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Abstract—Deep learning-based Autonomous Driving (AD)
models often exhibit poor generalization due to data hetero-
geneity in an ever domain-shifting environment. While Federated
Learning (FL) could improve the generalization of an AD model
(known as FedAD system), conventional models often struggle
with under-fitting as the amount of accumulated training data
progressively increases. To address this issue, instead of conven-
tional small models, employing Large Vision Models (LVMs) in
FedAD is a viable option for better learning of representations
from a vast volume of data. However, implementing LVMs
in FedAD introduces three challenges: (I) the extremely high
communication overheads associated with transmitting LVMs
between participating vehicles and a central server; (II) lack
of computing resource to deploy LVMs on each vehicle; (III)
the performance drop due to LVM focusing on shared fea-
tures but overlooking local vehicle characteristics. To overcome
these challenges, we propose pFedLVM, a LVM-Driven, Latent
Feature-Based Personalized Federated Learning framework. In
this approach, the LVM is deployed only on central server, which
effectively alleviates the computational burden on individual
vehicles. Furthermore, the exchange between central server and
vehicles are the learned features rather than the LVM param-
eters, which significantly reduces communication overhead. In
addition, we utilize both shared features from all participating
vehicles and individual characteristics from each vehicle to
establish a personalized learning mechanism. This enables each
vehicle’s model to learn features from others while preserving
its personalized characteristics, thereby outperforming globally
shared models trained in general FL. Extensive experiments
demonstrate that pFedLVM outperforms the existing state-of-
the-art approach by 18.47%, 25.60%, 51.03% and 14.19% in
terms of mIoU, mF1, mPrecision and mRecall, respectively.

Index Terms—Large Vision Model (LVM), Latent Feature,
Personalized Federated Learning, Autonomous Driving.

I. INTRODUCTION

Autonomous Driving (AD) is a highly complex task. One
of the major challenges in developing an effective AD system
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Fig. 1: The Federated Autonomous Driving (FedAD) system.
As time progresses, the virtual dataset that needs to be fitted
by FedAD expands continuously.

is the poor model generalization due to significant data het-
erogeneity [1] , which results from frequent domain shifting.
For example, an AD vehicle transitioning into an unfamiliar
environment may experience a notable decline in model per-
formance compared to operations in usual and known settings.

Federated Learning (FL) [2]–[4] is an effective solution to
make use of diverse data [5], [6] from locationally distributed
vehicles for improving the AD model generalization while
preserving data privacy. Generally known as the FedAD [7]–
[10], the FL-based AD system typically composes of one
Central Server and multiple Vehicles. The FedAD training
procedure involves the following steps: (I) Vehicle Updates:
each vehicle trains its local model using continuously collected
data. (II) Server Aggregation: after every several updates at
vehicles, the central server receives all participating vehicles’
model and aggregates them as a weighted average, and then
redistributes the aggregated model to all participating vehicles.
(III) Life-Long Learning: steps (I) and (II) are iterated to
learn from dynamically changing data. This FedAD system is
pictorially illustrated in Fig. 1.

As time progresses, the amount of data incorporated in the
FedAD system continually expands, which helps to achieve
substantial improvement in AD model generalization com-
pared to deep learning model trained on data from each
individual vehicle. However, such ever-expanding data is a
double-edged sword. In general, the Bias-Variance Tradeoff
[11] in classical regime states that when the volume of data is
less than what the model can comfortably accommodate, the
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model tends to overfit. Conversely, if the data volume exceeds
the model’s capacity, the model is susceptible to under-fitting.
In the context of the FedAD system, as more and more data is
used to train the FL model, the amount of information would
eventually exceeds the model capacity, increasing the risk of
under-fitting and leading to poor generalization performance.

To tackle such under-fitting problem, recent research enters
the modern regime of Large Models (LMs). For example,
Large Language Models (LLMs) have marked a significant
milestone in the advancement of natural language processing
(NLP), exhibiting proficiency across a variety of applications,
such as language comprehension and generation [12], inter-
pretation of user intentions [13], solving question answering
tasks based on structured data [14], and complex reasoning
[15]. Similarly, Large Vision Models (LVMs) demonstrate the
capability to interpret visual input and extract comprehensive
semantic insights from image data [16], [17].

However, deploying LMs within FedAD system presents
its own set of challenges. Firstly, due to the extremely large
number of parameters in LMs, the communication between
vehicles and the central server can lead to unbearable over-
heads. Secondly, the computing resource at vehicles would
not be sufficient to train a large model locally. Thirdly, the
inherent focus of LMs on extracting general features often
leads to the inadvertent neglect of unique, vehicle-specific
local characteristics. This issue primarily stems from the
intrinsic weakness of generic overgeneralization in LMs [18],
[19]. Such overgeneralization issue arises due to the LMs’
training on widely varying data aimed at capturing universally
applicable patterns. Consequently, the nuanced details that
are critical for distinguishing specific local attributes may be
overlooked.

To overcome these challenges in the context of FedAD
system, we propose the pFedLVM framework which involves
a two-fold strategy. On the one hand, since a major part
of the AD system is vision-based, we propose deploying
Large Vision Models (LVMs) on the central server but not at
vehicles. To alleviate the computational burden on individual
vehicles and communication overhead, each vehicle would
train on a small model. Furthermore, the FL exchange between
vehicles and the central server would be on features rather
than the LVM parameters. On the other hand, to ensure that
each vehicle’s unique characteristics are not neglected, the
proposed framework incorporates a feature-based personal-
ized FL (pFL) mechanism. This mechanism leverages both
shared features of all involved vehicles and each vehicle’s
individual characteristics, allowing for models to be tailored
to each vehicle. Such pFL mechanism is particularly useful
in FedAD because vehicles’ behavior or driving pattern varies
significantly for different vehicles. The proposed pFedLVM
framework is summarized in Fig. 2.

With the proposed pFedLVM aiming to address the chal-
lenges posed by using LVMs in FedAD and pave the way
for more effective and better autonomous driving systems, the
main contributions of this paper are summarized as follow:

• To the best of our knowledge, this is the first work
to leverage LVMs in FedAD system. LVMs can over-

come under-fitting problem in the ever-increasing training
dataset in FedAD.

• To effectively alleviate the computational burden of each
vehicle in FedAD system, we propose using LVMs as
backbone on the central server only but not at the vehicle
level. In addition, we exchange only the extracted features
(instead of the parameters of LVMs), reducing communi-
cation overhead while sharing diverse knowledge learned
at each vehicle.

• To avoid LVMs’ overlooking local vehicle characteristics,
we propose utilizing both shared features from all partic-
ipating vehicles and individual characteristics from each
vehicle to establish a personalized learning mechanism.
This enables each vehicle’s model to learn features from
others while preserving its personalized characteristics,
improving the inference performance in non-independent
and identically distributed (non-i.i.d.) autonomous driving
scenarios.

