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Abstract

Graph Neural Networks (GNNs) have demon-
strated effectiveness in various graph-based tasks.
However, their inefficiency in training and infer-
ence presents challenges for scaling up to real-
world and large-scale graph applications. To ad-
dress the critical challenges, a range of algorithms
have been proposed to accelerate training and in-
ference of GNNs, attracting increasing attention
from the research community. In this paper, we
present a systematic review of acceleration algo-
rithms in GNNs, which can be categorized into
three main topics based on their purpose: train-
ing acceleration, inference acceleration, and exe-
cution acceleration. Specifically, we summarize
and categorize the existing approaches for each
main topic, and provide detailed characterizations
of the approaches within each category. Addition-
ally, we review several libraries related to accel-
eration algorithms in GNNs and discuss our Scal-
able Graph Learning (SGL) library. Finally, we
propose promising directions for future research.
A complete summary is presented in our GitHub
repository:  https://github.com/PKU-DAIR/SGL/
blob/main/Awsome-GNN-Acceleration.md.

1 Introduction

Graph Neural Networks (GNNs) [Kipf and Welling, 2017,
Liu and Zhou, 2018], which are able to extract graph structure
information as well as interactions and potential connections
between nodes, are currently the state-of-the-art in learning
node and graph representations. GNNs demonstrates their
effectiveness in various graph-based tasks, such as chemistry
[Reiser et al., 2022], biology [Li et al., 20211, social network
[Wu et al., 2022], computer vision [Yang ef al., 2020], and
recommendation systems [Wu er al., 2022].

Despite the widespread use of GNNs, the training and
inference of GNNs are known for their inefficiency, which
presents significant challenges in scaling up GNNs for real-
world and large-scale graph applications [Wu er al., 2022;
Zhang et al., 2022a]. Generally, GNNs rely on the adja-
cency matrix of the graph and the node features. However,

the size of the graph data is growing exponentially. For in-
stance, Facebook’s social network graph contains over 2 bil-
lion nodes and 1 trillion edges. A graph of this scale can
generate 100 terabytes of data during training. In addition,
most GNNs are described using the message passing (MP)
paradigm [Gilmer et al., 2017], which is based on recursive
neighborhood aggregation and transformation. The repeti-
tive neighborhood expansion of GNNs leads to an expensive
neighborhood expansion, resulting in significant computation
and 10 overhead during both training and inference.

Acceleration Algorithms in GNNs, which combine train-
ing acceleration and inference acceleration, serve as a promis-
ing research direction to reduce the storage and computation
consumption of GNNs. These algorithms have attracted con-
siderable interests from the community. [Zhang et al., 2023]
conduct a comprehensive survey on GNN acceleration meth-
ods from the perspective of algorithms, systems, customized
hardware. [Liu ef al., 2022b] review the acceleration algo-
rithms for GNNs, focusing on graph-level and model-level
optimizations. However, both of them have limitations in
terms of comprehensive coverage and the absence of a tax-
onomy specifically focused on the purpose of algorithms. In
contrast, we provide a systematic and comprehensive survey
of acceleration algorithms in GNNs, focusing on three main
topics: training acceleration, inference acceleration and ex-
ecution acceleration (i.e., both training and inference). For
training acceleration methods, we focus on graph sampling
[Hamilton et al., 2017] and GNN simplification [Wu ef al.,
2019]. We focus on GNN knowledge distillation [Yang et al.,
2020], GNN quantization [Tailor et al., 2020] and GNN prun-
ing [Zhou er al., 2021] as inference acceleration methods. For
execution acceleration methods, we focus on GNN Binariza-
tion [Wang et al., 2021¢] and graph condensation [Jin et al.,
2021]. Then, we review some libraries related to acceleration
in GNNs and discuss our Scalable Graph Learning (SGL) li-
brary. We hope that this survey aids in and advances the re-
search and the applications of acceleration in GNNS.

