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HARPER’S BEYOND SQUARE-ROOT CONJECTURE

VICTOR Y. WANG AND MAX WENQIANG XU

Abstract. We explain how the (shifted) Ratios Conjecture for L(s, χ) would extend

a randomization argument of Harper from a conductor-limited range to an unlimited

range of “beyond square-root cancellation” for character twists of the Liouville function.

As a corollary, the Liouville function would have nontrivial cancellation in arithmetic

progressions of modulus just exceeding the well-known square-root barrier. Morally, the

paper passes from random matrices to random multiplicative functions.

1. Introduction

Studying character sums is a classical and central topic in number theory. Recently,

in [18], Harper established a rather striking new phenomenon that the typical character

sums have better than square-root cancellation, which can be viewed as a successful de-

randomized version of his earlier celebrated result in the random setting [17]. Precisely,

he [18, Theorem 1.1] showed that if 1 6 x 6 r and min(x, r/x) → +∞, then

Eχ|
∑

16n6x

χ(n)| = o(
√
x),

where Eχ denotes 1
r−1

∑
χ, and the summation is over all Dirichlet characters of a given

modulus r, where r is a prime for convenience. Moreover, if c ∈ {µ, λ} is either the

Möbius function µ, or the closely related Liouville function λ, he also established that

Eχ|
∑

16n6x

c(n)χ(n)| = o(
√
x) (1.1)

for the same range of x [18, Theorem 3]. As noted in [18, paragraph after Theorem 3],

the same phenomenon could also be proven for the continuous character family χ = nit.

That is, if 1 6 x 6 T and min(x, T/x) → +∞, then

1

T

∫ T

0

|
∑

16n6x

c(n)nit| dt = o(
√
x).

The restrictions x 6 r and x 6 T in the above results naturally appeared in Harper’s

proof, where he needed such a restriction to perform a clever perfect orthogonality trick.

However, he believed that the same sort of result should also hold for a wider range of

x, even though perfect orthogonality itself no longer holds. This is Conjecture 1.1:
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Conjecture 1.1 (Harper). Fix c ∈ {µ, λ}. Let A be a fixed positive constant. Then

Eχ|
∑

16n6x

c(n)χ(n)| = o(
√
x) (1.2)

as x→ +∞, provided 1 6 x 6 rA. Similarly, if 1 6 x 6 TA and x→ +∞, then

1

T

∫ T

0

|
∑

16n6x

c(n)nit| dt = o(
√
x). (1.3)

Moreover, in both (1.2) and (1.3), the quantitative upper bound O
( √

x

(log log x)1/4

)
holds.

This conjecture is due to Harper [18, (1.2)], though strictly speaking he only records

the conjecture in the Möbius case c = µ. Given c, we refer to (1.2) and (1.3) as the

discrete and continuous cases, respectively. We concentrate on c = λ and discrete χ,

which allows for the most elegant treatment out of all four possible cases. We expect

that with more technical work, the ideas involved would extend to the other three cases,

and to other families such as quadratic Dirichlet characters (when c = µ).

Theorem 1.2. Let c = λ. In the discrete case (1.2), Conjecture 1.1 is true under GRH

and the Ratios Conjecture [9, (5.6)] for the Dirichlet L-functions L(s, χ).

We will prove this in a stronger form, in Theorem 3.1. Conjecture 2.1 is the precise

form of the Ratios Conjecture that we use. See [8–10] for details on the general Moments

and Ratios Conjectures, and their rich history based on random matrices.

It is natural to hope that GRH alone might suffice, by adapting techniques of [16,30,32]

from moments to ratios. See [5,6,11], and references within, for progress in this direction.

It would be interesting to pursue this further. Let us also mention that over function

fields Fq(t), there is now enough progress on the Ratios Conjecture that one can likely

prove an unconditional version of Theorem 1.2 in one or more families for q ≫A 1.

See [2, 26, 29, 33], and references within, for some relevant developments on ratios.

We believe Theorem 1.2 is interesting and surprising in its own right, but there is also

a significant application at A ≈ 2. Harper [18] pointed out that by Perron’s formula,

one can use the continuous case (1.3) of Conjecture 1.1 for c = µ to establish nontrivial

cancellation of µ(n) in short intervals breaking the “square-root barrier”. Precisely, this

means ∑

x6n6x+y

µ(n) = o(y) (1.4)

for all x and y as long as y ≫ √
x/W (x) for some W (x) → +∞ as x→ +∞. It is known

that the Riemann Hypothesis (RH) implies (1.4) if y ≫ x1/2+ε; in fact, y ≫ x1/2e(log x)
1/2+ε

suffices, by [31, Theorem 1] of Soundararajan. The best unconditional result [22], due to

Matomäki and Teräväinen, gives an exponent around 0.55. We also remark that a key

feature here is that we require (1.4) to hold for “all” short intervals with length beyond

certain threshold. If we only require “almost all”, then celebrated work of Matomäki–

Radziwi l l [21] shows that it is sufficient to only require y → +∞.
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The situation for arithmetic progressions a mod r is similar under the Generalized

Riemann Hypothesis (GRH), by Ye [35], but more complicated unconditionally, due to

uniformity issues near the 1-line. To our knowledge, there is no unconditional analog of

(1.4) available when r = x0.01, but results are available for r = xo(1) (see [1] for instance).

This is loosely related to the limited range r ≪ (log x)A in the Siegel–Walfisz Theorem.

However, we note that if one allows to take an average over r, then the Bombieri–

Vinogradov large sieve inequality is as good as what the GRH gives. We refer the reader

to some recent developments by Maynard [23–25] on various special cases where better

results can be obtained when averaging r and references therein. Other related results

beyond the square-root range are available in works such as [12–14].

For simplicity and clarity, we conditionally break the “square-root barrier” in the

arithmetic-progression analog of (1.4) for c = λ, as a corollary of Theorem 1.2.

Corollary 1.3. Under the same assumptions as in Theorem 1.2, we have as x→ +∞
∑

16n6x
n≡a mod r

λ(n) = o
(x
r

)

for 1 6 a 6 r 6W (x)
√
x, for some function W (x) → +∞ as x → +∞.

Proof. We first prove this assuming r > x0.49. By complete multiplicativity of λ, it

suffices to treat the case gcd(a, r) = 1. In this case, 1n≡a mod r = Eχχ(a)χ(n). Therefore,

∑

16n6x
n≡a mod r

λ(n) = Eχχ(a)
∑

16n6x

λ(n)χ(n) ≪ Eχ|
∑

16n6x

λ(n)χ(n)| ≪
√
x

W (x)1+ε
,

say, by Theorem 1.2 with A = 2.05. This is O( x
rW (x)ε

) = o(x
r
), since r 6 W (x)

√
x.

(In fact, by Theorem 3.1, we can take W (x) = (log log x)b for any fixed b < 1/4.)

On the other hand, the range r 6 x0.49 can be handled by GRH. �

This application is less interesting in Fq[t], where stronger techniques are available

due to Sawin [29]. We also note that the Ratios Conjecture can be directly used to

estimate averages like Eχ

∑
16n6x λ(n)χ(n), but not to estimate weighted averages like

Eχχ(a)
∑

16n6x λ(n)χ(n) in general, except for special values of a like a = 1.

Remark 1.4. The analog of Corollary 1.3 for the short-interval case (1.4) is likely sus-

ceptible to similar methods. Conditionally on RH and the Ratios Conjecture for the

continuous family of L-functions ζ(s + it0) indexed by t0 ∈ R, one should be able to

prove (1.4) for y ≫ √
x/(log log x)1/4−ǫ. It would be interesting to work out the details.

To understand how universal the phenomena above are, it would be desirable to prove

a random matrix analog of Conjecture 1.1, in the N × N unitary groups U(N). In this

setting, partial sums
∑

16n6x c(n)χ(n) roughly correspond to characters tr
(
A, Symk

CN
)
,

i.e. Schur polynomials, for k > 0, associated to symmetric powers Symk
CN of the stan-

dard representation CN . Let νN be the Haar probability measure on U(N).
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Conjecture 1.5. Fix B > 0. If 0 6 k 6 BN and k → +∞, then
∫

U(N)

|tr
(
A, Symk

C
N
)
| dνN(A) = o(1).

