arXiv:2405.04114v1 [csLG] 7 May 2024

Acceleration Algorithms in GNNs: A Survey

LuMa', Zeang Sheng', Xunkai Li®, Xinyi Gao*, Zhezheng Hao®
Ling Yang' , Wentao Zhang > and Bin Cui'
1School of CS, Peking University, 2Center for machine learning research, Peking University
3School of CS, Beijing Institute of Technology
“The University of Queensland, ®School of Artificial Intelligence, Northwestern Polytechnical University
{cs.LuMa, haozhezheng} @outlook.com, {shengzeang18, wentao.zhang, bin.cui} @pku.edu.cn,
cs.xunkai.li@gmail.com, xinyi.gao@ugq.edu.au, yangling0818@163.com

Abstract

Graph Neural Networks (GNNs) have demon-
strated effectiveness in various graph-based tasks.
However, their inefficiency in training and infer-
ence presents challenges for scaling up to real-
world and large-scale graph applications. To ad-
dress the critical challenges, a range of algorithms
have been proposed to accelerate training and in-
ference of GNNs, attracting increasing attention
from the research community. In this paper, we
present a systematic review of acceleration algo-
rithms in GNNs, which can be categorized into
three main topics based on their purpose: train-
ing acceleration, inference acceleration, and exe-
cution acceleration. Specifically, we summarize
and categorize the existing approaches for each
main topic, and provide detailed characterizations
of the approaches within each category. Addition-
ally, we review several libraries related to accel-
eration algorithms in GNNs and discuss our Scal-
able Graph Learning (SGL) library. Finally, we
propose promising directions for future research.
A complete summary is presented in our GitHub
repository: https://github.com/PKU-DAIR/SGL/
blob/main/Awsome-GNN-Acceleration.md.

1 Introduction

Graph Neural Networks (GNNs) [Kipf and Welling, 2017,
Liu and Zhou, 2018], which are able to extract graph structure
information as well as interactions and potential connections
between nodes, are currently the state-of-the-art in learning
node and graph representations. GNNs demonstrates their
effectiveness in various graph-based tasks, such as chemistry
[Reiser et al., 2022], biology [Li et al., 20211, social network
[Wu et al., 2022], computer vision [Yang ef al., 2020], and
recommendation systems [Wu er al., 2022].

Despite the widespread use of GNNs, the training and
inference of GNNs are known for their inefficiency, which
presents significant challenges in scaling up GNNs for real-
world and large-scale graph applications [Wu er al., 2022;
Zhang et al., 2022a]. Generally, GNNs rely on the adja-
cency matrix of the graph and the node features. However,

the size of the graph data is growing exponentially. For in-
stance, Facebook’s social network graph contains over 2 bil-
lion nodes and 1 trillion edges. A graph of this scale can
generate 100 terabytes of data during training. In addition,
most GNNs are described using the message passing (MP)
paradigm [Gilmer et al., 2017], which is based on recursive
neighborhood aggregation and transformation. The repeti-
tive neighborhood expansion of GNNs leads to an expensive
neighborhood expansion, resulting in significant computation
and 10 overhead during both training and inference.

Acceleration Algorithms in GNNs, which combine train-
ing acceleration and inference acceleration, serve as a promis-
ing research direction to reduce the storage and computation
consumption of GNNs. These algorithms have attracted con-
siderable interests from the community. [Zhang et al., 2023]
conduct a comprehensive survey on GNN acceleration meth-
ods from the perspective of algorithms, systems, customized
hardware. [Liu ef al., 2022b] review the acceleration algo-
rithms for GNNs, focusing on graph-level and model-level
optimizations. However, both of them have limitations in
terms of comprehensive coverage and the absence of a tax-
onomy specifically focused on the purpose of algorithms. In
contrast, we provide a systematic and comprehensive survey
of acceleration algorithms in GNNs, focusing on three main
topics: training acceleration, inference acceleration and ex-
ecution acceleration (i.e., both training and inference). For
training acceleration methods, we focus on graph sampling
[Hamilton et al., 2017] and GNN simplification [Wu ef al.,
2019]. We focus on GNN knowledge distillation [Yang et al.,
2020], GNN quantization [Tailor et al., 2020] and GNN prun-
ing [Zhou er al., 2021] as inference acceleration methods. For
execution acceleration methods, we focus on GNN Binariza-
tion [Wang et al., 2021¢] and graph condensation [Jin et al.,
2021]. Then, we review some libraries related to acceleration
in GNNs and discuss our Scalable Graph Learning (SGL) li-
brary. We hope that this survey aids in and advances the re-
search and the applications of acceleration in GNNS.

2 Preliminary

In this section, we first provide a brief introduction to the
fundamental formulations and paradigm of GNNs. Subse-
quently, we discuss two aspects of challenges associated with
acceleration algorithms in GNNs: the time complexity chal-

https://github.com/PKU-DAIR/SGL/blob/main/Awsome-GNN-Acceleration.md
https://github.com/PKU-DAIR/SGL/blob/main/Awsome-GNN-Acceleration.md

Node-wise Sampling: GraphSage [Hamilton er al., 20171, PinSage [Ying et al., 2018], VR-GCN
[Chen et al., 2018a], BNS [Yao and Li, 2021], GNN-BS [Liu et al., 2020b], PASS [Yoon et al., 2021]
ANS-GT [Zhang et al., 2022d]

Layer-wise Sampling: FastGCN [Chen e al., 2018b], AS-GCN [Huang et al., 2018], LADIES [Zou
et al., 20191, GRAPES [Younesian et al., 2023]

Graph Sampling

Graph-wise Sampling: Cluster-GCN [Chiang et al., 20191, GraphSAINT [Zeng et al., 2019], LGCL

[Gao et al., 2018], SHADOW-GNN [Zeng et al., 2021], GNNAutoScale [Fey et al., 2021], MVS-GNN
[Cong et al., 20201, RWTI(Bai et al., 20211, LMC [Shi et al., 2023]

Simple model without attention: SGC [Wu ez al., 20191, S>GC [Zhu and Koniusz, 2021], SIGN
[Frasca et al., 20201, GBP [Chen et al., 20201, PPRGo [Bojchevski et al., 2020], NDLS [Zhang e al.,
2021b], AGP [Wang et al., 2021b], NAFS [Zhang et al., 2022b], APPNP [Gasteiger et al., 2018], C&S

GNN Training

[Huang et al., 2020]

[Zhang et al., 2022a], NIGCN [Huang et al., 2023], SCARA [Liao et al., 2023], Grand+ [Feng er al.,

2022]

Knowledge Distillation

GNN Inference

GNN Quantization

Acceleration Algorithms in GNNs

GNN Pruning

GNN Binarization

GNN Execution <

GNN Simplification < Difficult model with attention: SAGN [Sun et al., 2021], GA-MLP [Zhang et al., 2022c], PaSca
GNN-to-GNN: LSP [Yang ef al., 2020], TinyGNN [Yan ef al., 2020], G-CRD [Joshi ef al., 2022],
GFKD [Deng and Zhang, 20211, KDEP [He et al., 2022], GKD [Yang et al., 2022]
GNN-to-MLP: Graph-MLP [Hu et al., 20211, GLNN [Zhang et al., 2021a], CPF [Yang et al., 2021],
NOSMOG [Tian et al., 2022], VQGraph [Yang e al., 20241, KRD [Wu et al., 2023], P&D [Shin and
Shin, 2023]

