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Abstract

By using the structure and some properties of extraspecial and generalized/almost extraspe-
cial p-groups, we explicitly determine the number of elements of specific orders in such groups.
As a consequence, one may find the number of cyclic subgroups of any (generalized/almost) ex-
traspecial group. For a finite group G, the ratio of the number of cyclic subgroups to the number
of subgroups is called the cyclicity degree of G and is denoted by cdeg(G). We show that the set
containing the cyclicity degrees of all finite groups is dense in [0, 1]. This is equivalent to giving
an affirmative answer to the following question posed by Tóth and Tărnăuceanu: “For every

a ∈ [0, 1], does there exist a sequence (Gn)n≥1 of finite groups such that lim
n→∞

cdeg(Gn) = a?”.

We show that such sequences are formed of finite direct products of extraspecial groups of a
specific type.

MSC (2020): Primary 20D60; Secondary 20D15, 20D25, 20P05, 11B05.
Key words: element orders, extraspecial groups, p-groups, cyclic subgroups, cyclicity degree of a
finite group

1 Introduction

Let G be a finite group and Cn be the cyclic group with n elements where n ≥ 1 is an integer.
We denote by o(x), L(G) and C(G) the order of an element x of G, the subgroup lattice of G and
the poset of cyclic subgroups of G, respectively. The research done on the element orders of G has
strong connections with other intensively studied problems of finite group theory. Some of these
are:

(P1) characterizing the nature and structure of G via various tools defined using element orders;

(P2) recognizing G;

(P3) evaluating the number of (cyclic) subgroups of G;

(P4) estimating the number of solutions of an equation in G.

In what concerns (P1), maybe the most popular topic related to it is the study of the so-called
sum of element orders of a finite group G. This sum is denoted by ψ(G) and is defined as

ψ(G) =
∑

x∈G

o(x).
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During the last two decades a lot of papers focused on the properties of ψ(G). Just to indicate a
few, one may want to check [1, 3, 4, 32]; also, [15] is a recent survey about this topic.

Shi’s conjecture (see [29]) stating that each finite simple group G is determined by its order |G|
and its spectrum ω(G) (i.e. its set of element orders) was validated in [36]. This is a remarkable
result related to (P2). It set a fruitful research topic and we recommend the reader to check [12]
for a recent survey.

In regard to (P3), it is well-known that an element x of a finite group G generates a cyclic
subgroup 〈x〉 ∼= Co(x) of G. Also, there is a strong connection between the properties of the
subgroup lattice L(G) of G and G itself. The monograph [28] outlines a lot of results which support
this idea. Also, evaluating the number of subgroups of G, especially when G is a p-group, is a
research topic which goes back to old papers such as [9, 20]. It is worth mentioning that this
subject is still of great interest and one may consult more recent papers (see [5, 10, 27, 33]).

Finally, Frobenius’s theorem (see [9]) stating that if n divides the order |G| of a finite group
G, then the number of solutions of the equation xn = 1 in G is a multiple of n, probably is the
most notable result associated with (P4). We refer the reader to [14, 18, 19] for various proofs,
applications and generalizations of this result.

We recall that a finite p-group G is called:

– special if either G is elementary abelian or G is of class 2 and G′ = Z(G) = Φ(G) is elementary
abelian (p.183 of [11]);

– extraspecial if G is special and |G′| = p (p.183 of [11]);

– almost extraspecial if G′ = Φ(G), |G′| = p and Z(G) ∼= Cp2 (Definition 2.2 of [7]);

– generalized extraspecial if G′ = Φ(G), |G′| = p and G′ ≤ Z(G) (Definition 3.1 of [30]).

Also, for a finite group G, the authors of [34] define the cyclicity degree of G, denoted by cdeg(G),
as being the quantity

cdeg(G) =
|C(G)|

|L(G)|
.

This ratio measures the probability that randomly selecting a subgroup H of G, H is cyclic. In the
same paper, the authors determine various properties of the cyclicity degree and explicit formulas
for cdeg(G) where G belongs to some classes of finite groups. They also pose the following question:

Question 1.1. For every a ∈ [0, 1], does there exist a sequence (Gn)n≥1 of finite groups such
that lim

n→∞
cdeg(Gn) = a?

