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Abstract

A nut graph is a simple graph of order 2 or more for which the adjacency matrix has a single
zero eigenvalue such that all non-zero kernel eigenvectors have no zero entry (i.e. are full). It is
shown by construction that every finite group can be represented as the group of automorphisms
of infinitely many nut graphs. It is further shown that such nut graphs exist even within the class
of regular graphs; the cases where the degree is 8, 12, 16, 20 or 24 are realised explicitly.
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1 Introduction

A problem posed in Kőnig’s 1936 book on Graph Theory [36, p. 5] asks when a given abstract group
can be represented as the group of automorphisms of a (finite) graph G, and when this is the case, how
the graph can be constructed1. In response, Frucht first solved the problem in its original form [30].
Later, he showed that solution is still possible under the extra requirement that G is a cubic graph [31].
In both cases he gave an explicit construction. Sabidussi [42] refined the question and proved that
every group can be represented by a graph with additional properties such as: prescribed chromatic
number, prescribed vertex-connectivity, or regularity with prescribed degree. An early survey paper
by Babai [5] reviews this research direction and defines the term f-universal: a class of graphs C is
f-universal if for every finite group G there exists a graph G ∈ C such that Aut(G) ∼= G. Not all famous
graph classes are f-universal; for example, Babai has shown that there are infinitely many finite groups
which cannot be realised by a planar graph [2, 4]. Kőnig’s question has also been extended from graphs
to other combinatorial objects, such as tournaments [39], Steiner triple and quadruple systems [38],
and cycle systems [34, 37]. Here, we consider Kőnig’s original question, but for nut graphs.

A nut graph is a singular simple graph with nullity 1, where the non-trivial kernel eigenvector
has only non-zero entries. Nut graphs occur in several chemical applications [45]: they are connected,
leafless and non-bipartite [48]. Catalogues have been constructed [15, 16, 11, 14]: nut graphs may
be regular, vertex-transitive [28, 8] (including GRRs [40, 41] and non-Cayley graphs), but are not
edge-transitive [7]; they may be chemical graphs [29], including some cubic polyhedra [46] and, in
particular, fullerenes [47]. Recently, a comprehensive theory of circulant nut graphs has been developed
[24, 21, 20, 22]. The study of polycirculant nut graphs [23] has also been initiated.

1“Wann kann eine gegebene abstrakte Gruppe als die Gruppe eines Graphen aufgefaßt werden und – ist des der Fall

– wie kann die entsprechende Graph konstruoert werden?”
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Here, we prove a Sabidussi-type result for the class of nut graphs: we show that the graph G
that realises a given automorphism group can be chosen to satisfy the requirements of the nut-graph
definition; hence, nut graphs are f-universal (in the sense of [5]). We prove that:

Theorem 1. For every finite group G there exist infinitely many finite nut graphs G, such that

Aut(G) ∼= G.

Furthermore, we can require that the graph G is also regular.

Theorem 2. For every finite group G and d ∈ {8, 12, 16, 20, 24} there exist infinitely many finite

d-regular nut graphs G, such that Aut(G) ∼= G.

2 Preliminaries

All graphs considered in this paper are finite, simple and connected. The adjacency matrix of graph G
is A(G) and the dimension of the nullspace of A(G) is the nullity, η(G). An automorphism α of a graph
G is a permutation α : V (G) → V (G) of the vertices of G that maps edges to edges and non-edges to
non-edges. The set of all automorphisms of a graph G forms a group, the (full) automorphism group

of G, denoted by Aut(G). The image of a vertex v ∈ V (G) under automorphism α will be denoted
vα. For other standard definitions we refer the reader to one of the many comprehensive treatments
of the theory of graph spectra (e.g. [18, 19, 13, 17, 12]). and algebraic graph theory (e.g. [33, 26, 9]).

Nut graphs [48] are graphs that have a one-dimensional nullspace (i.e., η(G) = 1), where the non-
trivial kernel eigenvector x = [x1 . . . xn]⊺ ∈ ker A(G) is full (i.e., |xi| > 0 for all i = 1, . . . , n). As
the defining paper considered the isolated vertex to be a trivial case [48], non-trivial nut graphs have
seven or more vertices. If G is a regular nut graph, then δ(G) = d(G) = ∆(G) ≥ 3. Note that there
are no nut graphs with ∆(G) = 2, as no cycle has nullity 1.