2 Preliminary

In this section, we first provide a brief introduction to the
fundamental formulations and paradigm of GNNs. Subse-
quently, we discuss two aspects of challenges associated with
acceleration algorithms in GNNs: the time complexity chal-
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Figure 1: Taxonomy of GNN acceleration algorithms. We comprehensively introduce GNNs training acceleration in Section 3, GNNs
inference acceleration in Section 4 and GNNs execution acceleration in Section 5, followed by our discussions of related libraries in Section

6 and future research directions in Section 7.

lenges and the memory complexity challenges, before mov-
ing on to the next section.

2.1 Graph Neural Networks

Consider a graph G = (V, &), with nodes V and edges €.
Node features are represented as X = {x1,...,X,_1,X,} €
R™*f where n is the number of nodes, and f is the dimen-
sion of node features. The neighborhood set and the degree of
node v are denoted by N (v) and d(v), respectively. The ad-
jacency matrix is defined as A € {0,1}"*". A [u,v] = 1if
(u,v) € &, otherwise, A [u,v] = 0. We use bold uppercases
(e.g., X) and bold lowercases (e.g., X) to represent matrices
and vectors, respectively.

Most GNNs can be formulated using the MP paradigm
(e.g., GCN [Kipf and Welling, 2017], GraphSAGE [Hamil-
ton et al., 20171, GAT [Liu and Zhou, 2018], etc.). In this
paradigm, each layer of the GNNs adopts an aggregation
function and an update function. The I" MP layer of GNNs
is formulated as follows:

m() « aggre gate (hg—l)7 {hg_l) |ue N(v)}) )

ey
hgf) + update (mq(}l)7 h,(f*l)) ,
where hg,l) represents the representation of node v in the [*"

layer, while mg,l) denotes the message for node v. The aggre-

gation function is represented by aggregate, and the update

function is denoted by update. A message vector me) is

computed using the representations of its neighboring nodes
N (v) through an aggregation function, and m" is subse-
quently updated by an update function. The node represen-
tation is typically initialized as node features, denoted by
H®O© = X, and the final representation is obtained after L
MP layers as H = H(D),

The Graph Convolutional Network (GCN) [Kipf and
Welling, 20171, one of the earliest GNNs, operates by per-
forming a linear approximation to spectral graph convolu-
tions. The I*" MP layer is formulated using the MP paradigm

as follows:
m = 3 B/,

ueN (v)
0 — o (WO

where d(v) is the degree of node v obtained from the adja-

cency matrix with self-connections, denoted by A =1+ A;
and W signifies learnable weights.

2.2 Challenges of scalable GNNs

GNNs are notorious for inefficient training and inference.
The challenges are twofold: time complexity challenges and
memory complexity challenges.

Time Complexity Challenges: Scalable GNNs frequently



encounter challenges related to time complexity during both
training and inference phases. Given that the nodes in a graph
cannot be treated as independent samples, most GNNs neces-
sitate the resource-intensive and time-consuming process of
Message Passing (MP) during both training and inference.
The computation of the hidden representation for a specific
node involves the aggregation of information from its neigh-
bors. Consequently, the neighbors must also consider their
own neighbors, resulting in an exponential expansion with
each layer. This exponential growth equates to substantial
computational costs. Simultaneously, due to the irregularity
of graphs, data is often not stored contiguously in memory,
leading to high I/O overhead during aggregation. The pro-
cesses of aggregating information, performing transforma-
tions, and updating node representations pose time complex-
ity challenges.
Memory Complexity Challenges: Another significant chal-
lenge of scalable GNNs pertains to memory complexity.
Training full-batch GNNs, such as GCN, necessitates storing
the entire graph in GPU memory, leading to substantial mem-
ory overflow issues, especially when dealing with graphs con-
taining millions of nodes. Even for batch-training methods,
considerable memory resources are required to process large-
scale graphs. Storing and accessing graph data in a more
memory-efficient manner presents challenges. Moreover, it is
essential to store the activation output of each layer to com-
pute the gradient during the backward pass. As the number of
GNN layers increases, the activation footprints progressively
occupy more GPU memory during the training step.
Approaches with acceleration in training, inference, and
execution, reviewed in later sections, aim to address the two
aspects of challenges.