LPGNAS [Zhao et al., 2020], Degree-Quant [Tailor et al., 20201, SGQuant [Feng et al., 20201, VQ-
GNN [Ding et al., 20211, A>Q [Zhu ez al., 20221, EPQuant [Huang ez al., 20221, QLR [Wang er al.,
2023c], [Eliasof et al., 2023]

[Zhou et al., 20211, UGS [Chen et al., 20211, ICPG[Sui et al., 20211, [You et al., 2022], DLTH [Wang
et al., 2022], [Hui et al., 2022], Snowflake [Wang et al., 2023a]

Bi-GCN [Wang et al., 2021cl, BGN [Wang et al., 2021al, [Bahri et al., 2021], Meta-Aggregator [Jing
et al., 2021], BitGNN [Chen et al., 2023]

Node classification: GCond [Jin ef al., 2021], SFGC [Zheng et al., 2023b], MCond [Gao et al., 2024],
Graph Condensation < GCDM [Liu et al., 2022a], GCEM [Liu et al., 2023], GC-SNTK [Wang ef al., 2023b]

Graph classification: DosCond [Jin et al., 2022], KIDD [Xu et al., 2023]

Figure 1: Taxonomy of GNN acceleration algorithms. We comprehensively introduce GNNs training acceleration in Section 3, GNNs
inference acceleration in Section 4 and GNNs execution acceleration in Section 5, followed by our discussions of related libraries in Section

6 and future research directions in Section 7.

lenges and the memory complexity challenges, before mov-
ing on to the next section.

2.1 Graph Neural Networks

Consider a graph G = (V, &), with nodes V and edges €.
Node features are represented as X = {x1,...,X,_1,X,} €
R™*f where n is the number of nodes, and f is the dimen-
sion of node features. The neighborhood set and the degree of
node v are denoted by N (v) and d(v), respectively. The ad-
jacency matrix is defined as A € {0,1}"*". A [u,v] = 1if
(u,v) € &, otherwise, A [u,v] = 0. We use bold uppercases
(e.g., X) and bold lowercases (e.g., X) to represent matrices
and vectors, respectively.

Most GNNs can be formulated using the MP paradigm
(e.g., GCN [Kipf and Welling, 2017], GraphSAGE [Hamil-
ton et al., 20171, GAT [Liu and Zhou, 2018], etc.). In this
paradigm, each layer of the GNNs adopts an aggregation
function and an update function. The I" MP layer of GNNs
is formulated as follows:

m() « aggre gate (hg—l)7 {hg_l) |ue N(v)}))

ey
hgf) + update (mq(}l)7 h,(f*l)) ,
where hg,l) represents the representation of node v in the [*"

layer, while mg,l) denotes the message for node v. The aggre-

gation function is represented by aggregate, and the update

function is denoted by update. A message vector me) is

computed using the representations of its neighboring nodes
N (v) through an aggregation function, and m" is subse-
quently updated by an update function. The node represen-
tation is typically initialized as node features, denoted by
H®O© = X, and the final representation is obtained after L
MP layers as H = H(D),

The Graph Convolutional Network (GCN) [Kipf and
Welling, 20171, one of the earliest GNNs, operates by per-
forming a linear approximation to spectral graph convolu-
tions. The I*" MP layer is formulated using the MP paradigm

as follows:
m = 3 B/,

ueN (v)
0 — o (WO

where d(v) is the degree of node v obtained from the adja-

cency matrix with self-connections, denoted by A =1+ A;
and W signifies learnable weights.

2.2 Challenges of scalable GNNs

GNNs are notorious for inefficient training and inference.
The challenges are twofold: time complexity challenges and
memory complexity challenges.

Time Complexity Challenges: Scalable GNNs frequently

encounter challenges related to time complexity during both
training and inference phases. Given that the nodes in a graph
cannot be treated as independent samples, most GNNs neces-
sitate the resource-intensive and time-consuming process of
Message Passing (MP) during both training and inference.
The computation of the hidden representation for a specific
node involves the aggregation of information from its neigh-
bors. Consequently, the neighbors must also consider their
own neighbors, resulting in an exponential expansion with
each layer. This exponential growth equates to substantial
computational costs. Simultaneously, due to the irregularity
of graphs, data is often not stored contiguously in memory,
leading to high I/O overhead during aggregation. The pro-
cesses of aggregating information, performing transforma-
tions, and updating node representations pose time complex-
ity challenges.
Memory Complexity Challenges: Another significant chal-
lenge of scalable GNNs pertains to memory complexity.
Training full-batch GNNs, such as GCN, necessitates storing
the entire graph in GPU memory, leading to substantial mem-
ory overflow issues, especially when dealing with graphs con-
taining millions of nodes. Even for batch-training methods,
considerable memory resources are required to process large-
scale graphs. Storing and accessing graph data in a more
memory-efficient manner presents challenges. Moreover, it is
essential to store the activation output of each layer to com-
pute the gradient during the backward pass. As the number of
GNN layers increases, the activation footprints progressively
occupy more GPU memory during the training step.
Approaches with acceleration in training, inference, and
execution, reviewed in later sections, aim to address the two
aspects of challenges.

3 Training Acceleration

In this section, we discuss two types of training acceleration
methods, graph sampling and GNN simplification. For each
category of methods, we elucidate the fundamental definition
and properties, followed by exemplification of typical work
that falls within these categories

3.1 Graph Sampling

Graph sampling, a common yet sophisticated technique, is
employed to accelerate the training of GNNs. This technique
performs batch-training by utilizing sampled subgraphs to ap-
proximate node representations. It can mitigate the issue of
neighbor explosion, thereby significantly reducing memory
consumption during training. For the sake of completeness,
we reiterate the unified formulation of graph sampling meth-
ods as follows:

m{! — aggre gate (hg_l)7 {hg_l) | (u,v) € Block:(l)}) ,

hgl) < update (mq(f), hffﬁl)) ,

2
where Block® = {(u,v) | u € n=1 v € W (u,v) €
£}, and nV) represents the set of sampled nodes at the /*"
MP layer. Formally, the key distinction among graph sam-

pling methods lies in how the sets {n(®) ... n(E=1 p)

are sampled. Based on the scale at which these methods sam-
ple n(¥), we can classify them into node-wise sampling, layer-
wise sampling, and graph-wise sampling methods.
Node-wise Sampling: n()) = |J, ., 0 {u | u~7 Py}
where PP represents a sampling distribution; A (v) is the sam-
pling space; and r denotes the number of samples. Node-
wise sampling methods focus on sampling a fixed-size set of
neighbors for each node in each MP layer, which mitigates
the issue of neighbor explosion and reduces the memory com-
plexity from O(d¥) to O(r%), where d is the average node
degree. GraphSAGE [Hamilton et al., 2017] is the pioneer-
ing work in graph sampling, which selects a fixed-size set
of target nodes as a mini-batch and randomly samples a tree
rooted at each target node by recursively expanding the root
node’s neighborhood. For each sampled tree, GraphSAGE
computes the hidden representation of the target node by ag-
gregating the node representations from bottom to top. Fur-
thermore, PinSAGE [Ying er al., 2018] builds upon Graph-
SAGE by incorporating an importance score to each neigh-
bor through random walks as sampling probability. VR-GCN
[Chen et al., 2018a] utilizes historical representations from
the previous epoch to regulate the variance from neighbor
sampling. However, VR-GCN needs to store the previous
representations of all nodes and suffers from increased com-
plexity. GNN-BS [Liu et al., 2020b] formulates the neighbor
sampling as a bandit problem, and proposes a learnable sam-
pler aimed at minimal variance.