Here k is analogous to log x in Conjecture 1.1, and N is analogous to log r. Note that

the range of B is unrestricted, unlike in [28], which studies
∧k

CN instead of Symk
CN .

The connection to Möbius, or 1/L(s, χ), is roughly given by the identity

1

det(1 − e1/2−sA)
=
∑

k>0

tr
(
A, Symk

C
N
)
e(1/2−s)k.

Also, note that
∫
U(N)

|tr
(
A, Symk

CN
)
|2 dνN (A) = 1, since Symk

CN is irreducible. So the

o(1) in Conjecture 1.5 is the analog of o(
√
x) in Conjecture 1.1.

We leave this interesting challenge, Conjecture 1.5, open for now. A similar conjecture

may hold in the symplectic case A ∈ USp(2N), or in the orthogonal case A ∈ O(N,R)

after replacing Symk
CN with the kernel of the contraction map Symk

CN → Symk−2
CN .

Strategy. We sketch the proof ideas. Our proof is based on Harper’s strategy in [18].

Roughly speaking, Harper made a remarkable randomization argument to show that

when summing over the given family of Dirichlet characters, the typical behavior of

the character sums
∑

n χ(n) is very close to the random sums of Steinhaus Random

multiplicative functions (RMF)
∑

n f(n). The latter is well studied in Harper’s earlier

paper [17] and in particular, a conjecture of Helson [19] is proved:

E|
∑

16n6x

f(n)| = o(
√
x),

which shows the “better than square-root” cancellation phenomenon holds.1 Once the

link between the character sums and partial sums of RMF is built, the rest of the proof

in [18] closely follows the work [17] in the RMF setting.

A key obstruction in Harper’s strategy above, that prevented him from establishing

Conjecture 1.1 for larger x is that, in order to show that the character sums typically

behave like the random sums of RMF, Harper crucially used the perfect orthogonality of

the character sums. To make use of this, there is a natural restriction on the ranges of

the parameters, e.g. the relation between the moduli r and the length of the sum x. Our

innovation is to use a more complex-analytic approach, namely by assuming the Ratios

Conjecture to avoid using the orthogonality and thus we can extend the range of the key

parameters to establish Conjecture 1.1 conditionally.

However, certain auxiliary estimates and parameters in our work are more delicate

than those in Harper’s paper [18]. Some of the changes required are listed before Propo-

sition 2.8 below. A key ingredient is to replace perfect orthogonality with approximate

orthogonality on average. This is achieved in a new even-moment estimate, (2.9), which

has a genuine error term, unlike in Harper’s work. To establish this estimate, we must

1See [7, 15, 28, 34] for further developments about this phenomenon and its universality.
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carefully distinguish between c(n)χ(n) and χ(n).2 We remark that a main different fea-

ture of the two cases is that, in the unweighted case
∑

16n6x χ(n), one needs r/x→ +∞
(see [18, Theorems 1 and 2]) in order to get extra cancellation due to the “Fourier flip”;

while in the weighted case
∑

16n6x c(n)χ(n), we do not expect such restriction required.

The Ratios Conjecture ultimately provides a source of randomness for the weighted case

but not present for the unweighted case.

Our work can be interpreted as saying that a random matrix model for λ(n)χ(n),

namely the Ratios Conjecture, justifies the Steinhaus model for λ(n)χ(n), for low-moment

upper-bound statistics of the partial sums
∑

16n6x λ(n)χ(n).

Notation. Our notation ≪,≫,≍, O(·), o(·), ⌊·⌋ is standard. We let P (n) denote the

maximum prime divisor of n. We let 1E denote 1 if an event E holds, and 0 otherwise.

The only other convention that deserves comment is the Steinhaus average EfA(f), or

EA(f) for short, which we always write with the lowercase letter f . Here f denotes a

completely multiplicative function.

Usually, A(f) depends only on f(p) for finitely many primes p. In this case, EfA(f)

denotes the expected value of A(f) when each f(p) is drawn uniformly, independently,

from {z ∈ C : |z| = 1}. This is the only case used in Harper’s work [18].

However, in § 2, we will allow A(f) to be a Dirichlet series of the form

A(f, z, s) =
∑

(m,n)∈Nk×Nl

am,n(f)

mz1
1 · · ·mzk

k n
s1
1 · · ·nsl

l

,

where am,n(f) depends only on (m,n) and on f(p) for p | m1 · · ·mkn1 · · ·nl. Here

k, l > 0, and (z, s) ∈ Ck × Cl. Then we let

EfA(f, z, s) :=
∑

(m,n)∈Nk×Nl

Efam,n(f)

mz1
1 · · ·mzk

k n
s1
1 · · ·nsl

l

.

We note that the series EfA(f, z, s) may converge absolutely in a strictly larger domain

than the series A(f, z, s) does for individual f .

Acknowledgements. We thank Paul Bourgade and Kannan Soundararajan for discus-

sions on random matrices and probability, Alexandra Florea for helpful comments on

the Ratios Conjecture, and Joni Teräväinen for providing several references. We are also

grateful to Alexandra Florea, Adam Harper, and Joni Teräväinen for helpful comments

on earlier drafts. The first author is supported by the European Union’s Horizon 2020

research and innovation program under the Marie Sk lodowska-Curie Grant Agreement

No. 101034413. The second author is partially supported by the Cuthbert C. Hurd

Graduate Fellowship in the Mathematical Sciences, Stanford.

2Indeed, (2.9) would be false if we had c = 1 instead of c ∈ {µ, λ}.
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2. Character twists behave like random model

In this section, we establish that certain mean values of twists behave like a random

model (Proposition 2.8). Instead of using perfect orthogonality, we use the Ratios Con-

jecture to break through the barrier for the length of the twisted sum. In order for the

Ratios Conjecture to make sense, we assume GRH for L(s, χ) throughout this section.

Let χ0 be the principal character modulo r, and define Eχ 6=χ0
:= 1

r−2

∑
χ 6=χ0

. It will

be sometimes convenient to exclude χ0 from statements, and sometimes convenient to

include it, so both Eχ 6=χ0 and Eχ = 1
r−1

∑
χ will appear in our work below.

For every completely multiplicative function f(n), we formally let

L(s, f) :=
∑

n>1

f(n)n−s =
∏

p

(1 − f(p)p−s)−1,

∑

n>1

µf (n)n−s := 1/L(s, f) =
∏

p

(1 − f(p)p−s).

Since f is completely multiplicative, we have µf(n) = µ(n)f(n). By definition, Ef
L(z1,f)L(z2,f)

L(s1,f)L(s2,f)

is the meromorphic function obtained by formally expanding

L(z1, f)L(z2, f)

L(s1, f)L(s2, f)
=

∑

m1,m2,n1,n2>1

f(m1)f(m2)µf(n1)µf(n2)

mz1
1 m

z2
2 n

s1
1 n

s2
2

as a 4-variable Dirichlet series, and applying the average Ef to each coefficient. In terms

of the meromorphic function Gζ defined in [9, (5.10)], we have

Ef
L(z1, f)L(z2, f)

L(s1, f)L(s2, f)
= Gζ(z1 − 1

2
; z2 − 1

2
; s1 − 1

2
; s2 − 1

2
). (2.1)

For the reader’s convenience, we record the definition of Gζ here:

Gζ(α; β; γ; δ) :=
∑

m1,m2,n1,n2>1
m1n1=m2n2

µ(n1)µ(n2)

m
1/2+α
1 m

1/2+β
2 n

1/2+γ
1 n

1/2+δ
2

,

where the variables m1, m2, n1, n2 in our notation correspond respectively to m,n, h, j in

the notation of [9, (5.10)]. The series Gζ converges absolutely on the region

Re(α),Re(β),Re(γ),Re(δ) > 0,

for instance, by a short calculation with the divisor bound. However, Gζ is meromorphic

on a larger region, as is discussed in [9, 10] in great depth.