• Extensive experiments show that our proposed meth-
ods outperforms current existing state-of-the-art (SOTA)
benchmarks by 18.47%, 25.60%, 51.03% and 14.19% in
terms of mIoU, mF1, mPrecision and mRecall, respec-
tively. Additional empirical analyses are also conducted
to explain the superiority of the proposed method.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of the related work. Section III
elaborates on the proposed pFedLVM framework, while Sec-
tion Section IV analyzes the communication overhead and
complexity of pFedLVM. Subsequently, Section V presents
a comprehensive set of experiments along with an analysis of
the empirical results. The paper concludes in Section VI.

II. RELATED WORK

A. Federated Autonomous Driving (FedAD) System

Current AD systems are commonly grouped into two
categories in various studies: modular-based [20], [21] and
learning-based [22], [23]. Modular-based methods, although
structured, are plagued by error propagation due to potential
inaccuracies in both the modeling and problem-solving phases.
In contrast, typical learning-based end-to-end approaches offer
a promising alternative that mitigates error propagation. These
methods directly transform sensory inputs, such as LiDAR
point clouds and camera imagery, into vehicular control ac-
tions, encompassing throttle, brake, and steering commands.
On the other hand, learning-based models can also be used
within a modular pipeline, for example, using a learning model
for semantic segmentation within the perception module. Nev-
ertheless, the intrinsic challenge for learning-based paradigms
lies in their generalization capabilities, often resulting in
performance limitations to specific scenarios.

FL presents itself as a novel approach aimed at enhancing
the generalization ability of learning-based systems [24]–[27].
It achieves this through the aggregation of model param-
eters.Within the realm of AD, FL capitalizes on vehicular
networks to combine insights from diverse vehicles operat-
ing across varied environments. Consequently, when an AD
system encounters a new data sample or edge case, it can
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Fig. 2: The illustration of the proposed pFedLVM framework. The proposed pFedLVM is composed of one central server and
|V| vehicles. For each vehicle (e.g., V ehiclev), the feature compressor extracts the compressed features which are transmitted
to central server. The central server then uses LVM as a backbone to extract the shared features of all participating vehicles,
and returns the extracted shared features to all involved vehicles. Once each vehicle received the shared features from the
central server, the downstream perception head, taking such shared features as input, is optimized by using the loss between
the output of the perception head and ground truth via back propagation, while the feature compressor is updated by using the
distance between the shared features and the compressed features via back propagation.

disseminate newfound knowledge to the centralized server
and subsequently other vehicles, all while safeguarding data
privacy [28]–[31]. A notable instance is the cloud federated
robotic system proposed in [32], which augments the be-
havior cloning technique to yield precise control commands
by leveraging RGB imagery, depth perception, and semantic
segmentation.

B. Personalized Federated Learning (pFL)
To surmount the challenge of discrepancies in local data

distribution in FL, pFL has been proposed as a solution
[33]–[36]. This approach customizes the model in each client
to account for the unique characteristics of local data. One
of the most popular and effective methods for achieving
pFL is the architecture-based approach [37]. This method
decouples the model’s parameters, allowing only a subset
of parameters to be shared and aggregated among clients,
while the remaining private parameters are selected based
on model architecture [38], [39] or data similarities [40],
[41] to learn solely on local data. Another option enables
each client to fine-tune global model locally [42], [43]. For
example, [42] considers the global model as an initial shared
model. By performing a few additional training steps locally,
all the clients can easily fine-tune the initial shared model.
[43] implements the above strategy by splitting the backbone
into a global model (representation) and a client-specific head
and fine-tunes the head locally to achieve personalization.
In contrast, unlike the methods mentioned earlier, this paper
introduces a novel strategy for pFL that is centered on feature
maps, allowing each vehicle to learn concurrently from others
while also maintaining its unique characteristics.

C. Large Vision Models (LVMs)

Recently, LLMs have achieved great success in the NLP
field in various scenarios, such as user intent understanding
[13], knowledge utilization [14] and complex reasoning [44]
in a zero-shot/few-shot setting. Inspired by the achievements
of pre-trained LLMs in NLP field, researchers have turned
their attention to exploring pre-trained LVMs. These models,
pre-trained on extensive image datasets, hold the ability to
decipher image content and distill rich semantic information
[45]. By learning representations and features from a signif-
icant volume of data, these models enhance the ability of
computers to comprehend and analyze images, facilitating
a range of diverse downstream applications [46], [47]. In
this paper, by leveraging on their exceptional capabilities
of semantic understanding, we propose the use of LVMs to
extract and integrate the shared representations and features
from all participating vehicles.

III. METHODOLOGY

A. pFedLVM Overview

The key notations in pFedLVM formulation are summarized
in Table I. We consider a FedAD system, which includes
a cloud server and |V| vehicles. V ehiclev denotes the v-th
vehicle connected to the cloud server, where v = 1, 2, · · · , |V|.
V ehiclev has a local dataset Dv with size |Dv|. The Cen-
tral Server virtually covers dataset D ≜ ∪|V|

v=1Dv with size
|D| =

∑|V|
v=1 |Dv|. The proposed pFedLVM consists of two

key elements.
Firstly, we suggest deploying LVMs exclusively on the cen-

tral server, and the central server and vehicles share collective
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TABLE I: Key Notations in pFedLVM

Symbols Definitions
v Vehicle ID
V Participating vehicle set
Dv Training dataset on Vehicle v

D(j)
v The j-th batch of data out of Dv

ωv,c Model parameters of Feature Compressor on Vehicle v
ωv,p Model parameters of Perception Head on Vehicle v
ωlvm Model parameters of the LVM backbone
Fv,c The compressed feature maps of V ehiclev
Fcat The concatenated feature maps of all vehicles

Fshd
The cross-vehicle shared feature maps extracted

by server-side LVM backbone
Gv,p The ground truth of Perception Head of V ehiclev
Ov,p The output of Perception Head of V ehiclev

∗(j) The counterpart of D(j)
v for symbol “∗”. For example,

F(j)
v,c means the Fv,c due to D(j)

v

knowledge via exchanging features. This strategy aims not
only to significantly reduce the computational load at the vehi-
cle level, but also allows knowledge sharing while alleviating
communication overheads. Specifically, on the vehicle side,
we propose a feature compressor (with parameters ωv,c) on
each vehicle to extract compressed features (denoted as Fv,c).
Then such features are transmitted to the central server. On the
server side, we propose to use LVMs as backbone to fuse and
extract all participating vehicles’ shared features. Precisely,
when the central server receives the compressed features Fv,c

from V ehiclev , where v = 1, 2, · · · , |V|, it concatenates such
features to form Fcat which is then fed into the LVM backbone
(with parameters ωlvm) to produce the shared feature maps
Fshd of all participating vehicles. After that, the central server
redistributes Fshd to all participating vehicles.

