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Abstract

The nonlinear transfer rate of the total energy (transfer rate of kinetic energy + transfer rate due to

the work done by the magnetization) for an incompressible turbulent ferrofluid system is studied under

the assumption of statistical homogeneity. Using the formalism of the two-point correlators, an exact

relation connecting the second-order statistical moments to the average energy injection rate is derived

for the scale-to-scale transfer of the total energy. We validate the universality of the exact relation

through direct numerical simulations for stationary and non-stationary cascade regimes. For a weak

external magnetic field, both kinetic and the total energy cascade with nearly the same cascade rate.

A stationary cascade regime is achieved and hence a good agreement between the exact energy transfer

rate and the average energy injection is found. Due to the rapid alignment of the ferrofluid particles in

the presence of strong external fields, the turbulence dynamics becomes non-stationary. Interestingly,

there too, both kinetic and the total energy exhibit inertial range cascades but with different cascade

rates which can be explained using the non-stationary form of our derived exact relation.

I. INTRODUCTION

To date, turbulence is one of the most challenging problems of physics that needs to be com-

pletely understood. In common fluids, turbulence arises from the nonlinear interactions among

neighbouring fluid layers, which leads to the formation of eddy-like structures of various sizes thus

conceiving a wide range of length scales. Energy is fed into the system at large scales and is dissi-

pated at very small scales. Well inside the intermediate inertial length scales, free from the effects

of forcing and dissipation, a fully developed turbulence is characterized by a universal cascade of

kinetic energy across the scales with a constant transfer rate ε. For homogeneous and isotropic

turbulence, ε can be exactly expressed in terms of the third-order moments of two-point velocity

fluctuations. For a turbulent magnetohydrodynamic fluid, the total energy (sum of kinetic and

magnetic energy) cascades throughout the inertial range. The respective energy transfer rate is

expressed in terms of two-point fluctuations of both velocity and magnetic field.

Derivation of the exact relations connecting ε and the two-point fluctuations was pioneered by

Kolmogorov [1] for a homogeneous and isotropic incompressible hydrodynamic fluid. Following

Kolmogorov, similar exact laws were also derived for different fluid systems including magneto-

hydrodynamic (MHD) turbulence [2–6]. Without the explicit assumption of isotropy, differential

exact relations involving the divergence of the third-order moments have been derived for several

other systems including the ones mentioned above [7–11]. This formalism is also extended to

compressible systems, where the ε can be written as a divergence of the third-order moments plus

some source terms [12–15]. An alternative form of the exact relation involving the second-order
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statistical moments is recently proposed for incompressible HD and MHD turbulence [16–19]. This

form is particularly interesting to cases where ε can not be written purely in terms of the diver-

gence of the two-point fluctuations (e.g., energy cascade in incompressible Hall-MHD turbulence,

turbulent compressible flows, etc.) [19, 20]. One can then be interested to know if a similar type

of universal cascade can also be found in more complex fluids such as ferrofluids. Ferrofluids are

complex synthetic liquids that contain nano-sized ferromagnetic particles suspended in a carrier

liquid (water, oil, and other organic solvents, etc.). Ferrofluid particles interact via attractive van

der Waals forces and dipole-dipole interactions, which may result in aggregations. To prevent

immediate aggregation, these ferro-particles are, in general, coated with a surfactant [21–24]. In

the absence of an external magnetic field, the particles are randomly orientated and the fluid has

no net magnetism. However, in the presence of an external field (H0), the magnetic particles

respond by forming chain-like structures along the field lines [25, 26]. It is often necessary to

slow down such agglomeration of the particles and to break the chain-like structure to obtain a

sustained ferrofluid emulsion. This can be achieved by making the system turbulent.

Chain-like structures and alignments in the presence of an external field resist the mobility

of a ferrofluid. A ferrofluid therefore exhibits less turbulence than ordinary HD or MHD fluid

[24, 27–29]. However, when confronted with rapid flow velocities at a very large Reynolds number

ferrofluid can still exhibit varying degrees of turbulent behavior. In such cases, the ferrofluid’s re-

sponse to turbulent flows can be significantly influenced by the concentration of magnetic particles

and the external magnetic field. In particular, a stronger external magnetic field would tend to

quickly align the ferro-particles thereby competing with the development of turbulence in the flow

[30–35]. Explorating turbulence within ferrofluid is imperative for investigating the implications

of magnetic fields on heat transfer phenomena, encompassing flow management, augmenting heat

transfer processes, and mechanisms dedicated to noise reduction through convection [36–39].

