
This paper has been accepted for publication at the
IEEE International Conference on Robotics and Automation, Yokohama, 2024 ©IEEE

ESP: Extro-Spective Prediction for Long-term Behavior Reasoning in
Emergency Scenarios

Dingrui Wang1,4, Zheyuan Lai1, Yuda Li1, Yi Wu2, Yuexin Ma3, Johannes Betz4,
Ruigang Yang1, Fellow, IEEE, Wei Li1

Abstract— Emergent-scene safety is the key milestone for
fully autonomous driving, and reliable on-time prediction is
essential to maintain safety in emergency scenarios. However,
these emergency scenarios are long-tailed and hard to collect,
which restricts the system from getting reliable predictions.
In this paper, we build a new dataset, which aims at the long-
term prediction with the inconspicuous state variation in history
for the emergency event, named the Extro-Spective Prediction
(ESP) problem. Based on the proposed dataset, a flexible feature
encoder for ESP is introduced to various prediction methods as
a seamless plug-in, and its consistent performance improvement
underscores its efficacy. Furthermore, a new metric named
clamped temporal error (CTE) is proposed to give a more
comprehensive evaluation of prediction performance, especially
in time-sensitive emergency events of subseconds. Interestingly,
as our ESP features can be described in human-readable
language naturally, the application of integrating into ChatGPT
also shows huge potential. The ESP-dataset and all bench-
marks are released at https://dingrui-wang.github.
io/ESP-Dataset/.

I. INTRODUCTION

Autonomous driving (AD) is attracting significant atten-
tion as well as a large amount of investment and resources.
However, the business success of AD is still stuck at level
2/3. The driverless solution, i.e. the level-4 AD, has slowed
its pace down towards mass production as safety must be
verified with zero-tolerance solidly. To improve the safety
of the AD system, one of the most key technologies is
prediction. An acute yet reliable algorithm to predict the
future states of the surrounding traffic participants is the
cornerstone of safe decision and driving control.

The rapid advance of prediction, especially powered by
artificial intelligence techniques, has been witnessed in recent
years. The seed work of the deep learning-based prediction
algorithm is LSTM [1], [15]. It encodes the states, e.g. the
velocity and position of traffic participants, in the past few
seconds to estimate the future states. We name such histori-
cal states based method to introspective prediction, which
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Fig. 1: A real emergency scenario with a sedan dangerously cut-in
in front of the AD truck on the highway. At the time in (a), human
drivers foretell sedan’s behavior by interpreting extrospective cues:
1) [observe] a high-speed accelerating (ACC) sedan approaching
a Slow front-blocking truck, [predict] high potential left/right lane
change and low possibility of hard brake for the sedan, 2) [observe]
left lane of the sedan is Clear, [predict] left lane change will not
happen as it can be done at anytime earlier with lower risk. 3)
[observe] an Off-ramp exit in about 200 meters, [predict] likely to
force cut-in into far-right lane to catch exit. Note the sedan did exit
the highway as expected in this case. The MTR method predicts the
behavior at (c). While the ESP encoder can absorb the extrospective
cues to predict the cut-in event in advance as shown in (b).

heavily relies on information in its own right. However,
such introspective prediction methods suffer from multi-
agent interaction. The pioneer work taking the influence of
other traffic participants into account is social LSTM [16].
An inspiring work in this line of research is VectorNet [13],
which encodes the interaction between not only the ego with
the agents but also the ego with HDMap, the static environ-
ment information. Such lightweight HDMap vectorization
technique brings huge performance improvement w.r.t. the
displacement error of predicted trajectories.

Even with the social interaction encoding, the SOTA
prediction methods [35], [43] are still not as intelligent as a
human and always fail when facing complex or emergency
scenarios, which requires a deep understanding of the en-
vironment and multiple lines of reasoning. Fig. 1 shows a
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TABLE I: A comprehensive comparison of motion prediction datasets.