A special case of the Ratios Conjecture [9, (5.6)] for L(s, χ) is the following:3

3To avoid smoothing issues, which are orthogonal to the main point of the paper, we put Oε((1+T )ε)

in the error term. Morally, O((1 + T )O(1)) should be enough to say something interesting, but might

require smoothing the sums over n 6 x in Conjecture 1.1. Cf. the situation of [3, Theorem 1].
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Conjecture 2.1. Let Re(z1) = Re(z2) = 1
2
and Re(s1) = Re(s2) = 1

2
+ ε. Let T :=

max(|Im(z1)|, |Im(z2)|, |Im(s1)|, |Im(s2)|). Then for some absolute constant ω ∈ (0, 1
2
]

(independent of r and ε), we have for all sufficiently small ε > 0

Eχ 6=χ0

L(z1, χ)L(z2, χ)

L(s1, χ)L(s2, χ)
= MT +

Oε((1 + T )ε)

rω
,

where

MT := Ef
L(z1, f)L(z2, f)

L(s1, f)L(s2, f)
+

H

rz1+z2−1
Ef
L(1 − z2, f)L(1 − z1, f)

L(s1, f)L(s2, f)
,

where H := (2π)z1+z2

π2 Γ(1 − z1)Γ(1 − z2)
∑

a∈{0,1}

2
sin
(
π
2
(1 − z1 + a)

)
sin
(
π
2
(1 − z2 + a)

)
.

Derivation via the Ratios Recipe. In addition to the general recipe [9, (5.6)], see [8, § 4.3]

for some details on the family L(s, χ). Write χ(−1) = (−1)a with a ∈ {0, 1}. Let

τ(χ) :=
∑

16x6r χ(x)e2πix/r. It is known that

L(s, χ) = wχXχ(s)L(1 − s, χ),

where wχ := τ(χ)

iar1/2
and Xχ(s) := 2sπs−1r1/2−s sin

(
π
2
(s+ a)

)
Γ(1 − s). Moreover, by stan-

dard properties of Gauss sums, we have wχ = wχ = w−1
χ . On multiplying out

(
L(z1, χ) + wχXχ(z1)L(1 − z1, χ)

)(
L(z2, χ) + wχXχ(z2)L(1 − z2, χ)

)

L(s1, χ)L(s2, χ)

and formally averaging over χ, as described in [9, (5.6)], with cancellation over root

numbers as in [8, § 4.3], we get the desired Ratios Conjecture. �

Conjecture 2.1 is an asymptotic for T 6 r0.99ω/ε, for any ε > 0, whereas for Theorem 1.2

it would actually suffice to have an asymptotic for T 6 rA/2+0.01.4 However, we do not

wish to optimize the T -aspect at all in this paper. Similarly, it could be interesting to

weaken the saving rω required in the asymptotic, along the lines of [4, Conjecture 3.6 (R2)]

for instance. However, our assumption that ω is independent of r and ε is very convenient.

The quantity H = H(z1, z2) is independent of r, and can be bounded as follows.

Lemma 2.2. The function H is holomorphic for Re(z1),Re(z2) < 1. Moreover, if

Re(z1),Re(z2) ∈ {1
2
− δ, 1

2
+ δ} with δ ∈ [0, 1

2
), then H ≪δ (1 + |Im(z1)|)δ(1 + |Im(z2)|)δ.

Proof. The first part is clear since Γ is holomorphic away from Z\N. The second formula

follows from Stirling’s bound Γ(s) ≪δ (1+|Im(s)|)Re(s)−1/2e−
π
2
|Im(s)|, a consequence of [20,

(5.113)], on Re(s) ∈ {1
2
− δ, 1

2
+ δ}. Note that sin

(
π
2
(s+ a)

)
≪δ e

π
2
|Im(s)| for a ∈ {0, 1},

and the exponential growth here cancels out the exponential decay factor for Γ(s). �

The usual Ratios Conjecture implies a twisted Ratios Conjecture:

4We actually only really apply Conjecture 2.1 with ε ≍ ω/A.
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Conjecture 2.3. Let Re(s1) = Re(s2) = 1
2

+ ε and 1 6 m1, m2 6 r~. Let T :=

max(|Im(s1)|, |Im(s2)|). If ε, ~ > 0 are sufficiently small, then for some absolute constant

ω′ ∈ (0, 1
2
] (independent of r, ε, ~), we have

Eχ 6=χ0

χ(m1)χ(m2)

L(s1, χ)L(s2, χ)
= Ef

f(m1)f(m2)

L(s1, f)L(s2, f)
+Oε,~((1 + T )εr−ω′

).

Proof assuming the Ratios Conjecture 2.1. We first discuss the convergence regions for

various quantities that appear in the proof, as preparation for subsequent contour-shifting

arguments. By (2.1), we have

Ef
L(1 − z2, f)L(1 − z1, f)

L(s1, f)L(s2, f)
= Gζ(

1
2
− z2;

1
2
− z1; s1 − 1

2
; s2 − 1

2
). (2.2)

However, in the notation of [9, (5.12)–(5.14)], we have Gζ(α; β; γ; δ) = Aζ(α; β; γ; δ) YU ,

where Aζ is an explicit Euler product known to be absolutely convergent on the region

|Re(α)|, . . . , |Re(δ)| < 1
4

(see [10, Remark 2.3]), and where

YU :=
ζ(1 + α + β)ζ(1 + γ + δ)

ζ(1 + α + δ)ζ(1 + β + γ)
. (2.3)

Since Re(s1),Re(s2) >
1
2
, it follows that the main term of Conjecture 2.1,

MT = Gζ(z1 − 1
2
; z2 − 1

2
; s1 − 1

2
; s2 − 1

2
) +

H

rz1+z2−1
Gζ(

1
2
− z2;

1
2
− z1; s1 − 1

2
; s2 − 1

2
),

is holomorphic for Re(z1),Re(z2) ∈ (1
4
, 3
4
), and that Ef

L(z1,f)L(z2,f)

L(s1,f)L(s2,f)
itself is holomorphic

for Re(z1),Re(z2) >
1
2
. We note that in MT, there is a now-familiar cancellation of poles,

observed by [8] in the case of moments and by [9, 10] in the case of ratios.

We now do a contour integral to extract m−z1
1 m−z2

2 terms. Let g0(x) be a bump function

supported on (−1
2
, 1
2
), with g0(0) = 1, and let gm(x) := g0(x−m). The Mellin transform

g∨m(z) :=
∫∞
0
gm(x)xz−1 dx satisfies the bound g∨m(z) ≪B mRe(z) min(1, m/|Im(z)|)B, by

repeated integration by parts in x if m/|Im(z)| > 1. By Mellin inversion,

∫∫ 2+i∞

2−i∞

∏2
j=1 g

∨
mj

(zj)

(2πi)2
Ef
L(z1, f)L(z2, f)

L(s1, f)L(s2, f)
dz1 dz2 = Ef

f(m1)f(m2)

L(s1, f)L(s2, f)
, (2.4)

since both sides equal the m−z1
1 m−z2

2 coefficient of Ef
L(z1,f)L(z2,f)

L(s1,f)L(s2,f)
. Indeed, (2.4) is an

identity of holomorphic functions on Re(s1),Re(s2) >
1
2
, and can thus be checked for

Re(s1),Re(s2) > 2, say, where all convergence issues become trivial.

The deterministic side requires more care, due to the shape of MT. By Mellin inversion,

Eχ 6=χ0

χ(m1)χ(m2)

L(s1, χ)L(s2, χ)
= Eχ 6=χ0

∫∫ 2+i∞

2−i∞

∏2
j=1 g

∨
mj

(zj)

(2πi)2
L(z1, χ)L(z2, χ)

L(s1, χ)L(s2, χ)
dz1 dz2;

this is absolutely convergent, by GRH, so by Fubini we may move Eχ inside the integral.

Now, we shift the integral first to Re(z1) = Re(z2) = 1
2
, to apply Conjecture 2.1, then
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shift the main term MT to Re(z1) = Re(z2) = 1
2

+ 1
50

, say (this is possible by the first

paragraph of the proof). This leads to the estimate

Eχ 6=χ0

χ(m1)χ(m2)

L(s1, χ)L(s2, χ)
−
∫∫ 2+i∞

2−i∞

∏2
j=1 g

∨
mj

(zj)

(2πi)2
Ef
L(z1, f)L(z2, f)

L(s1, f)L(s2, f)
dz1 dz2

≪B,ε

∫∫ 1
2
+ 1

50
+i∞

1
2
+ 1

50
−i∞

(1 + T )ε
∏2

j=1(1 + |Im(zj)|)
1
50

+εm
Re(zj)
j min(1,

mj

|Im(zj)|)
B |dzj|

min(rω, rRe(z1)+Re(z2)−1)

(2.5)

by (2.2) and (2.3), because for Re(z1) = Re(z2) = 1
2

+ 1
50

, we have (by Lemma 2.2)

H ≪ (1 + |Im(z1)|)
1
50 (1 + |Im(z2)|)

1
50

and (by using RH near the 1-line to bound the ζ and 1/ζ factors in YU)

YU(1
2
− z2;

1
2
− z1; s1 − 1

2
; s2 − 1

2
) ≪ε (1 + |Im(z1)|)ε(1 + |Im(z2)|)ε(1 + T )ε.