3 Training Acceleration

In this section, we discuss two types of training acceleration
methods, graph sampling and GNN simplification. For each
category of methods, we elucidate the fundamental definition
and properties, followed by exemplification of typical work
that falls within these categories

3.1 Graph Sampling

Graph sampling, a common yet sophisticated technique, is
employed to accelerate the training of GNNs. This technique
performs batch-training by utilizing sampled subgraphs to ap-
proximate node representations. It can mitigate the issue of
neighbor explosion, thereby significantly reducing memory
consumption during training. For the sake of completeness,
we reiterate the unified formulation of graph sampling meth-
ods as follows:

m{! — aggre gate (hg_l)7 {hg_l) | (u,v) € Block:(l)}) ,

hgl) < update (mq(f), hffﬁl)) ,
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where Block® = {(u,v) | u € n=1 v € W (u,v) €
£}, and nV) represents the set of sampled nodes at the /*"
MP layer. Formally, the key distinction among graph sam-

pling methods lies in how the sets {n(®) ... n(E=1 p)

are sampled. Based on the scale at which these methods sam-
ple n(¥), we can classify them into node-wise sampling, layer-
wise sampling, and graph-wise sampling methods.
Node-wise Sampling: n()) = |J, ., 0 {u | u~7 Py}
where PP represents a sampling distribution; A (v) is the sam-
pling space; and r denotes the number of samples. Node-
wise sampling methods focus on sampling a fixed-size set of
neighbors for each node in each MP layer, which mitigates
the issue of neighbor explosion and reduces the memory com-
plexity from O(d¥) to O(r%), where d is the average node
degree. GraphSAGE [Hamilton et al., 2017] is the pioneer-
ing work in graph sampling, which selects a fixed-size set
of target nodes as a mini-batch and randomly samples a tree
rooted at each target node by recursively expanding the root
node’s neighborhood. For each sampled tree, GraphSAGE
computes the hidden representation of the target node by ag-
gregating the node representations from bottom to top. Fur-
thermore, PinSAGE [Ying er al., 2018] builds upon Graph-
SAGE by incorporating an importance score to each neigh-
bor through random walks as sampling probability. VR-GCN
[Chen et al., 2018a] utilizes historical representations from
the previous epoch to regulate the variance from neighbor
sampling. However, VR-GCN needs to store the previous
representations of all nodes and suffers from increased com-
plexity. GNN-BS [Liu et al., 2020b] formulates the neighbor
sampling as a bandit problem, and proposes a learnable sam-
pler aimed at minimal variance.

Layer-wise sampling: n(") = {u | u ~ r - P,}. Layer-wise
sampling methods focus on sampling a fixed-size set of nodes
for each MP layer, which reduces the memory complexity
from O(rL) to O(rL). As the inaugural layer-wise sampling
method, FastGCN [Chen et al., 2018b] samples a fixed num-
ber of nodes independently in each layer by the node-degree-
based probability distribution: p(u) < d(u). LADIES [Zou
et al., 2019] employs the same iid as FastGCN but restricts
the sampling domain to the neighborhood of the sampled
nodes. AS-GCN [Huang et al., 2018] enhances FastGCN
by introducing an adaptive sampler for explicit variance re-
duction, ensuring higher accuracy. Although layer-wise sam-
pling methods successfully control the neighbor expansion,
the computation graphs may become too sparse to maintain
high accuracy.

Graph-wise sampling: n(®) = ... = nl = nl
{u | u ~ r-Pg}. Graph-wise sampling methods concentrate
on sampling the same sub-graph for each MP layer based on
a specific sampling strategy Pg. The sampled sub-graph is
significantly smaller, thus enabling us to conduct full-batch
MP on it without concern for memory overflow issues. Clus-
terGCN [Chiang et al., 2019] first partitions the entire graph
into smaller non-overlapping clusters using clustering algo-
rithms (i.e., METIS [Karypis and Kumar, 1997]). During
each training iteration, ClusterGCN selects certain clusters
as a sub-graph for further full-batch training. GraphSAINT
[Zeng et al., 2019] adopts an enhanced approach that corrects
for the bias and variance of the estimators when sampling
subgraphs for training, which can achieve high accuracy and
rapid convergence. SHADOW-GNN [Zeng er al., 2021] pro-
poses to extract subgraphs for each target node and then apply