Secondly, to acknowledge and incorporate the unique char-
acteristics of each vehicle, we introduce a personalized learn-
ing mechanism. This mechanism utilizes both the shared
features (denoted as Fshd) of all participating vehicles and
the local characteristics (denoted as Fv,c) of each vehicle.
As aforementioned, we utilizes a feature compressor (with
parameters ωv,c) to extract compressed features Fv,c in order
to reduce communication overheads. The feature compressor
parameters ωv,c is optimized by the loss depending on the
discrepancy between Fv,c and Fshd via back propagation.
In addition, we also design downstream personalized control
module to enhance the inference performance. The control
module in general consists of two blocks: modular heads
(including sequentially connected perception head, planning
head and control head) and end-to-end head. Such heads are
updated by the loss taking into account these heads’ output
and corresponding heads’ ground truth. By introducing such
personalized mechanism, it allows for the models (including
feature compressor and various downstream heads) to be
customized for each vehicle. This mechanism, with its superior
ability to capture unique patterns and preferences, enables each
vehicle to perform better than a global model trained through
a general FL. This is particularly advantageous in FedAD,
where the behavior and patterns among vehicles can vary
substantially. The proposed feature-based pFL is illustrated in
Fig. 3.

B. LVM-driven Shared Feature Extraction

1) LVM Backbone: LVMs tend to perform exceptionally
well for a few reasons: I. Depth and Width: Large models
have more layers (depth) and more neurons per layer (width).
This allows them to form a hierarchy of features, from simple
to complex, and capture more intricate patterns in the data.
II. Learning Capacity: The large number of parameters in
LVMs allows them to effectively capture and model the un-
derlying distribution of the data, especially for complex tasks
like autonomous driving. III. Attention Mechanisms: LVMs
generally incorporate attention mechanisms, which allow the
model to focus on different parts of the input when generating
each part of the output. This leads to a more context-aware
representation of the data and results in more meaningful
feature extraction.

Pretrained ImageGPT [48], often abbreviated as iGPT, is
an outstanding representative of LVMs and selected as the
backbone. It is proposed to fuse and extract shared features in a
zero-shot fashion. These features are high-dimensional vectors
that capture the model’s understanding of the image content.
They can be used as input for a variety of downstream tasks.
Overall, by pretraining on a large-scale image dataset, iGPT
learns rich representations of images that can be leveraged for
a variety of image-processing tasks.

2) Shared Feature Extraction and Fusion: Recall that all
the participating vehicles extract their compressed features
(termed as F (j)

v,c where v = 1, 2, · · · , |V|) and send them
to the central server. The central server concatenates such
features together to form F (j)

cat which is then fed into the
LVM backbone to produce the shared feature maps F (j)

shd. This
process is given by

F (j)
cat =

|V|⊕
v=1

F (j)
v,c , (1)

F (j)
shd = ωlvm(F (j)

cat), (2)

where symbol
⊕

is defined as concatenation operation of all
involved items.

From Eqs. (1) and (2), it is obvious that F (j)
shd contains

the fused features of all participating vehicles. It is worth
noting that due to the powerful capabilities of representation
of LVMs, the generated fusion features F (j)

shd are generally
stable and effective instead of under-fitting for ever-increasing
vast amount of data. Once the shared feature maps F (j)

shd

have been extracted, the central server sends them back to
all participating vehicles. The shared features serves two
purposes: 1) It enables each vehicle to benefit from the shared
knowledge of all the other vehicles, improving all participating
vehicles’ inference performance; 2) The shared feature can be
used for personalized learning, which is covered next.

C. Latent Feature-based Personalized FL (pFL)

In this section, we present the details of the proposed
innovative mechanism of pFL that hinges on feature maps.
This strategy enables each vehicle to simultaneously learn
from the collective knowledge of others while preserving its
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Fig. 3: This figure illustrates the proposed feature-based pFL.
We utilize the compressed features (denoted by Fv,c) and
the shared features (denoted by Fshd) to compute the loss
for the feature compressor (with parameters ωv,c) update.
Meanwhile, the perception head (with parameters ωv,p), taking
the shared feature (denoted by Fshd) as input, is trained based
on the output of the perception head (denoted by Ov,p) and
the ground truth (denoted by Gv,p). As a result, the feature
compressor and the perception head both learn shared features
while maintaining local uniqueness.

distinct characteristics, optimizing the inference performance
of each vehicle. Fig. 3 illustrates such pFL in details.

1) Feature Compressor: For the feature compressor, each
vehicle undertakes the training based on the onboard dataset
(termed as Dv) as well as the shared feature maps (termed
as Fshd). The loss function for optimizing ωv,c is defined as
Ec(ωv,c,F (j)

v,c ,F (j)
shd), as shown in Eqs. (3) and (4):

F (j)
v,c = ωv,c(D(j)

v ), (3)

min
ωv,c

Lc(ωv,c) =
1

|Dv|
∑

D(j)
v ∈Dv

Ec(ωv,c,F (j)
v,c ,F

(j)
shd). (4)

As detailed in Eq. (3), D(j)
v is fed into the feature compres-

sor ωv,c to extract the compressed features (termed as F (j)
v,c ).

Once each vehicle has extracted the compressed features, such
features are sent to the central server, which consumes much
smaller communication overheads compared to transferring
raw images and preserves privacy as well. Then the server per-
forms a critical role in merging these features and distributing
the shared features (termed as F (j)

shd) back to all vehicles.
Upon receipt of these shared features F (j)

shd, each vehicle
calculates the loss in Eq. (4) which represents the discrepancy
between the compressed features F (j)

v,c and the shared features

F (j)
shd. Subsequently, this loss is optimized to update ωv,c

through back propagation. Eq. (4) is a general expression, and
the specific loss function depends on the applications involved.
In the implementation in Section V, we employ the mean-
square error loss (see Table IV for details).

2) Personalized Downstream Heads: Besides for learning
the individual feature compressor, the shared features F

(j)
shd

from the central server are also used to train the downstream
heads at each vehicle. In general, the heads are commonly
divided into two catogrogies: modular heads (including per-
ception head, planning head and control head) and end-to-end
head. As all such heads are trained in a similar manner, in this
paper, we just focus on the perception head to demonstrate the
proposed feature-based personalized FL mechanism. Training
of other heads can be easily added as an extension.

For the perception head (with parameters ωv,p), the loss is
the distance between the output (termed as O(j)

v,p) and ground
truth (termed as G(j)

v,p) of perception head which is given by
Eqs. (5) and (6):

O(j)
v,p = ωv,p(F (j)

shd), (5)

min
ωv,p

Lp(ωv,p) =
1

|Dv|
∑

D(j)
v ∈Dv

Ep(ωv,p,G(j)
v,p,O(j)

v,p). (6)

As outlined in Eq. (5), once V ehiclev receives the shared
features F (j)

shd from the central server, these features are fed
into the perception head with parameters ωv,p to generate the
output O(j)

v,p. Subsequently, as detailed in Eq. (6), this output
along with the ground truth G(j)

v,p is employed to calculate the
loss Ep. In the implementation, we employ the cross entropy
loss for Ep, but the loss function can take other forms to suit
the specific application. Based on this loss, the perception
head model ωv,p can be updated via back propagation. It
is clear that the trained ωv,p exhibits properties associated
with personalized FL thanks to its integration of both shared
features and unique characteristics specific to each vehicle due
to proprietary perception task data.

