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ABSTRACT

In this paper we consider the collective field theory description of the singlet sector of a
free matrix field in 2+1 dimensions. This necessarily involves the study of k-local collective
fields, which are functions of 2k + 1 coordinates. We argue that these coordinates have a
natural interpretation: the k-local collective field is a field defined on an AdS4×Sk−2×Sk−1

spacetime. The modes of a harmonic expansion on the Sk−2×Sk−1 portion of the spacetime
leads to the spinning bulk fields of the dual gravity theory.
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1 Introduction

Collective field theory [1,2] provides a constructive approach to gauge theory/gravity duali-
ties [3–5]. By expressing the gauge theory in terms of invariant collective fields, the original
loop expansion parameter of the field theory (ℏ) is replaced by 1

N
[1, 2]. The theory of the

collective fields is the gravitational theory - see [6–10] for some compelling examples.

The collective field theory description of the singlet sector of a free hermitian massless
scalar matrix theory in 2+1 dimensions was initiated in [11]. The action of the theory is

S =

∫
d3x

1

2
Tr(∂µϕ ∂

µϕ) (1.1)
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The free matrix is expected to be dual to the tensionless limit of a string theory [12]. In this
setting, the collective fields are k-local operators obtained by tracing a product of k-matrices.
Following [8] we work in an equal x+ description so the k-local operator

σk(x
+, x−1 , x1, x

−
2 , x2, · · · , x−k , xk) = Tr

(
ϕ(x+, x−1 , x1)ϕ(x

+, x−2 , x2) · · ·ϕ(x+, x−k , xk)
)
(1.2)

is a function of 2k + 1 coordinates. This represents a challenge to the collective field theory
construction of holography: since the gravitational theory is defined in an asymtotically
AdS4 spacetime, it is clear that 4 coordinates are needed to describe the dual spacetime.
What is the interpretation of the remaining 2k− 3 coordinates? If the collective field theory
does indeed reconstruct the gravity theory, these additional coordinates must also have a
natural gravity interpretation. This is a remarkable claim. It is precisely this question that
is considered in this paper.

To construct the mapping between the conformal field theory and the dual gravity the-
ory1, it is helpful to perform a Fourier transform on both sides of the duality, replacing x−

by p+ in the conformal field theory, and X− by P+ in AdS4. In terms of these conformal
field theory coordinates, the coordinates of the bulk AdS4 spacetime are [11,13]

X =

∑k
i=1 p

+
i xi∑k

j=1 p
+
j

Z =

√∑k
i=1 p

+
i v

2
i(∑k

j=1 p
+
j

) 3
2

P+ =
k∑

i=1

p+i X+ = x+ (1.3)

where

vi =
k∑

j=1

p+j (xi − xj) (1.4)

To understand the role of the additional 2k − 3 coordinates, note that the k-local collective
field is a product of scalars, each of which transforms in the dimension ∆ = 1

2
and spin s = 0

representation2 of SO(2,3). The collective field is therefore in a highly reducible representa-
tion, given by taking the tensor product of k copies of the (1

2
, 0) representation with cyclic

symmetry (from the cyclicity of the trace) imposed. The reducible representation of a given
collective field decomposes into a direct sum of an infinite number of irreducible represen-
tations. Each irreducible representation corresponds to a unique primary operator and the
collective field packages this infinite collection of primaries. For a detailed explanation of
what primaries can be recovered from the k-local collective field the reader can consult [11].
The extra coordinates present in the collective field theory description are needed to collect
these primary operators in a systematic way.

Each primary operator contained in the collective field is dual to a bulk field. The
beautiful series of papers [14–19] has developed the description of these spinning fields in

1We use little letters to refer to the coordinates of spacetime of the conformal field theory and capital

letters to refer to the coordinates of AdS4.
2We label irreducible representations of SO(2,3) using the dimension and spin as (∆, s).
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light front AdS. In particular, each field corresponds to a representation (∆, s) of SO(2,3)
and the bulk equation of motion for each such field is known. Using the relation between the
coordinates (1.3), this infinite set of bulk equations of motion can be translated into equations
in the collective field theory. In the collective field theory they become equations which set
the second quadratic Casimir of SO(2,3) to the correct value for the (∆, s) representation,
i.e. they extract the correct primary operator from the multilocal collective field [11]. This
demonstrates that the infinite number of bulk equations of motion are obeyed in the collective
field theory description. This is almost a solution to the bulk reconstruction problem for
the complete set of excitations of this tensionless string theory. All that is missing is a
demonstration that the reconstructed bulk field obeys the correct boundary condition, i.e.
that it obeys the so called GKPW rule [4,5]. This is the problem we address in this article. We
will see that it is intimately related to the interpretation of the additional 2k−3 coordinates
of the collective field theory description.

Our intuition comes from the bilocal collective field which has k = 2. In this case, the
problem we consider has already been solved [8]. For the bilocal

σ2(x
+, x−1 , x1, x

−
2 , x2) = Tr

(
ϕ(x+, x−1 , x1)ϕ(x

+, x−2 , x2)
)

(1.5)

where 2k−3 = 1 there is a single extra coordinate and it is an angle. This bilocal field can be
written as the sum of a large N expectation value of the field, denoted σ0

2(x
+, x−1 , x1, x

−
2 , x2),

plus a fluctuation η2(x
+, x−1 , x1, x

−
2 , x2) as follows

3

σ2(x
+, x−1 , x1, x

−
2 , x2) = σ0

2(x
+, x−1 , x1, x

−
2 , x2) +

1

N
η2(x

+, x−1 , x1, x
−
2 , x2) (1.6)

It is the fluctuation η2(x
+, x−1 , x1, x

−
2 , x2) that is identified with the dynamical higher spin

gravity fields. The mapping between the coordinates of the collective field theory and those
of the bulk gravity is given by

X =
p+1 x1 + p+2 x2
p+1 + p+2

Z =

√
p+1 p

+
2 (x1 − x2)

p+1 + p+2
X+ = x+

P+ = p+1 + p+2 θ = 2 tan−1

(√
p+2
p+1

)
(1.7)

A Fourier expansion of the bilocal collective field with respect to this angle gives the different
bulk fields as the Fourier modes

Φ =
∞∑
s=0

(
cos(2sθ)

AXX···XX(X+, P+, X, Z)

Z
+ sin(2sθ)

AXX···XZ(X+, P+, X, Z)

Z

)
= 2πP+ sin θ η2(X

+, P+ cos2
θ

2
, X + Z tan

θ

2
, P+ sin2 θ

2
, X − Z cot

θ

2
) (1.8)

3The coefficient of η2 ensures that it has an order 1 two point function as we take N → ∞. Here η2 is

the normal ordered trace of a product of two matrices.
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Here AXX···XX(X+, P+, X, Z) and AXX···XZ(X+, P+, X, Z) are the two independent and
physical components of the spin 2s gauge field in light cone gauge [14]. If one takes the
limit that Z → 0, using the above identification of the bulk field in terms of the fluctuation
η, one finds a close connection to all of the conserved spinning currents (for s > 0) and to
the scalar field Tr(ϕ2). This is the complete set of primary operators of the conformal field
theory packaged in the bilocal collective field. The basis of this connection comes from the
identity obtained by evaluating cos(2sθ) with the angle defined in (1.3)

(p+1 + p+2 )
2s cos (2sθ1) = (p+1 + p+2 )

2s cos

(
4s tan−1

√
p+2
p+1

)

= (2s)!(4s− 1)!!
2s∑
k=0

2s−k∑
l=0

(−1)k (p+1 )
k(p+2 )

2s−k

k!(2s− k)!(2k − 1)!!(4s− 2k − 1)!!
(1.9)

There is an obvious connection to the formula for the primary current

O++···+
s = (2s)!(4s− 1)!!

2s∑
k=0

2s−k∑
l=0

(−1)k ∂+ kϕ ∂+2s−kϕ

k!(2s− k)!(2k − 1)!!(4s− 2k − 1)!!
(1.10)

This connection was used in [9] to argue that the bilocal collective field theory correctly
reproduces the GKPW rule, after changing from de Donder to light cone gauge. In this way,
the change to collective bilocal fields and the subsequent change of coordinates (1.3) provides
a detailed and exact identification between independent degrees of freedom in the conformal
field theory and physical and independent degrees of freedom in the higher spin gravity
[20]. The collective field theory of the bilocals explicitly realizes [21] entanglement wedge
reconstruction [22] and it is manifestly [23] consistent with the principle of the holography
of information [24]. This discussion makes it clear that the extra coordinate θ, in the case
of the bilocal collective fields, is responsible for a systematic organization of the primary
operators contained in the collective field.

It is natural to guess that for other values of k something similar will happen and the
extra coordinates are again responsible for a systematic accounting of the primaries captured
in the collective fields. Exploring this expectation is the key goal of this article.

In Section 2 we derive a set of 2k + 1 bulk coordinates for the k-local collective field.
The AdS bulk coordinates given in (1.3) are 4 of these coordinates. The remaining 2k − 3
coordinates are determined by requiring that they are independent4 of these 4 bulk AdS
coordinates. In Section 3 we argue that the complete set of coordinates of the k-local
collective field parametrizes the AdS4×Sk−2×Sk−1 spacetime. The modes of a harmonic
expansion on the Sk−2×Sk−1 factor of the geometry are the bulk fields of the dual gravity
theory. In Section 4, we show in detail for the trilocal collective field, that the GKPW rule
does indeed hold. Finally, we present our conclusions in Section 5.