L-1) L)y _



GNNs on the subgraphs to address the scalability challenge.
Moreover, GNNAutoScale [Fey et al., 2021] uses historical
embeddings to generate messages outside the sampled sub-
graph, thereby maintaining the expressiveness of the origi-
nal GNNs. Graph-wise sampling methods are applicable to a
broad range of GNNs by directly running them on subgraphs,
but the partitioning of the original graph could have a signifi-
cant impact on the stability of training

3.2 GNN Simplification

GNN simplification is a recent direction to accelerate
GNN training, which involves decoupling the standard MP
paradigm. The primary concept of GNN simplification meth-
ods is to either precompute the propagated features during
pre-processing stages or propagate predictions during post-
processing stages, thereby separating the propagation oper-
ation from the transformation operation. These GNN sim-
plification methods offer two primary advantages. On one
hand, these methods can directly utilize sparse matrix multi-
plication, conducted only once at CPUs, to obtain propagated
features or propagated predictions, rather than relying on an
inefficient MP process, which significantly reduces time com-
plexity. On the other hand, because the dependencies between
nodes have been fully addressed in the pre- or post-processing
stage, it becomes feasible to divide the training nodes into
smaller mini-batches. This enables batch-training, thereby
significantly reducing memory consumption during training.
However, GNN simplification models are not sufficiently ex-
pressive due to the absence of a trainable aggregation process,
which limits their applications. To reflect the development of
these methods, we categorize them into two types: simple
methods without attention techniques and complex methods
with attention techniques.

Simple Model without Attention: SGC [Wu et al., 2019],
which initially highlights that empirically, the removal of in-
termediate nonlinearities does not affect model performance,
is the pioneering work in GNN simplification. The formula-
tion of SGC is as follows:

Y = softmax (A L AXWD L W(L))
_ (3
= softmax (ALXW> ,

where the propagated features AL can be precomputed, re-
sulting in a significant reduction in training time. Follow-
ing the design principle of SGC, [Frasca et al., 2020] pro-
pose SIGN, which employs various local graph operators to
concatenate the propagated features of different iterations,
thereby achieving superior performance compared to SGC.
[Zhu and Koniusz, 2021] introduce S2GC, which averages the

propagated features across different iterations as ZIL:O AlX.
GBP [Chen ef al., 2020] further refines the combination pro-
cess through weighted averaging as P = ZlL:O w; A'X with
w = B(1— B)l and proposes an approximation algorithm
to compute P. AGP [Wang er al., 2021b] proposes a unified
randomized algorithm capable of computing various proxim-
ity queries and facilitating feature propagation. To better uti-
lize the propagated features across different iterations, NDLS
[Zhang et al., 2021b] theoretically analyzes what influences

the propagation iterations and provides a bound to guide how
to control the iterations for different nodes. Meanwhile,
NAFS [Zhang et al., 2022b] uses the node-adaptive weight
to average the different iterations of propagated features and
proposes different ensemble strategies to obtain the final node
embeddings. In addition to the aforementioned precompu-
tating methods, there are some label propagation methods
which can accelerate training. PPNP [Gasteiger et al., 2018]
trains on raw features, and then propagates predictions us-
ing a personalized PageRank matrix [Page et al., 1999] in
post-processing process. Directly calculating the personal-
ized PageRank matrix is inefficient and a fast approximation
of PPNP, called APPNP, is introduced. However, APPNP ex-
ecutes propagation operations in each training epoch, which
makes it only faster than GCN and challenging to perform on
large-scale graphs. Building upon APPNP, C&S [Huang et
al., 2020] utilizes label propagation not only for predictions
smoothness but also for error correction, which is faster to
train and easily scales to large-scale graphs.