Layer-wise sampling: n(") = {u | u ~ r - P,}. Layer-wise
sampling methods focus on sampling a fixed-size set of nodes
for each MP layer, which reduces the memory complexity
from O(rL) to O(rL). As the inaugural layer-wise sampling
method, FastGCN [Chen et al., 2018b] samples a fixed num-
ber of nodes independently in each layer by the node-degree-
based probability distribution: p(u) < d(u). LADIES [Zou
et al., 2019] employs the same iid as FastGCN but restricts
the sampling domain to the neighborhood of the sampled
nodes. AS-GCN [Huang et al., 2018] enhances FastGCN
by introducing an adaptive sampler for explicit variance re-
duction, ensuring higher accuracy. Although layer-wise sam-
pling methods successfully control the neighbor expansion,
the computation graphs may become too sparse to maintain
high accuracy.

Graph-wise sampling: n(®) = ... = nl = nl
{u | u ~ r-Pg}. Graph-wise sampling methods concentrate
on sampling the same sub-graph for each MP layer based on
a specific sampling strategy Pg. The sampled sub-graph is
significantly smaller, thus enabling us to conduct full-batch
MP on it without concern for memory overflow issues. Clus-
terGCN [Chiang et al., 2019] first partitions the entire graph
into smaller non-overlapping clusters using clustering algo-
rithms (i.e., METIS [Karypis and Kumar, 1997]). During
each training iteration, ClusterGCN selects certain clusters
as a sub-graph for further full-batch training. GraphSAINT
[Zeng et al., 2019] adopts an enhanced approach that corrects
for the bias and variance of the estimators when sampling
subgraphs for training, which can achieve high accuracy and
rapid convergence. SHADOW-GNN [Zeng er al., 2021] pro-
poses to extract subgraphs for each target node and then apply

L-1) L)y _

GNNs on the subgraphs to address the scalability challenge.
Moreover, GNNAutoScale [Fey et al., 2021] uses historical
embeddings to generate messages outside the sampled sub-
graph, thereby maintaining the expressiveness of the origi-
nal GNNs. Graph-wise sampling methods are applicable to a
broad range of GNNs by directly running them on subgraphs,
but the partitioning of the original graph could have a signifi-
cant impact on the stability of training

3.2 GNN Simplification

GNN simplification is a recent direction to accelerate
GNN training, which involves decoupling the standard MP
paradigm. The primary concept of GNN simplification meth-
ods is to either precompute the propagated features during
pre-processing stages or propagate predictions during post-
processing stages, thereby separating the propagation oper-
ation from the transformation operation. These GNN sim-
plification methods offer two primary advantages. On one
hand, these methods can directly utilize sparse matrix multi-
plication, conducted only once at CPUs, to obtain propagated
features or propagated predictions, rather than relying on an
inefficient MP process, which significantly reduces time com-
plexity. On the other hand, because the dependencies between
nodes have been fully addressed in the pre- or post-processing
stage, it becomes feasible to divide the training nodes into
smaller mini-batches. This enables batch-training, thereby
significantly reducing memory consumption during training.
However, GNN simplification models are not sufficiently ex-
pressive due to the absence of a trainable aggregation process,
which limits their applications. To reflect the development of
these methods, we categorize them into two types: simple
methods without attention techniques and complex methods
with attention techniques.

Simple Model without Attention: SGC [Wu et al., 2019],
which initially highlights that empirically, the removal of in-
termediate nonlinearities does not affect model performance,
is the pioneering work in GNN simplification. The formula-
tion of SGC is as follows:

Y = softmax (A L AXWD L W(L))
_ (3
= softmax (ALXW> ,

where the propagated features AL can be precomputed, re-
sulting in a significant reduction in training time. Follow-
ing the design principle of SGC, [Frasca et al., 2020] pro-
pose SIGN, which employs various local graph operators to
concatenate the propagated features of different iterations,
thereby achieving superior performance compared to SGC.
[Zhu and Koniusz, 2021] introduce S2GC, which averages the

propagated features across different iterations as ZIL:O AlX.
GBP [Chen ef al., 2020] further refines the combination pro-
cess through weighted averaging as P = ZlL:O w; A'X with
w = B(1— B)l and proposes an approximation algorithm
to compute P. AGP [Wang er al., 2021b] proposes a unified
randomized algorithm capable of computing various proxim-
ity queries and facilitating feature propagation. To better uti-
lize the propagated features across different iterations, NDLS
[Zhang et al., 2021b] theoretically analyzes what influences

the propagation iterations and provides a bound to guide how
to control the iterations for different nodes. Meanwhile,
NAFS [Zhang et al., 2022b] uses the node-adaptive weight
to average the different iterations of propagated features and
proposes different ensemble strategies to obtain the final node
embeddings. In addition to the aforementioned precompu-
tating methods, there are some label propagation methods
which can accelerate training. PPNP [Gasteiger et al., 2018]
trains on raw features, and then propagates predictions us-
ing a personalized PageRank matrix [Page et al., 1999] in
post-processing process. Directly calculating the personal-
ized PageRank matrix is inefficient and a fast approximation
of PPNP, called APPNP, is introduced. However, APPNP ex-
ecutes propagation operations in each training epoch, which
makes it only faster than GCN and challenging to perform on
large-scale graphs. Building upon APPNP, C&S [Huang et
al., 2020] utilizes label propagation not only for predictions
smoothness but also for error correction, which is faster to
train and easily scales to large-scale graphs.

Complex Model with Attention: To enhance the perfor-
mance of the aforementioned simple methods, SAGN [Sun
et al., 2021] replaces the redundant concatenation operation
in SIGN with attention techniques. This technique effec-
tively collects neighbor information from various hops in an
adaptive manner, which improve the prediction performance.
Moreover, GAMLP [Zhang et al., 2022c] defines three well-
defined attention techniques, and each node in GAMLP has
the capability to utilize the propagated features across dif-
ferent iterations. Furthermore, PaSca [Zhang et al., 2022a]
provides a unified framework of GNN simplification meth-
ods and introduces the Scalable Graph Neural Architecture
Paradigm (SGAP) for GNN simplification methods. As de-
picted in Figure 2, SGAP typically involves three indepen-
dent stages: (1) Pre-processing: propagates raw features to
generate propagated features for each iteration and aggregates
these propagated features to generate the final combined mes-
sage for each node, (2) Training: feeds the propagated and
aggregated information into a multi-layer perceptron (MLP)
for training, and (3) Post-processing: propagates predictions
to generate propagated predictions and then aggregates them
to obtain the final predictions. The formulation of SGAP is
as follows:

Pre-processing: M < fprop (A, X) 7X/ < fage (M),
Training: Y = MLP (X) ,

Post-processing: M Sprop (A,Y) ,Y/ — fage (M/) ,

C))
where M = {X©) X® X} represents the set of
propagated features, with X(i+1) = AX() and X(©) = X;
M = {Y© y® . YFE)} denotes the set of propagated
predictions, with Y0+ = AY®, and YO = Y; fi.0p
signifies propagation function, and f.s, denotes aggregation
function. Generally, SGAP first obtains propagated features
or predictions across different iterations using various propa-
gation matrices. Subsequently, SGAP aggregates these prop-
agated features or predictions, either with or without attention
techniques.