In what follows, it will be useful to have constructions that are guaranteed to produce a nut graph,
when applied to a starting graph of specified type. For example, let G be a nut graph and e ∈ E(G)
an arbitrary edge. Then the graph obtained from G by subdividing the edge e four times is again a
nut graph; this is the subdivision construction [48]. Two further constructions that will prove useful
in what follows are now described.

The first is the coalescence construction: Let G1 and G2 be graphs and let v1 ∈ V (G1) and
v2 ∈ V (G2). The coalescence of (G1, v1) and (G2, v2), which we denote here as (G1, v1) ⊙ (G2, v2),
is the graph obtained from the disjoint union of G1 and G2 by identifying root vertices v1 and v2.
Sciriha obtained the following result [44, Corollary 21].

Lemma 3 ([44]). Let G1 and G2 be nut graphs. Then the coalescence (G1, v1) ⊙ (G2, v2) is a nut

graph.

The coalescence construction must be provided with an initial collection of nut graphs. The second
construction is different in that it produces a nut graph from any (2t)-regular graph.

Proposition 4 ([7]). Let G be a connected (2t)-regular graph, where t ≥ 1. Let M3(G) be the graph

obtained from G by fusing a bouquet of t triangles to every vertex of G. Then M3(G) is a nut graph.

The construction M3(G) is called the triangle-multiplier construction [7]. The choice of name is
justified by the fact that |V (M3(G))| = (2t + 1)|V (G)|. Its effect on the automorphism group is
described by the following proposition.

Proposition 5 ([7]). Let G be a connected (2t)-regular graph, where t ≥ 1. Then Aut(G) ≤
Aut(M3(G)) and | Aut(M3(G))| = (2tt!)|V (G)|| Aut(G)|.

The group Aut(G) also acts on M3(G). The additional automorphisms in Aut(M3(G)) are well-
understood. They arise from swapping the two degree-2 endvertices of the attached triangles and
from permuting the triangles attached to a given vertex of graph G.

As mentioned above, Sabidussi showed for a range of properties, that they can be required of the
graph that realises a given finite group. Theorem 3.7 in [42] is more general than we need here; in a
version tailored for our purposes, it is:
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Theorem 6 ([42]). For every finite group G of order |G| > 1 and d ≥ 3 there exist infinitely many

connected d-regular graphs G, such that Aut(G) ∼= G.

The theorem of Sabidussi requires the group G to be non-trivial. However, as Bollobás has shown, a
consequence of [10, Theorem 6] is that for d ≥ 3 almost every d-regular graph is asymmetric. Thus it
is easy to incorporate the trivial case into Theorem 6 and the requirement |G| > 1 could be omitted.
Theorem 6 is the jumping-off point for our proofs.

3 Proof of Theorem 1

We are now ready to prove the main theorem. We will exploit a combination of the triangle-multiplier
and coalescence constructions.

Proof of Theorem 1. If |G| > 1, then by Theorem 6, there exists a 4-regular graph H, such that
Aut(H) ∼= G. In the case |G| = 1, simply take H to be the graph from Figure 3(a), i.e. an asymmetric
4-regular graph of the minimum order. By Proposition 4, the graph M3(H) is a nut graph such that
Aut(H) ≤ Aut(M3(H)). By Proposition 5, | Aut(M3(H))| = 8|V (H)|| Aut(H)|.

Let us denote κ = |V (H)| and V (H) = {h1, h2, . . . , hκ}. By definition, H ⊂ M3(H). Let the

extra vertices be denoted t
(j,k)
i for 1 ≤ i ≤ κ and j, k ∈ {1, 2} such that the new neighbours of hi are

t
(1,1)
i , t

(1,2)
i , t

(2,1)
i and t

(2,2)
i . Moreover, t

(j,1)
i and t

(j,2)
i are adjacent; see Figure 1.

h1

h2

H

t
(1,1)
1

t
(1,2)
1

t
(2,1)
1

t
(2,2)
1

t
(1,1)
2

t
(1,2)
2 t

(2,1)
2

t
(2,2)
2

· · ·

Figure 1: The graph M3(H).

The automorphisms of M3(H) are well-understood. Every α ∈ Aut(H) is extended to an auto-
morphism α̂ ∈ Aut(M3(H)) by the following natural definition:

α̂(v) =

{
α(v), if v ∈ V (H);

t
(j,k)
ℓ , if v = t

(j,k)
i and hℓ = α(hi).