Complex Model with Attention: To enhance the perfor-
mance of the aforementioned simple methods, SAGN [Sun
et al., 2021] replaces the redundant concatenation operation
in SIGN with attention techniques. This technique effec-
tively collects neighbor information from various hops in an
adaptive manner, which improve the prediction performance.
Moreover, GAMLP [Zhang et al., 2022c] defines three well-
defined attention techniques, and each node in GAMLP has
the capability to utilize the propagated features across dif-
ferent iterations. Furthermore, PaSca [Zhang et al., 2022a]
provides a unified framework of GNN simplification meth-
ods and introduces the Scalable Graph Neural Architecture
Paradigm (SGAP) for GNN simplification methods. As de-
picted in Figure 2, SGAP typically involves three indepen-
dent stages: (1) Pre-processing: propagates raw features to
generate propagated features for each iteration and aggregates
these propagated features to generate the final combined mes-
sage for each node, (2) Training: feeds the propagated and
aggregated information into a multi-layer perceptron (MLP)
for training, and (3) Post-processing: propagates predictions
to generate propagated predictions and then aggregates them
to obtain the final predictions. The formulation of SGAP is
as follows:

Pre-processing: M < fprop (A, X) 7X/ < fage (M),
Training: Y = MLP (X) ,

Post-processing: M Sprop (A,Y) ,Y/ — fage (M/) ,

C))
where M = {X©) X® X} represents the set of
propagated features, with X(i+1) = AX() and X(©) = X;
M = {Y© y® . YFE)} denotes the set of propagated
predictions, with Y0+ = AY®, and YO = Y; fi.0p
signifies propagation function, and f.s, denotes aggregation
function. Generally, SGAP first obtains propagated features
or predictions across different iterations using various propa-
gation matrices. Subsequently, SGAP aggregates these prop-
agated features or predictions, either with or without attention
techniques.



Table 1: Summary of time complexity and memory complexity for GNN training acceleration methods.
of nodes, edges, classes, and feature dimensions, respectively. b is the batch size, and r refers to the number of sampled nodes.

n, m, ¢, and f are the number
L and

K corresponds to the number of times we aggregate features and labels, respectively. Besides, P and @ are the number of layers in MLP
classifiers trained with features and labels, respectively. For GraphSAINT, d = 7 is the average degree of G and the number of batches is 7.
For GBP, € denote the error threshold. For simplicity we omit the memory for storing the graph or sub-graphs since they are fixed and usually

not the main bottleneck.
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Figure 2: Illustration of SGAP for GNN simplification methods.

Building upon on the SGAP paradigm, PaSca introduces
a comprehensive design space, encompassing 150k possible
designs of GNN simplification methods(e.g., SGC, SIGN,
GAMLP, etc.). Rather than focusing on individual designs,
PaSca prioritizes the overall design space, leading to superior
performance and scalability compared to the STOA.

4 GNN Inference Acceleration

Despite the great performance of GNNs on a lot of tasks, due
to their inefficient inference, their inefficient inference makes
them less favored when deployed in latency-sensitive appli-
cations [Yan et al., 2020]. In this section, we discuss three
types of inference acceleration methods: knowledge distilla-
tion (KD), GNN quantization, and GNN pruning. For each
category, we fisrt introduce the fundamental definition and
properties, followed by examples of typical works.

4.1 Knowledge Distillation

KD is a learning paradigm that extracts knowledge from a
teacher model and transfers it to a student model [Gou et
al., 2021]. Tts objective is to enable the student model to
mimic the teacher model through knowledge, where the log-
its, activations, and features can all be considered as knowl-

edge. During training, KD guides the student model using
the KD loss Lk p, which is typically computed by a diver-
gence function (e.g., KullbackLeibler divergence D) be-
tween the knowledge of the student k° and the teacher k'.
This process can be formulated as follows:
Lxp = Dir(k', k). (5)