We conclude this section by describing the organization and purposes of this manuscript. The
origin of this paper is based on some of the author’s previous work. More exactly Question 2 of [21]
asks for an explicit formula of ψ(G) if G is a non-abelian special 2-group. This problem remains
open, but can be solved for extraspecial p-groups, in particular. We also determine an explicit
formula of ψ(G) if G is a generalized/almost extraspecial p-group. These results are obtained by
counting the number of elements of specific orders in a (generalized/almost) extraspecial p-group.
Section 2 of the paper deals with this first objective. Our second goal is to provide an affirmative
answer to Question 1.1. This is done in Section 3, where we prove that each term of the sequence
(Gn)n≥1 can be formed by using extraspecial groups of a specific type.
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2 On the element orders in (generalized/almost) extraspe-
cial p-groups

Let p be a prime, G and H be finite p-groups and k ≥ 0, n ≥ 2 be integers. We denote the central
product of G and H by G ◦ H . The central product of n copies of G is denoted by G◦n. By
convention, one has G◦0 = {1} and G◦1 = G. The exponent of G is denoted by exp(G), while
npk(G) is the number of elements of order pk of G. We also consider the sets

Ω{k}(G) = {x ∈ G | o(x)|pk}

which generate the omega subgroups Ωk(G) of G while

0
k(G) = 〈{gp

k

| g ∈ G}〉

are the agemo subgroups of G. The dihedral group with 8 elements and the quaternion group are
denoted by D8 and Q8, respectively. The modular p-group of order pn is

Mpn = 〈x, y | xp
n−1

= yp = 1, y−1xy = xp
n−2+1〉,

where n ≥ 3 if p is odd, and n ≥ 4 if p = 2. Finally, for an odd p, the Heisenberg group modulo p
is of order p3 and its representation is

Hep = 〈x, y, z | xp = yp = zp = 1, [x, z] = [y, z] = 1, [x, y] = z〉.

Central products play an important role in understanding the structure of a (generalized/almost)
extraspecial p-group. By summarizing the results given in section 3.3 (especially Theorem 3.14) of
[8], section 2 (especially Theorem 2.3) of [7] and Lemma 3.2 of [30], one gets a complete classifica-
tion of the (generalized/almost) extraspecial p-groups.

Lemma 2.1. Let G be a finite p-group.

i) If G is extraspecial, then there is an integer n ≥ 1 such that |G| = p2n+1 and

• G ∼= D◦n
8 or G ∼= D

◦(n−1)
8 ◦Q8 if p = 2;

• G ∼= He◦np or G ∼=M◦n
p3 if p is odd.

ii) If G is almost extraspecial, then there is an integer n ≥ 1 such that |G| = p2n+2 and
• G ∼= D◦n

8 ◦ C4 if p = 2;
• G ∼= He◦np ◦ Cp2 if p is odd.

iii) If G is generalized extraspecial, then G ∼= E×A or G ∼= (E ◦Cp2)×A where E is extraspecial
and A is elementary abelian; more exactly, there are some integers n ≥ 1, k ≥ 0 and

• G ∼= D◦n
8 × Ck

2 or G ∼= (D
◦(n−1)
8 ◦Q8)× Ck

2 or G ∼= (D◦n
8 ◦ C4)× Ck

2 if p = 2;
• G ∼= He◦np × Ck

p or G ∼=M◦n
p3 × Ck

p or G ∼= (He◦np ◦ Cp2)× Ck
p if p is odd.

In what concerns item iii) of Lemma 2.1, note that even though there are 4 isomorphism types
of extraspecial p-groups, there are only 3 isomorphism types of generalized extraspecial p-groups.
This is a consequence of the facts that

D8 ◦C4
∼= Q8 ◦ C4 and Hep ◦ Cp2

∼=Mp3 ◦ Cp2
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since these are leading to