Although a number of theoretical and experimental studies have been carried out on ferrofluid

flows [24, 28, 29, 40, 41], only a few of them are dedicated to study the turbulent properties of

such a flow [30, 32–35]. In particular, for homogeneous turbulence, those studies investigated

the evolution of the turbulent kinetic energy (both translational and rotational) and also the

corresponding power spectra [31–33]. In a turbulent ferrofluid, the sum of kinetic energy and

work done due to magnetization is an inviscid invariant and is therefore expected to exhibit a

universal cascade with a constant flux rate (ε) inside the inertial range. However, the possibility

of a universal cascade in terms of the statistical moment of field fluctuations has not been studied

until recently where an exact relation for homogeneous ferrofluid turbulence has been derived [42].

Unlike incompressible HD, MHD and binary fluid dynamics, ε in ferrofluid turbulence cannot be

expressed as a divergence of two-point increments and instead, an alternative form similar to
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[16, 17] of the exact relation has been obtained for the energy cascade in ferrofluid turbulence.

In the current study, we revisit our previous work [42] with a realistic assumption of negligible

particle size and re-derive a reduced form of the exact relation for the total energy transfer. The

derived law is then numerically tested with 3D direct numerical simulations (DNS) ranging from

1283 to 5123 grid points to find the signature of scale-independent energy transfer rate. Finally,

stationary and non-stationary cascades are studied by varying the strength of H0 and the effect

of an external field on the nature of turbulent cascade in the ferrofluids is discussed.

The paper is organized as follows. In Sec II the governing equations and conservation of total

energy for the ferrofluid system are described whereas Sec. III contains the derivation of the exact

relation for negligible ferrofluid particle size. In Sec. IV, we present the numerical methods and

other simulation details. In Sec. V, we present and discuss our findings. Finally, in Sec. VI, we

summarize and conclude.

II. MODEL AND INVISCID INVARIANT

A. Basic equations

The governing equations for incompressible ferrofluid (the constant density is normalized to

unity) consist of the evolution equations for linear momentum, angular momentum and magneti-

zation [32, 42]:

(∂t + v ·∇)v = −∇p+ ν∇2v + µ0(M ·∇)H− ζ∇× (Ω− 2ω), (1)

I (∂t + v ·∇)ω = µ0(M×H) + η∇2ω + 2ζ(Ω− 2ω), (2)

(∂t + v ·∇)M = ω ×M− 1

τ
(M−Meq), (3)

∇ · v = 0, ∇×H = 0, (4)

where v is the velocity of the ferrofluid, Ω = ∇ × v is the vorticity, p is the fluid pressure,

ω is the ferrofluid particle spin rate, M is the magnetization vector, H is the magnetic field

vector, I is the moment of inertia per unit mass for a ferrofluid particle, ν is the kinematic

viscosity, ζ is the vortex viscosity, η is the spin viscosity and τ is the relaxation time. The

equilibrium magnetization is given by Meq = MsL(ξ)H/H, where L(ξ) = (ξ coth(ξ) − 1)/ξ is

the Langevin function with ξ = µ0mH/kBT for a ferrofluid at temperature T . The parameters

Ms and m are the magnitudes of saturation magnetization and magnetic moment of a single

ferrofluid particle respectively. For small values of ξ, one can write Meq = χH, where χ is

magnetic susceptibility. Due to incompressibility, v is divergence-less and in the absence of any

free current H is irrotational. Since, the magnetic flux (B) is divergence-free, the evolution of the

magnetic field can directly be obtained from that of the magnetization as B = µ0(H +M) and

hence one can write ∇ ·M = −∇ ·H.
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Unlike our previous work [42], here we incorporate the fact that the specific moment of inertia

I(∼ 10−16m2) and the spin viscosity η (∼ 10−15kg m s−1) are very small and can practically be

neglected with respect to the other terms in the evolution equation of angular momentum [32].