KD on GNNs aims either at performance improvement or
at model compression, which also implies inference acceler-
ation [Tian et al., 2023]. In the case of the latter, the stu-
dent model is deemed more efficient than the teacher model,
with either fewer parameters or a different model structure
offering better scalability(e.g. MLP). KD on GNNs, aimed at
inference acceleraion, can be classified into two categories:
GNN-to-GNN KD methods and GNN-to-MLP KD methods,
depending on the type of their student models.
GNN-to-GNN KD: LSP [Yang et al., 2020] preserves and
distills local structures of nodes as knowledge from a teacher
GNN to a student GNN. LSP models the local structure of
node v via vectors that calculate the similarity between v and
its one-hop neighbors as:

SIM (P hy)

LS,(u) = ue N(v), (6)

S e ST
where SIM(h;, h;) = ||h; — h;||3. LSP demonstrates ex-
cellent distillation performance across multiple domains and
paves the way for KD on GNNs. TinyGNN [Yan e al., 2020]
leverages peer node information and adopts a neighbor dis-
tillation strategy to implicitly acquire local structure knowl-
edge by the Peer-Aware Module, which results in a signifi-
cant speed-up in student GNN inference. GFKD [Deng and
Zhang, 2021] transfers knowledge from a teacher GNN to
a student GNN by generating fake graphs. To further im-
prove the performance, G-CRD [Joshi ef al., 2022] not only
preserves local structural information but also implicitly pre-
serves the global topology information through contrastive



learning, and GKD [Yang et al., 2022] leverages a neural heat
kernel to capture the global structure.

GNN-to-MLP KD: GNN-to-GNN KD methods apply KD to
train student GNNs with fewer parameters, thereby accelerat-
ing GNN inference. However, the time-consuming MP is still
required during inference. To address the time complexity is-
sue, recent studies have explored distilling knowledge from
trained GNNs into MLPs, which do not rely on graph data
and can be efficiently deployed in latency-sensitive applica-
tions without the time-consuming MP. Graph-MLP [Hu et al.,
2021] attempts to train an MLP student model using a neigh-
bor contrastive loss. GLNN [Zhang et al., 2021a] proposes
training an MLP model with additional soft label prediction
of a teacher GNN as targets to distill the topology knowledge.
NOSMOG [Tian et al., 2022] incorporates position features
to inject structural information into MLPs and utilizes ad-
versarial feature augmentation to enhance the robustness of
MLPs. Moreover, KRD [Wu et al., 2023] explores the reli-
ability of different nodes in a teacher GNN and proposes to
sample a set of additional reliable knowledge nodes as su-
pervision for training an MLP. VQGraph [Yang er al., 2024]
utilizes a structure-aware codebook constructed by vector-
quantized variational autoencoder (VQ-VAE) to sufficiently
transfer the structural knowledge from GNN to MLP.

4.2 GNN Quantization

Model quantization refers to the process of mapping continu-
ous data (e.g., parameters, weights, and activations of neural
networks) to smaller-sized representations. This process aims
to reduce both the computational and memory consumption
of models [Gholami er al., 2022]. Tt primarily involves con-
verting high-precision numerical values into lower precision
representations (e.g., from 32-bit floating point numbers to 8-
bit integers). Quantization can be categorized into two types:
Quantization Aware Training (QAT), which involves train-
ing a model with an awareness of the quantization process,
and Post-Training Quantization (PTQ), which applies quan-
tization to a pre-trained model after training. As for GNNs,
most quantization methods focus on enabling the usage of
low-precision integer arithmetic during inference, which fa-
cilitates quicker model inference and reduces memory usage.

[Tailor et al., 2020] analyzes the reasons for the failure of
QAT for GNNs and propose a QAT method for GNNS, termed
Degree-Quant. This method involves the selection of high in-
degree nodes for full-precision training, while all other nodes
are quantized. Despite the known degradation of model per-
formance by QAT, quantized GNNs not only perform com-
parably to FP32 models in most cases, but also achieve up
to 4.7x speedups compared to FP32 models, with 4-8x re-
ductions in memory usage. [Zhu et al., 2022] proposes the
Aggregation-Aware mixed-precision Quantization (A?Q) for
GNNs, where an optimal bit-width is automatically learned
and assigned to each node in the graph. A%Q can achieve up
to an 18.6x compression ratio with negligible accuracy degra-
dation, thereby reducing the time and memory consumption
of GNNs. In addition to the aforementioned QAT methods,
LPGNAS [Zhao et al., 2020] quantizes GNNs using Network
Architecture Search (NAS). VQ-GNN [Ding et al., 2021] em-
ploys vector quantization (VQ) to reduce the dimensions of

features and parameters of GNNs. SGQuant [Feng et al.,
2020] introduces a PTQ method for GNNs, which quantizes
the node features while keeping the weights at full precision,
thus limiting its efficiency and usage.

