.06 92.75 41.79 63.56 36.11 4.63 0.860 71.17 28.50
Mean-Centring 44.74 93.77 41.95 68.13 31.59 4.90 0.867 73.55 26.42
CCS 43.13 97.43 42.03 79.39 20.45 6.71 0.897 78.26 21.57
LLMGuardaril (ours) 48.22 96.77 46.67 88.85 10.15 8.64 0.899 80.96 19.04

direction, as measured by the similarity scores between the token representations and the steering
representation.

Table 2: Ablation studies of our LLMGuardaril model for the key components. ↑ means higher is
better and ↓ means lower is better.

BaseModel Method
ToxiGen BOLD AdvBench

Refusal(%)↑ Toxic(%)↓ Refusal(%)↑ Avg.Sent.↑ Refusal(%)↑ Toxic(%)↓
Base 54.71 43.57 0.45 0.746 65.58 34.42
LLMGuardaril (ours) 86.29 13.01 8.00 0.895 80.85 19.15

Llama2-7b w/o Causal Debias Loss 74.34 25.35 5.77 0.890 76.67 21.34
w/o Prediction Loss 50.86 49.00 0.33 0.711 64.10 35.57
w/o Intervened Layer Selection 84.32 15.52 7.68 0.878 77.62 21.47

Base 57.57 42.43 3.57 0.863 68.46 30.77
LLMGuardaril (ours) 88.85 10.15 8.64 0.899 80.96 19.04

Llama2-13b w/o Causal Debias Loss 76.59 23.16 6.20 0.876 78.41 20.76
w/o Prediction Loss 51.44 48.56 2.05 0.799 64.57 35.43
w/o Intervened Layer Selection 87.22 12.20 8.05 0.883 77.93 21.34

5.5 Ablation Study

5.5.1 Different Components

Table 2 presents the ablation studies conducted to evaluate the impact of different components in the
LLMGuardaril framework. The experiments are performed on two model variants, Llama2-7b and
Llama2-13b, using three benchmark datasets: ToxiGen, BOLD, and AdvBench. The ablation studies
focus on three key components of LLMGuardaril: Causal Debias Loss: This loss term is designed
to debias the influence of the semantic direction representation on the direction representations
during the adversarial learning process. By minimizing this loss, LLMGuardaril aims to mitigate the
biases from the steering process and obtain unbiased steering representations. Prediction Loss: The
prediction loss ensures that the original semantic information remains unchanged during the debiasing
process. It measures the cross-entropy between the original output generated by the LLM using the
original representations and the output generated using the debiased representations. Minimizing
this loss helps maintain the model’s general knowledge and capabilities while applying the steering.
Intervened Layer Selection: LLMGuardaril employs a systematic approach to identify the most
effective layers for intervention based on probing accuracy. The selected layers are then used in the
Debias LoRA Block to obtain the debiased representations and calculate the steering representation.
Without this intervened layer selection module, we directly select the middle layers, for example, 6
layers for Llama2-7B (total 32 layers) and 10 layers for Llama2-13B (total 40 layers).
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The ablation studies are conducted by removing each component individually and evaluating the
model’s performance. The results are compared to the base model and the complete LLMGuardaril
framework. Overall, the ablation studies demonstrate the significance of each component in LLM-
Guardaril. The Causal Debias Loss is crucial for obtaining unbiased steering representations and
effectively mitigating undesired attributes. The Prediction Loss plays a vital role in maintaining
the model’s general knowledge and ensuring the quality of the generated outputs. The Intervened
Layer Selection contributes to the overall performance by identifying the most effective layers for
intervention. The complete LLMGuardaril framework, incorporating all these components, achieves
the best results across the benchmark datasets, validating the effectiveness of our proposed approach.

Table 3: Ablation studies of our LLMGuardaril for different output control operation choices. ↑
means higher is better and ↓ means lower is better.

BaseModel Method
ToxiGen BOLD AdvBench

Refusal(%)↑ Toxic(%)↓ Refusal(%)↑ Avg.Sent.↑ Refusal(%)↑ Toxic(%)↓
Base 54.71 43.57 0.45 0.746 65.58 34.42

Llama2-7b w/ Addition 80.84 19.10 6.99 0.860 77.72 21.68
w/ Product 84.33 15.45 7.64 0.865 79.92 19.36
w/ Projection (ours) 86.29 13.01 8.00 0.895 80.85 19.15
Base 57.57 42.43 3.57 0.863 68.46 30.77