Hence, the angular momentum Eq. (2) reduces to

ω =
Ω

2
+

µ0

4ζ
(M×H). (5)

Using Eq. (5) in Eqs. (1) and (3), one obtains

(∂t + v ·∇)v = −∇p+ ν∇2v + µ0(M ·∇)H+
µ0

2
∇× (M×H), (6)

(∂t + v ·∇)M =
1

2
(Ω×M) +

µ0

4ζ
(M×H)×M− 1

τ
(M− χH), (7)

which constitute the revised set of governing equations for the ferrofluid turbulence.

B. Conservation of total energy and Nondimensionalization

Similar to ordinary fluids, ferrofluid equations also conserve the total energy in the absence of

viscous terms. The total energy consists of the kinetic energy of the fluid and the internal energy

resulting from the work performed by the ferrofluid particles in response to the external magnetic

field. Using Eq. (6), the kinetic energy evolution equation can be written as

∂tEkin = ∂t

(
v2

2

)
= −∇ ·

[(
v2

2
+ p

)
v − µ0

2
(M×H)× v

]
+

µ0

2
[(M×H) ·Ω+ 2v · (M ·∇)H]− νΩ2. (8)

Again using Eq. (7), the differential work performed by the ferrofluid particles due to H is given

by dEmag = −H · dM and hence the corresponding evolution equation is given by

∂tEmag = −H · ∂tM

= H · ((v ·∇)M)− 1

2
H · (Ω×M)− µ0

4ζ
H · ((M×H)×M) +

1

τ
H · (M− χH)

= H · ((v ·∇)M)− 1

2
H · (Ω×M)− µ0

4ζ
(M×H)2 +

1

τ
H · (M− χH)

= H · ((v ·∇)M)− 1

2
H · (Ω×M)− ζ

µ0

(2ω −Ω)2 +
1

τ
H · (M− χH). (9)

The evolution equation of the total energy is given by∫
∂t (Ekin + Emag) dτ = −

∫
∇ ·

[(
v2

2
+ p+ µ0M ·H

)
v − µ0

2
(M×H)× v

]
dτ + d, (10)

where dissipation term is:

d =

∫ (
−νΩ2 +

µ0

τ
H · (M− χH)− ζ(Ω− 2ω)2

)
dτ. (11)
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The first term in the RHS of Eq. (10) vanishes by the use of the Gauss divergence theorem and

finally ignoring the dissipation terms, we obtain the conservation of the total energy. In viscous

flows, where the dissipative effects are not negligible, the left-hand side of Eq. (10) does not vanish.

In such a situation, one needs to add an additional injection term f which would then lead to

the conservation of energy by balancing the dissipation as d = −f . In the next section, we shall

see if a constant flux of energy can be obtained by assuring the driving only at large scales and

dissipation only at small scales.

III. DERIVATION OF EXACT RELATIONS

In this section, using two-point statistics, we derive an exact relation for the transfer of total

energy within the inertial range. For the sake of numerical implementation, it is necessary to cast

the constitutive relation (5) and the governing Eqs. (6) and (7) in terms of dimensionless starred

variables as

ω∗ =
1

2
Ω∗ +

Re

2.2
(M∗ ×H∗), (12)

∂t∗v
∗ = v∗ ×Ω∗ −∇∗

(
p∗ +

v∗2

2

)
+

1

Re
∇∗2v∗ + (M∗ ·∇∗)H∗ +

1

2
∇∗ × (M∗ ×H∗), (13)

∂t∗M
∗ = −(v∗ ·∇∗)M∗ +

1

2
(Ω∗ ×M∗) +

Re

2.2
(M∗ ×H∗)×M∗ − 1

Γ
(M∗ − χH∗), (14)

where we used ζ = 0.55ν [32], v = vrmsv
∗, M =

√
1
µ0
vrmsM

∗, H =
√

1
µ0
vrmsH

∗, t = l0
vrms

t∗,

p = v2rmsp
∗, Γ = vrms

l0
τ , Re = l0vrms

ν
is the large-scale Reynolds number, with l0 representing the

box size and vrms the root mean square velocity. In order to simplify the notations, we shall omit

the stars from the dimensionless variables hereinafter. To achieve a sustained turbulent flow, the

system is driven by a large-scale forcing fv (delta correlated in time) in the momentum equation.