4The derivative of these 2k − 3 coordinates with respect to the bulk coordinates vanishes.
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2 Bulk coordinates

The mapping between the coordinates of the collective field theory and those of the dual
AdS4 spacetime are given in (1.3) above. Derivatives with respect to the AdS coordinates
are given by

∂

∂X
=

k∑
j=1

∂

∂xj

∂

∂Z
=

1

Z

∑k
i=1 vi

∂
∂xi∑k

j=1 p
+
j

∂

∂P+
=

∑k
i=1 p

+
i

∂
∂p+i∑k

j=1 p
+
j

∂

∂X+
=

∂

∂x+
(2.1)

2.1 Trilocal Collective Field

We start with a study of the trilocal collective field. For this case 2k−3 = 3 so the collective
field theory has 3 coordinates in addition to those associated with the AdS4 bulk. With
these three additional coordinates the mapping between the coordinates of the collective
field theory and those of the bulk AdS theory exchanges

{x+, x1, x2, x3, p+1 , p+2 , p+3 } ↔ {X+, P+, X, Z, u1, u2, u3} (2.2)

Our first task is to determine suitable coordinates u1, u2 and u3. First, we require that

∂

∂P+
ui = 0 i = 1, 2, 3 (2.3)

which restricts how the ui depend on p+1 , p
+
2 , p

+
3 : they depend on these three coordinates

through the two ratios
p+1
p+2

and
p+1
p+3
. There is some arbitrariness in the choice of exactly which

two ratios to take, but all choices are simply reparametrisations of each other. We also
require that

∂

∂X
ui = 0 i = 1, 2, 3 (2.4)

which restricts how the ui depend on x1, x2, x3: they only depend on the two differences
x12 = x1 − x2 and x13 = x1 − x3. There is again some arbitrariness in this choice. Other
choices are again simply reparametrisations of this one. Finally, we must also require that

∂

∂Z
ui = 0 i = 1, 2, 3 (2.5)

which restricts how the ui depend on the differences x12 and x13: they only depend on the
ratio x12

x13
. The conclusion is that the three constraints (2.3), (2.4) and (2.5) have constrained

the dependence on the six coordinates x1, x2, x3, p
+
1 , p

+
2 , p

+
3 to a dependence on the three

coordinates

u1 =
x12
x13

, u2 =
p+1
p+2

u3 =
p+1
p+3

(2.6)
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To check this argument we can test whether the change of coordinates between x1, x2, x3, p
+
1 , p

+
2 , p

+
3

and X,Z, P+, u1, u2, u3 is a valid change of coordinates i.e. if it is invertible. It is indeed
invertible, with the result

X =
p+1 x1 + p+2 x2 + p+3 x3

p+1 + p+2 + p+3
Z =

√
p+1 v

2
1 + p+2 v

2
2 + p+3 v

2
3(

p+1 + p+2 + p+3
) 3

2

P+ = p+1 + p+2 + p+3 X+ = x+

u1 =
x12
x13

u2 =
p+1
p+2

u3 =
p+1
p+3

(2.7)

where vi is defined in (1.4) and the inverse transformation is

x1 = X + Z
u1u3 + u2√

u2u3(u21u3 + u21 − 2u1 + u2 + 1)
p+1 =

P+u2u3
u2u3 + u2 + u3

x2 = X − Z

√
u2(u1u3 + u1 − 1)√

u3(u21u3 + u21 − 2u1 + u2 + 1)
p+2 =

P+u3
u2u3 + u2 + u3

x3 = X + Z

√
u3(u1 − u2 − 1)√

u2(u21u3 + u21 − 2u1 + u2 + 1)
p+3 =

P+u2
u2u3 + u2 + u3

(2.8)

Given the connection between (1.9) and (1.10), the appearance of u2 and u3 as bulk
coordinates is rather natural. These two variables are needed to produce a polynomial in the
p+i that reproduces the combination of derivatives needed to construct a primary operator,
exactly as in (1.10) for the bilocal case. The variable u1 at first appears much less natural.
What is the role of this coordinate? Recall that we make contact with primary operators
in the conformal field theory in the Z → 0 limit of the bulk theory. Since the light cone
momenta p+i are all positive, the formula for Z in (2.7) implies that we must send each of
the vi → 0. It is simple to verify that

xi − xj =
vi − vj

p+1 + p+2 + p+3
(2.9)

Thus, sending all of the vi → 0 implies that we must take x1, x2 and x3 to be coincident.
There are many different ways we can do this. For example, we might first take x12 → 0
by computing the OPE between the fields at x1 and x2. We could follow this by taking the
OPE of the result of this first OPE with the field at x3. Alternatively, we could have started
with the OPE between the fields at x1 and x3, and as a second step take the OPE with
the field at x2. The OPE channel we use is dictated by the locations of the operators. The
rule is that we must take the product of operators that are closest first. The specific linear
combination of primaries we obtain depends on which OPE channel we use, and so on how
we take the coincident limit. Lets focus on the case that x1 > x2 and x1 > x3, for example.
In this case, to obtain the coincident limit we can set

x12 = δAϵ x13 = δBϵ u1 =
δA
δB

(2.10)
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and take ϵ → 0. If 0 ≤ u1 <
1
2
and if the OPE is to converge, we must first take the OPE

between the fields at x1 and x2, and then take the OPE with the field at x3. If
1
2
< u1 < 1

and if the OPE is to converge, we must first take the OPE between the fields at x2 and x3,
and then take the OPE with the field at x1. Thus, one role of the variable u1 is to keep
track of what OPE must be performed to take the coincident limit and extract local primary
operators.

2.2 Quadlocal Collective Field

Next, consider the quadlocal collective field. In this case there are 2k − 3 = 5 coordinates
in addition to the 4 coordinates of the AdS4 bulk. The mapping between the coordinates of
the collective field theory and those of the bulk AdS theory exchanges

{x+, x1, x2, x3, x4, p+1 , p+2 , p+3 , p+4 } ↔ {X+, P+, X, Z, u1, u2, u3, u4, u5} (2.11)

Working exactly as above we find

X =
p+1 x1 + p+2 x2 + p+3 x3 + p+4 x4

p+1 + p+2 + p+3 + p+4
Z =

√
p+1 v

2
1 + p+2 v

2
2 + p+3 v

2
3 + p+4 v

2
4(

p+1 + p+2 + p+3 + p+4
) 3

2

P+ = p+1 + p+2 + p+3 + p+4 X+ = x+

u1 =
x12
x14

, u2 =
x13
x14

u3 =
p+1
p+2

u4 =
p+1
p+3

u5 =
p+1
p+4

(2.12)

and the inverse transformation

x1 = X − Z
(u1u4u5 + u3(u2u5 + u4))√

f(u1, u2, u3, u4, u5)

x2 = X + Z
u3(u5(u1 − u2) + u4(u1u5 + u1 − 1))√

f(u1, u2, u3, u4, u5)

x3 = X + Z
u4(u5(u2 − u1) + u3(u2u5 + u2 − 1))√

f(u1, u2, u3, u4, u5)

x4 = X + Z
u5(−u1u4 + u3(−u2 + u4 + 1) + u4)√

f(u1, u2, u3, u4, u5)

p+1 =
u3u4u5P

+

u3(u4u5 + u4 + u5) + u4u5

p+2 =
u4u5P

+

u3(u4u5 + u4 + u5) + u4u5

p+3 =
u3u5P

+

u3(u4u5 + u4 + u5) + u4u5

p+4 =
u3u4P

+

u3(u4u5 + u4 + u5) + u4u5
(2.13)

where

f(u1, u2, u3, u4, u5) = u3u4u5

(
u5(u1 − u2)

2 + u1u4(u1u5 + u1 − 2)

7



+u3
(
u2(u2u5 + u2 − 2) + u4 + 1

)
+ u4

)
(2.14)

The interpretation of the extra coordinates ui is clear: one role of the pair of variables u1
and u2 is to track what OPE channel is used when taking Z → 0, while the variables u3, u4
and u5 are needed to build the polynomials in the p+i that provide the correct combination
of derivatives to produce the primaries.

2.3 k-local Collective Field

The results given above suggest a natural generalization. The k-local collective field has a
total of 2k + 1 coordinates. The corresponding bulk coordinates are

P+ =
k∑

i=1

p+i X =

∑k
i=1 p

+
i xi∑k

j=1 p
+
j

Z =

√∑k
i=1 p

+
i v

2
i(∑k

j=1 p
+
j

) 3
2

X+ = x+ (2.15)

as well as the additional k − 2 coordinates of the form

uj =
x1 − xj+1

x1 − xk
j = 1, 2, · · · , k − 2 (2.16)

and the k − 1 coordinates of the form

uk−2+j =
p+1
p+j+1

j = 1, 2, · · · k − 1 (2.17)

One role of the extra coordinates ui with i = 1, 2, · · · , k − 2 is to keep track of what OPE
channel is used when taking Z → 0, while the variables uk−2+i with i = 1, 2, · · · k − 1 are
needed to build the polynomials in the p+i that provide the combination of derivatives which
produce the primaries.

Given this set of bulk coordinates, we can ask how they are to be interpreted. We turn
to this question in the next section.