Dataset Year Segments Time
horizon

Sampling
rate

Boxes Distance Density of
aggressive
behavior

Semantic
map

Highway Offline
percep-
tion

Semantic
environment
information

Lyft [22] 2019 170k 5s 10 Hz 2D 10 km low
TrafficPredict [27] 2019 - - 10 Hz - - high

NuScenes [5] 2020 1k 6s 2 Hz 3D - low
Argoverse [6] 2019 324k 3s 10 Hz None 290 km low ✓

INTERACTIONS [42] 2019 - 3s 10 Hz 2D - high ✓ ✓ ✓
WOMD [11] 2021 104k 8s 10 Hz 3D 1750 km low ✓ ✓ ✓
ESP-Dataset 2023 120k 5s 10 Hz 2D 2100 km very high ✓ ✓ ✓ ✓

real-world emergency cut-in case from our AD fleet. The
human driver can predict the emergency cut-in event at
the most early timing shown in Fig. 1 (a). The advanced
MTR method [35] only yields the prediction when lateral
movement is observable at the timing shown in Fig. 1 (c).

The lesson learned from this real case is the huge gap
between human extrospective cue understanding and rea-
soning ability and the performance of current prediction
algorithms. Rethinking the MTR/TNT and related works
[13], [26], [34], [39], even attention mechanism incorpo-
rating with local/global graph is well-designed to encode
historical state and HDMap information, the global attention
on extrospective cue and corresponding inference ability is
really weak. Among the reasons is the deficiency of the
dataset focusing on rare and difficult-to-predict scenarios
with rich but often-overlooked environmental information.
Furthermore, a more proper metric than Final Displacement
Error (FDE) and Average Displacement Error (ADE), as
well as powerful baselines should be developed for those
challenge scenarios.

In this paper, we tackle the problem of long-term predic-
tion in emergency scenarios, where internal states in history
are inconspicuous but the external environment provides
effective cues for reasoning in the best time window ahead
of the emergency event. We name it as the extrospective
problem (ESP). Due to the lack of related datasets, we built
the ESP-Dataset for challenging scenarios with emergency
events. Moreover, the dataset is collected and labeled for
diverse scenarios over 2k+ kilometers, with novel and unique
semantic environment information for extrospective predic-
tion provided. Furthermore, a new metric named Clamped
Temporal Error(CTE) is designed to comprehensively eval-
uate time-wise prediction performance, which is an impor-
tant but missing aspect for sub-second-level time-sensitive
emergency scenarios. Lastly, ESP feature extraction and net-
work encoder are introduced, which would benefit existing
backbones and algorithms seamlessly. Back to the emergency
case in Fig. 1, by introducing ESP encoding, MTR with ESP
effectively forecasts the cut-in three seconds in advance than
MTR shown in Fig. 1 (b). One more interesting thing is
that our ESP features can be described in human-readable
language naturally, and we have already integrated it into
large language models such as GPT [29] .

The contributions of the paper are summarized below:

• The ESP-Dataset with semantic environment infor-
mation is collected over 2k+ kilometers focusing on
emergency-event-based challenging scenarios.

• A new metric named CTE is proposed for compre-
hensive evaluation of prediction performance in time-
sensitive emergency scenarios.

• ESP feature extraction and network encoder are intro-
duced, which can be used to enhance existing back-
bones/algorithms seamlessly.

II. RELATED WORK

A. Motion prediction datasets

In the last decade, significant advancements in Au-
tonomous Vehicle (AV) have been propelled by the avail-
ability of diverse datasets for understanding scenes. This
journey began with 2D annotated datasets (such as CamVid
[4] and Apolloscape [17]), which evolved into multimodal
datasets (like KITTI [14] and KAIST [8]), incorporating
images, range sensor data (lidars, radars), and GPS/IMU
data etc.. However, these datasets primarily focus on intro-
spective cues, as they only consider historical information,
neglecting semantic details. In addition, numerous other
motion prediction datasets also have been established in-
cluding the Stanford Drone Dataset [33], Town Center [3],
NGSIM [10], ETH [30], Automatum [36], UCY [24], highD
[23], and exiD [28]. It is worth noting that while these
datasets offer valuable insights into motion prediction, they
primarily focus on specific fixed locations rather than the
broader context of dynamic driving environments. Moving
on to large-scale AV datasets, nuScenes [5], Lyft L5 [22],
TrafficPredict [27], Argoverse [6], INTERACTION [42], and
Waymo Open Motion dataset (WOMD) [11] have been made
available to the public. The INTERACTION dataset selects
particular driving locations (e.g., roundabouts) to emphasize
interactive complexity, while WOMD aims to jointly predict
motion behavior. As previously mentioned, understanding
context requires considering semantic information related to
extrospective aspect. TrafficPredict, Argoverse, INTERAC-
TION, and WOMD provide HD maps rich in semantics.
Nevertheless, these datasets can only provide introspective
cues to prediction models, neglecting extrospective factors.
NuScenes and Lyft L5 dataset differ in that they do not focus
on interactive driving scenarios [5]. An overall comparison
of various AV datasets is presented in Table I.