Table 1: Summary of time complexity and memory complexity for GNN training acceleration methods.
of nodes, edges, classes, and feature dimensions, respectively. b is the batch size, and r refers to the number of sampled nodes.

n, m, ¢, and f are the number
L and

K corresponds to the number of times we aggregate features and labels, respectively. Besides, P and @ are the number of layers in MLP
classifiers trained with features and labels, respectively. For GraphSAINT, d = 7 is the average degree of G and the number of batches is 7.
For GBP, € denote the error threshold. For simplicity we omit the memory for storing the graph or sub-graphs since they are fixed and usually

not the main bottleneck.

Pre-processin Trainin; Trainin
Type Model Timg § Time ® Memor§
GraphSAGE | - O (kLan) @) (brLf + Lf2)
VR-GCN - O me+Lnf2+anf2) @) Lnf+Lf22
Graph sampling FastGCN - o kLnf2) O (bkLf+ Lf)
Cluster-GCN | O(m) O (Lmf + Ln f2) O (bLf + Lf?
GraphSAINT | - O (Lbdf + Lnf?) O (bLf + Lf? ;
SGC O(Lmy) O (nf?) O (bf + f%)
S*GC O(Lmf) O (nf?) O (bf + f?)
GNN simplification SIGN O(Lmf) @ ELPnf2 @) (bLf + Pf)
without attention GBP O (Lnf + L¥ZE2) | O (Pnf?) O (bf + Pf?)
APPNP - O (Lmf + Pnf?) O (nf+ Pf?)
C&S O (Kmc) o EPn 12 o éb f+Pf*)
GNN simplification SAGN O(Lmf) @) LPnf @) (bLf + Pf)
with attention GAMLP O(Lmf + Kmc) O (Pnf? + Qnc?) O (bf +Pf*+Qc°)

: X=X(") a . XU) A . X(Z) x(L)= Zx(l--ll Y'

a8ejs Sussasoid-ald

a8eys Suyssaroid-isod

Y(K7= ZY(K"):

X' — ‘ MLPI—' Y=Y(°)i‘Y“’ E,Y(z)

Training stage

Figure 2: Illustration of SGAP for GNN simplification methods.

Building upon on the SGAP paradigm, PaSca introduces
a comprehensive design space, encompassing 150k possible
designs of GNN simplification methods(e.g., SGC, SIGN,
GAMLP, etc.). Rather than focusing on individual designs,
PaSca prioritizes the overall design space, leading to superior
performance and scalability compared to the STOA.

4 GNN Inference Acceleration

Despite the great performance of GNNs on a lot of tasks, due
to their inefficient inference, their inefficient inference makes
them less favored when deployed in latency-sensitive appli-
cations [Yan et al., 2020]. In this section, we discuss three
types of inference acceleration methods: knowledge distilla-
tion (KD), GNN quantization, and GNN pruning. For each
category, we fisrt introduce the fundamental definition and
properties, followed by examples of typical works.

4.1 Knowledge Distillation

KD is a learning paradigm that extracts knowledge from a
teacher model and transfers it to a student model [Gou et
al., 2021]. Tts objective is to enable the student model to
mimic the teacher model through knowledge, where the log-
its, activations, and features can all be considered as knowl-

edge. During training, KD guides the student model using
the KD loss Lk p, which is typically computed by a diver-
gence function (e.g., KullbackLeibler divergence D) be-
tween the knowledge of the student k° and the teacher k'.
This process can be formulated as follows:
Lxp = Dir(k', k). (5)

KD on GNNs aims either at performance improvement or
at model compression, which also implies inference acceler-
ation [Tian et al., 2023]. In the case of the latter, the stu-
dent model is deemed more efficient than the teacher model,
with either fewer parameters or a different model structure
offering better scalability(e.g. MLP). KD on GNNs, aimed at
inference acceleraion, can be classified into two categories:
GNN-to-GNN KD methods and GNN-to-MLP KD methods,
depending on the type of their student models.
GNN-to-GNN KD: LSP [Yang et al., 2020] preserves and
distills local structures of nodes as knowledge from a teacher
GNN to a student GNN. LSP models the local structure of
node v via vectors that calculate the similarity between v and
its one-hop neighbors as:

SIM (P hy)

LS,(u) = ue N(v), (6)

S e ST
where SIM(h;, h;) = ||h; — h;||3. LSP demonstrates ex-
cellent distillation performance across multiple domains and
paves the way for KD on GNNs. TinyGNN [Yan e al., 2020]
leverages peer node information and adopts a neighbor dis-
tillation strategy to implicitly acquire local structure knowl-
edge by the Peer-Aware Module, which results in a signifi-
cant speed-up in student GNN inference. GFKD [Deng and
Zhang, 2021] transfers knowledge from a teacher GNN to
a student GNN by generating fake graphs. To further im-
prove the performance, G-CRD [Joshi ef al., 2022] not only
preserves local structural information but also implicitly pre-
serves the global topology information through contrastive

learning, and GKD [Yang et al., 2022] leverages a neural heat
kernel to capture the global structure.

GNN-to-MLP KD: GNN-to-GNN KD methods apply KD to
train student GNNs with fewer parameters, thereby accelerat-
ing GNN inference. However, the time-consuming MP is still
required during inference. To address the time complexity is-
sue, recent studies have explored distilling knowledge from
trained GNNs into MLPs, which do not rely on graph data
and can be efficiently deployed in latency-sensitive applica-
tions without the time-consuming MP. Graph-MLP [Hu et al.,
2021] attempts to train an MLP student model using a neigh-
bor contrastive loss. GLNN [Zhang et al., 2021a] proposes
training an MLP model with additional soft label prediction
of a teacher GNN as targets to distill the topology knowledge.
NOSMOG [Tian et al., 2022] incorporates position features
to inject structural information into MLPs and utilizes ad-
versarial feature augmentation to enhance the robustness of
MLPs. Moreover, KRD [Wu et al., 2023] explores the reli-
ability of different nodes in a teacher GNN and proposes to
sample a set of additional reliable knowledge nodes as su-
pervision for training an MLP. VQGraph [Yang er al., 2024]
utilizes a structure-aware codebook constructed by vector-
quantized variational autoencoder (VQ-VAE) to sufficiently
transfer the structural knowledge from GNN to MLP.

4.2 GNN Quantization

Model quantization refers to the process of mapping continu-
ous data (e.g., parameters, weights, and activations of neural
networks) to smaller-sized representations. This process aims
to reduce both the computational and memory consumption
of models [Gholami er al., 2022]. Tt primarily involves con-
verting high-precision numerical values into lower precision
representations (e.g., from 32-bit floating point numbers to 8-
bit integers). Quantization can be categorized into two types:
Quantization Aware Training (QAT), which involves train-
ing a model with an awareness of the quantization process,
and Post-Training Quantization (PTQ), which applies quan-
tization to a pre-trained model after training. As for GNNs,
most quantization methods focus on enabling the usage of
low-precision integer arithmetic during inference, which fa-
cilitates quicker model inference and reduces memory usage.