3 Interpretation of the extra coordinates

In light cone gauge a complete gauge fixing of the gravity has been carried out in [14]. The
massless fields (correponding to the bilocal collective field) of the higher spin gravity theory
are a scalar field plus an infinite collection of spinning gauge fields. In light cone gauge the
choice of gauge eliminates all + polarizations of the spinning gauge fields, while solving the
associated gauge constraints removes the − polarizations. Thus, the completely gauge fixed
description involves only the X and Z components of tensors. The spin part of rotations,
denoted MXZ , is related to the single angle θ that participates in the bilocal map as follows

MXZ =
∂

∂θ
(3.1)

This provides a nice interpretation of the extra angle θ of the bilocal collective field and it
suggests that a study of MXZ will be useful for the study of multilocal collective fields.

8



3.1 Trilocal Collective Field

In what follows, we focus on the trilocal collective field. Notice that all of the primaries
collected in the trilocal collective field are dual to massive fields in the AdS4 gravity. In
the case of the trilocal, it is possible to express MXZ in terms of the conformal field theory
coordinates [11]. The result is

MXZ =

∑3
i,j=1 p

+
j (xi − xj)

2 ∂
∂xi

− 2
∑3

i=1 p
+
i vi

∂
∂p+i

2
√∑3

i>j=1 p
+
i p

+
j (xi − xj)2

(3.2)

A tedious but otherwise straight forward computation shows that

MXZ =
u2u3 + u2 + u3

√
u2u3

√
u21 + u21u3 − 2u1 + u2 + 1

(
(1− u1)

2
u1

∂

∂u1
− u1u2

∂

∂u2
− u3

∂

∂u3

)
(3.3)

The fact that MXZ is expressed entirely in terms of u1, u2 and u3 is an encouraging sign.

At this point it is useful to recall some of the features of the light cone description of the
gravity theory developed in [14–19]. The equation of motion is given by(

2∂+∂− + ∂2X + ∂2Z − A

Z2

)
|ϕ⟩ = 0 (3.4)

where A is called the AdS mass operator. It can be written as

A = κ2 − 1

4
(3.5)

MXZ , together with the operator κ above and their commutator (which we call τ) close an
su(2) algebra. Bulk AdS4 fields in a definite SU(2) representation, with a definite value for κ,
are in a definite conformal representation and hence they correspond to a particular primary
operator in the conformal field theory. This follows because, as we explain below, the SU(2)
Casimir is related to the SO(2,3) Casimir. Since we expect that the extra coordinates ui
are organizing primary operators, it is a useful exercise to study this su(2) algebra. Towards
this end note that the operator κ, written in terms of the coordinates of the collective field,
is [11]

κ =

√
p+1 p

+
2 p

+
3

p+1 + p+2 + p+3

(
x2 − x3
p+1

∂

∂x1
+
x3 − x1
p+2

∂

∂x2
+
x1 − x2
p+3

∂

∂x3

)
(3.6)

κ can also be expressed in terms of u1, u2 and u3 as follows

κ =
u21(u3 + 1)− 2u1 + u2 + 1√

u2u3 + u2 + u3

∂

∂u1
(3.7)

The operator τ in terms of the coordinates of the collective field is

τ =

√
p+1 p

+
2 p

+
3√

p+1 + p+2 + p+3
√
p+1 p

+
2 (x1 − x2)2 + p+1 p

+
3 (x1 − x3)2 + p+2 p

+
3 (x2 − x3)2

×

9



(
(p+1 + p+2 + p+3 )

(
(x2 − x3)

∂

∂p+1
+ (x3 − x1)

∂

∂p+2
+ (x1 − x2)

∂

∂p+3

)
−v1(x2 − x3)

2p+1

∂

∂x1
− v2(x3 − x1)

2p+2

∂

∂x2
− v3(x1 − x2)

2p+3

∂

∂x3

)
(3.8)

It also has an expression in terms of u1, u2 and u3, but since the formula is not enlightening
and we do not need it for any computations below, we will not quote it. The three generators

G1 = −κ G2 = 2τ G3 = −2MXZ (3.9)

close the usual su(2) algebra

[G1, G2] = G3 [G2, G3] = G1 [G3, G1] = G2 (3.10)

It is useful to change from u1, u2 and u3 to the three angles α1, α2 and α3

tan(α1) =
1− u1 − u1u3√
u2u3 + u2 + u3

tan(α2) = −
√
u3 + 1

√
u2u3

u3

tan(α3) =
√
u3 (3.11)

of a three sphere S3 =S1×S2. The inverse coordinate transformation is

u1 = cos2(α3) (1− tan(α1) sec(α2) tan(α3))

u2 = tan2(α2) sin
2(α3)

u3 = tan2(α3) (3.12)

In terms of these angles, the mapping between bulk and boundary becomes

x1 = X − Z
cos(α1) cot(α3)− cos(α2) sin(α1)

sin(α2)
p+1 = P+ sin2(α2) sin

2(α3)

x2 = X − Z sin(α1) tan(α2) p+2 = P+ cos2(α2)

x3 = X − Z
cos(α1) tan(α3) + cos(α2) sin(α1)

sin(α2)
p+3 = P+ sin2(α2) cos

2(α3)

(3.13)

A significant advantage of this change of variables is that it takes the generators defined
in (3.9) to the standard form of the su(2) Killing vectors on S3, which are

G1 =
∂

∂α1
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G2 = − sinα1 cotα2
∂

∂α1

+ cosα1
∂

∂α2

+
sinα1

sinα2

∂

∂α3

G3 = cosα1 cotα2
∂

∂α1

+ sinα1
∂

∂α2

− cosα1

sinα2

∂

∂α3

(3.14)

It is well known that the eigenfunctions of these Killing vectors are the Wigner functions

Dl
mµ = eimα3dlmµ(cosα2)e

iµα1 (3.15)

where

dlmµ(x) =

√
(l −m)!(l +m)!

(l − µ)!(l + µ)!
(1− x)

m+µ
2 (1 + x)−

m−µ
2 P

(−m−µ,−m+µ)
l+m (x) (3.16)

P
(a,b)
l+m (x) is a Jacobi polynomial

P (a,b)
n (x) =

(−1)2

2nn!
(1− x)−a(1 + x)−b d

n

dxn
[
(1− x)a+n(1 + x)b+n

]
(3.17)

and l runs over the non-negative integers whilem,µ = −l,−l+1, · · · , 0, 1, · · · , l. The Wigner
functions, evaluated on our angles, can be simplified to

Dl
mµ =

(√
p+3 + i

√
p+1√

p+1 + p+3

)m

dlmµ

(√
p+2

p+1 + p+2 + p+3

)

×

√p+1 p
+
3 (p

+
1 + p+2 + p+3 ) + i

√
p+2 (p

+
3 − u1(p

+
1 + p+3 ))√

(p+1 + p+3 )
(
p+1
(
p+2 u

2
1 + p+3

)
+ p+2 p

+
3 (u1 − 1)2

)
µ

(3.18)

We immediately have (µ is an eigenvalue while κ and G1 are operators)

G1D
l
mµ = −κDl

mµ = µDl
mµ (3.19)

Thus, the Wigner functions are eigenfunctions of κ and hence of the AdS mass operator.
They therefore correspond to a definite fall off behaviour of the bulk field as we take Z → 0
as explained in Appendix F. Two more important properties of the Wigner functions are
that they obey an orthogonality relation (i.e. the Dl

mµ(αi) form a set of orthogonal functions
of the angles αi)∫ 2π

0

dα3

∫ π

0

dα2 sinα2

∫ 2π

0

dα1 D
l′

m′µ′(α1, α2, α3)
∗Dl

mµ′(α1, α2, α3) =
8π2

2l + 1
δm′mδµ′µδl′l

(3.20)

and, by the Peter–Weyl theorem, they form a complete set [25]. Consequently, we can use
them as a basis in terms of which we can expand the trilocal collective field. It is natural to
expect that the coefficients of this harmonic expansion will reproduce the primary operators
in the limit that Z → 0. We develop this expectation in the next section.
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Finally, we will argue in Section 3.3 that the trilocal field has a natrual interpretation as
a field on AdS4×S1×S2, where the S1 has coordinate α1 and the S2 has coordinates α2, α3.
One might have expected that the basis provided by cos(nα1) and sin(nα1), as well as the
spherical harmonics Y l

m(α2, α3) would provide a suitable basis for a harmonic expansion. In
addition, this basis seems to be simpler than the basis provided by the Wigner functions.
The Wigner functions have a clear advantage. The Wigner functions span irreducible SU(2)
representations of the Killing vectors. For a given value of l, the Wigner functions Dl

mµ have
a definite value for the SU(2) Casimir of the Killing vectors

C2,SU(2) = (G1)
2 + (G2)

2 + (G3)
2 (3.21)

This Casimir has a simple relation to the quadratic Casimir of SO(2,3) (M,N are summed
over −1, 0, 1, 2, 3)

C2,SO(2,3) =
1

2
LMNL

NM (3.22)

where we write LMN = −LNM in terms of the conformal generators as

Lµν = Jµν Lµ−1 =
1

2
(Pµ +Kµ)

L−1 3 = −D Lµ3 =
1

2
(Pµ −Kµ) (3.23)

The indices M and N are raised and lowered with the metric η = diag(−1,−1, 1, 1, 1) as
usual. The relation between the two Casimirs is

1

µ(xi, p
+
i )
C2,SU(2)µ(xi, p

+
i ) = −2

(
C2,SO(2,3) +

(
3

2

)2
)

(3.24)

where5

µ(xi, p
+
i ) =

√
p+1 p

+
2 p

+
3

√
P+Z (3.25)

This relation has been determined by direct computation, using mathematica. Thus, the
Wigner functions, for a definite value of l, span a definite SO(2,3) representation. See
Appendix A for further discussion and uses of (3.24).