We note that the right-hand side of (2.5) takes into account both the error term (1 +

T )ε/rω from Conjecture 2.1, and the second (or “dual”) term in MT.

Taking B = 2, and integrating over zj (the dominant contribution coming from

|Im(zj)| ≍ mj), we find that the right-hand side of the inequality (2.5) is

≪ (1 + T )ε

min(rω, r
1
50

+ 1
50 )

∏

16j62

m
1+ 1

50
+ε+ 1

2
+ 1

50
j 6

(1 + T )εr4~

min(rω, r
1
25 )

6
(1 + T )ε

rω′ ,

for suitable ω′ > 0, provided ε and ~ are sufficiently small. Conjecture 2.3 follows, upon

plugging (2.4) into (2.5). �

Next, we pass to a version for λ. Assume Conjecture 2.3 for the rest of the section.

Proposition 2.4. Assume Conjecture 2.3. Let Re(s1) = Re(s2) = 1
2

+ ε and 1 6

m1, m2 6 r~. Let T := max(|Im(s1)|, |Im(s2)|) and L♭(s, ψ) := L(s, ψ)/L(2s, ψ2).5 If

ε, ~ > 0 are sufficiently small, then for some absolute constant η ∈ (0, ω′] (independent

of r, ε, ~), we have

Eχ 6=χ0

χ(m1)χ(m2)

L♭(s1, χ)L♭(s2, χ)
= Ef

f(m1)f(m2)

L♭(s1, f)L♭(s2, f)
+Oε,~((1 + T )εr−η).

Proof. Let η be small in terms of ω′. Let ε and ~ be small in terms of η. Each χ2 is

non-principal, since r is assumed to be prime and we may assume r > 2. Let M > 1 be

a parameter. Fix κ > 0 small in terms of ε. By GRH,
∑

d6N χ
2(d)d−2itj ≪ (1 + |tj |)κrκ ·

N1/2+κ for all N > 1, since the vertically shifted L-function L(s + 2tj, χ
2) has analytic

conductor ≪ (1 + |tj|) r in the sense of [20, Chapter 5]. By partial summation over d, we

conclude that L(2sj , χ
2) −

∑
d6M

χ2(d)

d2sj
=
∑

d>M
χ2(d)

d2sj
≪ (1+T )κrκ

MRe(2sj )
·M1/2+κ for j ∈ {1, 2}.

5This definition ensures that 1/L♭(s, ψ) =
∑

n>1 λ(n)ψ(n) for any completely multiplicative ψ.
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Also,
∑

d6M
χ2(d)
d2s

≪ε 1 trivially. It follows that, under GRH,

L(2s1, χ
2)L(2s2, χ

2) −
∑

d1,d26M

χ(d21)χ(d22)

d2s11 d2s22

≪ 1 · (1 + T )κrκ

M1/2
+

(
(1 + T )κrκ

M1/2

)2

.

Multiplying both sides by χ(m1)χ(m2)L(s1, χ)−1L(s2, χ)−1 and using the GRH bound

1/L(s, χ) ≪ (1 + T )κrκ, we get

Eχ 6=χ0

χ(m1)χ(m2)

L♭(s1, χ)L♭(s2, χ)
−

∑

d1,d26M

Eχ 6=χ0

χ(d21m1)χ(d22m2)

d2s11 d2s22 L(s1, χ)L(s2, χ)
≪ (1 + T )4κr4κ

M1/2
.

If M 6 r3η, then on plugging in Conjecture 2.3 (with 6η+ ~ in place of ~) and summing

over d1, d2 6M , we get

Eχ 6=χ0

χ(m1)χ(m2)

L♭(s1, χ)L♭(s2, χ)
−

∑

d1,d26M

Ef
f(d21m1)f(d22m2)

d2s11 d2s22 L(s1, f)L(s2, f)

≪ (1 + T )4κr4κ

M1/2
+

(1 + T )ε

rω′ ≪ (1 + T )εrε

M1/2
.

(2.6)

For any prime r′ > r, subtracting (2.6) for r and r′, with M := r3η, gives

(E
[r]
χ 6=χ0

− E
[r′]
χ 6=χ0

)
χ(m1)χ(m2)

L♭(s1, χ)L♭(s2, χ)
≪ (1 + T )ε(r′)ε

r3η/2
,

where the superscripts [r] and [r′] indicate that χ has modulus r and r′, respectively.

Iterating this over an infinite sequence of primes r0, r1, r2, . . . with r0 = r and ri+1 ∈
[2ri, 4ri], as is possible by Bertrand’s postulate, we find by telescoping that the sequence

of quantities E
[ri]
χ 6=χ0

χ(m1)χ(m2)

L♭(s1,χ)L♭(s2,χ)
forms a Cauchy sequence, and moreover

(E
[r]
χ 6=χ0

− lim
i→∞

E
[ri]
χ 6=χ0

)
χ(m1)χ(m2)

L♭(s1, χ)L♭(s2, χ)
≪ 1

1 − 2ε−3η/2

(1 + T )ε(4r)ε

r3η/2
. (2.7)

In particular, limi→∞ E
[ri]
χ 6=χ0

χ(m1)χ(m2)

L♭(s1,χ)L♭(s2,χ)
exists, so taking r → ∞ in (2.6) with M := r3η

gives

lim
r→∞

E
[r]
χ 6=χ0

χ(m1)χ(m2)

L♭(s1, χ)L♭(s2, χ)
=
∑

d1,d2>1

Ef
f(d21m1)f(d22m2)

d2s11 d2s22 L(s1, f)L(s2, f)

=
∑

d1,d2,n1,n2>1
d21m1n1=d22m2n2

µ(n1)µ(n2)

d2s11 d2s22 ns1
1 n

s2
2

= Ef
f(m1)f(m2)

L♭(s1, f)L♭(s2, f)
,

(2.8)

since the series over d1, d2, n1, n2 > 1 in (2.8) is absolutely convergent.

Plugging (2.8) into (2.7) yields Proposition 2.4. �

We now prove an unrestricted version of [18, Lemma 1]. As we remarked in the

introduction, one may think of (2.9) as an approximate orthogonality relation on average.
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Lemma 2.5 (Approximate orthogonality and even-moment estimate). Let c ∈ {µ, λ}.
Let P be a finite nonempty set of primes. Let Q := P ∪ {p2 : p ∈ P} and U := max(Q).

Let Q(f) :=
∑

q∈Q q
−1/2a(q)f(q) where a(q) are any complex numbers. Assume Uk 6 rε

and 1 6 x 6 rA, where A > 0 is fixed.6 Assume Conjecture 2.3. Let η be as in the

statement of Proposition 2.4. Then

Eχχ(m1)χ(m2)|
∑

n6x

c(n)χ(n)|2 − Eff(m1)f(m2)|
∑

n6x

c(n)f(n)|2 ≪A
x

rη/2
, (2.9)

uniformly for 1 6 m1, m2 6 Uk, provided ε≪A 1.7 Moreover,

Ef |Q(f)|2k|
∑

n6x

c(n)f(n)|2 ≪
∑

n6x

d̃(n)|c(n)|2 · (k!)

(
2
∑

q∈Q
q−1vq|a(q)|2

)k

, (2.10)

where d̃(n) :=
∑

d|n 1p|n⇒p∈P, and vq := 1q∈P + 6 · 1q /∈P .

Proof. If r > xUk, then (2.9) holds with no error, by perfect orthogonality. Therefore,

by taking r large enough, we see that (2.10) follows immediately from [18, Lemma 1]. It

remains to prove (2.9) in general, for Uk 6 rε and 1 6 x 6 rA.