[Tailor et al., 2020] analyzes the reasons for the failure of
QAT for GNNs and propose a QAT method for GNNS, termed
Degree-Quant. This method involves the selection of high in-
degree nodes for full-precision training, while all other nodes
are quantized. Despite the known degradation of model per-
formance by QAT, quantized GNNs not only perform com-
parably to FP32 models in most cases, but also achieve up
to 4.7x speedups compared to FP32 models, with 4-8x re-
ductions in memory usage. [Zhu et al., 2022] proposes the
Aggregation-Aware mixed-precision Quantization (A?Q) for
GNNs, where an optimal bit-width is automatically learned
and assigned to each node in the graph. A%Q can achieve up
to an 18.6x compression ratio with negligible accuracy degra-
dation, thereby reducing the time and memory consumption
of GNNs. In addition to the aforementioned QAT methods,
LPGNAS [Zhao et al., 2020] quantizes GNNs using Network
Architecture Search (NAS). VQ-GNN [Ding et al., 2021] em-
ploys vector quantization (VQ) to reduce the dimensions of

features and parameters of GNNs. SGQuant [Feng et al.,
2020] introduces a PTQ method for GNNs, which quantizes
the node features while keeping the weights at full precision,
thus limiting its efficiency and usage.

4.3 GNN Pruning

The technique aimed at reducing unnecessary parameters in
neural networks is referred to as pruning [Liu et al., 2020a].
Pruning is commonly employed to reduce the size or com-
putational consumption of the trained networks, accelerating
inference without compromising accuracy. Pruning provides
a trade-off between inference speed and accuracy. As more
parameters are removed, the model is likely to infer faster but
with less accuracy, and vice versa.

To accelerate large-scale and real-time GNN inference,
[Zhou et al., 2021] presents a method for pruning the dimen-
sions in each GNN layer, which can be applied to most GNN
architectures with minimal or no loss of accuracy. [Chen et
al., 2021] initially extends the lottery ticket hypothesis [Fran-
kle and Carbin, 2019] to GNNs, introducing the Graph Lot-
tery Ticket (GLT) hypothesis and a unified GNN sparsifica-
tion (UGS) framework. This framework can simultaneously
prune the graph adjacency matrix and the model weights,
resulting in faster GNN inference. Building upon GLT hy-
pothesis, [Wang et al., 2022] presents the Dual Graph Lot-
tery Ticket framework to transform a random ticket into a
triple-win graph lottery ticket with high sparsity, high per-
formance, and good explainability. Meanwhile, [Hui et al.,
2022] proposes two special techniques to improve the perfor-
mance UGS in high graph sparsity scenarios.

5 GNN Execution Acceleration

GNN execution acceleration methods can accelerate both
training and inference of GNNs. In this section, we discuss
two types of GNN execution acceleration methods, called
GNN Binarization and Graph Condensation. We first discuss
the fundamental definition and property of these methods, and
exemplify typical work belonging to these categories.

5.1 GNN Binarization

Binarization is a technique that pushes model quantization to
the extreme by using only a single bit for weights and acti-
vations [Qin er al., 2020]. Binarization can significantly re-
duce the storage needs and computational operations required
for both training and inference. Binarization methods have
achieved great success in compressing models and providing
significant acceleration in both inference and training.
Bi-GCN [Wang er al., 2021c] introduces binarization tech-
niques to GNNs, which binarizes both the network parame-
ters and node features with minimal accuracy loss, leading to
faster inference. Bi-GCN also proposes a novel binary gradi-
ent approximation-based back-propagation technique for ef-
fectively training binary GCNs. [Wang er al., 2021a] pro-
poses BGN with binarized vectors and bit-wise operations,
which can not only reduce memory consumption but also
accelerate inference. In addition, the gradient estimator al-
lows BGN to efficiently perform back-propagation to acceler-
ate the training process. Meta-Aggregator [Jing er al., 2021]

introduces two aggregators: the Greedy Gumbel Aggregator
(GNA) and Adaptable Hybrid Aggregator (ANA), to enhance
the binary training accuracy during the aggregation phase.

5.2 Graph Condensation

Graph condensation is a technique aimed at minimizing the
performance gap between GNN models trained on a syn-
thetic, simplified graph and the original training graph [Jin
et al., 2021]. Graph condensation can condense a large, orig-
inal graph into a smaller, synthetic graph while retaining high
levels of information. After obtaining synthetic and highly in-
formative graphs, these graphs can be utilized to train and in-
fer the second and subsequent GNNs, achieving performance
comparable to the GNN trained on the original graphs. Graph
condensation leads to acceleration in both training and infer-
ence, which can be utilized for node classification tasks or
graph classification tasks.
Node classification: [Jin ef al., 2021] first introduces GCond
for graph condensation, which matches the gradients between
GNNss trained on the original large-scale graph and the syn-
thetic graph. GCond is shown to maintain over 95% orig-
inal test accuracy while reducing their graph size by more
than 99.9%, and the same condensed graph can be trans-
ferred to train different GNNs to achieve good performance.
Moreover, SFGC [Zheng et al., 2023b] proposes to distill
large-scale graphs to small-scale synthetic graph-free data to
compress the structural information into the node features,
and GCDM [Liu er al., 2022a] proposes distribution match-
ing for graph condensation. Additionally, MCond [Gao et
al., 2024] focuses more on accelerating inference of GNNs,
explicitly learning a sparse mapping matrix between origi-
nal and synthetic nodes. To perform inference on inductive
nodes, MCond seamlessly integrates new nodes into the syn-
thetic graph, which is both efficient and performant compared
to counterparts based on the original graph.
Graph classification: DosCond [Jin er al, 2022] first
extends graph condensation to graph classification tasks.
DosCond utilizes a one-step gradient matching strategy to
efficiently condense a large-scale graph, where the discrete
structure is captured via a graph probabilistic model that can
be learned in a differentiable manner. Moreover, KIDD [Xu
et al., 2023] utilizes the kernel ridge regression to reduce the
computational cost and shows strong empirical performance.
Despite the promising performance of these graph conden-
sation methods, they highly rely on the imitation accuracy of
the GNN training behavior, which limits the transferability of
condensed graphs across different GNN architectures.

6 Libraries for GNNs Acceleration

The proliferation of GNNs has spurred the creation of graph
libraries such as PyTorch Geometric (PyG) [Fey and Lenssen,
2019] and Deep Graph Library (DGL) [Wang et al., 2019].
However, these libraries are not optimal for large-scale
graphs. Consequently, several libraries tailored for large-
scale graph like EnGN [Liang et al., 20201, Roc [Jia et al.,
2020], and PSGraph [Jiang et al., 2020] have emerged, but
they either focus on distributed scenarios or lack comprehen-
sive support for various acceleration methods (e.g., GNN sim-

SGL Algorithm

Graph Sampling

SGL Task

Node Classification

SGL Dataset

Homophilous Graph Y .
GNN Simplification Link Prediction

> D

Heterophilous Graph KD on Graphs
Graph Classification

Graph Augmentation

II/
{ J

SGL Abstraction [Aggregator } { Updater

(N

. [Sampler

Message Distributed Storage]

SGL Storage

Partitioned M.]

[Graph Structure] [

Figure 3: The architecture of SGL framework

plification methods) and diverse types of graphs (e.g., hetero-
geneous graphs).

Addressing these issues, we present Scalable Graph Learn-
ing (SGL), a toolkit for scalable graph learning on a single
machine. Figure 3 illustrates SGL’s framework. The main
features of SGL are as follows:

High scalability: SGL can handle graph data with billions
of nodes and edges. SGL supports both MP and SGAP
paradigms for training acceleration, as well as GNN knowl-
edge distillation for inference acceleration.

Ease of use: SGL offers user-friendly interfaces for easily
implementing and evaluating existing scalable GNNs on var-
ious downstream tasks, including node classification, node
clustering, and link prediction.

Data-centric: SGL integrates data-centric graph machine
learning (DC-GML) methods (e.g., graph data augmentation
methods) to enhance graph data quality and representation.
Additionally, SGL also has customized acceleration algo-
rithms for heterogeneous graphs.