D◦n
8 ◦ C4

∼= (D
◦(n−1)
8 ◦Q8) ◦ C4 and He◦np ◦ Cp2

∼=M◦n
p3 ◦ Cp2 ,

respectively.
If one is interested in studying the element orders of a finite p-group G, then it is helpful to

know preliminary information about exp(G). Let G be a (generalized/almost) extraspecial p-group.
Since |Φ(G)| = p, it follows that exp(G) ∈ {p, p2}. By Theorem 5.2 (ii) of [11], it is known that
if G ∼= He◦np , then exp(G) = p. It follows that exp(G) = p if G ∼= He◦np × Ck

p , as well. If G
is isomorphic to any other group outlined in Lemma 2.1, then by the construction of the central
product, it is known that G has a subgroup H such that H ∼= D8 or H ∼= Q8 if p = 2, and H ∼=Mp3

or H ∼= Cp2 if p is odd. In either case, we have that exp(H) = p2 and, since exp(H)| exp(G) and
exp(G) ≤ p2, it follows that exp(G) = p2. To summarize, we outline another preliminary result.

Lemma 2.2. Let G be a (generalized/almost) extraspecial p-group and n ≥ 1, k ≥ 0 be integers.

i) If p = 2, then exp(G) = 4;

ii) If p is odd, then exp(G) =

{

p , if G ∼= He◦np or G ∼= He◦np × Ck
p

p2 , in any other cases
.

Since a generalized extraspecial p-group G is a direct product of finite p-groups, it is useful to
count the number of elements of order p of a direct product with respect to the numbers of elements
of order p of its components.

Proposition 2.3. Let G ∼= G1×G2× . . .×Gl where l ≥ 2 is an integer and Gi is a finite group
for all i ∈ {1, 2, . . . , l}. Then

np(G) =

l
∏

i=1

(np(Gi) + 1)− 1.

Proof. Under the above hypotheses, let x = (x1, x2, . . . , xl) ∈ G. Then

o(x) = p⇐⇒

{

xp = 1

x 6= 1
⇐⇒

{

xpi = 1Gi
, ∀ i ∈ {1, 2, . . . , l}

∃ i ∈ {1, 2, . . . , l} such that xi 6= 1Gi

,

where 1Gi
denotes the identity of Gi for all i ∈ {1, 2, . . . , l}. Hence, the general form of a solution

of the last system is x = (x1, x2, . . . , xl) where at least one component xi is an element of order p
in Gi. Therefore, the number of solutions (which coincides with np(G)) is

np(G) =

l
∏

i=1

(np(Gi) + 1)− 1,

as desired.

In order to study the element orders in a (generalized/almost) extraspecial p-group, we distin-
guish two cases according to the parity of p. We first suppose that p = 2. For n ≥ 1, we denote by
Gn the (almost) extraspecial 2-group described in Lemma 2.1 i), ii). Hence, G1

∼= D8 or G1
∼= Q8
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in the extraspecial case, and G1
∼= D8 ◦ C4 in the almost extraspecial case. Also, for n ≥ 2, each

(almost) extraspecial 2-group Gn can be written as D8 ◦ Gn−1. Under this notation, the author
proved the following result in [22].

Lemma 2.4. Let Gn
∼= D8 ◦ Gn−1 be an (almost) extraspecial 2-group of order 2m where

m ∈ {2n+ 1, 2n+ 2} and n ≥ 2 are integers. Then n2(Gn) = 2m−2 + 2n2(Gn−1) + 1.

Let G be a (generalized/almost) extraspecial 2-group. Since |G| is given by Lemma 2.1 and
exp(G) = 4 by Lemma 2.2 i), it follows that once we determine n2(G), we can easily find n4(G)
and ψ(G). The following theorem highlights such numerical results. For the ease of writing, we use
the same notation as in Lemma 2.1.

Theorem 2.5. Let G be a (generalized/almost) extraspecial 2-group.