D. Summary of the pFedLVM Algorithm

The proposed pFedLVM framework in AD is summarized
as Algorithm 1. The algorithm is designed to facilitate the
training of personalized models, which includes a feature
compressor and the downstream perception head, based on
mini-batches of data in an iterative fashion. The process
unfolds as follows:

1) On the Vehicle Side: Each vehicle begins by computing
the compressed features of its data. These compressed features
are then transmitted to the central server. Vehicles enter a
waiting state until the server completes its computations and
returns the shared features. Upon receiving the shared features
from the central server, each vehicle proceeds to further train
its feature compressor using both the newly acquired shared
features and the vehicle’s own previously compressed features.
Simultaneously, each vehicle updates the perception head by
leveraging the shared features in conjunction with its local
ground truth data.
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Algorithm 1: pFedLVM
Input: ωlvm, Dv , where v = 1, 2, · · · , |V|
Output: ωv,c, ωv,p

1 for Batch j = 1, · · · do
2 Vehicle Side:
3 for Vehicle v = 1, · · · , |V| in parallel do
4 Feature Compression: F (j)

v,c = ωv,c(D(j)
v )

5 Send F (j)
v,c to Server

6 Wait until receive F (j)
shd from server

7 Update ωv,c via Eq. (4)
8 Update ωv,p via Eq. (6)

9

10 Server Side:
11 Receive F (j)

1,c , · · · ,F
(j)
|V|,c

12 Concatenate F (j)
1,c , · · · ,F

(j)
|V|,c: F (j)

cat =
⊕|V|

v=1 F
(j)
v,c

13 Extract shared features: F (j)
shd = ωlvm(F (j)

cat)

14 Return F (j)
shd to all vehicles

2) On the Server Side: The central server collects the
compressed features from all participating vehicles. Utilizing
a LVM backbone, the central server extracts shared features
from the concatenated compressed features. Once the shared
features have been extracted, the server dispatches them back
to the vehicles.

IV. COMMUNICATION OVERHEAD AND COMPLEXITY
ANALYSES OF PFEDLVM

A. Communication Efficiency Analysis of pFedLVM

Fig. 4 shows the communication paradigms of two cases:
I) the proposed pFedLVM which trains personalized models
of each vehicle via feature sharing with the central server;
II) deploying the LVMs in the FedAD system and train the
global LVM in a typical FL way, where LVMs are exchanged
between vehicles and the central server.

In order to compare the communication overheads of the
two schemes, we introduce some symbols. Firstly, let Smax

represents the size of the largest dataset (dubbed as Dmax)
among all involved vehicles included in the FedAD system,
i.e., Smax = |Dmax| = maxv∈V{|Dv|}. To align with the two
considered cases, we assume they both execute a total of Nb

iterations of Dmax. Furthermore, we denote Bs, Mb and Fb as
the min-batch size, the size of the LVMs, and feature size of
one mini-batch of input images, respectively. Generally, Mb is
determined by the architecture of LVMs, while Fb is dependant
on the architecture of the feature compressor in pFedLVM. At
last, let σ represents the number of local iterations of each
vehicle between two adjacent aggregations in the typical FL.

Based on the above defined symbols, we can derive the
communication overhead of the proposed pFedLVM. As il-
lustrated in Fig. 4a, in each round of local update, there are
⌊Smax

Bs
⌋ mini-batches of features to exchange between each

vehicle and the central server, where the symbol “⌊·⌋” is a
the floor function, which returns the largest integer that is less
than or equal to the value between “⌊” and “⌋”. Therefore, for
each vehicle, the communication overhead in each round of

. . .

. . .

. . .

. . .

exchange pointBatch

. . .

iterations of 

(a) The protocol of exchanging features in pFedLVM

. . .

. . .

. . .

. . .exchange point

Batch

. . .

Batch

waiting

waiting

waiting

waiting

iterations of 

(b) The protocol of exchanging LVMs in typical FL

Fig. 4: The illustration for communication overhead analyses.
In this figure, we assume the V ehicle|V| has the largest dataset
among all involved vehicles, i.e., Smax = |D|V||. (a) In the
proposed pFedLVM, the vehicles with smaller dataset may
repeat more than one iteration to align with the V ehicle|V|.
(b) In the typical FL, the vehicles with smaller dataset need
to wait to align with the V ehicle|V|.

local update for both upload and download is Fb×⌊Smax

Bs
⌋×2.

As there are |V| vehicles in the system and we consider Nb

iterations of local updates, the total communication overheads
is

MpFL = Nb × (Fb × ⌊Smax

Bs
⌋ × 2)× |V|. (7)

On the other hand, for the typical FL, as showcased in
Fig. 4b, it exchanges the parameters of the LVM once after
σ local updates at the vehicle level. Therefore, the number of
rounds for parameter exchange is ⌊Nb

σ ⌋. Since each round of
parameter exchange involves both uplink and downlink, the
total communication overhead for the typical FL system is

MFL = ⌊Nb

σ
⌋ ×Mb × 2× |V|. (8)

To gain more insight into the communication overheads
reduction for exchanging features in pFedLVM compared to
exchanging LVMs in typical FL, we can define the saving as

η = (1− MpFL

MFL
)× 100%

= (1− Fb

Mb
×

Nb × ⌊Smax

Bs
⌋

⌊Nb

σ ⌋
)× 100%

Nb≫σ
≈ (1− Fb

Mb
× ⌊Smax

Bs
⌋ × σ)× 100%. (9)

From Eq. (9), we can observe that communication resource
reduction of the proposed pFedLVM depends on multiple
factors, including the mini-batch size Bs, the size of the largest
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dataset among all involved vehicles Smax, the feature size of
each mini-batch Fb, the size of the adopted LVMs Mb, and
the aggregation interval σ in typical FL.

B. Complexity Analysis of pFedLVM

In this section, we will conduct the space and time com-
plexity analyses of the proposed pFedLVM.

1) Space Complexity Analysis: Recall that in the proposed
pFedLVM, there are one central server and |V| AD vehicles.
Assume that the compressed features F (·)

v,c in each vechicle and
the shared feature F (·)

shd of each mini-batch share the same
size (denoted as Fb in the previous subsection). Therefore,
for each vehicle, it needs extra Fb space units to store the
compressed feature, and in total it needs |V| ×Fb space units
for all involved vehicles. For the central server, it also needs
|V|×Fb space units to store the received features from involved
vehicles. Therefore, the space complexity of the proposed
pFedLVM is O(|V|).

2) Time Complexity Analysis: As illustated in Fig. 5, for the
b-th min-batch, the forward time and backward time of feature
compressor and perception head for V ehiclev are denoted as
tfv,c, tbv,c, tfv,p, and tbv,p, respectively; the computing time
in the central server to extract the shared feature is denoted
as ts; the communication time for uploading and downloading
features are denoted as tuv,b and tdv,b, respectively.