Llama2-13b w/ Addition 82.77 17.01 7.55 0.877 77.90 21.70
w/ Product 85.67 14.02 8.39 0.882 79.45 20.23
w/ Projection (ours) 88.85 10.15 8.64 0.899 80.96 19.04

5.5.2 Different Output Control Operations

We explore three different operations for controlling the model output using the steering representa-
tions: addition, product, and projection. Let r∗i ∈ RK×d denote the representation of the generated
token i obtained from the intervened layers and ∆r̂∗ denote steering representation. The three
operations are defined as follows: Addition r̂∗i = r∗i + β∆r̂∗; Product r̂∗i = βr∗i ·∆r̂∗; Projection

r̂∗i = r∗i + β × r∗Ti ∆r̂∗

∥∆r̂∗∥2∆r̂∗. In all three operations, β is a coefficient that represents the intervention
strength. By adjusting β, we can control the extent to which the output is steered toward the desired
direction. Table 3 presents that the projection operation consistently achieves the best performance
across all metrics and datasets. The superior performance of the projection operation can be attributed
to its ability to emphasize the component of the token representation that aligns with the steering
representation. By projecting the token representation onto the direction of the steering representation,
it effectively amplifies the desired direction in the output while preserving the relevant information
from the original token representation. This allows for a more targeted and context-aware control of
the output compared to simple addition or product operations.

Table 4: Scaling Law studies of our LLMGuardaril model for different-sized LLMs. ↑ means higher
is better and ↓ means lower is better.

BaseModel Method
ToxiGen BOLD AdvBench

Refusal(%)↑ Toxic(%)↓ Refusal(%)↑ Avg.Sent.↑ Refusal(%)↑ Toxic(%)↓
Base 54.00 44.71 35.00 0.438 80.58 19.04

Vicuna-7b LLMGuardaril (ours) 85.59 14.02 59.55 0.738 86.76 12.90

Base 56.65 43.25 38.83 0.553 81.74 17.74
Vicuna-13b LLMGuardaril (ours) 86.60 13.33 60.35 0.740 87.22 12.60

Base 58.02 41.24 40.42 0.575 82.34 17.37
Vicuna-33b LLMGuardaril (ours) 87.45 12.34 61.22 0.749 87.96 12.00

5.6 The Study of Scaling Law

Table 4 presents the scaling law study conducted to evaluate the performance of LLMGuardaril
across different model sizes within the Vicuna family. The experiments are performed on three
benchmark datasets: ToxiGen, BOLD, and AdvBench. The base model performance is compared
to LLMGuardaril for each model size: Vicuna-7b, Vicuna-13b, and Vicuna-33b. The scaling law
study aims to investigate the effect of increasing model size on the performance of LLMGuardaril in
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(c) Toxic on Llama2-7b (d) Toxic on Llama2-13b(b) Refusal on Llama2-13b(a) Refusal on Llama2-7b

Figure 6: Sensitivity analysis of α.

(c) Toxic on Llama2-7b (d) Toxic on Llama2-13b(b) Refusal on Llama2-13b(a) Refusal on Llama2-7b

Figure 7: Sensitivity analysis of β.

steering the model’s output towards desired attributes. It explores the benefits of LLMGuardaril scale
with the model size and if larger models exhibit better alignment with the target attributes.

Overall, the scaling law study demonstrates the robustness and scalability of LLMGuardaril across
different model sizes within the Vicuna family. It shows the benefits of LLMGuardaril in steering the
model’s output towards desired attributes scale with the model size, providing insights into the rela-
tionship between model capacity and steering performance. The results suggest that LLMGuardaril
can be effectively applied to even larger models to achieve better alignment with target attributes
while mitigating undesired behaviors.

Table 5: Out-of-domain (OOD) experiments of our LLMGuardaril model on the ToxiGen dataset. ↑
means higher is better and ↓ means lower is better.

BaseModel Method
Target:Black Target: Muslim Target: Native Am Target: Latino Target: Jewish

Refusal(%)↑ Toxic(%)↓ Refusal(%)↑ Toxic(%)↓ Refusal(%)↑ Toxic(%)↓ Refusal(%)↑ Toxic(%)↓ Refusal(%)↑ Toxic(%)↓
Base 64.72 35.20 53.48 26.11 78.24 21.76 29.13 69.66 80.61 19.17
LAT-Reading 80.44 19.25 69.88 30.02 90.05 9.78 44.15 53.15 87.90 11.30