i) If G ∼= D◦n
8 , then n2(G) = 4n + 2n − 1, n4(G) = 4n − 2n and

ψ(G) = 6 · 22n − 2 · 2n − 1;

ii) If G ∼= D
◦(n−1)
8 ◦Q8, then n2(G) = 4n − 2n − 1, n4(G) = 4n + 2n and

ψ(G) = 6 · 22n + 2 · 2n − 1;

iii) If G ∼= D◦n
8 ◦ C4, then n2(G) = 22n+1 − 1, n4(G) = 22n+1 and

ψ(G) = 12 · 22n − 1;

iv) If G ∼= D◦n
8 × Ck

2 , then n2(G) = 22n+k + 2n+k − 1, n4(G) = 22n+k − 2n+k and

ψ(G) = 6 · 22n+k − 2 · 2n+k − 1;

v) If G ∼= (D
◦(n−1)
8 ◦Q8)× Ck

2 , then n2(G) = 22n+k − 2n+k − 1, n4(G) = 22n+k + 2n+k and

ψ(G) = 6 · 22n+k + 2 · 2n+k − 1;

vi) If G ∼= (D◦n
8 ◦ C4)× Ck

2 , then n2(G) = 22n+k+1 − 1, n4(G) = 22n+k+1 and

ψ(G) = 12 · 22n+k − 1.

Proof. Using the previous established notations, let G ∼= Gn be an (almost) extraspecial 2-
group of order 2m where m ∈ {2n+ 1, 2n+ 2} and n ≥ 1 are integers. If G1 is extraspecial, then
n2(G1) = n2(D8) = 5 or n2(G1) = n2(Q8) = 1. If G1 is almost extraspecial, then n2(G1) =
n2(D8 ◦C4) = 7. The same results are obtained by using the formulas outlined by items i), ii) and
iii) for n = 1.

We show by induction on n that

n2(Gn) = 2m−n(2n−1 − 1) + 2n−1n2(G1) + 2n−1 − 1, ∀ n ≥ 2. (1)

5



The base case is exactly Lemma 2.4 applied for n = 2. Let n ≥ 3 and suppose that (1) holds for
any integer k such that 2 ≤ k < n. Then, by applying Lemma 2.4 and the inductive hypothesis, we
have

n2(Gn) = 2m−2 + 2n2(Gn−1) + 1

= 2m−2 + 2[2m−n−1(2n−2 − 1) + 2n−2n2(G1) + 2n−2 − 1] + 1

= 2m−n(2n−1 − 1) + 2n−1n2(G1) + 2n−1 − 1,

as stated.
If m = 2n+ 1, then Gn is extraspecial and relation (1) becomes

n2(Gn) = 2n+1(2n−1 − 1) + 2n−1n2(G1) + 2n−1 − 1. (2)

In this case, G1
∼= D8 or G1

∼= Q8. Since n2(D8) = 5 and n2(Q8) = 1, by making the replacements
in (2), we get the quantities n2(G) outlined by items i) and ii) of this theorem.

If m = 2n+ 2, then Gn is almost extraspecial. In this case, relation (1) may be rewritten as

n2(Gn) = 2n+2(2n−1 − 1) + 2n−1n2(G1) + 2n−1 − 1. (3)

Again, since G1
∼= D8 ◦C4 and n2(D8 ◦ C4) = 7, relation (3) leads to obtaining the value of n2(G)

given by item iii).
Assume now that G is a generalized extraspecial 2-group. Then, for items iv), v) and vi), the

number n2(G) is determined based on the number of elements of order 2 of an (almost) extraspecial
group and by applying Proposition 2.3. For instance, if we are to refer to item iv), we have

n2(G) = n2(D
◦n
8 × Ck

2 ) = (n2(D
◦n
8 ) + 1)(n2(C

k
2 ) + 1)− 1 = (4n + 2n)2k − 1 = 22n+k + 2n+k − 1,

as desired. The same reasoning is applied in order to obtain the quantity n2(G) highlighted by
items v) and vi).

Finally, for all 6 main cases, the number of elements of order 4 and the sum of element orders
of G are given by

n4(G) = |G| − 1− n2(G) and ψ(G) = 1 + 2n2(G) + 4n4(G),

respectively. Thus, the proof is complete.

In the second part of this section, we are mainly interested in investigating the element orders
of a (generalized/almost) extraspecial p-group where p is odd. Still, we start by justifying a simple,
yet useful, result which is also valid for p = 2.

Lemma 2.6. Let G be a p-group of order pn where n ≥ 3 is an integer. Let k ≤ n and j ≤ n
be non-negative integers. If Ωk(G) = Ω{k}(G) and [G : Ωk(G)] = pj, then |Ω{k}(G)| = pn−j.