B. Driving behavior prediction

Theory of Mind (ToM), the ability to understand the
mental states of others, is a primary reason humans can
successfully negotiate traffic on a highway onramp [18].
As previously mentioned, existing models such as Vector-
net [13], TNT [43], Grip++ [26], Graph-based network [34],
GANet [39] and MTR [35], etc. tend to focus on intro-
spective aspect, which relies heavily on historical data and
high-definition maps. Furthermore, their performance is still
far from human-level interpretation of semantic environment
information, and struggle with complex scenarios that require
a deep understanding of the environment through complex
reasoning [20]. This is precisely why the advancement of
current models requires richer and more detailed semantic
information. In light of this, we introduce the ESP encoder
to demonstrate the seamless integration capabilities of the
ESP dataset. Large Language Models (LLMs) such as the
chatGPT [29] and GPT-4 [31] have been increasingly gaining
attention recently. And there are recent studies have explored
their applications in autonomous driving tasks [12]. Our
dataset is also compatible with LLMs regarding input format.

Concerning the prediction of cut-in behaviors, various at-
tempts have been made such as convolution neural network-
based method [21] and behavioral probability distribution-
based method [19]. However, existing metrics to evaluate
the prediction result such as Time-to-Collision [28], Final
Displacement Error (FDE), Average Displacement Error
(ADE), MR (Missing Rate) [11] and Average Precision [5]
do not adequately assess the quality of cut-in predictions.
Specifically, traditional metrics evaluate cut-in predictions
based on trajectory rather than the precise cut-in moment.
Consequently, current metrics emphasize spatial information
while neglecting temporal aspects during evaluation.

Fig. 2: Sensor setup for the ESP data collection platform involves
the Inceptio autonomous truck, which is equipped with 5 LiDARs,
7 cameras, 7 radars, and GPS.

III. THE ESP-DATASET

A. Sensor Setup

We use Inceptio autonomous trucks [37] to capture data
as shown in Fig. 2. The sensor system of the Inceptio
autonomous truck includes 5 LiDARs, 7 cameras, 7 radars,

Fig. 3: Organization of Semantic Infrastructure. The figure illus-
trates the organization of Semantic Infrastructure, which comprises
three extrospective components: speed monitoring systems, junc-
tions, and rare road objects.

and GPS. All five LiDARs are solid-state. One forward long-
range LiDAR is above the front windshield, two rear-facing
long-range LiDARs are under the rearview mirrors on both
sides, and two short-range blind zone LiDARs are on both
sides of the roof. Among them, long-range LiDARs can
detect up to 200 meters with 120 degrees FOV and short-
range LiDARs can scan up to 140 degrees. Three cameras
with short, middle, and long ranges are mounted on the top
of the windshield. The other four cameras are installed above
the truck doors on both sides, and these cameras are forward
middle-range cameras and backward fish-eye cameras. Five
long-range radars are placed on the bumper with forward,
left-forward, right-forward, left-rear, and right-rear views.
The two other two long-range radars are mounted under the
rearview mirrors. GPS is installed on the roof.