3.2 Quadlocal Collective Field

In Appendix B we match the generators of the conformal group for the case of the quadlocal
collective field. This allows us to determine the AdS mass operator which plays a central
role in the analysis of this section. The AdS mass operator can be written as

A =
4∑

a=1

κ2a (3.26)

5The su(2) generators act in the bulk AdS4 theory. The C2,so(2,3) Casimir acts in the conformal field

theory. The factor µ defines the usual similarity transformation that must be performed when switching

between bulk and boundary. See [11] for more details. The specific form of the conformal generators used

are given in Appendix B.1 of [11].
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where

κd =
4∑

a=1

4∑
b=1

4∑
c=1

ϵabcd

√
p+a p

+
b (xa − xb)

2
√
p+c
√
p+1 + p+2 + p+3 + p+4

∂

∂xc
(3.27)

The κ operators close an interesting algebra

[κa, κb] =
4∑

c,d=1

ϵabcd
√
p+c√

p+1 + p+2 + p+3 + p+4
κd (3.28)

These operators are not all independent. They obey the relation√
p+1 κ1 +

√
p+2 κ2 +

√
p+3 κ3 +

√
p+4 κ4 = 0 (3.29)

It is possible to express MXZ in terms of the conformal field theory coordinates as

MXZ =

∑4
i,j=1 p

+
j (xi − xj)

2 ∂
∂xi

− 2
∑4

i=1 p
+
i vi

∂
∂p+i

2
√∑4

i>j=1 p
+
i p

+
j (xi − xj)2

(3.30)

The AdS mass operator A as well asMXZ should be independent of the bulk AdS coordinates.
Using the coordinate transformation defined in (2.13) we can verify that both the κa and
MXZ can be expressed entirely in terms of the ui variables. For example, the result for κ1 is

κ1 =
u1u5(u1 − u2)− u2u3 + u3√
u3(u4u5 + u4 + u5) + u4u5

∂

∂u1
+

u2u5(u1 − u2) + (u1 − 1)u4√
u3(u4u5 + u4 + u5) + u4u5

∂

∂u2
(3.31)

and MXZ is given by

MXZ =
(u3(u4u5 + u4 + u5) + u4u5)√

u3u4u5 (u5(u1 − u2)2 + u1u4(u1u5 + u1 − 2) + u3(u2(u2u5 + u2 − 2) + u4 + 1) + u4)

×
(
u1u3

∂

∂u3
+

1

2
(u1 − 1)u1

∂

∂u1
+ u2u4

∂

∂u4
+

1

2
(u2 − 1)u2

∂

∂u2
+ u5

∂

∂u5

)
(3.32)

The ui coordinates can be used to define five angles. The necessary formulas, which are
rather complicated, have been collected in Appendix C. Using these formulas, we find the
following form the generators κi

κ1 = − cos(α3)
∂

∂α2

κ2 = (tan(α1) sin(α2) cos(α4) + sin(α3) sin(α4))
∂

∂α2

+ cos(α2) cos(α4)
∂

∂α1

κ3 = (tan(α1)(cos(α2) cos(α5)− sin(α2) sin(α4) sin(α5)) + sin(α3) cos(α4) sin(α5))
∂

∂α2

− (cos(α2) sin(α4) sin(α5) + sin(α2) cos(α5))
∂

∂α1

13



κ4 = (sin(α3) cos(α4) cos(α5)− tan(α1)(sin(α2) sin(α4) cos(α5) + cos(α2) sin(α5)))
∂

∂α2

+ (sin(α2) sin(α5)− cos(α2) sin(α4) cos(α5))
∂

∂α1

(3.33)

as well as the map between the original coordinates xi and p+i of the quadlocal collective
field and the bulk coordinates is given by

x1 = X +
cos(α3) sin(α1)

sin(α3)
Z

x2 = X − sin(α3) sin(α4) sin(α1)− cos(α4) cos(α1) sin(α2)

cos(α3) sin(α4)
Z

x3 = X − sin(α3) cos(α4) sin(α5) sin(α1) + sin(α4) sin(α5) cos(α1) sin(α2)− cos(α5) cos(α1) cos(α2)

cos(α3) cos(α4) sin(α5)
Z

x4 = X − sin(α3) cos(α4) cos(α5) sin(α1) + sin(α4) cos(α5) cos(α1) sin(α2) + sin(α5) cos(α1) cos(α2)

cos(α3) cos(α4) cos(α5)
Z

p+1 = P+ sin2(α3)

p+2 = P+ cos2(α3) sin
2(α4)

p+3 = P+ cos2(α3) cos
2(α4) sin

2(α5)

p+4 = P+ cos2(α3) cos
2(α4) cos

2(α5) (3.34)

These are remarkably simple relations, particularly given the awkward intermediate results
summarized in Appendix C.

3.3 k-local Collective Field

The structure we have found above explains how angles are to be identified in general. There
is a geometrical construction that starts with the observation that the mapping between bulk
and boundary can be written as

xi = X +

√∑k
l=1 p

+
l

p+i
βiZ (3.35)

where

βi =

√
p+i vi

Z(
∑k

l=1 p
+
l )

3
2

(3.36)

Although it is not manifest from this formula, the βi are functions only of the bulk variables
ui i.e. they are independent of X, Z and P+. To see this one must write the right hand side
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of this last equation entirely in terms of bulk coordinates. The βi define components of a
unit vector

k∑
i=1

β2
i = 1 (3.37)

Now introduce k − 1 angles, defined entirely in terms of the light cone momenta as follows

tan(αk−2+i) =

√
p+i∑k

l=i+1 p
+
l

i = 1, 2, · · · , k − 1 (3.38)

In terms of these angles we now define a set of k− 1 vectors n̂i, which we call the composite
vectors, because they describe how the composite collective field is constructed from the k
free scalar fields. These vectors are orthonormal

n̂i · n̂j = δij (3.39)

They are also all orthogonal to the unit vector n̂p+ which, by definition, has its ith entry

equal to
√
p+i /P

+. The first i− 1 entries of n̂i are zero and the ith entry is cos(αk−2+i). We
then complete the vectors to obtain an orthonormal set. See Appendix D for examples of
the composite vectors for the quadlocal and quintlocal collective fields. From these examples
there is an obvious pattern which can be followed to construct the composite vectors for
k-local collective fields. We now define the final k − 2 angles with the identification

β⃗ = sin(α1)n̂1 + cos(α1) sin(α2)n̂2 + cos(α1) cos(α2) sin(α3)n̂3

+ · · ·+
k−2∏
i=1

cos(αi)n̂k−1 (3.40)

The angles αi define the complete set of 2k − 3 additional bulk coordinates. Together with
Z, P+, X and X+ this completely accounts for the 2k+1 coordinates of the k-local collective
field.

The geometrical structure we have uncovered here is intimately related to the structure
of the κ algebra (3.28) as we now explain. For concreteness we focus on the case of the
quadlocal collective field. However, the argument revolves around the structure of the κ
operators, and as we explain in Appendix E, this has a natural generalization for any k-local
collective field. For the quadlocal collective field the form of βi is

β⃗ = sin(α1)n̂1 + cos(α1) sin(α2)n̂2 + cos(α1) cos(α2)n̂3 (3.41)

The unit vectors n⃗1, n⃗2 and n⃗3 are functions only of the light cone momenta p+i so that

κi(n̂j) = 0 i = 1, 2, 3, 4 j = 1, 2, 3 (3.42)

It is simple to prove that the action of κ on β⃗ is given by

κi(βj) =
4∑

k=1

4∑
l=1

ϵijkl(n̂p+)kβl (3.43)
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Now, make the ansatz

κi = gi(α1, α2)
∂

∂α1

+ fi(α1, α2)
∂

∂α2

(3.44)

By taking a dot product between n̂1 and β⃗ in (3.43) we obtain

κi(n̂1 · β⃗) = gi cos(α1) = ϵijkl(n̂1)j(n̂p+)k(cos(α1) cos(α1) (3.45)

Next, using the easy to verify result

4∑
i=1

4∑
j=1

4∑
k=1

4∑
l=1

ϵijkl(n̂2)i(n̂1)j(n̂p+)k(n̂3)l = 1 (3.46)

it is a simple exercise to obtain

n̂2 · g⃗ = cos(α2) n̂3 · g⃗ = − sin(α2) n̂1 · g⃗ = 0 = n̂p+ · g⃗ (3.47)

which implies that

g⃗ = cos(α2)n̂2 − sin(α2)n̂3 =


0

cos(α4) cos(α2)
− sin(α4) sin(α5) cos(α2)− cos(α5) sin(α2)
− sin(α4) cos(α5) cos(α2) + sin(α5) sin(α2)

(3.48)
This argument has correctly reproduced the coefficient of ∂α1 in the operator κi. A very
similar argument shows that

f⃗ = −n̂1 + sin(α2) tan(α1)n̂2 + tan(α1) cos(α2)n̂3 (3.49)

which is the correct coefficient of ∂α2 in the operator κi. Finally, note that f⃗ · g⃗ = 0.