The evolution equation of the energy correlation function is then given by (using Eqs. (13) and

(14))

∂tR =
1

2
⟨(v′ · ∂tv + v · ∂tv′)− (H · ∂tM′ +H′ · ∂tM)⟩

=
1

2

〈
v′ · (v ×Ω) + v · (v′ ×Ω′)− v ·∇′

(
p′ +

v
′2

2

)
− v′ ·∇

(
p+

v2

2

)
− 1

2
H′ · (Ω×M)

− 1

2
H · (Ω′ ×M′) + v · (M′ ·∇′)H′ + v′ · (M ·∇)H+H′ · (v ·∇)M+H · (v′ ·∇′)M′

+
1

2
v′ · (∇× (M×H)) +

1

2
v · (∇′ × (M′ ×H′))

〉
+

〈
1

Re
v · ∇′2v′ +

1

Re
v′ · ∇2v

− Re

2.2
H′ · ((M×H)×M)− Re

2.2
H · ((M′ ×H′)×M′) +

1

Γ
H′ · (M− χH)

+
1

Γ
H · (M′ − χH′) + v′ · fv + v · f ′

v

〉
(15)
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where unprimed and primed quantities represent the variables at the point x and x′(≡ x + ℓ)

respectively, ℓ is the increment vector and ⟨·⟩ denotes the ensemble average, which is equivalent to

the space average due to statistical homogeneity. Again, using incompressibility and homogeneity,

one can show
〈
v′ ·∇

(
v2

2
+ p

)〉
=

〈
v ·∇′

(
v′2

2
+ p′

)〉
= 0. Eq. (15) can further be simplified as

∂tR =
1

2

〈
−δ(v ×Ω) · δv − δv · δ((M ·∇)H)− δH · δ((v ·∇)M)− 1

2
δv · δ(∇× (M×H))

+
1

2
δH · δ(Ω×M)

〉
+

〈
1

Re
v · ∇′2v′ +

1

Re
v′ · ∇2v − Re

2.2
H′ · ((M×H)×M)

−Re

2.2
H · ((M′ ×H′)×M′) +

1

Γ
H′ · (M− χH) +

1

Γ
H · (M′ − χH′) + v′ · fv + v · f ′

v

〉
,

(16)

where we have used the following relations (obtained under the assumption of statistical homo-

geneity)

(i) ⟨(v ×Ω) · v′ + (v′ ×Ω′) · v⟩ = −⟨δ(v ×Ω) · δv⟩ (17)

(ii) ⟨v · (M′ ·∇′)H′ + v′ · (M ·∇)H+H · (v′ ·∇′)M′ +H′ · (v ·∇)M⟩

= ⟨−δv · δ((M ·∇)H)− δH · δ((v ·∇)M)⟩ (18)

(iii) ⟨H′ · (Ω×M) +H · (Ω′ ×M′)− v′ · (∇× (M×H))− v · (∇′ × (M′ ×H′))⟩

= ⟨δΩ · δ((M×H))− δH · δ(Ω×M)⟩ . (19)

To see the effect of the applied external field H0 on the energy transfer, we apply a uniform

external field of strength H0 along ẑ direction. Decomposing the total magnetic field as H =

H0 + H̃ = H0ẑ + H̃, we obtain

∂tR =
1

2

〈
−δ(v ×Ω) · δv − δv · δ((M ·∇)H̃)− δH̃ · δ((v ·∇)M)− 1

2
δΩ · δ(M× H̃)

+
1

2
δH̃ · δ(Ω×M)

〉
+

〈
1

2
H0 · (δΩ× δM)

〉
+D + F, (20)

where D consists of the two-point dissipative terms

D =
1

2

〈
1

Re
v · ∇′2v′ +

1

Re
v′ · ∇2v − Re

2.2
H̃

′ · ((M×H)×M)− Re

2.2
H̃ · ((M′ ×H′)×M′)

+
1

Γ
H̃

′ · (M− χH) +
1

Γ
H̃ · (M′ − χH′)