As demonstrated in Fig. 5, the total time for the b-th mini-
batch can be divided into three stages: I) for the first stage,
the central server needs to take maxv∈V{tfv,c + tuv,b} to
receive the compressed features from all involved vehicles.
II) for the second stage, once the central server received all
features, it takes the time of ts to extract the shared features.
III) for the third stage, V ehiclev takes tdv,b to download the
shared features, and takes max(tbv,c, tfv,p+tbv,p) to optimize
its feature compressor and perception head. Therefore, the
total time in third stage is max(tbv,c, tfv,p + tbv,p) + tdv,b.
For all involved vehicles, the total time of the third stage is
maxv∈V{max(tbv,c, tfv,p+ tbv,p)+ tdv,b}. Therefore, we can
obtain the time of pFedLVM in the b-th mini-batch is

tb = max
v∈V

{tfv,c + tuv,b}+ ts+

max
v∈V

{max(tbv,c, tfv,p + tbv,p) + tdv,b}. (10)

We further assume that all personalized models in pFedLVM
finally converge after the training of Nb iterations of Dmax.
Therefore, the total time t is

t =

Nb∑
b=1

tb ≤ Nb × max
b∈{1,2,...,Nb}

{tb}, (11)

and the time complexity of pFedLVM is O(Nb).

V. EXPERIMENTS

In this section, we present experimental results to verify the
proposed pFedLVM framework for the street scene semantic
understanding task in the context of AD. Our experiments
assess the performance of LVM backbone and the proposed
personalized learning mechanism compared with some exist-
ing FL benchmarks, including FedAvg [2], FedProx [49] and

...

Server

The central server with
deploying the LVM backbone

Feauture
Compressor

Perception
Head

Shared
Features

Compressed
Features

Fig. 5: Illustration of the involved times of the b-th mini-batch
for V ehiclev in the proposed pFedLVM.

TABLE II: The number of RGB images on each vehicle

Vehicle ID The Number of RGB Images
Cityscapes CamVid

Vehicle #1 848 128
Vehicle #2 1046 167
Vehicle #3 1081 305

Total 2975 600

FedDyn [50]. Given that the control, planning, and end-to-
end heads could employ update mechanism analogous to that
used in the perception head, we focus on the perception head
as a representative demonstration on the effectiveness of our
proposed pFedLVM framework.

A. Datasets, Metrics and Implementation

1) Datasets: We employ two public datasets in our ex-
periments: Cityscapes dataset [51] and CamVid dataset [52].
Cityscapes dataset, captured across multiple cities, comprises
2,975 training images and 500 validation images. The training
dataset features pixel-level labels for 19 classes, such as vehi-
cles, pedestrians, etc. To simulate the practical scenario where
different vehicles might have different amount of data, we
partition this training dataset randomly for multiple vehicles,
and the number of RGB images for each vehicle can be
found in Table II. On the other hand, the CamVid dataset
includes a total of 701 samples, each with a pixel-level label
for 11 classes. In the experiments, we divide randomly selected
600 samples into different vehicles, and the number of RGB
images on each vehicle are summarized in Table II. The
remaining samples serve as test dataset.

2) Evaluation Metrics: We assess the proposed pFedLVM
using four metrics: mIoU: the mean of intersection over
union; mPrecision (mPre for short): the mean ratio of true
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TABLE III: Hardware/Software configurations

Items Configurations
CPU AMD Ryzen 9 3900X 12-Core
GPU NVIDIA GeForce 4090 × 2
RAM DDR4 32G
DL Framework PyTorch @ 2.1.1+cu121
GPU Driver 530.30.02
CUDA 12.1
cuDNN 8902

TABLE IV: Training configurations

Items Configurations
Loss Ec nn.MSELoss
Loss Ep nn.CrossEntropyLoss
Optimizer nn.Adam
Adam Betas (0.9, 0.999)
Weight Decay 1e-4
Batch Size 8
Learning Rate 3e-4

positive pixels to the total predicted positive pixels; mRecall
(mRec for short): the mean ratio of true positive pixels
to the total positive ground truth pixels; mF1: the mean of
harmonic mean of precision and recall, providing a balanced
measure of these two metrics. Such metrics are evaluated
across all semantic classes, offering a comprehensive view of
pFedLVM’s performance. These metrics are formally listed in
Eq. (12):

mIoU =
1

C

C∑
c=1

IoUc =
1

CN

C∑
c=1

N∑
n=1

TPn,c

FPn,c+TPn,c+FNn,c
,

mPre =
1

C

C∑
c=1

Prec =
1

CN

C∑
c=1

N∑
n=1

TPn,c

FPn,c + TPn,c
,

mRec =
1

C

C∑
c=1

Recc =
1

CN

C∑
c=1

N∑
n=1

TPn,c

TPn,c + FNn,c
,

mF1 =
1

C

C∑
c=1

F1c =
1

C

C∑
c=1

2 ∗ Prec ∗Recc
Prec +Recc

, (12)

where TP , FP , TN and FN stand for True Positive, False
Positive, True Negative and False Negative, respectively. C
denotes the number of semantic classes within the test dataset,
with values set to 19 for the Cityscapes dataset and 11 for the
CamVid dataset. Similarly, N signifies the size of the test
dataset, which amounts to 500 for Cityscapes and 101 for
CamVid.

3) Implementation Details: The main hardware and soft-
ware configurations are summarized in Table III, and the major
training details are given in Table IV.

B. Evaluation of LVM backbone and Perception Head

The publicly available pre-trained iGPT outputs multiple
layers of hidden features. These features are essentially rep-
resentations of the input data as understood by the model
at various levels of abstraction, complexity and capability.
In this section, we will present comprehensive experimental
results to evaluate the performance of iGPT for the street
scene semantic understanding task within the context of

AD. Furthermore, we also conduct additional experiments to
evaluate the performance of the LVM+Head framework. Our
objective is to benchmark its efficacy against current SOTA
models: BiSeNetV2 [53] and SegNet [54], with all the metrics
mentioned in subsection V-A2.

1) Hidden Feature Selection from iGPT: iGPT mentioned
earlier contains multiple hidden layers included in its output.
Previous research [48] suggested that features in the middle
of the output hidden layers perform the best for training a
linear classification model. However, which layer (or layers)
performs optimally for street scene semantic understanding
task in the context of AD remains an open question.

In our experiments, we aim to identify the most ef-
fective features by comparing the following six different
options: I) Using features from the last layer (termed as
iGPT Last); II) Using features from the middle layer (termed
as iGPT Middle 1); III) Using the averaging features from
all layers (termed as iGPT ALL Avg); IV) Using the av-
eraging features from the middle four layers (termed as
iGPT Middle 4 Avg); V) Using features from the middle four
layers (termed as iGPT Middle 4); VI) Using features from
all the layers (termed as iGPT ALL). This comprehensive
comparison will help us identify the optimal layer(s) configu-
ration in the AD context.