It is natural to ask what space the coordinates αi describe. The statement that n̂p+ ·n̂p+ =
1 is the statement that

k∑
i=1

(
√
p+i )

2 = P+ (3.50)

This describes a k − 1 sphere Sk−1 in the space with coordinates6
√
p+i . The k − 1 angles

defined in (3.38) are the coordinates of this sphere. See (3.13) and (3.34) for transparent
examples of these angles in the case of the trilocal and quadlocal collective fields. The βi
obey β⃗ · n̂p+ = 0 as well as (3.37). This implies that they describe a k − 2 sphere Sk−2 in
the space orthogonal to n̂p+ . The equation (3.40) describes exactly how the k − 2 angles αi

i = 1, 2, · · · , k − 2 parametrize this space. Consequently the 2k − 3 angles αi parametrize
the space Sk−1×Sk−2. Thus, the k-local collective field is defined on an AdS4×Sk−1×Sk−2

spacetime and the decomposition of the collective field into bulk fields of a definite spin would
exploit harmonic expansions on the product of spheres Sk−2×Sk−1. Based on experience
with the trilocal collective field, the correct basis for this expansion is probably not simply
spherical harmonics depending on αi i = 1, 2, · · · k − 2 multiplied by spherical harmonics
depending on αk−2+i i = 1, 2, · · · , k − 1. For the trilocal we know that this basis does not
respect the SO(2,3) symmetry.

6Since the p+i are all positive they can naturally be interpreted as the square of a coordinate.
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4 Boundary Condition

Based on experience7 with the bilocal, it is natural to expect that the Wigner functions
(3.20) will reproduce formulas for primary operators when expanded as a power series in the
momenta. The analogue of the expansion (1.8) is given by

Φ =
∑
l,m,µ

Dl
mµ(α1, α2, α3)H

l
m,µ(X

+, P+, X, Z)

=
√
p+1 p

+
2 p

+
3 P

+Zη3(x
+, p+1 , x1, p

+
2 , x2, p

+
3 , x3) (4.1)

In the same way that the modes cos(2sθ) and sin(2sθ) appearing in (1.8) encode the structure
of the two field primary operators (see formula (1.9) and (1.10)), we will see that the Wigner
functions Dl

mµ(α1, α2, α3) encode the structure of primary operators constructed using three
fields. In order to test this expectation, we begin with a discussion of the relevant primary
operators. Primary operators O have the lowest dimension in their conformal multiplet so
they are annihilated by the special conformal generatorKµ. The primary operators packaged
in the trilocal collective field are constructed from three fields. We make the ansatz

γ++···+
s =

s∑
k=0

s−k∑
l=0

dk,l(P
+)kϕ0(P

+)lϕ0(P
+)s−k−lϕ0 (4.2)

for these primary operators. Here ϕ0 is the free scalar field, which in 2+1 dimensions has
dimension 1

2
. We will determine the coefficients dk,l by requiring that Kµγ++···+

s = 0. The
commutators from the complete conformal algebra that we need are

[K−, P+] = −D + J+− [KX , P+] = J+X [K+, P+] = 0

[P+, D] = P+ [P+, J+X ] = 0 [P+, J+−] = −P+ (4.3)

The free scalar field ϕ0 obeys

K+ϕ0 = 0 K−ϕ0 = 0 KXϕ0 = 0

J+Xϕ0 = 0 J+−ϕ0 = 0 Dϕ0 = −1

2
ϕ0 (4.4)

It is also useful to work out the analogous formulas for the level k descendant of ϕ0, given
by (P+)kϕ0

K+(P+)kϕ0 = 0 KX(P+)kϕ0 = 0 K−(P+)kϕ0 =
(2k − 1)k

2
(P+)k−1ϕ0

J+X(P+)kϕ0 = 0 D(P+)kϕ0 = −(k +
1

2
)(P+)kϕ0 J+−(P+)kϕ0 = k(P+)kϕ0

(4.5)

7See formulas (1.9) and (1.10).
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As a confidence building check of our formulas, note that requiring that Kµψ++···+
s = 0 with

ψ++···+
s =

s∑
k=0

ck(P
+)kϕ0(P

+)s−kϕ0 (4.6)

we easily find

ck =
(−1)k

k!(2k − 1)!!(s− k)!(−2k + 2s− 1)!!
(4.7)

which is the correct answer for the spinning conserved current [26]. We easily find

K+γ++···+
s = 0 = KXγ++···+

s (4.8)

for any choice of the coefficients dk,l, while

K−γ++···+
s = 0 (4.9)

leads to the condition

s−1∑
k=0

s−k−1∑
l=0

d̃k,l(P
+)kϕ0(P

+)lϕ0(P
+)s−k−lϕ0 = 0 (4.10)

where

d̃k,l = dk+1,l(2k + 1)(k + 1) + dk,l+1(2l + 1)(l + 1) + dkl(2s− 2k − 2l − 1)(s− k − l)
(4.11)

The condition (4.10), when written in terms of the matrix valued fields, becomes

s−1∑
k=0

s−k−1∑
l=0

d̃k,lTr
(
∂+ kϕ ∂+ lϕ ∂+ s−k−lϕ

)
= 0 (4.12)

Taking the cyclicity of the trace into account, this implies that

d̃k,l + d̃l,s−k−l + d̃s−k−l,k = 0 (4.13)

The condition (4.13) must be obeyed by the coefficients dk,l of any primary operator con-
structed from the trace of derivatives of three scalar fields. We are now in a position to
explore the connection between the Wigner functions and primary operators.

To start, consider the Wigner function

Dl
00 = Pl

(√
p+2

p+1 + p+2 + p+3

)
(4.14)

with Pl(x) a Legendre polynomial. Using the known expansion of these polynomials we find
that

(p+1 + p+2 + p+3 )
sD2s

00 =
1

22s

s∑
k=0

(−1)k
(
2s

k

)(
4s− 2k

2s

)
(p+2 )

s−k(p+1 + p+2 + p+3 )
k
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=
s∑

k=0

s−k∑
l=0

dk,l(p
+
1 )

k(p+2 )
l(p+3 )

s−k−l (4.15)

where

dk,l =
s∑

q=k

(−1)q(4s− 2q)!θ(l + q − s)

22sk!(2s− q)!(2s− 2q)!(l + q − s)!(s− l − k)!
(4.16)

and our convention for the Heaviside function is that θ(x) = 1 for x ≥ 0. With this formula
it is straight forward to check that d̃k,l = 0 so that (4.13) is indeed obeyed. This is our
first indication that the basis functions of our harmonic expansion, the Wigner functions, do
indeed produce primary operators.

Notice that (4.15), after translating the momenta into derivatives, has produced a primary
operator with all indices set to +. Working with the equal x+ bilocal provides a description
of the dynamics in which the − polarization indices have been eliminated [20]. The x
polarizations must still appear, which implies that we should we should obtain a polynomial
in p+ (supplying the ∂x− derivatives) and in p (supplying the ∂x derivatives). A simple
example of a primary operator that does have x polarizations, is obtained by studying a
mode with κ = 1. In Appendix F we argue that any normalizable solution behaves as Z |κ|

as Z → 0. The primaries we have discussed up to this point have all had κ = 0 so that they
tend to a finite non-zero value as we go to the boundary Z → 0. The modes with κ = 1
correspond to fields that vanish as Z. To obtain a non-zero boundary value for these fields,
we need to take a derivative with respect to Z. The derivative with respect to Z has been
given in (2.1). A simple manipulation shows that

∂

∂Z
=

p1(p
+
2 u1 + p+3 ) + p2(p

+
3 (1− u1)− p+1 u1) + p3(p

+
2 (u1 − 1)− p+1 )√

p+1 p
+
2 u

2
1 + p+1 p

+
3 + p+2 p

+
3 (1− u1)2

(4.17)

Recall that the parameter u1, which tracks which OPE channel we are using, is given by

u1 =
x1 − x2
x1 − x3

(4.18)

Consider the channel in which we first take the product of the field at x1 with the field at
x2. When taking the first OPE we have x1 = x2 ̸= x3. This sets u1 = 0 and we have

∂

∂Z

∣∣∣∣
u1=0

=
p+3 (p1 + p2)− p3(p

+
1 + p+2 )√

p+3 (p
+
1 + p+2 )

(4.19)

The momentum operators, for the composite field at x1 = x2, are given by p1 + p2 and
p+1 + p+2 . The above formula thus looks rather natural. The appearance of square roots
in the momenta looks unnatural. We will see that all square roots cancel out of the final
formulas. Next consider the OPE channel in which we first take the product of the field at
x2 with the field at x3. In this case case, when taking the first OPE we have x3 = x2 ̸= x1.
This sets u1 = 1 and

∂

∂Z

∣∣∣∣
u1=1

=
p1(p

+
2 + p+3 )− (p2 + p3)p

+
1√

p+1 (p
+
2 + p+3 )

(4.20)
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We see the appearance of the momentum operator for the composite field at x2 = x3, as
well as the awkward square root factors. Finally, consider the OPE channel in which we first
take the product of the operators at x1 = x3. This time, when taking the first OPE we have
x1 = x3 ̸= x2 which sets u1 = ∞ and8

∂

∂Z

∣∣∣∣
u1=∞

=
p+2 (p1 + p3)− p2(p

+
1 + p+3 )√

p+2 (p
+
1 + p+3 )

(4.21)