〉
(21)

and F consists of purely the large-scale contributions, where

F =
1

2
⟨v′ · fv + v · f ′

v⟩ −
〈
Re

2.2
H0 · ((M×H)×M)− 1

Γ
H0 · (M− χH)

〉
. (22)

Assuming a statistically stationary state where ∂tR = 0 and ignoring the dissipative effects inside

the inertial range, finally, we obtain the exact relation as

A(ℓ) = A1(ℓ) + A2(ℓ) = 2ε, (23)
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where

A1(ℓ) =

〈
δv ·

[
δ(v ×Ω) + δ((M ·∇)H̃)

]
+ δH̃ ·

[
δ((v ·∇)M)− δ(Ω×M)

2

]
+ δΩ · δ(M× H̃)

2

〉
(24)

A2(ℓ) = −
〈
1

2
H0 · (δΩ× δM)

〉
, (25)

and ε = F ≈
〈
v · fv −H0 ·

[
Re
2.2

((M×H)×M)− 1
Γ
(M− χH)

]〉
= εinj − εH0 is the mean

energy injection rate.

Eq. (23) is the main analytical result of this paper. It gives the energy cascade rate for ferrofluid

turbulence, where the ferrofluid particles are of negligible size. As is evident from Eq. (23), the

exact relation is not completely free from the mean-field effect. As shown above, the external

magnetic field (H0) not only actively contributes to the inertial range energy transfer but also

modifies the input energy injection (ε) coming from large scales to the inertial range. In the next

section, we numerically investigate if ferrofluid turbulence shows an inertial range energy cascade

and eventually calculate the cascade rate.

IV. NUMERICAL METHOD AND SIMULATION DETAILS

FIG. 1: Time variation of ∂tE, energy injection rate f = ⟨f · v⟩ and dissipation rate d for the external

field strength H0 = 0.1. See Run 1a (left), Run 2a (center) and Run 3a (right) from Table I for simulation

parameters.

We perform three-dimensional direct numerical simulations (DNS) of Eqs. (13) and (14) using

a pseudospectral method with periodic boundary conditions. The box length is taken to be 2π

with N grid points in each direction. We used resolutions 1283, 2563, and 5123 for the simulations.

The aliasing error is removed by a standard 2/3-dealiasing method, thus limiting the maximum

available wavenumber to N/3. The code is parallelized using an MPI-based slab decomposition

scheme [43]. The velocity field is initialized from a fully developed pure Navier-Stokes flow.

A random initial condition is used for the magnetization field and a uniform time-independent
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external magnetic field of strength H0 = 0.1 is applied along the z direction. The energy is

injected by forcing the momentum evolution equation with a large-scale Taylor-Green forcing fv ≡

f0[sin(kox)cos(koy)cos(koz),−cos(kox)sin(koy)cos(koz), 0], where ko = 2 is the energy-injection

scale and f0 = 0.5 is the forcing amplitude. The system is time evolved using a fourth-order

Runge-Kutta (RK4) method until a statistical stationary state is achieved. In the following,

using the exact law derived above, we shall numerically investigate if a universal energy cascade

of energy is obtained in fully developed ferrofluid turbulence and also the contribution of different

nonlinear terms.

FIG. 2: Snapshot of the modulus of (a) velocity (v)(b) magnetization (M) and (c) magnetic field

(H̃) at simulation time t = 10 for Run 3a (Table I).