Proof. Under the highlighted hypotheses, the condition [G : Ωk(G)] = pj implies that
|Ωk(G)| = pn−j . Since Ωk(G) = Ω{k}(G), the conclusion follows.

We recall that a finite p-groupG is called regular if, given any positive integer n and any a, b ∈ G,
there are c3, c4, . . . , ck ∈ 〈a, b〉′ such that (ab)p

n

= ap
n

bp
n

cp
n

3 cp
n

4 . . . cp
n

k . Also, a finite p-group G is

6



called powerful if either p is odd and G′ ≤ 0
1(G) or p = 2 and G′ ≤ 0

2(G). For a regular p-group
G, it is known that Ωk(G) = Ω{k}(G), for all k ≥ 1 (see section 4.3 of [13]). Hence, for such groups,

if one knows the values of the indices [G : Ωk(G)] (or, equivalently, |0
k(G)|; see Theorem 7.2 (d) of

[6]), then Lemma 2.6 leads to an easy way to determine the numbers npk(G) based on the formula

npk(G) = |Ω{k}(G)| − |Ω{k−1}(G)|, ∀ k ≥ 1.

The same thing can be said about powerful p-groups where p is odd (for a powerful 2-group, the
equality Ωk(G) = Ω{k}(G) does not hold in general; indeed, if G ∼= D8 ◦C4, we have |Ω{1}(G)| = 8,
but |Ω1(G)| = 16). For more details on such properties of powerful p-groups, one may check
[16, 23, 24].

A (generalized/almost) extraspecial p-group G where p is odd, is always regular. This follows
from the fact that G is of odd order and G′ is cyclic (see 10.2 Satz c) of [17]). Also, except the case
in which exp(G) = p, we have that G is powerful by the definition of the powerfulness property.
Indeed, since {1} 6= 0

1(G) ≤ Φ(G), Φ(G) = G′ and |G′| = p, we deduce that G′ = 0
1(G), so G is

powerful.
The following result completes our study on the element orders of a (generalized/almost) ex-

traspecial p-group. Again, for the ease of writing, we use the same notation as in Lemma 2.1.

Theorem 2.7. Let G be a (generalized/almost) extraspecial p-group where p is odd.

i) If G ∼= He◦np , then np(G) = p2n+1 − 1 and ψ(G) = p2n+2 − p+ 1;

ii) If G ∼=M◦n
p3 , then np(G) = p2n − 1, np2(G) = (p− 1)p2n and

ψ(G) = (p− 1)p2n+2 + p(p2n − 1) + 1;

iii) If G ∼= He◦np ◦ Cp2 , then np(G) = p2n+1 − 1, np2(G) = (p− 1)p2n+1 and

ψ(G) = (p− 1)p2n+3 + p(p2n+1 − 1) + 1;

iv) If G ∼= He◦np × Ck
p , then np(G) = p2n+k+1 − 1 and ψ(G) = p2n+k+2 − p+ 1;

v) If G ∼=M◦n
p3 × Ck

p , then np(G) = p2n+k − 1, np2(G) = (p− 1)p2n+k and

ψ(G) = (p− 1)p2n+k+2 + p(p2n+k − 1) + 1;

vi) If G ∼= (He◦np ◦ Cp2)× Ck
p , then np(G) = p2n+k+1 − 1, np2(G) = (p− 1)p2n+k+1 and

ψ(G) = (p− 1)p2n+k+3 + p(p2n+k+1 − 1) + 1.

Proof. Let G be a (generalized/almost) extraspecial p-group where p is odd. For items i) and
iv), by Lemma 2.2 ii) we have exp(G) = p and, by using the information on |G| given by Lemma
2.1, we easily determine np(G) and ψ(G).

For all the other 4 cases, we know that exp(G) = p2 by Lemma 2.2 ii). Since G is regular, we
have Ω1(G) = Ω{1}(G) and [G : Ω1(G)] = |01(G)|. As we previously noticed, 01(G) = G′ and, since

|G′| = p, by applying Lemma 2.6 for k = j = 1, we get |Ω{1}(G)| =
|G|
p
. Hence np(G) =

|G|
p

− 1.