It is this last channel that is relevant for our analysis. In this case, the OPE first produces a
composite from the fields at x1 and x3. This matches how the angle α2 and α3 are defined.
The angle α2 is defined using all three fields (it is a function of p+i for i = 1, 2, 3) but α3

is defined using only the fields at x1 and x3. The composite that appears in the u1 = ∞
channel is constructed from the fields at x1 and x3. Now consider the Wigner function with
l = 4, m = 0 and µ = 1 which is given by

D4
01 = i

√
5(−3p+1 + 4p+2 − 3p+3 )

√
p+2 (p

+
1 + p+3 )

×

(
p+2 u1(p

+
1 + p+3 ) + i

√
p+1 p

+
2 p

+
3 (p

+
1 + p+2 + p+3 )− p+2 p

+
3

)
4
√
p+2
(
p+2 (p

+
1 u1 + p+3 (u1 − 1))2 + p+1 p

+
3 (p

+
1 + p+2 + p+3 )

) (4.22)

As we explained above, we need to take a derivative of the mode this field multiplies, with
respect to Z. We also focus on the OPE channel specified by u1 = ∞9. After removing an
awkward overall constant we obtain

(p+1 + p+2 + p+3 )
2D4

01

∂

∂Z

∣∣∣∣
u1=∞

= p1
(
(p+2 )

2 − p+1 (p
+
2 + p+3 ) + (p+3 )

2
)

+p2
(
(p+1 )

2 − p+2 (p
+
1 + p+3 ) + (p+3 )

2
)
+ p3

(
(p+1 )

2 − p+3 (p
+
1 + p+2 ) + (p+2 )

2
)
(4.23)

To interpret this mode, consider the energy momentum tensor of the conformal field theory

Tµν = Tr
(
∂µϕ∂νϕ− ηµν

2
∂αϕ∂αϕ

)
+

1

8
Tr
(
ηµν∂α∂

α(ϕ2)− ∂µ∂ν(ϕ
2)
)

(4.24)

The second term above is the usual improvement needed to make Tµν traceless. This for-
mula defines a primary operator. Generalizing this formula we can construct the three field
primary operator10

Oµν =
1

2
Tr (ϕ∂µϕ∂νϕ+ ϕ∂νϕ∂µϕ− ηµνϕ∂

αϕ∂αϕ) +
1

8
Tr
(
ηµνϕ∂α∂

α(ϕ2)− ϕ∂µ∂ν(ϕ
2)
)

8Recall that there is a Z3 symmetry as a result of cyclicity of the trace. It is interesting to note that

under this Z3 we have the orbit u1 → u′
1 = 1− u−1

1 → u′′
1 = (1− u1)

−1 → u1. Consequently, u1 = ∞ maps

to u′
1 = 1 and then to u′′

1 = 0 so that all three channels are related by Z3.
9In this channel we have α1 = −π

2 so the non-trivial dependence on µ is in dlmµ.
10This simple generalization is only sure to work in the free field theory where anomalous dimensions

are not generated and the generators of the conformal group are simply given by the coproduct with no

additional corrections.
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From this formula we read off the components

O++ = −1

4

(
ϕϕ∂+2ϕ− 3ϕ∂+ϕ∂+ϕ

)
O+x = −1

8

(
2ϕϕ∂+∂xϕ− 3ϕ∂+ϕ∂xϕ− 3ϕ∂xϕ∂+ϕ

)
(4.25)

These three field primary operators translate into the following polynomials

O++ =
1

4
(p+2

1 − 3p+1 p
+
2 + p+2

2 − 3p+2 p
+
3 + p+2

3 − 3p+3 p
+
1 )

O+x =
1

8
(2p+1 p1 − 3p+1 p2 − 3p1p

+
2 + 2p2p

+
2 − 3p2p

+
3 − 3p+2 p3

+2p+3 p3 − 3p3p
+
1 − 3p+3 p1) (4.26)

It is now simple to verify that

D4
01

∂

∂Z

∣∣∣∣
u1=∞

=
8

5
(p1 + p2 + p3)O++ − 8

5
(p+1 + p+2 + p+3 )O+x (4.27)

The two coefficients, which are sums of momenta, become total derivates when translated
back to position space. Consequently, after going back to position space, the κ = 1 bulk
mode that we are studying becomes, in the Z → 0 limit, a sum of two descendants

8

5

(
∂xO++ − ∂+Ox+

)
(4.28)

The fact that we only find operators belonging to a particular SO(2,3) representation is a
consequence of the fact that our harmonic expansion uses the Wigner functions, as explained
in Section 3.1. To connect with that discussion, note that our primaries are built from three
fields, with two symmetric and traceless combinations of derivatives so that it has dimension
∆ = 7

2
and spin s = 2, leading to

C2,SO(2,3) = ∆(∆− 3) + s(s+ 1) =
31

4
(4.29)

With our conventions, the values of the SU(2) Casimir for the Wigner function Dl
mµ is

−l(l + 1), which gives −20 for our example. Thus, (3.24) shows that we are matching the
correct primary to the Wigner function we study. The behaviour (4.27) of the asymptotic
bulk field closely matches the behaviour found in [9] for the bilocal collective field. There
two derivatives of the bulk field, (∂+)2hxz evaluated at the boundary, reproduces the sum
of descendants ∂−j−x − 2∂xj−− of the primary conserved current. Together these results are
compelling evidence that the GKPW rule is reproduced.

The papers [27–30] have developed methods to construct primary operators in free field
theory. Above we have translated operators with derivatives into polynomials in momenta,
according to the rule∑

k,l

ck,lTr
(
∂+ kϕ ∂+ lϕ ∂+ s−k−lϕ

)
→

∑
k,l

ck,l(p
+
1 )

k(p+2 )
l(p+3 )

s−k−l (4.30)
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The papers [27–30] prove that if this polynomial in the momenta is translated into a poly-
nomial f(x1, x2, x3) by replacing

(p+k )
i → (2i− 1)!! (xk)

i (4.31)

then the resulting polynomial f(x1, x2, x3) is invariant under the action of Z3 on x1, x2, x3
(by cyclicity of the trace) and they are harmonic (by the free Klein-Gordon equation). If
f(x1, x2, x3) is also translation invariant, then the corresponding operator is primary. Using
mathematica it is a straight forward exercise to evaluate the Wigner functions Dl

mµ for a
given choice of l,m, µ and then to use the rule (4.31) to test if the resulting polynomial is
translation invariant. For µ ̸= 0 we also need to take |µ| derivatives with respect to Z.

In Appendix A we explicitly identify the Wigner functions associated to the primaries of
low dimension. This demonstrates that the primary operators of the conformal field theory
are indeed reproduced by the boundary behaviour of the collective field in precisely the
manner dictated by the GKPW rule.

5 Discussion and Conclusions

In this article we have studied the holography of a free matrix in 2+1 dimensions, using
collective field theory. The rearrangement of degree of freedom performed by collective field
theory ensures that the original loop expansion parameter of the conformal field theory (ℏ)
is replaced by loop expansion parameter 1/N . This is the loop expansion parameter of the
dual gravity theory. Collective field theory uses invariant variables as the basic degrees of
freedom. In our problem these are traces of a product of matrices, with each evaluated
at the same x+ but at distinct x− and x coordinates. Consequently, the collective field
constructed from k matrices is a k-local field, depending on x+ and the x−i , xi coordinates
of each field. The central result of this study is the interpretation of the complete collection
of 2k+ 1 coordinates. This is more compelling evidence that collective field theory provides
a construction of the AdS/CFT duality.

Our study has made use of recent progress related to understanding bulk locality in the
collective description [13] and to the description of multilocal operators [11]. Bulk locality
dictates how the AdS4 coordinates are constructed from those of the multi-local collective
fields. The equations of motion then map into the statement that the bulk field is dual
to a given primary and its descendants. Concretely, the bulk equation of motion amounts
to setting the quadratic Casimir of SO(2,3) to the value associated with the corresponding
primary operator [11]. In this article we have demonstrated that all 2k+1 coordinates of the
collective field have an interpretation in the dual gravity theory: the 2k+1 coordinates of the
k-local collective field parametrize the AdS4×Sk−2×Sk−1 spacetime. The modes defined by a
harmonic expansion on Sk−2×Sk−1 are the bulk fields of the dual gravity theory. Further we
have demonstrated that the orthogonal basis functions of the harmonic expansion are closely
related to primary operators. In particular we have demonstrated that the leading terms of
the bulk field in the Z → 0 limit reduces to three field primary operators, as dictated by the
GKPW rule. This is a very concrete extension of the proposals for holography of the vector
model first outlined in the prescient paper [7] and realized in detail in [8].
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A number of directions in which this work can be extended immediately suggest them-
selves. The fact that internal spheres Sk−2×Sk−1 collect the primary operators packaged
into the k-local collective field hints at new structures underlying the conformal field theory.
Understanding this structure in more detail as well as understanding its origin would be
extremely interesting. We have focused only on the trilocal (k = 3) collective fields. Higher
values of k should be studied. The connection between harmonic expansions on spheres and
the construction of primary operators that we have uncovered is a very natural extension of
the bilocal case studied in [31]. It would be instructive to establish this result for all k. Even
for k = 3 important questions remain. We have outlined one interesting question at the end
of Appendix A.