(1)

In addition to α̂ for α ∈ Aut(H), there are the following extra automorphisms in Aut(M3(H)):

βi,j = (t(j,1)
i t

(j,2)
i ), (2)

γi = (t(1,1)
i t

(2,1)
i )(t(1,2)

i t
(2,2)
i ), (3)

for i = 1, . . . , κ and j = 1, 2.
We will remove the extra automorphisms by attaching ‘gadgets’ to vertices t

(1,1)
i and t

(2,1)
i for

i = 1, . . . , κ. Consider the graph Q0 in Figure 2. It is easy to verify that Q0 is a nut graph of order 8
with | Aut(Q0)| = 2, and that vertices labelled q1 and q2 belong to different vertex orbits. Moreover,
the respective stabilisers Aut(Q0)q1

and Aut(Q0)q2
are trivial.

Let G be the graph obtained from M3(H) by a series of coalescence constructions. Start with

G0 := M3(H). For i = 1, . . . , κ define Gi := (Gi−1, t
(1,1)
i ) ⊙ (Q0, q1). (The graph Gi is obtained from

Gi−1 by adding a new copy of Q0 to Gi−1 and identifying q1 with the vertex t
(1,1)
i .) For i = 1, . . . , κ

define Gi+κ := (Gi+κ−1, t
(2,1)
i ) ⊙ (Q0, q2). By Lemma 3, G1, G2, . . . , G2κ are all nut graphs. Let

G := G2κ.
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q1

q2

Figure 2: The gadget graph Q0. The root vertices used in the first and second attachment are labelled
q1 and q2, respectively.

Next, observe that automorphisms α̂ can be extended naturally from M3(H) to G. However, all

automorphisms βi,j have been removed, since vertices t
(j,1)
i now carry gadgets, while vertices t

(j,2)
i do

not (they are still of degree 2). Similarly, all automorphisms γi have been removed, since the gadget

attached to t
(1,1)
i does not map to the gadget attached to t

(1,2)
i , as vertices q1 and q2 are in different

vertex orbits of Q0. Moreover, no new automorphisms have been introduced, as vertices q1, q2 ∈ V (Q0)
have trivial stabilisers. Therefore, Aut(G) ∼= Aut(H) ∼= G.

We provided one nut graph G which realises the group G. To obtain an infinite family, we can
subdivide each edge from {hit

(1,2)
i | i = 1, . . . , κ} with 4σ vertices for any choice of σ ≥ 0, i.e. we use

the subdivision construction on these edges.

Note that there are many ‘degrees of freedom’ in the proof of Theorem 1. In our construction,
we could have taken H to be any 4-regular graph that realises the given group G. In case |G| > 1,
Theorem 6 already provides infinitely many starting graphs H (which in turn produce infinitely many
non-isomorphic nut graphs G). If |G| = 1, by [10], there are also infinitely many startings graphs H.
At the coalescence stage, we could have picked different vertices as q1 and q2 in Q0 (so long as they
are in different vertex orbits). We could also have choosen a different gadget graph for Q0, or taken
two different gadget graphs. We could have decorated both triangles with the same gadget and taken
q1 = q2; that choice would have removed only elements βi,j ; to further remove elements γi, we could

have used the subdivision construction on edges hit
(1,2)
i .

The multiplier-coalescence construction is prodigal in terms of the number of vertices of the nut
graphs obtained. The order of graph G provided by the proof of Theorem 1 is 19|V (H)|, where |V (H)|
is the order of the graph H. For a given group G, |G| > 3, with ν generators, the smallest 4-regular
graph of the family constructed by Sabidussi in [42] is of order 4(ν + 2)|G|. Therefore, the order of
the smallest graph obtained from Sabidussi’s starting graph is 76(ν + 2)|G|.

(a) (b) (c)

Figure 3: Graphs that realise the minimum order among 4-regular graphs with automorphism groups
Z1,Z2 and Z3, respectively. These graphs are not uniquely determined; they are selected from sets of
4, 3 and 8 candidates, respectively.

Typically, much smaller examples can exist. Instead of the graph provided by the construction
in the proof by Sabidussi, we could take the starting graph H to be a minimal 4-regular graph that
realises G. For groups Z1,Z2 and Z3, minimal graphs H are shown in Figure 3. These have orders 10, 9
and 14, respectively. Application of the multiplier-coalescence construction gives rise to nut graphs of
respective orders 190, 171 and 266.
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4 Proof of Theorem 2

Proof of Theorem 2. The proof proceeds as for Theorem 1 to the point where gadgets are attached to
M3(H).