The results of this experiment are presented in Fig. 6,
with Figs. 6a to 6d illustrating four different metrics for the
Cityscapes dataset, while Figs. 6e to 6h shows the correspond-
ing results for CamVid dataset. It is noticed that all four
metrics show similar conclusions. In particular, it is evident
that multiple layers performs better than single layer. For in-
stance, from Fig. 6a to Fig. 6d, iGPT All and iGPT Middle 4
exhibit better mIoU values and fluctuate less compared to other
options. Furthermore, the averaging of multiple layers, such
as iGPT All Avg and iGPT Middle 4 Avg, can outperform
single layer but underperform multiple layers, as they smooth
out the details of features in different layers. Moreover, a
comparison between iGPT Last and iGPT Middle 1 reveals
a notable distinction: features extracted from the middle layer
exhibit better performance over those from the last layer
in the context of downstream semantic segmentation tasks.
This observation is in line with the results reported by [48].
Notably, the performance disparity between iGPT Last and
the other considered options is markedly more pronounced,
underscoring the conclusion that iGPT Last represents the
least favorable option for tasks involving street scene semantic
understanding. Analyzing the evaluation metrics on CamVid
dataset in Figs. 6e to 6h, we observe that they follow similar
patterns to that of Cityscapes dataset. It is worth noting that
the gap between iGPT Last and the other options in CamVid
is narrower than that of Cityscapes, which is likely due to the
smaller data complexity of CamVid than that of Cityscapes
dataset.

For gaining insight of the aforementioned observations
and analysis, Table V provides a more quantitative per-
spective. Specifically, for both Cityscapes and CamVid
datasets, the multiple layers options (termed as iGPT All
and iGPT Middle 4) achieve the best performance in almost
all evaluation metrics. It is noteworthy that iGPT All and



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, APRIL 2024 9

(a) mIoU on Cityscapes (b) mPrecision on Cityscapes (c) mRecall on Cityscapes (d) mF1 on Cityscapes

(e) mIoU on CamVid (f) mPrecision on CamVid (g) mRecall on CamVid (h) mF1 on CamVid

Fig. 6: Comparison of using different hidden features on Cityscapes and CamVid datasets.

TABLE V: Performance comparison of considered iGPT hidden features on Cityscapes and CamVid datasets

Feature Layer(s) Cityscapes Dataset (19 Semantic Classes) (%) CamVid Dataset (11 Semantic Classes) (%)
mIoU mF1 mPrecision mRecall mIoU mF1 mPrecision mRecall

iGPT All Avg 43.70 53.45 54.16 54.71 48.59 60.37 69.40 56.67
iGPT Last 39.15 49.37 51.94 49.92 45.07 56.18 64.57 53.69

iGPT Middle 1 43.49 53.24 54.41 53.87 48.28 60.00 69.03 56.37
iGPT Middle 4 Avg 43.22 53.02 55.14 54.16 48.84 60.59 69.99 56.74

iGPT Middle 4 45.81 55.15 56.18 56.00 49.29 60.90 70.52 57.27
iGPT All 44.76 54.34 55.28 56.38 48.98 59.51 70.12 57.47

iGPT Middle 4 exhibit comparably high performance, with
only a narrow difference across all evaluation metrics. For
instance, for the Cityscapes dataset, iGPT Middle 4 surpasses
iGPT All with marginal improvements of 1.05 in mIoU, 0.79
in mF1, and 0.9 in mPrecision. However, it falls short by 0.38
in mRecall. In the case of the CamVid dataset, iGPT Middle 4
again outperforms iGPT All with increments of 0.31 in mIoU,
1.39 in mF1, and 0.4 in mPrecision, yet it lags by 0.2 in mRe-
call. Based on these observations, the subsequent experiments
adopt iGPT Middle 4 for further exploration, which strikes a
trade-off between predictive performance and computational
resources for street scene semantic understanding task within
the realm of AD.

Fig. 7 presents a t-SNE visualization [55] of the output of
iGPT Middle 4 for Cityscapes test dataset and CamVid test
dataset, respectively. This visualization highlights that certain
semantic classes have been distinctly separated. Others, despite
being intertwined, still exhibit a sufficient spread among data
points. More specifically, Fig. 7a offers a visualization of the
Cityscapes dataset, revealing that classes depicted in blue, light
blue and brown tend to cluster together, while other classes
are more dispersed, yet still maintain considerable separation.
In a similar way, Fig. 7b for the CamVid dataset shows that
classes identified by blue, green, and red are well separated
from others. The remaining classes are not grouped closer
together, yet they are sufficiently spaced apart to allow for
distinct categorization.

2) The proposed iGPT+Head vs Existing SOTA Models:
Building upon our previous discussions, it was found that
middle four layers (termed as iGPT Middle 4) provides the
best choice for street semantic understanding task in the
context of AD. In this experiment, our goal is to examine
whether iGPT+Head could outperform existing state-of-the-
art models. Specifically, we will compare the performance of
iGPT+Head with existing models: BiSeNetV2 [53] and SegNet
[54].

Figs. 8a to 8d present the performance across various
metrics on CamVid dataset. There are two obvious observa-
tions: I) iGPT combined with perception head outperforms
the current leading models BiSeNetV2 and SegNet in almost
all metrics. II) iGPT+Head always converge faster than the
compared SOTA benchmarks. This is because the pretrained
LVM backbone has learned rich representations of various raw
natural images. Table VI compares the performance between
iGPT+Head and its competitors quantitatively. The table indi-
cates the following clear patterns: I) For classes that contain
objects with large sizes, such as Sky, Building, Road, Side-
walk, Tree, and Car, almost all models demonstrate high per-
formance, often exceeding 90% across various metrics. II) The
performance drops significantly for classes with narrow objects
like Pole and Fence. For example, the models consistently
show lower scores, with metrics for the Pole class approaching
zero for all models. III) For the classes characterized by a
high degree of shape variability, like Bicyclist, iGPT+Head
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(a) Cityscapes (b) CamVid

Fig. 7: t-SNE visualization of hidden features of iGPT Middle 4 on (a) Cityscapes test dataset and (b) CamVid test dataset.
Colors represent semantic classes.