Our study has all been carried out for the free field theory. It would be interesting to turn
on interactions. In that case too, collective field theory dictates that the dynamics should be
written in terms of invariant fields. One must again face the question of the interpretation of
the extra coordinates that the collective field depends on. In the free case we studied here,
the extra coordinates parametrize internal spheres that collect all the primaries packaged into
the invariant field. Does this rather remarkable structure continue unchanged for interacting
theories? If not, what replaces it?

Finally, it would be interesting to obtain the holographic mapping relevant for equal time
collective fields. This collective field theory description would have a natural extension to
finite temperature [32–34] and has the potential to shed light on holography for spacetimes
with horizons.
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A Primary polynomials

Following the papers [27–30], polynomials corresponding to the primary operators packaged
in the trilocal collective field were written down in [11]. In this Appendix we will identify
some of these polynomials in terms of Wigner functions. This gives additional evidence
that we do indeed reproduce the primary operators as Z → 0 in the collective field theory
description.

According to [11] the polynomials corresponding to primary operators that can be ob-
tained from the trilocal collective field are given by

gn1 g
m
2 n,m = 0, 1, 2, · · · (A.1)
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gn1 g
m
2 ϵ · v n,m = 0, 1, 2, · · · (A.2)

gn1 g
m
2 Q1 n,m = 0, 1, 2, · · · (A.3)

and

gn1 g
m
2 Q2 n,m = 0, 1, 2, · · · (A.4)

where the building blocks for these polynomials are

g1 = (ϵ · (x1 − x2))
2 + (ϵ · (x2 − x3))

2 + (ϵ · (x3 − x1))
2

g2 = ϵ · (x1 + x2 − 2x3)ϵ · (x2 + x3 − 2x1)ϵ · (x3 + x1 − 2x2) (A.5)

as well as

vρ = ϵµνρ (x1,µx2,ν + x2µx3ν + x3µx1ν) (A.6)

Q1 = ϵ · (x1 − x2) ϵ · (x2 − x3) ϵ · (x3 − x1) (A.7)

Q2 = ϵ · (x1 − x2) ϵ · (x2 − x3) ϵ · (x3 − x1) ϵρϵ
µνρ (x1,µx2,ν + x2,µx3,ν + x3,µx1,ν) (A.8)

These should all be expressible in terms of Wigner functions. For low degrees we have
explicitly demonstrated that this is indeed the case. Here are some examples

g1 =
8

21
P
(
(p+1 + p+2 + p+3 )

2D4
00

)
g2 = −16

45
P
(
(p+1 + p+2 + p+3 )

3D6
00

)
Q1 = − 16

63
√
105

P
(
(p+1 + p+2 + p+3 )

3(D6
20 +D6

−20)
)

g21 =
256

10395
P
(
(p+1 + p+2 + p+3 )

4D8
00

)
g1g2 = − 512

61425
P
(
(p+1 + p+2 + p+3 )

5D10
00

)
g1Q1 = − 256

77805

√
2

165
P
(
(p+1 + p+2 + p+3 )

5(D10
20 +D10

−20)
)

(A.9)

where P(·) denotes the map from polynomials in momenta (p+i ) to polynomials in xi by
employing the rule (4.31). The primary polynomials reproduced above have not involved the
vρ or Q2 structures. These both involve ϵρϵ

µνρ which generates anti-symmetric combinations
of pi and p

+
i . We have seen that these are introduced by derivatives with respect to Z (see

formulas (4.17), (4.19), (4.20) and (4.21)), so that these primaries will be coded into Wigner
functions with κ ̸= 0.
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To end this Appendix, we use (3.24) to construct a dictionary between the Wigner func-
tions and the complete set of three field primary operators. By using character methods [11]
determined the spectrum of primary operators constructed using three fields. The compu-
tation evaluates the tensor product of three copies of the representation of the free scalar
field, while imposing the Z3 symmetry which arises from cyclicity of the trace. The result is

Cyc

(
(
1

2
, 0)⊗3

)
= (

3

2
, 0)⊕

∞⊕
n=0

(
(n+ 2)

(
9

2
+ 3n, 3n+ 3

)
⊕ n

(
9

2
+ 3n, 3n+ 2

)
⊕

⊕(n+ 1)

(
9

2
+ 3n− 1, 3n+ 2

)
⊕ (n+ 1)

(
9

2
+ 3n− 1, 3n+ 1

)
⊕

⊕(n+ 1)

(
9

2
+ 3n+ 1, 3n+ 4

)
⊕ (n+ 1)

(
9

2
+ 3n+ 1, 3n+ 3

))
(A.10)

There are two types of primaries appearing on this list. We have primaries with dimension
∆ = 3

2
+ s where s the spin takes the values s = 0 or s = 2, 3, 4, · · · . The quadratic Casimir

of these primaries is given by

C2,SO(2,3) = ∆(∆− 3) + s(s+ 1) = 2s2 + s− 9

4
(A.11)

Using the relation (3.24) this corresponds to

C2,SU(2) = − 2s(2s+ 1) (A.12)

We also have primaries with dimension ∆ = 3
2
+ s + 1 where the spin now takes values

s = 1, 2, 3, · · · . The quadratic Casimir of these primaries is given by

C2,SO(2,3) = 2s2 + 3s− 5

4
(A.13)

Again using the relation (3.24) this second family of primaries correspond to

C2,SU(2) = − (2s+ 1)(2s+ 2) (A.14)

Now, using the explicit form of the su(2) generators (3.14), the definition of the Casimir
(3.21) and the known Wigner functions, we easily find

C2,SU(2)D
l
mµ = −l(l + 1)Dl

mµ (A.15)

Consequently, the primaries with dimension ∆ = 3
2
+ s correspond to bulk fields associated

with the Wigner functions D2s
mµ while the primaries with dimension ∆ = 3

2
+s+1 correspond

to bulk fields associated with the Wigner functions D2s+1
mµ .

This dictionary can be made more precise: each bulk field has a definite spin s. A field
with spin s is a totally symmetric and traceless rank-s tensor in AdS4. The number of
independent components of this field is given by

(s+ 1)(s+ 2)(s+ 3)

6
− (s− 1)s(s+ 1)

6
= (s+ 1)2 (A.16)
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The bulk field dual to primary operators with dimension ∆ = 3
2
+ s is associated with the

Wigner function D2s
mµ. Since m and µ each take a total of 4s+ 1 values, there are a total of

(4s+ 1)2 distinct orthogonal functions collected in D2s
mµ. Clearly then, it is only a subset of

the functions defined by D2s
mµ that are used in defining the bulk fields. Recall that cyclicity

of the trace implies there is a Z3 symmetry that must be imposed. We should impose
this symmetry to determine which Wigner functions are admissible11. Although we have
described a number of explicit examples of how primary operators correspond to specific
D2s

mµ, we have not derived the general rule for the correspondence.

B Conformal Transformations for the Quadlocal Col-

lective Field

The bulk higher spin fields are collected into a single field

Φ(X+, X−, X, Z, αI) =
∞∑
s=0

αI1αI2 · · ·αI2s

AI1I2···I2s(X+, X−, X, Z)

Z
|0⟩ (B.1)

The index I on the oscillators runs over Z and X. The quadlocal collective field can be
decomposed as12

σ4 = σ0
4 +

1

N2
η4 (B.2)

where σ0
4 is the large N expectation value of σ4 and η4 is a fluctuation about this large N

value. It is η4 that is mapped to the bulk higher spin gravity field. The holographic mapping
between the fields in this case is

Φ(X+, P+, X, Z, αI) = µ(p+i , xi)η4(x
+, p+1 , x1, p

+
2 , x2, p

+
3 , x3, p

+
4 , x4) (B.3)

where µ(p+i , xi) is a factor needed to ensure that the conformal generators of the collective
field theory and those of the higher spin gravity map into each other under the change of
spacetime coordinates given in (2.13). Using LAdS to denote a bulk generator and LCFT to
denote the corresponding collective generator, we have

LAdS = µ(p+i , xi)LCFT
1

µ(p+i , xi)
(B.4)

By matching generators we learn that

µ(p+i , xi) =
√
p+1 p

+
2 p

+
3 p

+
4 P

+Z (B.5)

11This is again parallel to the bilocal collective field treatment: in that case the bilocal is invariant under

a Z2 symmetry and this reduces to even spins for the bulk gauge fields.
12The coefficient of η4 in the next formula is chosen to ensure it has a two point function of order 1 as

N → ∞.
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with the expression for Z and P+ given in (1.3) with k = 4. The formula for the AdS mass
operator A is derived matching the P− generator, while the formula for MXZ is obtained by
matching KX at x+ = 0. These then determine the M−X generator [14] by the formula

M−X =
1

P+
MXZ ∂

∂Z
+

1

2ZP+
[MXZ , A] (B.6)

The expression for K− also features the operator B which is given by

B = −1

2
[MXZ , [MXZ , A]] +MXZMXZ (B.7)

For completeness we list the generators we used to verify (B.4). The generators LCFT are
given by

P+ =
4∑

i=1

p+i

P x =
4∑

i=1

∂

∂xi

P− = −
4∑

i=1

1

2p+i

∂2

∂x2i

J+− = x+P− +
4∑

i=1

∂

∂p+i
p+i

J+x = x+
4∑

i=1

∂

∂xi
−

4∑
i=1

xip
+
i

J−x =
4∑

i=1

(
− ∂

∂p+i

∂

∂xi
+

xi
2p+i

∂2

∂x2i

)
D = x+P− +

4∑
i=1

(
− ∂

∂p+i
p+i + xi

∂

∂xi

)
+ 2

K+ = −1

2

4∑
i=1

(
−2x+

∂

∂p+i
p+i + x2i p

+
i

)
+ x+D

K− =
4∑

i=1

(
3

2

∂

∂p+i
+ p+i

∂2

∂p+ 2
i

− xi
∂

∂xi

∂

∂p+i
+

x2i
4p+i

∂2

∂x2i

)