For convenience, let Lc(s, ψ) := L(s, ψ)1c=µ +L♭(s, ψ)1c=λ. By Perron’s formula in the

form of [27, Theorem 5.2 and Corollary 5.3], we have

∑

n6x

c(n)χ(n) −
∫ 1+ε+iT0

1+ε−iT0

1

Lc(s, χ)

ys

s

ds

2πi
≪ y log y

T0
+

(4 + y)1+ε

T0
≪ y1+ε

T0
,

where y := ⌊x⌋ + 0.5 > 1.5. But by contour shifting and GRH, we have
(∫ 1+ε+iT0

1+ε−iT0

−
∫ 1

2
+ε+iT0

1
2
+ε−iT0

)
1χ 6=χ0

Lc(s, χ)

ys

s

ds

2πi
≪ (rT0)

ε y
1+ε

T0
.

Since |
∑

n6x c(n)χ(n)1χ 6=χ0| ≪ε r
εx0.5+ε by GRH, we thus have, for each j ∈ {0, 1},

(−1)j
∑

n6x

c(n)χ(n)1χ 6=χ0 +

∫ 1
2
+ε+iT0

1
2
+ε−iT0

1χ 6=χ0

Lc(s, χ)

ys

s

ds

2πi
≪ rεx0.5+ε1j=0 + (rT0)

ε y
1+ε

T0
.

Let T0 := x(0.5+η)/(1−ε). Since ||z|2 − |w|2| 6 |z2 − w2| = |z − w||z + w|, it follows that

|
∑

n6x

c(n)χ(n)1χ 6=χ0|2 − |
∫ 1

2
+ε+iT0

1
2
+ε−iT0

1χ 6=χ0

Lc(s, χ)

ys

s

ds

2πi
|2 ≪ (r2T0)

εx
1.5+2ε

T0
.

6We do not assume xUk < r like Harper does. On the other hand, our definition of Q(f) agrees with

Harper’s definition when f = χ.
7Of course, we could write 1 6 m1,m2 6 rε instead, and thus eliminate the role of Uk in the statement.

However, we prefer to keep it, in order to highlight the connection to [18, Lemma 1].



12 VICTOR Y. WANG AND MAX WENQIANG XU

Whenever 1 6 m1, m2 6 Uk, we thus have

Eχ 6=χ0χ(m1)χ(m2)|
∑

n6x

c(n)χ(n)|2 −
∫∫ 1

2
+ε+iT0

1
2
+ε−iT0

Ef
f(m1)f(m2)y

s1ys2 ds1 ds2

Lc(s1, f)Lc(s2, f)s1s2|2πi|2

≪ (r2T0)
εx

1.5+2ε

T0
+

∫∫ 1
2
+ε+iT0

1
2
+ε−iT0

(1 + T0)
ε

rη
yRe(s1+s2)

|ds1 ds2|
|s1s2|

,

(2.11)

by Conjecture 2.3 if c = µ, or by Proposition 2.4 if c = λ. In each case, we take ~ := ε.

The right-hand side of (2.11) is ≪ r2ε x
1.5+2ε

T 1−ε
0

+ (1+T0)ε

rη
x1+2ε(log T0)

2. Let r′ be the

smallest prime exceeding max(xUk, r). By perfect orthogonality,

Eχ mod r′χ(m1)χ(m2)|
∑

n6x

c(n)χ(n)|2 = Eff(m1)f(m2)|
∑

n6x

c(n)f(n)|2.

On subtracting (2.11) by its value for r′, we conclude that

r − 1

r − 2
Eχχ(m1)χ(m2)|

∑

n6x

c(n)χ(n)|2 − r′ − 1

r′ − 2
Eff(m1)f(m2)|

∑

n6x

c(n)f(n)|2

≪ r2εx1+4ε

xη
+
x1+5ε

rη
+

|
∑

n6x, gcd(n,r)=1 c(n)|2

r − 2
+

|
∑

n6x, gcd(n,r′)=1 c(n)|2

r′ − 2
,

(2.12)

where the last two terms account for the missing χ = χ0 contributions. By RH, we have

|∑n6x, gcd(n,r)=1 c(n)| ≪ rεx1/2+ε. Moreover, r′−1
r′−2

− r−1
r−2

≪ 1
r

and

Eff(m1)f(m2)|
∑

n6x

c(n)f(n)|2 ≪ Ef |
∑

n6x

c(n)f(n)|2 6 x,

by orthogonality. Therefore, after multiplying (2.12) by r−2
r−1

, we get

Eχχ(m1)χ(m2)|
∑

n6x

c(n)χ(n)|2 − Eff(m1)f(m2)|
∑

n6x

c(n)f(n)|2 ≪ r2εx1+4ε

xη
+
x1+5ε

rη
,

since x/r 6 x1+2ε/r1−2ε 6 x1+5ε/rη and x1+2ε/(r′)1−2ε 6 x1+2ε/r1−2ε.

We have already justified (2.9) for r > xUk at the beginning of the proof. Now assume

r 6 xUk. Then x > r/Uk > r1−ε, so the last display is ≪ x/rη/2, provided ε ≪A 1. So

(2.9) holds. �

For the next lemma, let Ψ(x, y) := #{n 6 x : p | n⇒ p 6 y}.

Lemma 2.6 (Smooth number bound). Fix θ ∈ (0, 1
2
) and ε > 0. If logQ ≪ (log x)θ,

then Ψ(x,Q) 6 x/e(log x)
1−θ−ε

for all large enough x.

Proof. Let x be large. Increasing Q if necessary, we may assume logQ ≍ (log x)θ. We

have Q = (log x)a, where a = (logQ)/(log log x) satisfies 1 6 a 6 (log x)1/2/(2 log log x).

By Corollary 7.9 of [27], we have

Ψ(x,Q) 6 x1−1/ax((log a)+O(1))/(a log log x) 6 x1−1/ax(θ+ε)/a = x/e(1−θ−ε)(log x)/a,
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because (log a) + O(1) 6 (θ + ε)(log log x). Since (log x)/a ≫ (log x)1−θ as x → ∞, it

follows that

Ψ(x,Q) 6 x/e(log x)
1−θ−ε

,

as desired. �

We are now prepared to give a variant, Proposition 2.8, of [18, Proposition 1], with the

following main differences:

(1) Most importantly, we allow x 6 rA for any fixed A > 0. The cost is that we

only allow special sequences of coefficients c(n). More precisely, we either take

c(n) = µ(n) for all n, or take c(n) = λ(n) for all n.

(2) We introduce a restriction P 400(Y/δ)2 log(N logP ) 6 rε, in order to be able to apply

the Ratios Conjecture. We will actually assume the conditions (2.14) and (2.15),

which are nonetheless satisfied for the key choice of parameters in (2.13).

(3) The deterministic side is supported on all moduli n 6 x, while the random side is

supported on {n 6 x : P (n) > Q} for some parameter Q 6 e(log x)
1/3

. The perfect

character orthogonality used in [18, § 3.2] (to pass to P (n) > Q) is no longer

available for large x, so it seems more natural for us to pass to P (n) > Q on the

random side, not the deterministic side.

The cost of this asymmetry is that we can no longer easily8 take Q = x1/ log log x =

e(log x)/ log logx like Harper does in [18, § 3.2]. Moreover, in our § 3.4 below, we will

need to take X a bit smaller than Harper’s choice of e(log x)
1/2

in [18, § 3.4].

(4) We get a worse error term, with x/(N logP )10Y in place of x/(N logP )Y/δ
2
. Es-

sentially, the effect is that an error term of the form x
(

2N+2

(N logP )1/δ
2

)Y
in [18, § 3.3]

becomes x
(

2N+2
(N logP )10

)Y
in § 3.3 of our work below.

At this point it may help to note that we will eventually apply the proposition with

the same parameters as Harper eventually does:

logP ≍ (log x)1/6, Y ≍ (logP )1.02, N ≍ log logP, δ ≍ (logP )−1.3. (2.13)

However, we will state it in slightly greater generality for the reader’s convenience.

We begin by recalling the approximation result in [18].

Lemma 2.7 (Harper [18, Approximation Result 1]). Let N ∈ N be large, and δ > 0 be

small. There exist functions g : R → R (depending on δ) and gN+1 : R → R (depending

on δ and N) such that, if we define gj(x) = g(x − j) for all integers |j| 6 N , we have

the following properties:

(i)
∑

|j|6N gj(x) + gN+1(x) = 1 for all x ∈ R;

(ii) g(x) > 0 for all x ∈ R, and g(x) 6 δ whenever |x| > 1;

(iii) gN+1(x) > 0 for all x ∈ R, and gN+1(x) 6 δ whenever |x| 6 N ;

8Harper notes that Ψ(x, x1/ log log x) ≪ x/(log x)c log log log x, but this bound does not fit into the error

term of our proposition, in the key setting (2.13).
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(iv) for all ℓ ∈ N and all x ∈ R, we have | dℓ

dxℓ g(x)| 6 1
π(ℓ+1)

(
2π
δ

)ℓ+1

.