In Fig. 1, we plot the rate of total energy (∂tE =
∫
∂t(Ekin + Emag)dτ), which is determined

by the volume integration over the rate of translational kinetic energy and the rate of work due

to magnetization in the presence of an external field of the fluid (see Eq. (10)). As evident from

the figure, the average energy dissipation rate (d) is balanced by the average energy injection

rate (f) leading to a statistically stationary state for the total energy i.e., ∂tE ≈ 0. All the

statistics are done when the statistical steady state is achieved. The presence of structures at all

scales in the velocity, magnetization, and magnetic field intelligibly signifies that the turbulence

is fully developed (see Fig. 2). Simulation parameters are summarised in Table I. All the runs

are well resolved as the ratio of the maximum wave-number kmax = N/3 to the Kolmogorov wave

number kη = 2π/η where η = (ν3/ε)1/4 is greater than 1. One could expect to better resolve

the Kolmogorov scale by increasing the grid size i.e., the ratio kmax/kη should increase with the

increase in grid size. However, at the same time, we are decreasing the fluid viscosity which

corresponds to a higher value of kη. Thus, we could achieve kmax/kη ∼ 1.5 for 5123 grid points.

In addition to the aforesaid simulations, we have also performed a series of three simulations

for a comparatively strong field strength H0 = 1.0. Rather than searching for a stationary state,

we have used the same forcing (f0 = 0.5) as used for the weaker H0 and collected the data for

a state where the average energy is not constant but changing at a constant rate in time (see
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Fig. 3). In this case, we investigate whether the kinetic and the total energy still cascade with

constant rates.

FIG. 3: Time variation of ∂tE, f and d for the external field strength H0 = 1.0. See Run 1b (left), Run

2b (center) and Run 3b (right) from Table I for simulation parameters.

TABLE I: Simulation parameters. Re is the Reynolds number corresponding the box size,

Urms is the rms (root mean square) velocity, λ = (5
∫
E(k)dk/

∫
k2E(k)dk)1/2 is the Taylor

length scale, L = (3π/4)
∫
E(k)k−1dk/

∫
E(k)dk is the integral length scale, where E(k) is the

energy spectrum. Reλ = Urmsλ/ν is the Taylor-scale Reynolds number and ReL = UrmsL/ν is

the integral-scale Reynolds number.

Run N Re H0 Urms Γ λ L η Reλ ReL kmax/kη

1a 128 250 0.1 0.739 0.1 0.343 0.613 0.21 63 113 1.432

1b 128 250 1.0 0.731 0.1 0.377 0.651 0.222 69 118 1.508

2a 256 500 0.1 0.772 0.1 0.247 0.541 0.125 96 209 1.698

2b 256 500 1.0 0.776 0.1 0.284 0.57 0.133 110 221 1.812

3a 512 1428 0.1 0.797 0.1 0.15 0.506 0.057 172 576 1.553

3b 512 1428 1.0 0.803 0.1 0.17 0.514 0.061 200 589 1.662

For a fully developed turbulent flow, inside the inertial range, a flat region is expected for A(ℓ)

when plotted as a function of increment vector ℓ. The flatness indicates the scale-independent

nature of the energy cascade rate and this constant flux rate is equal to the average injection rate

i.e., A(ℓ) = const = 2ε. The average ⟨(·)⟩ is calculated over the possible pairs of x and x′ = x+ℓ

i.e., A(ℓ) = ⟨A(x, ℓ)⟩x. This average is sufficient for the calculation of all flux terms. However,

in practice, exact scaling laws are written assuming statistical isotropy. In order to achieve that,

we vary the increment vector over 73 directions spanned by the base vectors ∈ {(1, 0, 0), (1, 1, 0),

(1, 1, 1), (2, 1, 0), (2, 1, 1) (2, 2, 1), (3, 1, 0), (3, 1, 1)} (in units of the grid resolution).
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FIG. 4: Energy cascade rate along all the 73 directions (dotted curves) and the average over all

the directions (solid black curve) for a typical simulation (Run 3a).

Finally, a one-dimensional interpolation is done before the final averaging over all the 73

directions, which gives the isotropic A(ℓ) =
∑

A(ℓ)/73 [18, 44, 45]. Interestingly, in our derived

exact relation, A(ℓ) is found to be more or less identical in all 73 directions and hence A(ℓ) ≃ A(ℓ)

(see Fig. 4). This is because our derived A(ℓ) is according to the alternative form ([16, 17, 19])

and is free of any global divergence.