7



By replacing |G| with p2n+1, p2n+2, p2n+k+1 and p2n+k+2, we obtain the values of np(G) given by
items ii), iii), v) and vi), respectively. To conclude, for the same 4 cases, we can easily deduce the
number of elements of order p2 and the sum of element orders by applying the formulas

np2(G) = |G| − 1− np(G) and ψ(G) = 1 + pnp(G) + p2np2(G),

respectively.

For the last 3 cases of Theorem 2.7, another approach to determine np(G) is to use Proposition
2.3, as we did in the proof of Theorem 2.5. Some examples of applying the two main theorems are
given below. We mention that these results are also supported by GAP [35].

Example 2.8. We have

Group Order In GAP np(G) np2(G) ψ(G)
D◦3

8 128 2326 71 56 367
D◦2

8 ◦Q8 128 2327 55 72 399
D◦2

8 ◦ C4 64 266 31 32 191
D◦2

8 × C2
2 128 2323 79 48 351

(D8 ◦Q8)× C2
2 128 2324 47 80 415

(D◦2
8 ◦ C4)× C2

2 256 56088 127 128 767
He◦35 78125 34295 78124 - 390621
M◦3

125 78125 34296 15624 62500 1640621
He◦25 ◦ C25 15625 122 3124 12500 328121
He◦25 × C2

5 78125 34292 78124 - 390621
M◦2

125 × C2
5 78125 34293 15624 62500 1640621

(He5 ◦ C25)× C2
5 15625 26 3124 12500 328121

The last 6 lines of the previous table show that a (generalized/almost) extraspecial p-group G
where p is odd, is not uniquely determined by |G| and ψ(G). The same can be said for p = 2 since

ψ(D◦3
8 ) = ψ(D2

8 × C2) = 367;
ψ(D8 ◦Q8) = ψ(D8 × C4) = 103;
ψ(D8 ◦C4) = ψ(C2

2 × C4) = 47;

ψ(D◦3
8 × C2) = ψ(D2

8 × C2
2 ) = 735;

ψ(Q8 × C2) = ψ(C2
4 ) = 55;

ψ((D8 ◦ C4)× C2) = ψ(C3
2 × C4) = 95.

We end this section by pointing out that, as consequences of Theorems 2.5 and 2.7, one can
easily obtain the number of cyclic subgroups of all possible orders for any (generalized/almost)
extraspecial p-group.

3 A density result on the cyclicity degree of a finite group

Our following main aim is to give a positive answer to Question 1.1 which was recalled in the first
section of this paper. Along with the notations already established, for a positive integer k ≥ 1,
we denote by pk the kth odd prime number. Also, for a topological space (X, τX) and A ⊆ X ,
the closure of A with respect to τX is denoted by AτX . We start by highlighting some preliminary
results related to calculus and to the cyclicity degree of a finite group.
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Lemma 3.1. Let (xk)k≥1, (yk)k≥1 be sequences of positive real numbers. Let (Gk)k∈I be a
family of finite groups where I is a finite non-empty set. Let (X, τX) and (Y, τY ) be topological
spaces, f : (X, τX) −→ (Y, τY ) be a continuous function and A,B ⊆ X.

i) If lim
k→∞

xk
yk

∈ (0,∞), then the series
∞
∑

k=1

xk and
∞
∑

k=1

yk have the same nature (see Theorem

10.9 of [2]);

ii)
∞
∑

k=1

1
pk

= ∞ (consequence of the main result of [25]);

iii) If lim
k→∞

xk = 0 and
∞
∑

k=1

xk = ∞, then the set containing the sums of all finite subsequences of

(xk)k≥1 is dense in [0,∞) (consequence of the Proposition outlined on p. 863 of [26]);

iv) If AτX = BτX , then f(A)τY = f(B)τY (see Proposition 6.12 of [31]);

v) cdeg(Mpn) = (n−1)p+2
(n−1)p+n+1 (see Theorem 3.3.2 of [34]);

vi) cdeg

(

×
k∈I

Gk

)

=
∏

k∈I

cdeg(Gk) (see Proposition 2.2 of [34]).

For a class C of finite groups, we denote by

CDC = {cdeg(G) | G ∈ C }.