B. Scenario Description Paradigm

A complete representation of the agent’s operating envi-
ronment is critical for testing and evaluating autonomous
driving models [25], [32]. Different models use various
representations to describe the driving scenario. In MDP
and MCTS [2], [40], it’s a state space with vehicle position,
velocity, and actions. Lev (Lane-based planning) [38] uses
lane information while Free-space velocity (FV) [9] has no
strict lane constraints. Social LSTM [16] uses the trajectories
of multiple agents. For Graph-based methods [26], [34],
agents are nodes, and interactions are edges. Moreover, there
are models [35], [39], [43] that focus on using agent trajec-
tories and map polylines as the encoder’s input. However,
previous models lack a semantics-oriented extrospective un-
derstanding of scenario descriptions. Large Language Models
(LLMs) [12], [41] are capable of absorbing natural language-
oriented information and providing comprehensive insights.
Similarly, a driving scenario can be organized in a format
that incorporates natural language information.

Inspired by this, to describe the scenario in a complete
manner, the paradigm of the scenario description to build
the dataset includes the following components.
• Scene covers diverse attributes like lane type, weather

conditions, total vehicles in scope, etc.



• Ego vehicle’s lane location together with its historical
velocity and trajectory data are given.

• Target vehicle is the object for which future behavior
needs to be predicted. This section includes information
presented in a format similar to that of the ego vehicle,
with the distinction that it also includes the ground truth
of its future behavior.

• Relative Interaction Vehicles describes surrounding ve-
hicles in a format similar to that of the ego vehicle.

• Semantic Infrastructure encompasses three extrospective
components: speed monitoring systems, junctions and rare
road objects. The detailed framework of the semantic
infrastructure is illustrated in Fig.3.

• Extrospective Features contains different features related
to the distance and relative longitudinal velocity between
different agents in an ESP token.

Fig. 4: Seamless Integration of ESP Features with Motion Predic-
tion Models. The ESP plugin seamlessly integrates with widely used
encoder-decoder models such as TNT and MTR. As depicted, ESP
enhances existing features through straightforward concatenation,
leading to a transformative advancement in motion prediction.

C. Easy plug-in ESP Encoder

We propose to extract ESP features with a simple network
encoder. Even though the encoder in our case is as simple
as a one-layer standardized LSTM module, the improve-
ment to the performance of the SOTA models is already
considerable. The related experiment results will be shown
in section V. And the results have shown the easy plug-in
property of the ESP encoder which can also enhance existing
backbones/algorithms seamlessly. As depicted in Fig. 4, the
result generated by the ESP encoder is directly concatenated
to the original encoder output of the model. The only aspect
to be mindful of is to account for the input dimension of the
model’s decoder.

D. Data mining

As depicted in Fig. 5, collected scenarios encompassed
various interactions such as merges, lane changes, ramp
out, cone block, and zip lane. Interesting scenarios were

Fig. 5: ESP Token Types - Representation of Ego (Ego vehicle),
CIPV (Vehicle in front of ego), EV (Environmental vehicle), and
TV (Target vehicle) within each time frame. Scenario types are
determined based on rule-based criteria.

mined token by token and based on different spatial-temporal
criteria which are performed every three frames, using the
current frame at time t0, the historical frame at time t−3,
and the future frame at time t3 as a base for detection.

An example of the mining detection criteria for front-
blocking scenarios is: there is a slow-moving vehicle agent
A ahead, and the Time-to-Collision is less than 5 seconds. In
the next 5 seconds, if the ego vehicle’s minimum deceleration
is heavier than a threshold (e.g.-0.9 m/s2 ) or the average
deceleration is heavier than a threshold (e.g.-0.5 m/s2 ), and
the preceding vehicle either performs a cut-in maneuver or
is close to the ego vehicle’s dangerous zone.

Once these conditions are satisfied, a token for the ab-
straction of a scenario will be extracted. The mined token
result is illustrated in Fig. 6, the token spans over a history
of three seconds and includes a ground truth trajectory for the
target vehicle to be predicted over five seconds. Therefore,
the overall time horizon is eight seconds.

The map data covers the Shanghai-Jinan and Shanghai-
Quanzhou highways, as well as the Shanghai Outer Ring
Road. We have a representation of lane features including
the lane centerlines, lane boundary lines, and road edges.

Fig. 6: This figure depicts the framework of a token. The token
spans a history of three seconds and includes a ground truth
trajectory for the target vehicle to be predicted over five seconds.
Therefore, the overall time horizon is eight seconds. Here, tn
represents the current time stamp, tp is the predicted time stamp,
and tc denotes the ground truth cut-in moment.