V. RESULTS

In Fig. 5, we plot A(ℓ), A1(ℓ), A2(ℓ) for external field strengths H0 = 0.1 and 1.0. While

A2(ℓ) consists of the flux contributions due to the initial external field H0, A1(ℓ) accounts for

the contributions due to H̃. A flat region in A(ℓ) (black solid curve) is clearly found within the

intermediate range of scales. It indicates the existence of a scale-independent energy cascade

within the internal range and thus numerically validates the Kolmogorov-type of universality for

our derived exact relation (Eq. (23)) for ferrofluids. For statistical stationary state, in addition,

the constant scale-independent cascade rate should be equal to twice the average energy injection

rate (ε) at large scales. This equality expressed in Eq. (23) holds reasonably well for H0(= 0.1)

where we observe A(ℓ) ≈ 2ε within the inertial range (see Fig. 5 (a)). This is well expected as

we achieved a statistical stationary state for one point average energy with H0 = 0.1. Also, A2(ℓ)
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is small compared to A1(ℓ) (∼ 20 times smaller), and consequently the total energy transfer is

mainly governed by A1(ℓ) as A1(ℓ) ≈ A(ℓ) ≈ 2ε. Similar to Fig. 5 (a), both A(ℓ) and A1(ℓ) in

Fig. 5 (b) become constant for a range of scales thus exhibiting a clear signature of both kinetic

and the total energy cascades.

FIG. 5: Energy cascade rates as a function of ℓ for a box with 5123 grid points for H0 = 0.1ẑ

(left) and H0 = 1.0ẑ (right).

FIG. 6: Various components of two point energy dissipation rate and A(ℓ) as a function of ℓ for

a box with 5123 grid points for H0 = 0.1ẑ (left) and H0 = 1.0ẑ (right).
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FIG. 7: Comparison of the energy cascade rates A(ℓ) and its components for grid points 1283

to 5123 (top to bottom) with external magnetic field strength H0 = 0.1 and H0 = 1.0 (left and

right). See Table I for simulation details.

However, for stronger external field (H0 = 1.0), A2(ℓ) increases and becomes only ∼ 4 times
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smaller than A1(ℓ) which remains unaffected by any change in H0. Due to negative contribution

of A2(ℓ) in A(ℓ), the latter decreases with respect to A1(ℓ). Note that, 2ε also decreases as H0

increases and is slightly dominated by A1(ℓ) in the inertial range as is evident from 5 (b). Globally,

one can easily see that the exact relation A(ℓ) = 2ε is not closely verified for H0 = 1.0 as there

appears a gap between A(ℓ) and 2ε. This could be due to the fact that scale dependent dissipative

terms are no longer negligible in the inertial length scales. In order to probe into this, we have

also plotted different contributions from the total dissipation in Fig. 6. For both values of H0,

all the dissipation effects are found to remain small in the inertial range and become important

at small scales. It is therefore natural to understand that the gap between A(ℓ) and 2ε is mainly

because a proper stationary state was not obtained for H0 = 1.0 and the exact law is calculated

in the presence of a non zero but constant ∂tR. This is particularly interesting as it gives an

evidence of energy cascade even in a non-stationary regime where the more general exact relation

A(ℓ) = ∂tR + 2ε is satisfied and affirms a constant A(ℓ) when ∂tR is a non-zero constant. In

Fig. 7, we plot A(ℓ) along with its components by varying the number of grid points from 1283 to

5123. As is expected, both for H0 = 0.1 and H0 = 1.0, the extent of the flat region increases with

the number of grid points and a better convergence towards A(ℓ) = 2ε is obtained (see Fig. 7 (e)

and Fig. 7 (f)).