First, we prove the case d = 8. Consider the graphs P1, P2 and P3 in Figure 4. They are non-
isomorphic graphs; each of them contains six degree-3 vertices and six degree-4 vertices. The gadget
Qi, 1 ≤ i ≤ 3, is obtained from Pi by adding a new vertex wi to its complement Pi and joining wi to
all degree-7 vertices of Pi. Observe that Q1, Q2 and Q3 are non-isomorphic graphs of order 13. All
vertices of Qi are of degree 8, except for wi which is of degree 6. It is easy to verify that Q1, Q2 and
Q3 are nut graphs and that their automorphism groups are trivial.

(a) P1 (b) P2 (c) P3

Figure 4: The proto-gadget graphs for the proof of Theorem 2 in the case d = 8.

As in the proof of Theorem 1, we obtain G by a series of coalescence constructions. Start with
G0 := M3(H). For i = 1, . . . , κ define Gi := (Gi−1, t

(1,1)
i ) ⊙ (Q1, w1). For i = 1, . . . , κ define

Gi+κ := (Gi+κ−1, t
(2,1)
i ) ⊙ (Q1, w1). For i = 1, . . . , κ define Gi+2κ := (Gi+2κ−1, t

(1,2)
i ) ⊙ (Q2, w2). For

i = 1, . . . , κ define Gi+3κ := (Gi+3κ−1, t
(2,2)
i ) ⊙ (Q3, w3). In other words, gadgets Q1, Q2 and Q3 are

attached to degree-2 vertices of the triangles as indicated schematically in Figure 5(a). By Lemma 3,
G1, G2, . . . , G4κ are all nut graphs. Let G := G4κ.

By similar reasoning to that used in the proof of Theorem 1, we can see that automorphisms α̂
can be extended naturally from M3(H) to G. Moreover, the gadgets Q1, Q2 and Q3 were attached
in a manner such that automorphisms βi,j and γi were removed. Further, attachment has introduced
no new automorphisms, as these gadgets all have trivial symmetry. Hence, Aut(G) ∼= Aut(H) ∼= G.
Finally, observe that all vertices of G are of degree 8. This proves the case d = 8. For higher values of
d the proof is similar, but the search for the requisite number of proto-gadgets becomes rapidly more
tedious.

To prove the result for a given d, we start with a (d/2)-regular graph H that realises the group
G. If |G| > 1, Theorem 6 provides us with infinitely many such graphs H. If |G| = 1, by [10], there
are also infinitely many such graphs H. By Proposition 4, M3(H) is a nut graph. In this graph,
there are d/4 triangles attached at every vertex of H. To remove the unwanted symmetries, every
triangle is decorated by a different pair of gadgets. (See Figure 5.) With s gadgets, we can form

(s
2

)

different pairs. We choose the smallest s such that
(s

2

)
≥ d/4. Figure 6 tabulates a sufficient set of

proto-gadgets for degrees 12, 16, 20 and 24. The complement of P
(d)
i contains d − 2 vertices of degree

d−1, and the remaining vertices are of degree d. To obtain Q
(d)
i , add a new vertex to the complement

of P
(d)
i and connect it to all vertices of degree d − 1. Graph Q

(d)
i has exactly one vertex of degree

d − 1, while the rest are of degree d. It is easy to verify that graphs Q
(d)
1 , Q

(d)
2 , . . . are non-isomorphic

and that they all have trivial symmetry.

We note that there are other strategies for the choice of gadgets in the proof. For example, one
may prefer to find one gadget and then, to generate the others, repeatedly apply a construction that
preserves symmetry but does not produce vertices of unwanted degree. One candidate is the so-called
Fowler construction [7]. This approach would lead to a nut graph of yet larger order than the one
generated by the present proof. The order of graph G constructed in the proof of Theorem 2 is
ω(d)|V (H)|, where ω(8) = 53, ω(12) = 99, ω(16) = 161, ω(20) = 241, and ω(24) = 337. Recall that
H denotes a (d/2)-regular starting graph that realises G.
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hi

Q3

Q1

Q2

Q1

(a) d = 8

hi

Q2
Q1

Q2Q3

Q3

Q1

(b) d = 12

Figure 5: Arrangements of gadgets Qi on degree-2 vertices of a bouquet of triangles that remove
unwanted automorphisms (for the cases d = 8 and d = 12).