7 Future Directions

Complex Graph Types: Extensive research exists in graph
machine learning on complex graph types, such as temporal
graphs [Gupta and Bedathur, 2022] and heterogeneous graphs
[Bing er al., 2023]. These complex types of graphs are often
large-scale or rapidly expandable in practice. Consequently,
it is increasingly important to design acceleration algorithms
tailored for these specific types of graphs.

Combine with DC-GML: DC-GML, including graph data
collection, exploration, improvement, exploitation, main-
tenance, has attracted increasing attention in recent years
[Zheng et al., 2023al. Accelerating such DC-GML methods
(e.g., graph structure learning, graph feature enhancement,
graph self-supervised learning, etc.) is crucial for their ap-
plication to large-scale graphs.

Customized Acceleration for Applications: Customized
acceleration techniques are becoming increasingly important
in various applications (e.g., Al for Science [Reiser et al.,
2022; Li et al., 2021], recommendation systems [Wu er al.,
2022], etc.). These applications often involve customized
large-scale data and requirements, making it essential to de-
sign customized acceleration methods.

-

References

[Bahri et al., 20211 Mehdi Bahri, Gaétan Bahl, and Stefanos Zafeiriou. Binary graph
neural networks. In CVPR, 2021.

[Bai ez al., 2021] Jiyang Bai, Yuxiang Ren, and Jiawei Zhang. Ripple walk training:
A subgraph-based training framework for large and deep graph neural network. In
IJCNN, 2021.

[Bing etal., 2023] Rui Bing, Guan Yuan, Mu Zhu, Fanrong Meng, Huifang Ma, and
Shaojie Qiao. Heterogeneous graph neural networks analysis: a survey of tech-
niques, evaluations and applications. Artificial Intelligence Review, 2023.

[Bojchevski et al., 2020] Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi,
Amol Kapoor, Martin Blais, Benedek R6zemberczki, Michal Lukasik, and Stephan
Giinnemann. Scaling graph neural networks with approximate pagerank. In KDD,
2020.

[Chen et al., 2018a] Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph
convolutional networks with variance reduction. /ICML, 2018.

[Chen er al., 2018b] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgen: fast learning with
graph convolutional networks via importance sampling. In /CLR, 2018.

[Chen et al., 2020] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xi-
aoyong Du, and Ji-Rong Wen. Scalable graph neural networks via bidirectional
propagation. In NeurIPS, 2020.

[Chen et al., 2021] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and
Zhangyang Wang. A unified lottery ticket hypothesis for graph neural networks.
In ICML, 2021.

[Chen et al., 2023] Jou-An Chen, Hsin-Hsuan Sung, Xipeng Shen, Sutanay Choud-
hury, and Ang Li. Bitgnn: Unleashing the performance potential of binary graph
neural networks on gpus. In /CS, 2023.

[Chiang ef al., 2019] Wei-Lin Chiang, Xuanging Liu, Si Si, Yang Li, Samy Bengio,
and Cho-Jui Hsieh. Cluster-gen: An efficient algorithm for training deep and large
graph convolutional networks. In KDD, 2019.

[Cong et al., 2020] Weilin Cong, Rana Forsati, Mahmut Kandemir, and Mehrdad Mah-
davi. Minimal variance sampling with provable guarantees for fast training of graph
neural networks. In KDD, 2020.

[Deng and Zhang, 2021] Xiang Deng and Zhongfei Zhang. Graph-free knowledge dis-
tillation for graph neural networks. In ZJCAI, 2021.

[Ding et al., 20211 Mucong Ding, Kezhi Kong, Jingling Li, Chen Zhu, John Dickerson,
Furong Huang, and Tom Goldstein. Vq-gnn: A universal framework to scale up
graph neural networks using vector quantization. In NeurIPS, 2021.

[Eliasof et al., 2023] Moshe Eliasof, Benjamin J Bodner, and Eran Treister. Haar
wavelet feature compression for quantized graph convolutional networks. TNNLS,
2023.

[Feng et al., 2020] Boyuan Feng, Yuke Wang, Xu Li, Shu Yang, Xueqiao Peng, and
Yufei Ding. Sgquant: Squeezing the last bit on graph neural networks with special-
ized quantization. In /CTAI, 2020.

[Feng et al., 2022] Wenzheng Feng, Yuxiao Dong, Tinglin Huang, Ziqi Yin,
Xu Cheng, Evgeny Kharlamov, and Jie Tang. Grand+: Scalable graph random neural
networks. In WWW, 2022.

[Fey and Lenssen, 2019] Matthias Fey and Jan Eric Lenssen. Fast graph representation
learning with pytorch geometric. arXiv preprint arXiv:1903.02428, 2019.

[Fey et al., 2021] Matthias Fey, Jan E Lenssen, Frank Weichert, and Jure Leskovec.
Gnnautoscale: Scalable and expressive graph neural networks via historical embed-
dings. In ICLR, 2021.

[Frankle and Carbin, 2019] Jonathan Frankle and Michael Carbin. The lottery ticket
hypothesis: Finding sparse, trainable neural networks. In /CLR, 2019.

[Frasca et al., 2020] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamber-
lain, Michael Bronstein, and Federico Monti. Sign: Scalable inception graph neural
networks. In ICML, 2020.

[Gao et al., 2018] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale
learnable graph convolutional networks. In KDD, 2018.

[Gao et al., 2024] Xinyi Gao, Tong Chen, Yilong Zang, Wentao Zhang, Quoc
Viet Hung Nguyen, Kai Zheng, and Hongzhi Yin. Graph condensation for inductive
node representation learning. In /CDE, 2024.

[Gasteiger er al., 2018] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan
Giinnemann. Predict then propagate: Graph neural networks meet personalized
pagerank. In ICLR, 2018.

[Gholami er al., 2022] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. A survey of quantization methods for effi-
cient neural network inference. In Low-Power Computer Vision. 2022.

[Gilmer et al., 2017] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol
Vinyals, and George E Dahl. Neural message passing for quantum chemistry. In
ICML, 2017.

[Gou et al., 2021] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao.
Knowledge distillation: A survey. International Journal of Computer Vision, 2021.

[Gupta and Bedathur, 2022] Shubham Gupta and Srikanta Bedathur. A survey on
temporal graph representation learning and generative modeling. arXiv preprint
arXiv:2208.12126, 2022.

[Hamilton et al., 2017] 'Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive rep-
resentation learning on large graphs. In NeurIPS, 2017.

[He et al., 2022] Ruifei He, Shuyang Sun, Jihan Yang, Song Bai, and Xiaojuan Qi.
Knowledge distillation as efficient pre-training: Faster convergence, higher data-
efficiency, and better transferability. In CVPR, 2022.

[Hu et al., 2021] Yang Hu, Haoxuan You, Zhecan Wang, Zhicheng Wang, Erjin Zhou,
and Yue Gao. Graph-mlp: Node classification without message passing in graph.
arXiv preprint arXiv:2106.04051, 2021.

[Huang et al., 2018] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang.
Adaptive sampling towards fast graph representation learning. In NeurIPS, 2018.

[Huang et al., 2020] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin
Benson. Combining label propagation and simple models out-performs graph neural
networks. In ICLR, 2020.

[Huang et al., 2022] Linyong Huang, Zhe Zhang, Zhaoyang Du, Shuangchen Li,
Hongzhong Zheng, Yuan Xie, and Nianxiong Tan. Epquant: A graph neural net-
work compression approach based on product quantization. NC, 2022.