(a) mIoU (b) mPrecision (c) mRecall (d) mF1

Fig. 8: Performance of iGPT+Head against existing SOTA benchmarks on CamVid dataset.
TABLE VI: Class-wise inference performance comparison of all considered models on CamVid dataset

Metrics Models CamVid dataset (11 Semantic Classes) (%)
Sky Building Pole Road Sidewalk Tree Signsymbol Fence Car Pedestrian Bicyclist

IoU

BiSeNetV2 [53] 92.78 84.60 0.00 96.37 84.67 79.58 19.54 0.00 81.20 0.00 0.00
SegNet [54] 93.93 83.09 0.00 95.98 82.60 79.15 0.00 0.00 79.18 0.00 0.00
iGPT+Head 85.31 74.60 0.05 89.15 63.81 64.60 23.80 34.30 50.80 4.36 44.80

F1

BiSeNetV2 [53] 96.25 91.66 0.00 98.15 91.70 88.63 31.73 0.00 89.62 0.00 0.00
SegNet [54] 96.87 90.77 0.00 97.95 90.46 88.36 0.00 0.00 88.37 0.00 0.00
iGPT+Head 92.07 85.43 0.09 94.27 77.91 78.47 38.44 51.03 67.37 8.15 61.83

Precision

BiSeNetV2 [53] 96.36 88.32 0.00 97.73 92.96 87.81 55.22 0.00 87.99 0.00 0.00
SegNet [54] 97.11 86.45 0.00 97.58 92.49 87.46 0.00 0.00 88.42 0.00 0.00
iGPT+Head 93.25 83.41 10.94 93.75 84.20 85.07 96.84 77.53 76.84 73.18 88.30

Recall

BiSeNetV2 [53] 97.21 96.86 0.00 98.84 92.05 92.10 23.49 0.00 94.25 0.00 0.00
SegNet [54] 98.02 96.95 0.00 98.79 91.59 91.61 0.00 0.00 90.96 0.00 0.00
iGPT+Head 94.04 93.76 0.05 97.29 79.18 80.35 25.82 47.41 71.80 4.75 52.08

surpasses the performance of BiSeNetV2 and SegNet. This
better performance may be due to iGPT’s exposure to a more
diverse dataset during training, which likely includes a wide
range of Bicyclist gestures, in contrast to the more constrained
CamVid dataset used for BiSeNetV2 and SegNet. These
findings highlight the importance of the scale and diversity
of training data for iGPT, which contribute significantly to
its robust generalization capabilities, particularly for complex
classes with variable shapes.

C. Evaluation of the Proposed LVM-Driven Feature-based
pFL (pFedLVM)

1) Performance Comparison between pFedLVM algorithm
and existing SOTA FL Algorithms: In this experiment, we

compare the proposed feature-based personalized Federated
Learning (pFL) approach with other FL algorithms: FedAvg
[2], FedProx [49], and FedDyn [50]. Both FedDyn and Fed-
Prox include a hyperparameter that requires careful tuning.
In addition, the SegNet model has been verified to achieve
comparable performance to iGPT+Head on both Cityscapes
and CamVid datasets, as detailed in the previous subsection.
Therefore, the SegNet model is employed as the underlying
architecture for all FL algorithms under consideration in this
study. The hyperparameters for FedDyn and FedProx are set
to 0.005 or 0.01. The notations FedDyn-0.005, FedDyn-0.01,
FedProx-0.005, and FedProx-0.01 correspond to these models
with the specified hyperparameters. Additionally, pFL-Vehicle-
#1, pFL-Vehicle-#2, and pFL-Vehicle-#3 represent the person-
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(a) mIoU on Cityscapes (b) mPrecision on Cityscapes (c) mRecall on Cityscapes (d) mF1 on Cityscapes

(e) mIoU on CamVid (f) mPrecision on CamVid (g) mRecall on CamVid (h) mF1 on CamVid

Fig. 9: Performance comparison of the proposed pFedLVM against other FL algorithms on Cityscapes and CamVid datasets.

alized models from the proposed framework for Vehicles 1, 2,
and 3, respectively.

Figs. 9a to 9d depict the inference performance of all
considered models across all evaluation metrics on Cityscapes
dataset. The results are clear: I) The personalized model
tailored for Vehicle 1, Vehicle 2, and Vehicle 3 demonstrates
better performance when compared to other benchmarks,
underscoring the efficacy of the feature-based personalized
learning approach. II) At the beginning, the metric scores
for Vehicle 1, 2, and 3 are higher compared to the other
benchmarks. This initial advantage for Vehicles 1, 2, and 3
is due to the utilization of a pretrained iGPT for feature
extraction, in contrast to the other models that begin their
training from scratch. III) Although Vehicle 1, 2, and 3
surpass other benchmarks in overall performance, there are
noticeable differences in their performance, with each vehicle
showing a distinct accuracy. This variation in performance is
attributed to the different sizes of datasets used for each vehicle
(shown in Table II). This suggests that larger datasets typically
provide more comprehensive training, leading to better model
performance, whereas smaller datasets may limit a model’s
ability to learn and generalize, resulting in a relatively poor
performance. IV) The quantitative improvements of the pFL-
Vehicle-#3 compared to FedAvg are 10.05%, 11.85%, 10.71%
and 9.70% in terms of mIoU, mF1, mPrecision and mRecall,
respectively. Figs. 9e to 9h show the corresponding results
of CamVid dataset, and the same conclusion can be drawn
as in the Cityscapes dataset. In particular, the quantitative
improvements are 18.47%, 25.60%, 51.03% and 14.19% in
terms of mIoU, mF1, mPrecision and mRecall, respectively.

It is important to highlight that within the feature-based
pFL mechanism, the personalized feature compressor (with
parameters ωv,c) and the personalized downstream head (with
parameters ωv,p) collectively play a pivotal role in achieving
superior performance in comparison to other baselines. The ex-
periments conducted in this study, therefore, serve to validate

the effectiveness of both the personalized feature compressor
and the personalized downstream head in enhancing model
performance.

2) t-SNE Visualization of pFedLVM against other existing
SOTA FL algorithms: Fig. 10 presents a t-SNE visualization
[55], [56] of the pixel embeddings for the Cityscapes test
dataset, facilitating a comparative analysis of the models
pFL-Vehicle-#1, pFL-Vehicle-#2, and pFL-Vehicle-#3 against
FedAvg, FedDyn-0.005, and FedProx-0.005. The visualization
reveals that while FedAvg, FedDyn-0.005, and FedProx-0.005
models exhibit limited capability, distinguishing only some
of the semantic classes with others remaining interspersed,
the pFL-Vehicle-#2 and pFL-Vehicle-#3 models demonstrate
a marked superiority in almost all the semantic classes.
Conversely, pFL-Vehicle-#1 lags somewhat behind in perfor-
mance, a discrepancy that can be traced back to its smaller
data volume relative to pFL-Vehicle-#2 and pFL-Vehicle-#3.
These observations are in line with the performance metrics
detailed in Figs. 9a to 9d.

Fig. 11 visualizes the pixel embeddings of the CamVid
test dataset using t-SNE [55], [56]. It can be seen that pFL-
Vehicle#2 and pFL-Vehicle#3 models show the best separation
of semantic classes, which is similar to that of Cityscapes
dataset and aligns with the performance metrics presented in
Figs. 9e to 9h.

3) Evaluation of Communication Efficiency of the pro-
posed pFedLVM algorithm: Fig. 12 shows the communication
overheads of exchanging features in the proposed pFedLVM
against the communication overheads of exchanging LVMs
in typical FL. For both Cityscapes dataset (Fig. 12a) and
CamVid dataset (Fig. 12b), as the training progresses, the
communication overheads of both exchanging schemes in-
crease linearly yet with different growth rate, which suggests
that the communication overhead saving by the proposed
pFedLVM becomes more and more pronounced as the training
progresses.
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(a) FedAvg (b) FedDyn-0.005 (c) FedProx-0.005

(d) pFL-Vehicle-#1 (e) pFL-Vehicle-#2 (f) pFL-Vehicle-#3

Fig. 10: t-SNE visualization of pixel embedding of Cityscapes test dataset. Colors represent semantic classes.