Proposition 2.8. Assume Conjecture 2.3. Let x,N, δ−1, P > 1 be large real numbers,

with N ∈ Z. Let c ∈ {µ, λ} and 0 6 Q 6 e(log x)
1/3

. Let gj : R → R, for j ∈ [−N,N + 1],

be functions as in Lemma 2.7, with associated parameters N and δ. Let Y ∈ N. Fix

A > 0, suppose x 6 rA, and assume, for ε as in Lemma 2.5, that

max(P, δ−1, N)400(Y/δ)
2 log(N logP ) 6 rε, (2.14)

20Y log(N logP ) 6 (log x)1/2. (2.15)

Let j(1), . . . , j(Y ) ∈ [−N,N + 1] be indices. Let

Gf,j(a) :=
∏

16i6Y

gj(i)

(
Re
∑

p6P

ai(p)f(p)

p1/2
+
ai(p

2)f(p2)

p

)
,

where ai(p), ai(p
2) ∈ {z ∈ C : |z| 6 1} for all i and p. Then

EχGχ,j(a)|
∑

n6x

c(n)χ(n)|2 = EfGf,j(a)|
∑

n6x:
P (n)>Q

c(n)f(n)|2 +O
( x

(N logP )10Y

)
. (2.16)

Proof. Before proceeding, we note that 0 6 gj(y) 6 1 for all j ∈ [−N,N + 1] and y ∈ R,

by Lemma 2.7 properties (i)–(iii). In particular, 0 6 Gf,j(a) 6 1. Also, by properties (iv)

and (i) in Lemma 2.7, we have for all l > 0

|g(l)j (0)|
l!

6 1l=0 +
(2N + 1)(2π/δ)l+1

(l + 1)!
1l>1. (2.17)

For the main proof, we first reduce to the case Q = 0, i.e. we bound the “missing”

contribution from P (n) 6 Q on the right-hand side of (2.16). Squaring both sides of
∑

n6x:
P (n)>Q

c(n)f(n) =
∑

n6x

c(n)f(n) −
∑

n6x:
P (n)6Q

c(n)f(n),

then using the bound |Gf,j(a)| 6 1 and the triangle inequality, we find that

EfGf,j(a)|
∑

n6x:
P (n)>Q

c(n)f(n)|2 − EfGf,j(a)|
∑

n6x

c(n)f(n)|2 ≪ SQ,Q + SQ,x,

where

SQ,R := Ef |
∑

n6x:
P (n)6Q

c(n)f(n)||
∑

n6x:
P (n)6R

c(n)f(n)|.

By orthogonality over f , we have SR,R 6 Ψ(x,R). By the Cauchy–Schwarz inequality,

SQ,x 6 S
1/2
Q,QS

1/2
x,x 6 Ψ(x,Q)1/2x1/2. By Lemma 2.6 with θ = 1/3, we have Ψ(x,Q) ≪

x/e(log x)
1/2

, say. So

SQ,Q + SQ,x 6 Ψ(x,Q) + Ψ(x,Q)1/2x1/2 ≪ x/e
1
2
(log x)1/2 .

This fits into the error term of (2.16), by (2.15).
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Therefore, it remains to prove

EχGχ,j(a)|
∑

n6x

c(n)χ(n)|2 = EfGf,j(a)|
∑

n6x

c(n)f(n)|2 +O
( x

(N logP )10Y

)
, (2.18)

i.e. the Q = 0 case. The estimate (2.18) will be proven using Lemma 2.5. The main

new difficulty is to account for the error term in (2.9); the contribution from (2.10)

will essentially match the error terms Harper already accounted for. We begin by using

Lemma 2.7 as Harper does in [18, proof of Proposition 1]. Let

S := 100Y ⌊(1/δ)2 log(N logP )⌋ > 100. (2.19)

For all y ∈ R, we then have gj(y) = g̃j(y) + rj(y), where g̃j(y) :=
∑

06l62S−1 g
(l)
j (0)y

l

l!
and

|rj(y)| 6 α
N

δ

|2πy/δ|2S
(2S + 1)!

,

by [18, first paragraph of the proof of Proposition 1], for some absolute constant α > 0

that we name for later convenience. The bound (2.17) implies

∑

06l62S−1

|g(l)j (0)yl|
l!

6 1 +
∑

06l62S−1

(2N + 1)(2π)|2πy/δ|l
δ(l + 1)!

≪ N

δ

max(4S, |2πy/δ|)2S
(2S)!

,

where in the final step we note that max(4S,|2πy/δ|)l
(l+1)!

6 1
2
max(4S,|2πy/δ|)l+1

(l+2)!
for 0 6 l 6 2S − 2,

and that 1 ≪ N
δ

since N, δ−1 are large. Let

G̃f,j(a) :=
∏

16i6Y

g̃j(i)

(
Re
∑

p6P

ai(p)f(p)

p1/2
+
ai(p

2)f(p2)

p

)
.

Now write Re z = 1
2
(z + z), and expand G̃ trivially. Note that (2.14) and (2.19) imply

P 4SY 6 rε. By (2.9) with U = P 4SY 6 rε and k = 1, we get

EχG̃χ,j(a)|
∑

n6x

c(n)χ(n)|2 − Ef G̃f,j(a)|
∑

n6x

c(n)f(n)|2 ≪ O(1)YR0(Y ), (2.20)

where for any real t > 0 we define, for later convenience,

R0(t) :=
x

rη/2

(
2 +

N

δ

max(4S, |2π∑p6P (p−1/2 + p−1)/δ|)2S
(2S)!

)t

. (2.21)

Next, the bound |g̃j(y)| 6 |gj(y)| + |rj(y)| 6 1 + αN
δ

|2πy/δ|2S
(2S+1)!

observed by Harper gives

Eχ|G̃χ,j(a) −Gχ,j(a)||
∑

n6x

c(n)χ(n)|2 6
∑

16i6Y

EχH1(χ, i) (2.22)

by the triangle inequality, where for any function f we let H1(f, i) denote the quantity

|
∑

n6x

c(n)f(n)|2
∏

16l6i

(
1l<i +

αN

δ

|2π
∑

p6P (p−1/2al(p)f(p) + p−1al(p
2)f(p2))/δ|2S

(2S + 1)!

)
.
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Similarly,

Ef |G̃f,j(a) −Gf,j(a)||
∑

n6x

c(n)f(n)|2 6
∑

16i6Y

EfH1(f, i). (2.23)

However, if we trivially expand H1, after replacing 1l<i with its upper bound 1 even

for l = i, then an application of (2.9) with U = P 4Si 6 P 4SY 6 rε and k = 1 shows that

EχH1(χ, i) − EfH1(f, i) ≪ O(1)iR0(i),

whence
∑

16i6Y

EχH1(χ, i) −
∑

16i6Y

EfH1(f, i) ≪
∑

16i6Y

O(1)iR0(i) ≪ O(1)YR0(Y ), (2.24)

since R0(i + 1)/R0(i) > 2. Next, we bound EfH1(f, i) as Harper does, using the fact

that 1l<i = 0 for l = i. That is, we first expand the product
∏

16l6i in H1(f, i) as a sum

of 2i−1 terms, then apply Hölder’s inequality (as Harper does implicitly) in the form

Ef |
∑

n6x

c(n)f(n)|2
∏

l∈J
|
∑

p6P

(p−1/2al(p)f(p) + p−1al(p
2)f(p2))|2S

6
∏

l∈J

(
Ef |
∑

n6x

c(n)f(n)|2|
∑

p6P

(p−1/2al(p)f(p) + p−1al(p
2)f(p2))|2S|J |

)1/|J |

for various sets J ⊆ {1, . . . , i} with i ∈ J , and finally use (2.10), to obtain the bound
∑

16i6Y

EfH1(f, i) ≪ O(1)YH2, (2.25)

where

H2 :=
∑

n6x

d̃(n)|c(n)|2
∑

16j6i6Y

(
i− 1

j − 1

)
(jS)!