[Huang et al., 2023] Keke Huang, Jing Tang, Juncheng Liu, Renchi Yang, and Xiaokui
Xiao. Node-wise diffusion for scalable graph learning. In WWW, 2023.

[Hui et al., 2022] Bo Hui, Da Yan, Xiaolong Ma, and Wei-Shinn Ku. Rethinking graph
lottery tickets: Graph sparsity matters. In /CLR, 2022.

[Jia et al., 2020] Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken.
Improving the accuracy, scalability, and performance of graph neural networks with
roc. MLSys, 2020.

[Jiang et al., 2020] Jiawei Jiang, Pin Xiao, Lele Yu, Xiaosen Li, Jiefeng Cheng, Xu-
peng Miao, Zhipeng Zhang, and Bin Cui. In ICDE, 2020.

[Jin et al., 20211 Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang,
and Neil Shah. Graph condensation for graph neural networks. In ICLR, 2021.

[Jin et al., 2022] Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang,
Jiliang Tang, and Bing Yin. Condensing graphs via one-step gradient matching. In
KDD, 2022.

[Jing et al., 2021] Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and
Dacheng Tao. Meta-aggregator: Learning to aggregate for 1-bit graph neural net-
works. In ICCV, 2021.

[Joshi et al., 2022] Chaitanya K Joshi, Fayao Liu, Xu Xun, Jie Lin, and Chuan Sheng
Foo. On representation knowledge distillation for graph neural networks. TNNLS,
2022.

[Karypis and Kumar, 1997] George Karypis and Vipin Kumar. Metis: A software
package for partitioning unstructured graphs, partitioning meshes, and computing
fill-reducing orderings of sparse matrices. 1997.

[Kipf and Welling, 2017] Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. In /CLR, 2017.

[Li et al., 2021] Rui Li, Xin Yuan, Mohsen Radfar, Peter Marendy, Wei Ni, Terence J
O’Brien, and Pablo M Casillas-Espinosa. Graph signal processing, graph neural
network and graph learning on biological data: a systematic review. R-BME, 2021.

[Liang et al., 2020] Shengwen Liang, Ying Wang, Cheng Liu, Lei He, LI Huawei,
Dawen Xu, and Xiaowei Li. Engn: A high-throughput and energy-efficient acceler-
ator for large graph neural networks. TC, 2020.

[Liao er al., 2023] Ningyi Liao, Dingheng Mo, Sigiang Luo, Xiang Li, and Pengcheng
Yin. Scalable decoupling graph neural network with feature-oriented optimization.
In VLDB, 2023.

[Liu and Zhou, 2018] Zhiyuan Liu and Jie Zhou. Graph attention networks. In ICLR,
2018.

[Liu et al., 2020a] Jiayi Liu, Samarth Tripathi, Unmesh Kurup, and Mohak Shah.
Pruning algorithms to accelerate convolutional neural networks for edge applica-
tions: A survey. arXiv preprint arXiv:2005.04275, 2020.

[Liu et al., 2020b] Ziqi Liu, Zhengwei Wu, Zhigiang Zhang, Jun Zhou, Shuang Yang,
Le Song, and Qi Yuan. Bandit samplers for training graph neural networks. In
NeurIPS, 2020.

[Liu et al., 2022a] Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song.
Graph condensation via receptive field distribution matching. arXiv preprint
arXiv:2206.13697, 2022.

[Liu ez al., 2022b] Xin Liu, Mingyu Yan, Lei Deng, Guogqi Li, Xiaochun Ye, Dongrui
Fan, Shirui Pan, and Yuan Xie. Survey on graph neural network acceleration: An
algorithmic perspective. arXiv preprint arXiv:2202.04822, 2022.

[Liu et al., 2023] Yang Liu, Deyu Bo, and Chuan Shi. Graph condensation via eigen-
basis matching. arXiv preprint arXiv:2310.09202, 2023.

[Page et al., 1999] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-
grad. The pagerank citation ranking : Bringing order to the web. In WWW, 1999.

[Qin er al., 2020] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan
Song, and Nicu Sebe. Binary neural networks: A survey. Pattern Recognition,
2020.

[Reiser er al., 2022] Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi,
Chen Zhou, Chen Shao, Houssam Metni, Clint van Hoesel, Henrik Schopmans,
Timo Sommer, et al. Graph neural networks for materials science and chemistry.
Communications Materials, 2022.

[Shi et al., 2023] Zhihao Shi, Xize Liang, and Jie Wang. Lmc: Fast training of gnns
via subgraph sampling with provable convergence. In /CLR, 2023.

[Shin and Shin, 2023] Yong-Min Shin and Won-Yong Shin. Propagate & distill: To-
wards effective graph learners using propagation-embracing mlps. In LoG, 2023.

[Sui et al., 2021] Yongduo Sui, Xiang Wang, Tianlong Chen, Xiangnan He, and Tat-
Seng Chua. Inductive lottery ticket learning for graph neural networks. 2021.

[Sun et al., 2021] Chuxiong Sun, Hongming Gu, and Jie Hu. Scalable and adap-
tive graph neural networks with self-label-enhanced training. arXiv preprint
arXiv:2104.09376, 2021.

[Tailor ez al., 2020] Shyam Anil Tailor, Javier Fernandez-Marques, and Nicholas Don-
ald Lane. Degree-quant: Quantization-aware training for graph neural networks. In
ICLR, 2020.

[Tian et al., 2022] Yijun Tian, Chuxu Zhang, Zhichun Guo, Xiangliang Zhang, and
Nitesh Chawla. Learning mlps on graphs: A unified view of effectiveness, robust-
ness, and efficiency. In /ICLR, 2022.

[Tian er al., 2023] Yijun Tian, Shichao Pei, Xiangliang Zhang, Chuxu Zhang, and
Nitesh V Chawla. Knowledge distillation on graphs: A survey. arXiv preprint
arXiv:2302.00219, 2023.

[Wang et al., 2019] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang
Song, Jinjing Zhou, Chao Ma, Lingfan Yu, Yu Gai, et al. Deep graph library: A
graph-centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315, 2019.

[Wang et al., 2021a] Hanchen Wang, Defu Lian, Ying Zhang, Lu Qin, Xiangjian He,
Yiguang Lin, and Xuemin Lin. Binarized graph neural network. In WWW, 2021.

[Wang et al., 2021b] Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan,
Xiaoyong Du, and Ji-Rong Wen. Approximate graph propagation. In KDD, 2021.

[Wang et al., 2021c] Junfu Wang, Yunhong Wang, Zhen Yang, Liang Yang, and Yuan-
fang Guo. Bi-gen: Binary graph convolutional network. In CVPR, 2021.

[Wang et al., 2022] Kun Wang, Yuxuan Liang, Pengkun Wang, Xu Wang, Pengfei Gu,
Junfeng Fang, and Yang Wang. Searching lottery tickets in graph neural networks:
A dual perspective. In ICLR, 2022.

[Wang et al., 2023a] Kun Wang, Guohao Li, Shilong Wang, Guibin Zhang, Kai Wang,
Yang You, Xiaojiang Peng, Yuxuan Liang, and Yang Wang. The snowflake hy-
pothesis: Training deep gnn with one node one receptive field. arXiv preprint
arXiv:2308.10051, 2023.

[Wang et al., 2023b] Lin Wang, Wengi Fan, Jiatong Li, Yao Ma, and Qing Li. Fast
graph condensation with structure-based neural tangent kernel. arXiv preprint
arXiv:2310.11046, 2023.