E. Statistics

ESP covers more than 110,000 tokens on highways with
a total length of around 2100 km. The annotation frequency
is 10Hz. We organize the data by frames, with each frame



containing all the traffic agents’ IDs, categories, positions,
and bounding boxes. We divide the dataset into training,
validation, and testing sets by 8:1:1. Fig. 7 provides 8 typical
scenarios sampled in the ESP-dataset. It can be seen that the
traffic in our dataset features on challenging scenario that
has high density, the surrounding areas of the ego-truck are
occupied by heterogeneous vehicles, such as cars and trucks.

Fig. 7: Example scenarios from the ESP-dataset captured by the
front and side cameras of our ego-truck.

IV. TASK AND METRIC

A. Cut-in Evaluation Dilemma

Regarding driving behavior, with a specific focus on cut-
in behavior, existing models primarily centered on trajectory
prediction can also provide predictions for cut-in behavior.
This can be accomplished by superimposing the bounding
box onto the predicted trajectory while considering the head-
ing for each point along the trajectory, the initial intersection
point between the bounding box and the lane’s polyline
can be identified. Despite the straightforward conversion of
trajectory prediction into behavior prediction, assessing the
prediction outcomes based on current metrics such as Fi-
nal Displacement Error (FDE), Average Displacement Error
(ADE) and MR (Missing Rate) poses a non-trivial challenge.
The reason behind the challenge is that these metrics fo-
cus on overall trajectory performance without considering
temporal details. For example, in the Fig. 8, trajectories
labeled “a” and “b” would yield the same results with these
metrics regarding the ground truth in between, despite “a”
showing an earlier lane change. These observations highlight
the limitations of current metrics and emphasize the need to
capture the temporal aspects of prediction behaviors for a
more comprehensive evaluation.

Fig. 8: Illustration of the necessity to consider CTE metric in the
assessment of cut-in behavior prediction.

B. Metric

We introduce the Clamped Temporal Error (CTE) to
measure the difference between predicted and actual behavior
times. For each scenario token S that we evaluate, our

model generates K potential predictions, denoted as Pk,
k ∈ 1 . . .K. Each prediction Pk is related to a trajectory
sk = {sa,t}t=1:T,a=1:A for T future time steps for A agents.
Similarly, the ground truth is denoted as ŝ = {ŝa,t}. The
individual object prediction task becomes a special case of
this formulation where each joint prediction contains only a
single agent A = 1. The minCTE is computed as formulated
in the equation below,

minCTE = min
k

A∑
a=1

min(||LaMT (ŝa,t)−LaMT (ska,t)||, tu)

(1)
where LaMT represents the function for calculating Lane
Match Time by determining the intersection point between
the input trajectory and the polylines of nearby lanes w.r.t.
the vehicle’s heading and boundary box. The term tu refers
to the upper threshold to clamp the time difference.

TABLE II: Ablation study on ESP features using TNT, re-
trained TNT, and MTR with ESP encoder.

Model minFDE minADE minCTE Precis. Recall Acc.
TNT-ESP 4.33 2.00 0.71 0.75 0.83 0.76
w/o tv-ev 4.89 2.21 0.74 0.73 0.83 0.75
w/o tv-cipv 5.22 2.32 0.75 0.75 0.80 0.75
w/o ego-tv 5.88 2.59 0.82 0.72 0.78 0.72
w/o ego-cipv 4.87 2.20 0.74 0.73 0.83 0.74
w/o ego-ev 5.23 2.33 0.75 0.72 0.82 0.74
TNT-base 5.21 2.33 0.75 0.74 0.81 0.74
TNT-ESP (retrained)
w/o tv-ev 4.46 2.06 0.75 0.72 0.84 0.74
w/o tv-cipv 4.45 2.06 0.73 0.73 0.85 0.75
w/o ego-tv 4.46 2.05 0.73 0.73 0.84 0.75
w/o ego-cipv 4.52 2.08 0.73 0.73 0.84 0.75
w/o ego-ev 4.44 2.04 0.75 0.72 0.85 0.74
TNT-base 4.52 2.07 0.74 0.74 0.83 0.75
MTR-ESP 1.04 0.56 0.23 0.72 0.955 0.932
MTR-base 1.06 0.58 0.24 0.70 0.953 0.930