The extent of the inertial range can be described in terms of the largest energy-containing

integral scale (L) and the Kolmogorov scale (η) corresponding to the smallest eddies. As one goes

on increasing the resolution (or grid points), the large scale Reynolds number Re increases and

so is the ratio (L/η) thus corresponding to a wider inertial range. From the plots, the increase

in the inertial range with grid size is evident from the considerable shift of η towards smaller

scales whereas L shifts very slightly towards the left. Similar to η, the Taylor microscale (λ),

which denotes the length scale where dissipation begins to impact turbulent eddies, also appears

to migrate towards smaller scales leading to a wider inertial range. All these three length scales

are denoted by vertical lines for all the runs plotted in Fig. 7. For all the runs, the pure kinetic

term ⟨δv · δ(v ×Ω)⟩ is found to be the most dominating term in A(ℓ) (see Table. II for the

relative order of magnitude of various terms). Among other terms, the energy transfer due to〈
δΩ · δ(M× H̃)

〉
and

〈
δH̃ · δ(Ω×M)

〉
increases in magnitude with H0. However, these two

contributions cancel each other within the inertial range and thus do not affect the total energy

transfer. The remaining terms ⟨δH̃ · δ((v ·∇)M)⟩ and ⟨δv · δ((M ·∇)H̃)⟩ are several orders of

magnitude less than the kinetic term and are almost unaffected by the strength of external field.

Finally, as mentioned above, the effect of the external field enters through ⟨H0 · (δΩ×δM)⟩ which

increases with H0.
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TABLE II: Order of magnitude of different terms of A(ℓ) for grid points 5123

H0 ⟨δv · δ(v ×Ω)⟩
〈
δv · δ((M ·∇)H̃)

〉 〈
δH̃ · δ((v ·∇)M)

〉 〈
δH̃ · δ(Ω×M)

〉 〈
δΩ · δ(M× H̃)

〉
⟨H0 · (δΩ× δM)⟩

0.1 0.1 10−5 10−5 10−3 10−3 10−2

1.0 0.1 10−5 10−4 10−2 10−2 10−1

VI. DISCUSSION AND CONCLUSIONS

FIG. 8: Compensated kinetic energy spectrum for all Runs in Table I.

Using two-point statistics, we have derived the exact relation corresponding to the transfer

of total energy for three-dimensional incompressible homogeneous ferrofluid turbulence. The

exact relation is equally applicable to isotropic and anisotropic flows. For anisotropic flows,

unlike the divergence form of the exact relation, the energy cascade rate can be calculated in

a straightforward manner without worrying about the geometry of the system. Using direct

numerical simulations, we have numerically calculated the cascade rate owing to our derived

exact relation. For weak external magnetic field, we have studied the turbulent dynamics of a

statistical stationary state where the kinetic energy almost equals the total energy and exhibits

inertial range cascade. For stronger external magnetic field, we have studied the dynamics of a non-

stationary regime with a constant energy dissipation rate. Note that, for a strong H0, achieving

a statistical stationary state is found to be practically difficult as ferromagnetic particles tend

to align themselves quickly along a strong external field thereby leading to a constant leakage of

energy from the fluid to the external field. In this case too, both the kinetic and the total energy

exhibit constant transfer rate in the inertial range of scales. However, the kinetic energy cascade

rate is found to be greater than the total energy cascade rate. With the increase in resolution

from 1283 to 5123, we also observed that the flat region between Kolmogorov scale and integral
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scale increases and a better convergence towards the exact law is achieved. In spectral space, the

kinetic energy power spectrum gives a k−5/3 spectrum for both values of H0 thereby justifying

the existence of a Kolmogorov type cascade for kinetic energy in ferrofluid turbulence (see Fig.

8). Similar to the physical space, wider range for k−5/3 spectrum is also found for simulations

with increasing grid points. Finding power spectra for total energy is, however, not evident for

ferrofluid turbulence where the energy density function cannot be written due to the inexact

differential form of the magnetic energy part.

By the help of the derived exact relation, one can also study the turbulent relaxation in

Ferrofluids using the recently proposed Principle of Vanishing Nonlinear Transfer (PVNLT) [46].

This principle has recently been used to successfully predict the relaxed states in binary fluid

turbulence [47] and is currently being implemented to find the relaxation in ferrofluids in a separate

study. Complementary to the current study, one can also investigate if the energy conservation

is also satisfied in triads and search for the corresponding mode to mode transfers [48]. Using

the said concept, a natural continuation would be to study contributions from local and non-local

triads in the energy cascade in ferrofluids in the presence of an external magnetic field of various

strengths. The current study can also be extended to the compressible ferrofluid system including

the temperature evolution equation into account [49].
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