(a) P
(12)
1 (b) P

(12)
2 (c) P

(12)
3

(d) P
(16)
1 (e) P

(16)
2 (f) P

(16)
3 (g) P

(16)
4

(h) P
(20)
1 (i) P

(20)
2 (j) P

(20)
3 (k) P

(20)
4

(l) P
(24)
1 (m) P

(24)
2 (n) P

(24)
3 (o) P

(24)
4

Figure 6: The proto-gadget graphs for the proof of Theorem 2 for cases d ∈ {12, 16, 20, 24}. The set

P
(d)
i is used to construct the decorating gadgets Qi, as described in the proof.
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5 Discussion

Constructive methods used to answer Kőnig’s question typically do not provide minimal examples.
Let α(G) be the smallest order of the graphs representing the group G. Sabidussi [43] opened the
question by studying the order of α(G) with respect to |G|. The value α(G) has been determined for
various families of groups (see [1] for abelian groups and a survey in [50]). Babai [3] gave α(G) ≤ 2|G|
provided that G /∈ {Z3,Z4,Z5}; Deligeorgaki [25] improved this to α(G) ≤ |G|, with a longer list of
exceptions that includes some infinite families. Planar graphs have also been considered from this
point of view (for a survey see [35]).

Nut graphs raise analogous questions. It is clear that the constructions using in proving Theorems 1
and 2 are far from minimal. As an example, consider the group G288 of order 288, defined by its
permutation representation

G288 = 〈(1, 2, 3)(4, 5)(6, 7, 8), (1, 8)(2, 7)(3, 6)(4, 9)(5, 10), (7, 8)〉.

In GAP [32], this group can be obtained by calling SmallGroup(288, 889). The smallest 4-regular
graph representing this group that is given by Sabidussi’s construction (Theorem 6) is of order 5760.
Expansion to a nut graph by the construction used in the proof of Theorem 1 gives order 109440. A
much smaller 4-regular parent graph could have been used as the basis for that construction, since
the smallest 4-regular graph representing G288 is of order 11; see Figure 7(a), leading to a nut graph
of order 209. However, the database obtained by nutgen [15] reveals that the smallest nut graph that
represents G288 has only 10 vertices; see Figure 7(b).

(a) (b)

Figure 7: (a) The smallest 4-regular graph, and (b) the smallest nut graph, that represent G288.

Let β(G) be the smallest order of the nut graphs representing the group G. It is evident that
β(G) ≥ α(G). For groups up to order 6, the values are

α(Z1) = 1, β(Z1) = 9; α(Z2) = 2, β(Z2) = 8; α(Z3) = 9, β(Z3) = 11;

α(Z4) = 10, β(Z4) = 11; α(Z2 × Z2) = 4, β(Z2 × Z2) = 7; α(Z5) = 15, β(Z5) = 15;

α(Z3 × Z2) = 11, β(Z3 × Z2) = 11; α(Z3 ⋊ Z2) = 3, β(Z3 ⋊ Z2) = 7.

These numbers were found by computer search of the available censuses of nut graphs [11, 14]. For
Z5, [1, Lemma 5.2] gives us α(Z5) = 15 ≤ β(Z5). The equality β(Z5) = 15 was established by finding
an example.

Problem 7. Given any finite group G, find a nut graph G of minimum order, such that Aut(G) ∼= G.
Find an upper bound on β(G) in terms of |G|.

Another question relates to the degrees of regular nut graphs that represent groups G.

Problem 8. Given a finite group G and an integer d ≥ 3, find a d-regular nut graph G, such that
Aut(G) ∼= G.

Theorem 2 supplies the answer for small cases d ≡ 0 (mod 4), and the same technique could be
used to extend the list, but this still leaves unresolved all cases with d 6≡ 0 (mod 4). A missing case
of particular interest is d = 3. The graphs that can be used to model conjugated carbon frameworks
in Hückel theory and similar applications [49] are known as chemical graphs. A chemical graph in
this definition is connected and subcubic. Cubic chemical graphs form an important subclass that
includes the fullerenes [27]. Applications of nut graphs in theories of radical chemistry and molecular

7



conduction are described in [45]. Interestingly, the eponymous Frucht graph, introduced in [31] as
a small graph that has trivial symmetry, is both cubic (in fact polyhedral) and a nut graph. It has
order 12 and is the smallest cubic nut graph of trivial symmetry. Frucht also threated the group Z2

separately; his graph that realises this group (see [31, Fig. 2]) is not a nut graph. It is straightforward
to show that his general constructions [31] for groups of order greater than 2 do not yield nut graphs.
The repeated motifs devised by Frucht (the ‘corners’ [31]) give rise to at least one non-trivial kernel
eigenvector with some zero entries in the constructed graph. Hence, it would be interesting to find a
construction that yields cubic nut graphs directly.
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