The following theorem is the main result of this section and it guarantees that Question 1.1 can
be answered positively.

Theorem 3.2. Let M be a class of finite groups containing all finite direct products of distinct
extraspecial p-groups of the form Mp3 where p is an odd prime. Then CDM is dense in [0, 1].

Proof. Let (yk)k≥1 be the sequence of the reciprocals of the odd primes, i.e.

yk =
1

pk
, ∀ k ≥ 1.

We define a sequence of positive real numbers (xk)k≥1 where

xk = ln
1

cdeg(Mp3

k

)
, ∀ k ≥ 1.

By Lemma 3.1 v) applied for n = 3, we deduce that

lim
k→∞

xk = lim
k→∞

ln

(

pk + 2

pk + 1

)

= 0. (4)

Also, since

lim
k→∞

xk
yk

= lim
k→∞

ln
(

pk+2
pk+1

)

1
pk

= 1,
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by Lemma 3.1 i), ii), we have

∞
∑

k=1

xk = ∞. (5)

Hence, by (4) and (5), we conclude that the sequence (xk)k≥1 satisfies the hypotheses of Lemma
3.1 iii). This implies that

{

∑

k∈I

xk

∣

∣

∣

∣

I ⊆ N∗, |I| <∞

}

τR

= [0,∞),

so, by the standard properties of the natural logarithm and Lemma 3.1 vi), we have

{

ln
1

cdeg

(

×
k∈I

Mp3

k

)

∣

∣

∣

∣

∣

I ⊆ N∗, |I| <∞

}

τR

= [0,∞), (6)

where τR is the usual topology of R. Since (6) outlines an equality between the closures of two
subsets of R and the exponential function

exp : (R, τR) −→ (R, τR), given by exp(x) = ex, ∀ x ∈ R,

is continuous, by Lemma 3.1 iv), it follows that

{

1

cdeg

(

×
k∈I

Mp3

k

)

∣

∣

∣

∣

∣

I ⊆ N∗, |I| <∞

}

τR

= [1,∞). (7)

Let Y = (0,∞) and τY be the subspace topology on Y . It is known that for a subset X of Y ,
we have XτY = XτR ∩ Y . Hence, by (7), we deduce that

{

1

cdeg

(

×
k∈I

Mp3

k

)

∣

∣

∣

∣

∣

I ⊆ N∗, |I| <∞

}

τY

= [1,∞). (8)

Finally, by applying the continuous function

f : (Y, τY ) −→ (R, τR), given by f(y) =
1

y
, ∀ y ∈ Y,

to both sides of (8), we get

{

cdeg

(

×
k∈I

Mp3

k

)
∣

∣

∣

∣

I ⊆ N∗, |I| <∞

}

τR

= [0, 1]. (9)

Since
{

cdeg

(

×
k∈I

Mp3

k

)
∣

∣

∣

∣

I ⊆ N
∗, |I| <∞

}

⊆ CDM ⊆ [0, 1],
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and taking closures preserve inclusion, we get

{

cdeg

(

×
k∈I

Mp3

k

)∣

∣

∣

∣

I ⊆ N∗, |I| <∞

}

τR

⊆ CDM τR ⊆ [0, 1].

Therefore, as a consequence of (9), we obtain

CDM τR = [0, 1],

so, CDM is dense in [0, 1].

Theorem 3.2 implies the following immediate result which end our paper. Its second item con-
stitutes an affirmative answer to Question 1.1.

Corollary 3.3.

i) Let M be a class of finite groups containing all finite direct products of distinct extraspecial
p-groups of the form Mp3 where p is an odd prime, and let C be a class of finite groups such
that M ⊆ C . Then CDC is dense in [0, 1].

ii) Let a ∈ [0, 1]. Then there exists a sequence (Gn)n≥1 of finite groups such that

lim
n→∞

cdeg(Gn) = a.

Based on the proof of Theorem 3.2, each term of the sequence (Gn)n≥1 is a finite direct product
of distinct extraspecial p-groups of the form Mp3 where p is an odd prime.

Acknowledgements. The author is grateful to the reviewer for his/her remarks which improved
the initial version of the paper.
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