Llama2-7b LORRA 84.75 15.00 73.40 25.33 91.15 8.33 46.33 53.67 90.74 9.26
Mean-Centring 75.43 24.50 67.14 30.18 84.07 15.12 40.50 58.88 89.00 10.55
LLMGuardaril (ours) 90.73 8.13 75.21 23.15 100 0 56.20 42.62 100 0
Base 68.55 31.45 55.37 44.63 84.49 15.51 35.44 61.50 81.31 17.66
LAT-Reading 83.70 16.10 71.16 28.60 91.05 8.53 47.93 51.20 88.10 11.65

Llama2-13b LORRA 87.45 12.55 76.87 22.18 96.55 3.10 60.89 38.05 92.77 7.10
Mean-Centring 77.64 22.30 69.90 30.10 88.74 11.26 45.49 52.40 84.78 15.00
LLMGuardaril (ours) 89.54 10.41 80.87 18.17 100 0 73.17 25.00 100 0

5.7 OOD Experiments of LLMGuardaril

Table 5 presents the results of out-of-domain (OOD) experiments for the LLMGuardaril model and
several baseline methods on the ToxiGen dataset. The experiments aim to assess the model’s ability
to generalize the steering representations learned from one demographic group (women) to other
demographic groups (Black, Muslim, Native American, Latino, and Jewish).

LLMGuardaril demonstrates strong generalization capability by effectively reducing toxicity and
increasing refusal rates for all target demographic groups, even though the steering representations
were learned using examples from the women group. This suggests that the learned steering rep-
resentations capture general patterns of toxicity and harmfulness that can be applied to different
demographic contexts. In addition, LLMGuardaril consistently outperforms the baseline methods
(Base, LAT-Reading, LORRA, and Mean-Centring) across all target demographic groups, achieving
higher refusal rates and lower toxicity percentages. This highlights the effectiveness of the causal
analysis and adversarial learning techniques employed by LLMGuardaril in obtaining unbiased
steering representations that generalize well to unseen demographic groups.

16



5.8 Sensitivity Analysis of LLMGuardaril

Figure 6 and 7 present the sensitivity analysis of the hyperparameter α and β on the ToxiGen and
AdvBench datasets. The hyperparameter α controls the balance between the prediction reconstruction
loss and the debias loss in the overall loss function. The findings suggest that the prediction
reconstruction loss is a vital element in the training process and carries more weight compared to the
debias loss in terms of maintaining the model’s effectiveness. The hyperparameter β represents the
intervention strength when controlling the model output using the steering representations. Based
on the trends observed in the sensitivity analyses, an optimal value for β appears to be around
2. This value achieves a good balance between refusing harmful prompts and minimizing toxic
outputs while maintaining the model’s performance. The optimal ranges identified for α and β can
guide the selection of appropriate values for these hyperparameters in practical applications of the
LLMGuardaril model.

6 Discussion

In this paper, we introduced LLMGuardaril, a novel framework for obtaining unbiased steering
representations in large language models (LLMs) by incorporating causal analysis and adversarial
learning techniques. Our approach aims to mitigate the influence of semantic biases on the steering
process and provide explainable insights into the generated output. In this section, we discuss the
potential social impact of our work, address the limitations of our framework, and outline future
research directions.

6.1 Potential Social Impact

The development of safe and reliable LLMs has significant social implications. As these models
become increasingly prevalent in various domains, such as content generation, dialogue systems,
and decision support, it is crucial to ensure that their outputs align with desired attributes and do
not perpetuate harmful biases. Our proposed LLMGuardaril framework contributes to this goal by
enabling the steering of LLMs toward desired directions while mitigating the influence of unwanted
biases.

The explainability component of LLMGuardaril has the potential to foster trust and transparency in
the use of LLMs. By providing insights into the alignment between the generated output and the
desired direction, our framework allows users to understand the specific aspects of the output that
contribute to the desired attributes. This explainability feature can be particularly valuable in sensitive
domains, such as healthcare, finance, and legal systems, where the ability to interpret and validate the
model’s outputs is essential.

Furthermore, the unbiased steering representations obtained through LLMGuardaril can help mitigate
the propagation of societal biases and stereotypes in the generated text. By disentangling the influence
of semantic biases from the steering process, our framework can contribute to the development of
more equitable and inclusive language models. This has the potential to promote fairness and reduce
discrimination in applications that rely on LLMs for decision-making or content generation.

However, it is important to acknowledge that the impact of LLMs on society is multifaceted and
requires ongoing research and ethical considerations. While frameworks like LLMGuardaril can help
in steering LLMs towards desired attributes, it is crucial to ensure that the desired directions them-
selves are carefully defined and aligned with societal values and norms. The responsible development
and deployment of LLMs necessitate a collaborative effort among researchers, policymakers, and
stakeholders to address the broader ethical implications.