V. ESP APPLICATIONS

A. The Effectiveness of ESP Encoder

The ESP encoding has demonstrated its significant value
by producing rapid and discernible improvements in model
performance utilizing the ESP features from the ESP-dataset.
As shown in Table II, our initial experiment with TNT [43]
serves to elucidate the distinct influences exerted by each
component of the ESP encoder. It is evident that the ESP
encoder substantially enhances performance in nearly all
aspects. Furthermore, our ablation study on TNT, retrained
with only different partial ESP features, reveals that different
segments of the ESP features contribute to varying degrees
of influence on the outcome. Additionally, in our experiment
involving MTR [35], the results demonstrate that the ESP
encoder can still enhance the state-of-the-art (SOTA) base-
line’s performance considerably. In Fig. 9, three cases are
presented to demonstrate the substantial improvement in the
model’s performance for cut-in behavior prediction achieved
through MTR with the use of the ESP encoder. As in Case
1.1, the ground truth cut-in moment occurs at 2.2 seconds,
whereas the MTR-base model predicts it at 4.4 seconds (Case



Fig. 9: MTR-base and MTR-ESP prediction performance compari-
son. Case 1.1 to Case 1.4 are the ground truth trajectory for the cut-
in behavior, the prediction results of the MTR-base model without
ESP features, the prediction results of the MTR model with the
ESP encoder, and a combined plot respectively.

1.2). On the contrary, the MTR-ESP model provides a more
accurate prediction of 2.2 seconds (Case 1.3).

B. Friendly to LLM

The GPT model [31] has gained widespread attention in
recent months. The emergence of ChatGPT [29] has been
captivating the world. Naturally, this leads to the question of
how GPT can contribute to the field of motion prediction.
In this paper, we explore one potential application of the
ESP-dataset: utilizing its tokens directly as input for a Large
Language Model. We specifically evaluate its performance
within the context of the widely endorsed LangChain frame-
work [7], as recent studies have advocated for its application
in prediction tasks [12]. The model pipeline commences
by converting the highway scenario into a standardized
format and feeding it into GPT-4 through the LangChain
interface. Subsequently, the LLM provides insights through
multiple action-observation pairs. Actions are defined within
the “toolbox”. Once GPT believes that it has gathered enough
observational information, it provides the final answer. The
driving scenario mentioned in the introduction section goes
through this LangChain-based pipeline, with details pre-
sented in Fig.10.

Fig. 10: Demonstration of highway scenario processing using the
LangChain-based pipeline with GPT-4. GPT-4 initiates with the
’GetVehicleAheadTV’ tool and receives an observation indicating
the presence of a small vehicle ahead of the target vehicle (TV).
Following further inferences, the model ultimately predicts the
cut-in intention of the target vehicle in advance. Further, the
explanations provided by the model are similar to human thought
processes.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the critical challenge of long-
term prediction in autonomous driving, with a focus on
emergency cut-in scenarios where semantic environmental
cues are pivotal. We introduced the ESP problem, curated the
ESP-Dataset enriched with semantic environment informa-
tion, and introduced the Clamped Temporal Error (CTE) met-
ric for time-sensitive emergency scenario assessment. Our
ESP feature extraction with the ESP encoder significantly
boosted existing prediction methods, particularly in complex
interaction scenarios, as evidenced by TNT and MTR model
experiments. Furthermore, we unveiled the potential of incor-
porating ESP features into large language models like GPT
to make better predictions by using extrospective cues.

In the future, we plan to make the ESP-dataset available
to the research community and also continue expanding the
ESP-Dataset by including more diverse and challenging sce-
narios. Additionally, our research will focus on developing
advanced ESP encoders that incorporate causal reasoning
techniques for further improvement. Furthermore, fine-tuning
LLMs with ESP features, aiming to improve scenario under-
standing for autonomous vehicles, is an interesting direction.
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