(
N

δ

|2π/δ|2S(2
∑

p6P (p−1 + p−2))S

(2S + 1)!

)j

.

The factor
(
i−1
j−1

)
represents the number of sets J ⊆ {1, . . . , i} with i ∈ J and |J | = j.

Combining (2.20), (2.22), and (2.23), via the triangle inequality, we get

EχGχ,j(a)|
∑

n6x

c(n)χ(n)|2 − EfGf,j(a)|
∑

n6x

c(n)f(n)|2

≪ O(1)YR0(Y ) +
∑

16i6Y

EχH1(χ, i) +
∑

16i6Y

EfH1(f, i) ≪ O(1)Y (R0(Y ) +H2),
(2.26)

where in the final step we bound the H1 contributions using (2.24) and (2.25). To

estimate the terms R0(Y ) and H2 in (2.26), we will repeatedly use the well-known bounds

n! > (n/e)n and n! ≪ n1/2(n/e)n for integers n > 1. By (2.21),

R0(Y ) 6
x

rη/2

(
2 +

N

δ

(4S)2S +O(P 1/2/δ)2S

(2S/e)2S

)Y

6
O(N/δ)Y x

rη/2
((2e)2S + O(P 1/2/δ)2S)Y ,
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since N ≫ 1 ≫ δ. By (2.14) we have max(P, δ−1, N)4SY 6 rε, so this means

O(1)YR0(Y ) 6
x

rη/2
(PNδ−1)4SY 6

r3εx

rη/2
6

x

r5ε
6

x

(NP )10SY
6

x

(N logP )10Y
,

because (NP )2SY 6 rε and S > 1.

We now estimate H2 as Harper does, after summing over i ∈ [j, Y ] using the hockey-

stick identity
∑

j6i6Y

(
i−1
j−1

)
=
(
Y
j

)
. Noting that

∑
n6x d̃(n) 6 x

∏
p6P (1 − p−1)−1 ≪

x logP and
∑

p6P p
−1 = log logP +O(1), we get

H2 ≪ x logP
∑

16j6Y

(
Y

j

)
(jS)1/2(jS/e)jS

(
N

δ

|2π/δ|2S(2.1 log logP )S

(2S/e)2S

)j

≪ x logP
∑

16j6Y

(
Y

j

)
(jS)1/2

(2.1π2ej)jS

(Sδ2)jS

(
N

δ
(log logP )S

)j
.

Since j 6 Y , and Sδ2 > 99Y log(N logP ) by (2.19), we get

O(1)YH2 ≪ O(1)Y (x logP )2Y (Y S)1/2 max
16j6Y

(
N

δ

(log logP )S

(1.7 log(N logP ))S

)j

≪ O(1)Y (x logP )S1/2

(
N/δ

1.7S
+

(
N/δ

1.7S

)Y)
.

By Lemma 2.9 below, N/δ,O(1)Y , S, logP 6 1.1S, so the last line is ≪ x(1.14/1.7)S 6

x/1.1S 6 x/(N logP )Y/δ
2
, because 99 log 1.1 > 1. This suffices, because δ−2 > 10. �

Lemma 2.9. Fix A > 0. Suppose P,N, δ−1 > 1 are large. Let Y > 1. Let S =

100Y ⌊(1/δ)2 log(N logP )⌋. Then N/δ,O(1)Y , S, logP 6 1.1S.

Proof. This is clear logarithmically:

logN + log(1/δ), Y logO(1), logS, log logP 6 S log 1.1,

because P,N, δ−1, S are large. �

While [18, Proposition 1] would not suffice for our purposes below, because of its

restrictions on x, we note that [18, Proposition 2] will still apply unconditionally, without

change, because its statement does not involve x at all.

3. Proof of Theorem 1.2

3.1. Overview. In this section, we prove Theorem 1.2, in the following stronger form:

Theorem 3.1. Each of the following implies the next:

(1) GRH for L(s, χ), and the Ratios Conjecture 2.1 for LL/LL, hold.

(2) GRH for L(s, χ), and the twisted Ratios Conjecture 2.3 for χχ/LL, hold.

(3) Lemma 2.5 holds.

(4) Proposition 2.8 holds.
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(5) Fix a constant A > 0. Let 10 6 x 6 rA and q ∈ [0, 1]. Then

Eχ|
∑

16n6x

λ(n)χ(n)|2q ≪
( x

1 + (1 − q)(log log x)1/2

)q
.

The implications (1)⇒(2), (2)⇒(3), (3)⇒(4) have already been proven in the previous

section. Therefore, it only remains to prove the implication (4)⇒(5). Let c(n) := λ(n).

The key tool is Proposition 2.8, which helps us to pass the study of the deterministic

side to the random side.

By using Hölder’s inequality, it is sufficient to establish that for all q ∈ [2/3, 1],

Eχ|
∑

16n6x

c(n)χ(n)|2q ≪
( x

1 + (1 − q)(log log x)1/2

)q
.

3.2. The conditioning argument. We first do the “condition” argument. More pre-

cisely, we use the idea from [18], using a partition function to split the character sum into

several pieces, based on values taken by certain character sum over primes. The proof is

almost identical to § 3.2 in [18]. The only difference is that we do not restrict ourselves

to the integers with an extra condition P (n) > Q here.

We define

Sk(χ, c) := Re
∑

p6P

(
χ(p)c(p)

p1/2+ik/ log1.01 P
+

χ(p)2c(p)2

p1+2ik/ log1.01 P

)

for all |k| 6 M := 2 log1.02 P ∈ Z. Let j be a 2M + 1-vector and W be any function. We

next apply the approximation result to rewrite the sum Eχ|
∑

16n6x c(n)χ(n)|2q as

Eχ|
∑

16n6x

c(n)χ(n)|2q
i=M∏

i=−M

N+1∑

j=−N

gj(Si(χ, c))

=
∑

−N6j(−M),...,j(M)6N+1

Eχ|
∑

16n6x

c(n)χ(n)|2q
M∏

i=−M

gj(i)(Si(χ, c))

=
∑

−N6j(−M),...,j(M)6N+1

σ(j)Ej
χ|
∑

16n6x

χ(n)c(n)|2q,

where we use the notation

σ(j) := Eχ

M∏

i=−M

gj(i)(Si(χ, c)), E
j
χW :=

1σ(j)6=0

σ(j)
EχW

M∏

i=−M

gj(i)(Si(χ, c)).

(Note that gj(i) > 0, so if σ(j) = 0, then EχW
∏M

i=−M gj(i)(Si(χ, c)) = 0 for all W .) We

next apply the Hölder inequality to Ej
χ and conclude that

Eχ|
∑

16n6x

χ(n)c(n)|2q 6
∑

−N6j(−M),...,j(M)6N+1

σ(j)

(
E
j
χ|
∑

16n6x

χ(n)c(n)|2
)q

. (3.1)
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3.3. Passing to the random side. We next use Proposition 2.8 to pass to the random

case. Let Y := 2M + 1 and Q = Q(x) := e(log x)
1/3

, and assume P,N, δ satisfy (2.13).

Then the requirements in (2.14) and (2.15) hold, so we may apply Proposition 2.8 to get

E
j
χ|
∑

16n6x

χ(n)c(n)|2

=
1σ(j)6=0

σ(j)


E

M∏

i=−M

gj(i)(Si(f, 1))
∣∣∣
∑

n6x
P (n)>Q

f(n)
∣∣∣
2

+O

(
x

(N logP )10Y

)

 .

(3.2)

Note that we have replaced f(n)c(n) on the right with f(n) (in Si and in the sum over

n), which is possible because c = λ is completely multiplicative and f is Steinhaus.

We note that our Q is smaller than Harper’s x1/ log log x, and that our error term is

worse, with 10Y instead of Y/δ2. Thus, we will focus our exposition on aspects where

we lose something compared to Harper, to clarify why we still win overall.

We next notice that
∑

j σ(j) = 1 and apply the Hölder inequality to the σ(j). This

lets us conclude that the contribution from the “big Oh” term in (3.2) to (3.1) is at most



∑

−N6j(−M),...,j(M)6N+1

σ(j)
1σ(j)6=0

σ(j)

x

(N logP )10Y




q

6

(
x(2N + 2)Y

(N logP )10Y

)q

≪
( x

logP

)q
,

which is ≪ ( x
1+(1−q)(log logP )1/2

)q. Thus, we can ignore the “big Oh” term in (3.2).