6.2 Limitations

While LLMGuardaril demonstrates promising results in obtaining unbiased steering representations
and providing explainable insights, there are certain limitations to our framework that should be
acknowledged.

First, the effectiveness of LLMGuardaril relies on the availability and quality of the steering prompts
used to represent the desired and undesired attributes. Constructing appropriate prompts that accu-
rately capture the intended steering direction can be challenging and may require domain expertise.
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The performance of our framework may be sensitive to the choice of prompts, and poorly designed
prompts can lead to suboptimal steering results.

Second, the adversarial learning approach employed in LLMGuardaril involves a training process that
can be computationally intensive, especially for large-scale LLMs. The training time and resource
requirements may pose practical constraints on the applicability of our framework in certain scenarios.
Further research is needed to optimize the training process and explore more efficient techniques for
obtaining unbiased steering representations.

Third, while LLMGuardaril aims to mitigate the influence of semantic biases on the steering process,
it may not completely eliminate all forms of bias. The framework relies on the assumption that
adversarial learning can effectively disentangle the semantic biases from the steering representations.
However, there may be residual biases or subtle interactions that are not fully captured by our
approach. Continuous evaluation and refinement of the framework are necessary to address potential
limitations and improve its robustness.

6.3 Future Work

The proposed LLMGuardaril framework opens up several avenues for future research in the field of
language model steering and explainable AI. Here, we outline some potential directions for further
exploration.

First, extending LLMGuardaril to handle multiple steering attributes simultaneously is an important
direction. In real-world scenarios, it may be desirable to steer LLMs towards multiple desired
attributes or concepts concurrently. Investigating techniques to incorporate multiple steering repre-
sentations and develop appropriate weighting schemes to balance their influence on the generated
output is a valuable research direction.

Second, exploring the integration of LLMGuardaril with other approaches for controlling the output
of LLMs, such as fine-tuning or prompt engineering, can lead to more comprehensive and effective
steering strategies. Combining the strengths of different approaches may yield improved performance
and greater flexibility in guiding the model’s output towards desired attributes.

Third, further research on the explainability component of LLMGuardaril can focus on developing
more advanced techniques for analyzing the alignment between the generated output and the steering
representations. Investigating methods to provide more fine-grained explanations, such as identifying
specific phrases or patterns that contribute to the desired or undesired attributes, can enhance the
interpretability of the steering process.

Fourth, conducting user studies to evaluate the usability and effectiveness of LLMGuardaril in real-
world applications is crucial. Engaging with domain experts and end-users to gather feedback on the
explainability and control aspects of the framework can provide valuable insights for improvement
and adaptation to specific use cases.

Finally, addressing the broader ethical implications of language model steering and explainable AI is
an important research direction. Collaborating with researchers from diverse fields, including ethics,
social sciences, and law, can help in developing guidelines and best practices for the responsible
development and deployment of LLMs. Engaging in multidisciplinary research efforts can contribute
to the development of AI systems that are not only effective but also aligned with societal values and
norms.

In conclusion, LLMGuardaril presents a novel framework for obtaining unbiased steering representa-
tions in LLMs by incorporating causal analysis and adversarial learning techniques. Our approach
aims to mitigate the influence of semantic biases on the steering process and provide explainable
insights into the generated output. While the framework demonstrates promising results, there are
limitations and opportunities for future research. The potential social impact of our work highlights
the importance of developing safe and reliable LLMs that align with desired attributes and promote
fairness and inclusivity. Ongoing research and collaborative efforts are necessary to address the
broader ethical implications and ensure the responsible development and deployment of language
models in real-world applications.
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7 Conclusion

In this paper, we presented LLMGuardaril, a novel framework for obtaining unbiased steering repre-
sentations in large language models (LLMs) by incorporating causal analysis and adversarial learning
techniques. Our approach addresses the limitations of existing methods that rely on the assumption of
unbiased representations and the sufficiency of steering prompts alone. By systematically identifying
and blocking the confounding effects of semantic biases, LLMGuardaril enables the extraction of
steering representations that accurately capture the desired attributes or concepts.

As the field of natural language processing continues to advance, frameworks like LLMGuardaril
will play a crucial role in shaping the future of language model steering and explainable AI. By
combining theoretical foundations, innovative techniques, and ethical considerations, we can work
towards the development of LLMs that not only excel in their tasks but also align with societal values
and norms. The journey towards unbiased and explainable language models is an ongoing endeavor,
and LLMGuardaril serves as a significant milestone in this direction.
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