4.3 GNN Pruning

The technique aimed at reducing unnecessary parameters in
neural networks is referred to as pruning [Liu et al., 2020a].
Pruning is commonly employed to reduce the size or com-
putational consumption of the trained networks, accelerating
inference without compromising accuracy. Pruning provides
a trade-off between inference speed and accuracy. As more
parameters are removed, the model is likely to infer faster but
with less accuracy, and vice versa.

To accelerate large-scale and real-time GNN inference,
[Zhou et al., 2021] presents a method for pruning the dimen-
sions in each GNN layer, which can be applied to most GNN
architectures with minimal or no loss of accuracy. [Chen et
al., 2021] initially extends the lottery ticket hypothesis [Fran-
kle and Carbin, 2019] to GNNs, introducing the Graph Lot-
tery Ticket (GLT) hypothesis and a unified GNN sparsifica-
tion (UGS) framework. This framework can simultaneously
prune the graph adjacency matrix and the model weights,
resulting in faster GNN inference. Building upon GLT hy-
pothesis, [Wang et al., 2022] presents the Dual Graph Lot-
tery Ticket framework to transform a random ticket into a
triple-win graph lottery ticket with high sparsity, high per-
formance, and good explainability. Meanwhile, [Hui et al.,
2022] proposes two special techniques to improve the perfor-
mance UGS in high graph sparsity scenarios.

5 GNN Execution Acceleration

GNN execution acceleration methods can accelerate both
training and inference of GNNs. In this section, we discuss
two types of GNN execution acceleration methods, called
GNN Binarization and Graph Condensation. We first discuss
the fundamental definition and property of these methods, and
exemplify typical work belonging to these categories.

5.1 GNN Binarization

Binarization is a technique that pushes model quantization to
the extreme by using only a single bit for weights and acti-
vations [Qin er al., 2020]. Binarization can significantly re-
duce the storage needs and computational operations required
for both training and inference. Binarization methods have
achieved great success in compressing models and providing
significant acceleration in both inference and training.
Bi-GCN [Wang er al., 2021c] introduces binarization tech-
niques to GNNs, which binarizes both the network parame-
ters and node features with minimal accuracy loss, leading to
faster inference. Bi-GCN also proposes a novel binary gradi-
ent approximation-based back-propagation technique for ef-
fectively training binary GCNs. [Wang er al., 2021a] pro-
poses BGN with binarized vectors and bit-wise operations,
which can not only reduce memory consumption but also
accelerate inference. In addition, the gradient estimator al-
lows BGN to efficiently perform back-propagation to acceler-
ate the training process. Meta-Aggregator [Jing er al., 2021]



introduces two aggregators: the Greedy Gumbel Aggregator
(GNA) and Adaptable Hybrid Aggregator (ANA), to enhance
the binary training accuracy during the aggregation phase.