[Wang et al., 2023c] Shuang Wang, Bahaeddin Eravci, Rustam Guliyev, and Hakan
Ferhatosmanoglu. Low-bit quantization for deep graph neural networks with
smoothness-aware message propagation. In CIKM, 2023.

[Wu et al., 2019] Felix Wu, AmauriHolandade Souza, Tianyi Zhang, Christopher
Fifty, Tao Yu, and KilianQ. Weinberger. Simplifying graph convolutional networks.
In ICML, 2019.

[Wu et al., 2022] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph
neural networks in recommender systems: a survey. ACM Computing Surveys, 2022.

[Wu et al., 2023] Lirong Wu, Haitao Lin, Yufei Huang, and Stan Z Li. Quantifying the
knowledge in gnns for reliable distillation into mlps. In /JCML, 2023.

[Xu er al.,2023] Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta
Das, Hao Yang, and Hanghang Tong. Kernel ridge regression-based graph dataset
distillation. In KDD, 2023.

[Yan et al., 2020] Bencheng Yan, Chaokun Wang, Gaoyang Guo, and Yunkai Lou.
Tinygnn: Learning efficient graph neural networks. In KDD, 2020.

[Yang et al., 2020] Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao
Wang. Distilling knowledge from graph convolutional networks. In CVPR, 2020.

[Yang er al., 2021] Cheng Yang, Jiawei Liu, and Chuan Shi. Extract the knowledge of
graph neural networks and go beyond it: An effective knowledge distillation frame-
work. In WWW, 2021.

[Yang et al., 2022] Chenxiao Yang, Qitian Wu, and Junchi Yan. Geometric knowledge
distillation: Topology compression for graph neural networks. In NeurIPS, 2022.

[Yang er al., 2024] Ling Yang, Ye Tian, Minkai Xu, Zhongyi Liu, Shenda Hong, Wei
Qu, Wentao Zhang, Bin Cui, Muhan Zhang, and Jure Leskovec. Vqgraph: Graph
vector-quantization for bridging gnns and mlps. In ICLR, 2024.

[Yao and Li, 2021] Kai-Lang Yao and Wu-Jun Li. Blocking-based neighbor sampling
for large-scale graph neural networks. In IJCAI, 2021.

[Ying er al., 2018] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai,
William L. Hamilton, and Jure Leskovec. Graph convolutional neural networks for
web-scale recommender systems. In KDD, 2018.

[Yoon et al., 2021] Minji Yoon, Théophile Gervet, Baoxu Shi, Sufeng Niu, Qi He, and
Jaewon Yang. Performance-adaptive sampling strategy towards fast and accurate
graph neural networks. In KDD, 2021.

[You et al., 2022] Haoran You, Zhihan Lu, Zijian Zhou, Yonggan Fu, and Yingyan Lin.
Early-bird gens: Graph-network co-optimization towards more efficient gen training
and inference via drawing early-bird lottery tickets. In AAAZ, 2022.

[Younesian er al., 2023] Taraneh Younesian, Thiviyan Thanapalasingam, Emile van
Krieken, Daniel Daza, and Peter Bloem. Grapes: Learning to sample graphs for
scalable graph neural networks. In NeurIPS, 2023.

[Zeng et al., 2019] Hanging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kan-
nan, and Viktor Prasanna. Graphsaint: Graph sampling based inductive learning
method. In ICLR, 2019.

[Zeng et al., 2021] Hanging Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava,
Andrey Malevich, Rajgopal Kannan, Viktor Prasanna, Long Jin, and Ren Chen.
Decoupling the depth and scope of graph neural networks. In NeurIPS, 2021.

[Zhang et al., 2021a] Shichang Zhang, Yozen Liu, Yizhou Sun, and Neil Shah. Graph-
less neural networks: Teaching old mlps new tricks via distillation. In /CLR, 2021.

[Zhang et al., 2021b] Wentao Zhang, Mingyu Yang, Zeang Sheng, Yang Li, Wen
Ouyang, Yangyu Tao, Zhi Yang, and Bin Cui. Node dependent local smoothing
for scalable graph learning. In NeurIPS, 2021.

[Zhang et al., 2022a] Wentao Zhang, Yu Shen, Zheyu Lin, Yang Li, Xiaosen Li, Wen
Ouyang, Yangyu Tao, Zhi Yang, and Bin Cui. Pasca: A graph neural architecture
search system under the scalable paradigm. In WWW, 2022.

[Zhang et al., 2022b] Wentao Zhang, Zeang Sheng, Mingyu Yang, Yang Li, Yu Shen,
Zhi Yang, and Bin Cui. Nafs: A simple yet tough-to-beat baseline for graph repre-
sentation learning. In ICML, 2022.

[Zhang et al., 2022c] Wentao Zhang, Zigi Yin, Zeang Sheng, Yang Li, Wen Ouyang,
Xiaosen Li, Yangyu Tao, Zhi Yang, and Bin Cui. Graph attention multi-layer per-
ceptron. In KDD, 2022.

[Zhang et al., 2022d] Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hier-
archical graph transformer with adaptive node sampling. In NeurIPS, 2022.

[Zhang et al., 2023] Shichang Zhang, Atefeh Sohrabizadeh, Cheng Wan, Zijie Huang,
Ziniu Hu, Yewen Wang, Jason Cong, Yizhou Sun, et al. A survey on graph neu-
ral network acceleration: Algorithms, systems, and customized hardware. arXiv
preprint arXiv:2306.14052, 2023.

[Zhao et al., 2020] Yiren Zhao, Duo Wang, Daniel Bates, Robert Mullins, Mateja Jam-
nik, and Pietro Lio. Learned low precision graph neural networks. arXiv preprint
arXiv:2009.09232, 2020.

[Zheng et al., 2023a]l Xin Zheng, Yixin Liu, Zhifeng Bao, Meng Fang, Xia Hu, Alan
Wee-Chung Liew, and Shirui Pan. Towards data-centric graph machine learning:
Review and outlook. arXiv preprint arXiv:2309.10979, 2023.

[Zheng et al., 2023b] Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung
Nguyen, Xingquan Zhu, and Shirui Pan. Structure-free graph condensation: From
large-scale graphs to condensed graph-free data. arXiv preprint arXiv:2306.02664,
2023.

[Zhou et al., 20211 Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kan-
nan, and ViktorK. Prasanna. Accelerating large scale real-time gnn inference using
channel pruning. In VLDB, 2021.

[Zhu and Koniusz, 2021] Hao Zhu and Piotr Koniusz. Simple spectral graph convolu-
tion. In ICLR, 2021.

[Zhu et al., 2022] Zeyu Zhu, Fanrong Li, Zitao Mo, Qinghao Hu, Gang Li, Zejian Liu,
Xiaoyao Liang, and Jian Cheng. A2?Q: Aggregation-aware quantization for graph
neural networks. In /CLR, 2022.

[Zou et al., 2019] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and
Quanquan Gu. Layer-dependent importance sampling for training deep and large
graph convolutional networks. In NeurIPS, 2019.

	Introduction
	Preliminary
	Graph Neural Networks
	Challenges of scalable GNNs

	Training Acceleration
	Graph Sampling
	GNN Simplification

	GNN Inference Acceleration
	Knowledge Distillation
	GNN Quantization
	GNN Pruning

	GNN Execution Acceleration
	GNN Binarization
	Graph Condensation

	Libraries for GNNs Acceleration
	Future Directions