(a) FedAvg (b) FedDyn-0.005 (c) FedProx-0.005

(d) pFL-Vehicle-#1 (e) pFL-Vehicle-#2 (f) pFL-Vehicle-#3

Fig. 11: t-SNE visualization of pixel embedding of CamVid test dataset. Colors represent semantic classes.
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(a) Overhead Comparison on Cityscapes (b) Overhead Comparison on CamVid

Fig. 12: Communication overheads of exchanging features in the proposed pFedLVM against exchanging LVMs in typical FL.

(a) Batch Size (b) Feature Size (c) LVM Size

Fig. 13: Illustration of how various factors contribute to the overhead saving on Cityscapes and CamVid datasets.

To explore how mini-batch size, feature size and LVM size
contribute to communication overhead saving achieved by the
proposed pFedLVM against the typical FL, Fig. 13 shows the
overhead saving versus these parameters. The observations and
implications are summarized as follow: I) Fig. 13a displays
the result of how batch size contributes the communication
overhead saving. We can observe that the communication
overhead saving fluctuates in a small range as the batch size
increases. As mini-batch size has little impact on improving
the communication efficiency of pFedLVM, we can adjust it
according to the performance need of the personalized models.
II) Fig. 13b tells us that the feature size has an important
role in affecting communication overhead saving. For exam-
ple, for the Cityscapes dataset, the communication reduction
drops from approximately 60% to 20% when the feature size
increases from 1.0MB to 2.0MB. As shrinking the feature size
improves the communication efficiency substantially while
it will decrease the personalized models’ performance, we
should consider the trade-off carefully. III) LVM size also
poses a significant effect on the communication overhead
reduction, and this pattern can be viewed in Fig. 13c. It is
obvious that as the LVM size increases, the communication
overhead reduction increases with a large margin as well. This
suggests that the proposed framework is well suited for FL
integrated with large models.

VI. CONCLUSION

This paper introduced pFedLVM framework, which inte-
grates FL with LVM in autodriving context. The proposed

framework deploys LVMs only on a central server to reduce
computational burden of vehicles, and exchanges learned
features instead of LVMs to reduce communication over-
heads. In addition, a personalized learning mechanism was
incorporated, leading to superior performance than a global
model trained using typical FL. The communication efficiency,
space and time complexities of the proposed pFedLVM were
also analyzed. Experimental results showed that pFedLVM
outperforms currently existing SOTA approaches by large
margins. Future work could incorporate multi-modal data, such
as natural language, into pFedLVM.
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[4] G. Zhu, Y. Du, D. Gündüz, and K. Huang, “One-bit over-the-air aggre-
gation for communication-efficient federated edge learning: Design and
convergence analysis,” IEEE Transactions on Wireless Communications,
vol. 20, no. 3, pp. 2120–2135, 2021.

[5] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward
an intelligent edge: Wireless communication meets machine learning,”
IEEE Communications Magazine, vol. 58, no. 1, pp. 19–25, 2020.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. X, APRIL 2024 14

[6] G. Zhu, Z. Lyu, X. Jiao, P. Liu, M. Chen, J. Xu, S. Cui, and P. Zhang,
“Pushing ai to wireless network edge: An overview on integrated
sensing, communication, and computation towards 6g,” Science China
Information Sciences, vol. 66, no. 3, p. 130301, 2023.

[7] L. Fantauzzo, E. Fanı̀, D. Caldarola, A. Tavera, F. Cermelli, M. Ciccone,
and B. Caputo, “Feddrive: Generalizing federated learning to semantic
segmentation in autonomous driving,” in 2022 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2022, pp.
11 504–11 511.

[8] W.-B. Kou, S. Wang, G. Zhu, B. Luo, Y. Chen, D. W. K. Ng, and
Y.-C. Wu, “Communication resources constrained hierarchical federated
learning for end-to-end autonomous driving,” in 2023 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE,
2023, pp. 9383–9390.

[9] S. Wang, C. Li, D. W. K. Ng, Y. C. Eldar, H. V. Poor, Q. Hao, and
C. Xu, “Federated deep learning meets autonomous vehicle perception:
Design and verification,” IEEE Network, vol. 37, no. 3, pp. 16–25, 2023.

[10] H.-T. Wu, H. Li, H.-L. Chi, W.-B. Kou, Y.-C. Wu, and S. Wang,
“A hierarchical federated learning framework for collaborative quality
defect inspection in construction,” Engineering Applications of Artificial
Intelligence, vol. 133, p. 108218, 2024.

[11] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever,
“Deep double descent: Where bigger models and more data hurt,”
Journal of Statistical Mechanics: Theory and Experiment, vol. 2021,
no. 12, p. 124003, 2021.

[12] D. Zhu, J. Chen, X. Shen, X. Li, and M. Elhoseiny, “Minigpt-4:
Enhancing vision-language understanding with advanced large language
models,” arXiv preprint arXiv:2304.10592, 2023.

[13] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language
models to follow instructions with human feedback,” Advances in neural
information processing systems, vol. 35, pp. 27 730–27 744, 2022.

[14] J. Jiang, K. Zhou, Z. Dong, K. Ye, W. X. Zhao, and J.-R. Wen,
“Structgpt: A general framework for large language model to reason
over structured data,” 2023.

[15] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24 824–24 837, 2022.

[16] L. Wang, B. Huang, Z. Zhao, Z. Tong, Y. He, Y. Wang, Y. Wang, and
Y. Qiao, “Videomae v2: Scaling video masked autoencoders with dual
masking,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2023, pp. 14 549–14 560.

[17] Z. Xiao, Y. Chen, L. Zhang, J. Yao, Z. Wu, X. Yu, Y. Pan, L. Zhao,
C. Ma, X. Liu et al., “Instruction-vit: Multi-modal prompts for instruc-
tion learning in vit,” arXiv preprint arXiv:2305.00201, 2023.

[18] S. Ralethe and J. Buys, “Generic overgeneralization in pre-trained
language models,” 2022.

[19] C. Collacciani and G. Rambelli, “Interpretation of generalization in
masked language models: An investigation straddling quantifiers and
generics,” 2023.

[20] Z. Sun, Z. Huang, Q. Zhu, X. Li, and D. Liu, “High-precision motion
control method and practice for autonomous driving in complex off-
road environments,” in 2016 IEEE Intelligent Vehicles Symposium (IV).
IEEE, 2016, pp. 767–773.

[21] Y. Jiang, H. Yedidsion, S. Zhang, G. Sharon, and P. Stone, “Multi-robot
planning with conflicts and synergies,” Autonomous Robots, vol. 43, pp.
2011–2032, 2019.

[22] Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, and A. M. López,
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