5.2 Graph Condensation

Graph condensation is a technique aimed at minimizing the
performance gap between GNN models trained on a syn-
thetic, simplified graph and the original training graph [Jin
et al., 2021]. Graph condensation can condense a large, orig-
inal graph into a smaller, synthetic graph while retaining high
levels of information. After obtaining synthetic and highly in-
formative graphs, these graphs can be utilized to train and in-
fer the second and subsequent GNNs, achieving performance
comparable to the GNN trained on the original graphs. Graph
condensation leads to acceleration in both training and infer-
ence, which can be utilized for node classification tasks or
graph classification tasks.
Node classification: [Jin ef al., 2021] first introduces GCond
for graph condensation, which matches the gradients between
GNNss trained on the original large-scale graph and the syn-
thetic graph. GCond is shown to maintain over 95% orig-
inal test accuracy while reducing their graph size by more
than 99.9%, and the same condensed graph can be trans-
ferred to train different GNNs to achieve good performance.
Moreover, SFGC [Zheng et al., 2023b] proposes to distill
large-scale graphs to small-scale synthetic graph-free data to
compress the structural information into the node features,
and GCDM [Liu er al., 2022a] proposes distribution match-
ing for graph condensation. Additionally, MCond [Gao et
al., 2024] focuses more on accelerating inference of GNNs,
explicitly learning a sparse mapping matrix between origi-
nal and synthetic nodes. To perform inference on inductive
nodes, MCond seamlessly integrates new nodes into the syn-
thetic graph, which is both efficient and performant compared
to counterparts based on the original graph.
Graph classification: DosCond [Jin er al, 2022] first
extends graph condensation to graph classification tasks.
DosCond utilizes a one-step gradient matching strategy to
efficiently condense a large-scale graph, where the discrete
structure is captured via a graph probabilistic model that can
be learned in a differentiable manner. Moreover, KIDD [Xu
et al., 2023] utilizes the kernel ridge regression to reduce the
computational cost and shows strong empirical performance.
Despite the promising performance of these graph conden-
sation methods, they highly rely on the imitation accuracy of
the GNN training behavior, which limits the transferability of
condensed graphs across different GNN architectures.

6 Libraries for GNNs Acceleration

The proliferation of GNNs has spurred the creation of graph
libraries such as PyTorch Geometric (PyG) [Fey and Lenssen,
2019] and Deep Graph Library (DGL) [Wang et al., 2019].
However, these libraries are not optimal for large-scale
graphs. Consequently, several libraries tailored for large-
scale graph like EnGN [Liang et al., 20201, Roc [Jia et al.,
2020], and PSGraph [Jiang et al., 2020] have emerged, but
they either focus on distributed scenarios or lack comprehen-
sive support for various acceleration methods (e.g., GNN sim-
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plification methods) and diverse types of graphs (e.g., hetero-
geneous graphs).

Addressing these issues, we present Scalable Graph Learn-
ing (SGL), a toolkit for scalable graph learning on a single
machine. Figure 3 illustrates SGL’s framework. The main
features of SGL are as follows:

High scalability: SGL can handle graph data with billions
of nodes and edges. SGL supports both MP and SGAP
paradigms for training acceleration, as well as GNN knowl-
edge distillation for inference acceleration.

Ease of use: SGL offers user-friendly interfaces for easily
implementing and evaluating existing scalable GNNs on var-
ious downstream tasks, including node classification, node
clustering, and link prediction.

Data-centric: SGL integrates data-centric graph machine
learning (DC-GML) methods (e.g., graph data augmentation
methods) to enhance graph data quality and representation.
Additionally, SGL also has customized acceleration algo-
rithms for heterogeneous graphs.

7 Future Directions

Complex Graph Types: Extensive research exists in graph
machine learning on complex graph types, such as temporal
graphs [Gupta and Bedathur, 2022] and heterogeneous graphs
[Bing er al., 2023]. These complex types of graphs are often
large-scale or rapidly expandable in practice. Consequently,
it is increasingly important to design acceleration algorithms
tailored for these specific types of graphs.

Combine with DC-GML: DC-GML, including graph data
collection, exploration, improvement, exploitation, main-
tenance, has attracted increasing attention in recent years
[Zheng et al., 2023al. Accelerating such DC-GML methods
(e.g., graph structure learning, graph feature enhancement,
graph self-supervised learning, etc.) is crucial for their ap-
plication to large-scale graphs.

Customized Acceleration for Applications: Customized
acceleration techniques are becoming increasingly important
in various applications (e.g., Al for Science [Reiser et al.,
2022; Li et al., 2021], recommendation systems [Wu er al.,
2022], etc.). These applications often involve customized
large-scale data and requirements, making it essential to de-
sign customized acceleration methods.

-
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