Kx = −1

2

4∑
i=1

(
−2x+

∂

∂xi

∂

∂p+i
+ x2i

∂

∂xi

)
+

4∑
i=1

xi

(
−x+ 1

2p+i

∂2

∂x2i
− ∂

∂p+i
p+i + xi

∂

∂xi
+

1

2

)
(B.8)

The generators LAdS are from [14]. They are given by

PX = ∂X
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P+ = P+

P− = −∂
2
X + ∂2Z
2P+

+
1

2Z2P+
A

D = X+P− − P+∂P+ +X∂X + Z∂Z

J+− = X+P− + P+∂P+ + 1

J+X = X+∂X −XP+

J−X = −∂P+∂X −XP− +M−X

K+ = −1

2
(X2 + Z2 − 2X+∂P+)P+ +X+D

KX = −1

2
(X2 + Z2 − 2X+∂P+)∂X +XD +MXZZ +MX−X+

K− = −1

2
(X2 + Z2 − 2X+∂P+)P− − ∂P+D +

1

P+
(X∂Z − Z∂X)M

XZ

− X

2ZP+
[MZX , A] +

1

P+
B (B.9)

C Angles for the Quadlocal Collective Field

Define five angles by the relations

cot(α3) sin(α1) = −(u1u4u5 + u3(u2u5 + u4))√
f(u1, u2, u3, u4, u5)

cot(α4) cos(α1) sin(α2)− sin(α3) sin(α1)

cosα3

=
u3(u5(u1 − u2) + u4(u1u5 + u1 − 1))√

f(u1, u2, u3, u4, u5)

tan(α3) =

√
u3u4u5

u3u4 + u3u5 + u4u5

tan(α4) =

√
u4u5

u3u4 + u3u5

tan(α5) =

√
u5
u4

(C.1)

where the polynomial f(u1, u2, u3, u4, u5) is defined in equation (2.14). This transformation
is invertible with the result

u1 =
cot(α4)(sin(α1) csc(α3)− cos(α1) sin(α2) cot(α4))

cos(α1)(cos(α2) csc(α4) tan(α5) + sin(α2)) + sin(α1) csc(α3) cot(α4)

u2 =
cot(α5)(cos(α1)(sin(α2) tan(α4)− cos(α2) sec(α4) cot(α5)) + sin(α1) csc(α3))

cos(α1)(sin(α2) tan(α4) cot(α5) + cos(α2) sec(α4)) + sin(α1) csc(α3) cot(α5)
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u3 = tan2(α3) csc
2(α4)

u4 = tan2(α3) sec
2(α4) csc

2(α5)

u5 = tan2(α3) sec
2(α4) sec

2(α5) (C.2)

D Composite Vectors for Quadlocal and Quintlocal Col-

lective Fields

In this section we simply list the composite vectors for the quadlocal and quintlocal collective
fields. See Section 3.3 for further explanation.

D.1 Composite vectors for Quadlocal Collective Fields

The angles below are obtained by setting k = 4 and then making use of (3.38).

n̂1 =


cos(α3)

− sin(α3) sin(α4)
− sin(α3) cos(α4) sin(α5)
− sin(α3) cos(α4) cos(α5)

 n̂2 =


0

cos(α4)
− sin(α4) sin(α5)
− sin(α4) cos(α5)

 n̂3 =


0
0

cos(α5)
− sin(α5)


(D.1)

Note that these vectors are all orthogonal to

n̂p+ =


sin(α3)

cos(α3) sin(α4)
cos(α3) cos(α4) sin(α5)
cos(α3) cos(α4) cos(α5)

 (D.2)

Thus, these vectors furnish an orthonormal basis. The vectors n̂1 and n̂p+ are functions of the
lightcone momenta of all 4 particles. The vector n̂2 depends only on the lightcone momenta
of particles 2, 3 and 4. Finally, the vector n̂3 depends only on the lightcone momenta of
particles 3 and 4. This summarizes which channel we should use for the OPE when taking
the bulk field to the boundary: we first take the product of the fields located at x3 and
x4. We then take the product of this result with the field located at x2. We then take the
product of this result with the field located at x1. This corresponds to setting u1 = 1 = u2.
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D.2 Composite vectors for Quintlocal Collective Fields

The angles below are obtained by setting k = 5 and then making use of (3.38).

n̂1 =


cos(α4)

− sin(α4) sin(α5)
− sin(α4) cos(α5) sin(α6)

− sin(α4) cos(α5) cos(α6) sin(α7)
− sin(α4) cos(α5) cos(α6) cos(α7)



n̂2 =


0

cos(α5)
− sin(α5) sin(α6)

− sin(α5) cos(α6) sin(α7)
− sin(α5) cos(α6) cos(α7)

 n̂3 =


0
0

cos(α6)
− sin(α6) sin(α7)
− sin(α6) cos(α7)

 n̂4 =


0
0
0

cos(α7)
− sin(α7)


(D.3)

Note that these vectors are all orthogonal to

n̂p+ =


sin(α4)

cos(α4) sin(α5)
cos(α4) cos(α5) sin(α6)

cos(α4) cos(α5) cos(α6) sin(α7)
cos(α4) cos(α5) cos(α6) cos(α7)

 (D.4)

Thus, these vectors again furnish an orthonormal basis. The angle α7 depends only on p+4
and p+5 . The angle α6 depends only on p+3 , p

+
4 and p+5 . The angle α5 depends only on p+2 ,

p+3 , p
+
4 and p+5 . Finally the angle α4 depends on all of the P+

i . This again summarizes which
channel we should use for the OPE when taking the bulk field to the boundary: we first take
the product of the fields located at x4 and x5. We then take the product of this result with
the field located at x3. We then take the product of this result with the field located at x2.
Finally, we take the product of this result with the field located at x1. This corresponds to
setting u1 = u2 = u3 = 1.

E Comment on the AdS mass operator

By matching the generators, using (B.4) as before, acting on the quintic collective field with
those of the dual gravity given in (B.8), we learn that

µ(p+i , xi) =
√
p+1 p

+
2 p

+
3 p

+
4 p

+
5 (P+Z)

3
2 (E.1)

Further we learn that the AdS mass operator can be written as

A =
1

2

5∑
i=1

5∑
j=1

κijκij −
3

4
(E.2)
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where

κij =
5∑

k=1

5∑
l=1

5∑
m=1

ϵijklm

√
p+k p

+
l (xk − xl)

2
√
p+m(p

+
1 + p+2 + p+3 + p+4 + p+5 )

∂

∂xm
(E.3)

These results together with those of the trilocal and quadlocal collective fields lead us to
conjecture that for the k-local collective field we have

µ(p+i , xi) =
√
p+1 p

+
2 p

+
3 p

+
4 · · · p+k (P+Z)

k−2
2 (E.4)

It is also natural to conjecture that the AdS mass operator is given by

A =
1

(k − 3)!

k∑
i1=1

k∑
i2=1

· · ·
k∑

ik−3=1

κi1i2···ik−3
κi1i2···ik−3

+ constant (E.5)

where

κi1i2···ik−3
=

k∑
ik−2=1

k∑
ik−1=1

k∑
ik=1

ϵi1i2···ik−1ik

√
p+k−2p

+
k−1(xk−2 − xk−1)

2
√
p+k (p

+
1 + p+2 + · · ·+ p+k )

∂

∂xk
(E.6)

The form of these operators plays an important role (as explained in Section 3.3) in exhibiting
the geometrical structure associated to the extra angle coordinates. The fact that there is a
nice angle formula for any k is intimately related to the fact that the κ operators defined in
this Appendix have a nice generalization.

F Boundary behaviour of bulk fields

In this section we would like to determine the behaviour of the trilocal collective field as
Z → 0, from the behaviour of the dual bulk fields. Recall that the equations of motion for
the bulk fields are given by [14–19](

2∂+∂− + ∂2X + ∂2Z − A

Z2

)
Φ(X+, P+, X, Z, αI) = 0 (F.1)

where the AdS mass operator A can be written as

A = κ2 − 1

4
(F.2)

Assuming that the bulk field Φ(X+, P+, X, Z, αI) behaves as Zα as Z → 0, the most singular
terms of (F.1) imply that

α(α− 1)− A = 0 ⇒ α =
1

2
± κ (F.3)
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Now, taking into account the relation between the trilocal collective field and the bulk gravity
field

Φ(X+, P+, X, Z, αI) =
√
p+1 p

+
2 p

+
3

√
ZP+η3(x

+, p+1 , x1, p
+
2 , x2, p

+
3 , x3) (F.4)

we learn that η3 behaves as Z±κ as Z → 0 so that κ controls the boundary behaviour
of the different bulk fields packaged in the collective field. Since we are interested in the
normalizable solutions, it is clear that after translating to bulk coordinates, the component
of η3 corresponding to eigenvalue κ vanishes as Zκ. To extract this component from the
collective field we should take κ derivatives with respect to Z before taking Z → 0.
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