We next define

σrandom(j) := E

M∏

i=−M

gj(i)(Si(f, 1))

for all (2M + 1)-vectors j where f is a Steinhaus random multiplicative function. We

then use [18, Proposition 2] to get that σ(j)1−q ≪ σrandom(j)1−q +
(

1

(N logP )(2M+1)(1/δ)2

)1−q

.

This implies that

∑

−N6j(−M),..,j(M)6N+1

σ(j)



1σ(j)6=0

σ(j)
E

M∏

i=−M

gj(i)(Si(f, 1))
∣∣∣
∑

n6x
P (n)>Q

f(n)
∣∣∣
2




q

≪ T1 + T2,

where

T1 :=
∑

j

σrandom(j)



1σrandom(j)6=0

σrandom(j)
E

M∏

i=−M

gj(i)(Si(f, 1))
∣∣∣
∑

n6x
P (n)>Q

f(n)
∣∣∣
2




q

,

T2 :=
( 1

(N logP )(2M+1)(1/δ)2

)1−q∑

j


E

M∏

i=−M

gj(i)(Si(f, 1))
∣∣∣
∑

n6x
P (n)>Q

f(n)
∣∣∣
2




q

,
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where
∑

j
:=
∑

−N6j(−M),...,j(M)6N+1. To deal with T2, we apply Hölder’s inequality to

the sum over j and use the fact that gj form a partition of unity. This gives us

T2 ≪
( 1

(N logP )(2M+1)(1/δ)2

)1−q

((2N + 2)2M+1)1−q



∑

j

E

M∏

i=−M

gj(i)(Si(f, 1))
∣∣∣
∑

n6x
P (n)>Q

f(n)
∣∣∣
2




q

=

(( 2N + 2

(N logP )(1/δ)2

)2M+1
)1−q


E

∣∣∣
∑

n6x
P (n)>Q

f(n)
∣∣∣
2




q

6 (logP )−(1−q)xq,

which is again ≪ ( x
1+(1−q)(log logP )1/2

)q. In summary, we can ignore the contribution from

T2. If we define the notation Ej,randW :=
1
σrandom(j) 6=0

σrandom(j)
EW

∏M
i=−M gj(i)(Si(f, 1)) for all

random variables W , then by (3.1) and (3.2), it suffices to show that

T1 =
∑

j

σrandom(j)


E

j,rand
∣∣∣
∑

n6x
P (n)>Q

f(n)
∣∣∣
2




q

≪
( x

1 + (1 − q)(log logP )1/2

)q
, (3.3)

in order to complete the proof of Theorem 3.1. The point is that from now on we only

need to focus on T1, which is purely about random multiplicative functions.

3.4. Passing to Euler products. Recall that Q(x) = e(log x)
1/3

. Let X = e(log x)
1/100

.

In the corresponding section [18, § 3.4], Harper uses a standard sieve bound [27, Theo-

rem 3.6] several times in the course of the argument. Since our parameters are slightly

different than Harper’s, it is worth spelling these out more explicitly.

Lemma 3.2 (Applied sieve bounds). We have

∑

Q<m6x
p|m⇒p>P

X

m

∫ (1+1/X)m

m

( x
m

− x

t
+ 1
)
dt≪ x

logP
.

Also, for t > Q, we have
∑

t/(1+1/X)<m6t
p|m⇒p>P

X

m
≪ (logP )−1.

Proof. In the first display, we have x
m
− x

t
+ 1 = (t−m)x

mt
+ 1 ≪ x

mX
+ 1. Therefore, we only

need to show that ∑

Q<m6x
p|m⇒p>P

(
1 +

x

mX

)
≪ x

logP
.

Notice that sum involving x/Xm is crudely bounded by ≪ x log x/X which is more than

acceptable by our choice of X and P . For the other term, we just use the upper bound
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sieve [27, Theorem 3.6], noting here P ≪ √
x−Q by (2.13), to conclude that this is at

most ≪ x
∏

p6P (1 − p−1) ≪ x/ logP .

We now turn to the second display. We have the bound

∑

t/(1+1/X)<m6t
p|m⇒p>P

X

m
≪ X

t

∑

t/(1+1/X)<m6t
p|m⇒p>P

1.

By using the upper bound sieve again, noting that P ≪
√
t− t/(1 + 1/X) by (2.13), the

inner sum is at most ≪ t
X

∏
p6P (1 − p−1) ≪ t

X logP
and the conclusion follows. �

We now return to our goal, (3.3). Expanding the square in T1 and noticing that

gj(i)(Si(f, 1)) only depends on f(p) for p 6 P , we get

T1 =
∑

j

σrandom(j)



E
j,rand

∑

m6x
P (m)>Q
p|m⇒p>P

∣∣∣
∑

n6x/m
n is P -smooth

f(n)
∣∣∣
2




q

. (3.4)

Note that we have used P < Q above. The next step is to replace the discrete sum with

a smooth version. Replacing the P (m) > Q by the weaker condition m > Q, we find

that the above bracket term, (Ej,rand
∑ · · · )q, in (3.4) is at most

≪


E

j,rand
∑

Q<m6x
p|m⇒p>P

X

m

∫ m(1+1/X)

m

∣∣∣
∑

n6x/t
n is P -smooth

f(n)
∣∣∣
2

dt




q

+


E

j,rand
∑

Q<m6x
p|m⇒p>P

X

m

∫ m(1+1/X)

m

∣∣∣
∑

x/t6n6x/m
n is P -smooth

f(n)
∣∣∣
2

dt




q

.

(3.5)

We first estimate the contribution of the second term in (3.5) to (3.4), which is at

most, via Hölder’s inequality (using
∑

j σ
random(j) = 1),

≪



∑

j

σrandom(j)Ej,rand
∑

Q<m6x
p|m⇒p>P

X

m

∫ m(1+1/X)

m

∣∣∣
∑

x/t6n6x/m
n is P -smooth

f(n)
∣∣∣
2

dt




q

=


E

∑

Q<m6x
p|m⇒p>P

X

m

∫ m(1+1/X)

m

∣∣∣
∑

x/t6n6x/m
n is P -smooth

f(n)
∣∣∣
2

dt




q

,

by the definition of Ej,rand. Next we use the orthogonality to expand the square and the

above is ≪ ( x
logP

)q by applying Lemma 3.2. This is ≪ ( x
1+(1−q)(log logP )1/2

)q.
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We next estimate the contribution from the first term in (3.5) to (3.4). This is at most

≪
∑

j

σrandom(j)


E

j,rand

∫ x

Q

∣∣∣
∑

n6x/t
n is P -smooth

f(n)
∣∣∣
2 ∑

t/(1+1/X)<m6x
p|m⇒p>P

X

m
dt




q

≪
∑

j

σrandom(j)
( 1

logP

)q

E

j,rand

∫ x

Q

∣∣∣
∑

n6x/t
n is P -smooth

f(n)
∣∣∣
2

dt




q

=
∑

j

σrandom(j)
( x

logP

)q

E

j,rand

∫ x/Q

1

∣∣∣
∑

n6z
n is P -smooth

f(n)
∣∣∣
2dz

z2




q

,

where in the second line we applied Lemma 3.2 and the in last line we used z := x/t.

Then we can apply [18, Harmonic Analysis Result 1] to bound the last line by

≪
( x

logP

)q∑

j

σrandom(j)
(
E
j,rand

∫

R

|F rand
P (1/2 + it)|2
|1/2 + it|2 dt

)q
, (3.6)

where F rand
P (s) :=

∏
p6P (1− f(p)

ps
)−1. Note that F rand

P (s) is a truncated version of L(s, f).

The quantity in (3.6) is identical to the quantity in [18, (3.4)], because our choice of

P is identical to Harper’s. Therefore, by [18, (3.5) and the paragraph before it], we have

∑

j

σrandom(j)
(
E
j,rand

∫

R

|F rand
P (1/2 + it)|2
|1/2 + it|2 dt

)q
≪
( logP

1 + (1 − q)(log logP )1/2

)q
.

Plugging this into (3.6), and recalling our bounds for T1 based on (3.4) and (3.5), we

conclude that (3.3) holds. This completes the proof of Theorem 3.1.
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