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Abstract

Uncovering higher-order spatiotemporal dependencies within human mobility networks of-
fers valuable insights into the analysis of urban structures. In most existing studies, human
mobility networks are typically constructed by aggregating all trips without distinguishing who
takes which specific trip. Instead, we claim individual mobility motifs, higher-order structures
generated by daily trips of people, as fundamental units of human mobility networks. In this
paper, we propose two network construction frameworks at the level of mobility motifs in char-
acterizing regional importance in cities. Firstly, we enhance the structural dependencies within
mobility motifs and proceed to construct mobility networks based on the enhanced mobility
motifs. Secondly, taking inspiration from PageRank, we speculate that people would allocate
values of importance to destinations according to their trip intentions. A motif-wise network
construction framework is proposed based on the established mechanism. Leveraging large-scale
metro data across cities, we construct three types of human mobility networks and characterize
the regional importance by node importance indicators. Our comparison results suggest that the
motif-based mobility network outperforms the classic mobility network, thus highlighting the
efficacy of the introduced human mobility motifs. Finally, we demonstrate that the performance
in characterizing the regional importance is significantly improved by our motif-wise framework.

Keywords: Human mobility motif, human mobility network, regional importance, higher-order
structure, city structure

1 Introduction

A city encompasses regions with diverse economic development orientation, and the fluxes of people
between regions further reflect the complexity of the city. It holds great significance to scientifically
understand the complexity of cities by studying the microscopic individual movement and the macro-
scopic flow of people, as well as their interactions with various urban regions. A deeper comprehen-
sion of human mobility within cities is a critical step in developing well-founded urban management
strategies and transportation planning. Network science provides a method for abstracting the com-
plex connections within a city in the form of networks [1–6]. The regional importance, as reflected
in human mobility network, serves as a vital tool for the study of city structure, which enables us
to deeply understand the city structure [7, 8], explore development and transformation process of
city [9], capture the city’s circadian rhythm and assess the urban jobs-housing balance [10].

With the rapid development and proliferation of information technology, an increasing amount
of social signal data related to human mobility is being collected, which paves the way for computing
and studying the characteristics of both human mobility behavior and city structures [11–14]. In the
scenario of smart cities, research on human mobility data, such as smart transportation card data,
vehicle GPS data, and phone call logs, have been garnering more and more attention. Metro networks
serve as indispensable infrastructure for daily lives, work, and communications of urban residents.

∗Email: mail@shishuyang.cn

1

ar
X

iv
:2

40
5.

04
06

6v
1 

 [
cs

.S
I]

  7
 M

ay
 2

02
4



It indicates that the regional importance around metro stations can be characterized through the
recognition and analysis of the diverse mobility patterns of passengers in metro networks.

Previous studies typically define a human mobility network in metro systems as a directed
weighted network, where nodes are metro stations and the weight of an edge denotes the magnitude
of passenger flow between stations. In this conventional approach, the human mobility network is
constructed by aggregating all trips without distinguishing who takes which path. For example, the
aggregation by A → B of person 1 and B → C of person 2 is not distinguished from another by
A → B → C of one person. It has been pointed out that this kind of memoryless first-order Markov
approach fails to capture the complete structure and dynamics of networks [15, 16], motivating the
present exploration of higher-order dependencies in human mobility networks.

Existed studies on the higher-order organization of complex networks usually pre-define a variety
of network motifs to explain structural mechanisms. This approach focuses on extracting or counting
network motifs from a large-scale network to capture higher-order structural dependencies. However,
in real networks, higher-order organizational features may not be solely governed by a single motif
but rather emerge from the collective influence of multiple higher-order structures. In the context of
human mobility networks, pre-defined network motifs may not comprehensively capture all mobility
patterns. In [17], the human mobility motif is defined as a sequence of visited places and the trips
among them, which can characterize various mobility patterns of passengers for the exploration
of complex human behaviors. In this setting, an individual mobility motif can be presented as a
mesoscopic network, in which nodes are the visited places and edges are the trips between visited
places of a person in one day.

In recent years, a large number of achievements have been made in each of these areas individually.
Relatively speaking, the exploration of the interrelationship of these fields remains a challenging
topic. It is foreseeable that the complete trajectory of an individual’s trip in a day can reflect more
structure information of the human mobility network in the city compared to multiple independent
single trips. Building upon the above inspirations, our study of human mobility networks shifts from
the aggregation of individuals’ single trips to the aggregation of mobility motifs. Similarly to the
approach in [18], every single trip is considered as a first-order relation. A mobility motif consisting
of all trips of a person between several stations in one day reflects higher-order network structures.
Here, mobility motifs, also known as higher-order structures, are regarded as the fundamental units
of a human mobility network. In this paper, we propose two novel network construction frameworks
at the level of mobility motifs, and compare their effectiveness with the classic network construction
method in characterizing regional importance through node importance indicators.

Firstly, we identify a variety of mobility motifs of people and then aggregate them to construct
human mobility networks. To enhance the higher-order structural dependency, we reorganize mobil-
ity motifs with a strategy similar to those in [18–20]. Then, we additively aggregate all reorganized
mobility motifs to form a human mobility network, which is referred to as the motif-based mobility
network. Secondly, we propose a new weight allocation method based on individual mobility motifs
and trip intentions. With the inspiration of PageRank, we reorganize mobility motifs by directly
connecting the initial station and all destinations at different times and construct motif-wise network
by aggregating these reorganized motifs.

Specifically, the main contributions of this work are summarized as follows.

• This work presents the first formulation and application of human mobility motifs to explore
human mobility networks within cities and evaluate regional importance. We claim individual
mobility motifs are the fundamental units of human mobility networks. It is a significant
ideological transformation for the aggregation from first-order individuals’ single trips to the
higher-order mobility motifs in a human mobility network.

• We enhance the indirect effects to propose a motif-based aggregation framework for modeling
human mobility networks. Instead of enumerating network motifs or subgraphs, this higher-
order network construction framework uses mobility motifs as the fundamental units. The
motif-based mobility network demonstrates superior performance when compared to the classic
mobility network.
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• We emphasize trip intentions by allocating station importance to destinations at different time
periods in one day. Following the idea of PageRank, we propose a novel motif-wise framework,
which can significantly improve the characterization of regional importance, as well as the
model performance and explanation.

• We utilize transportation card data from three big cities in China to assess and compare the
capabilities of the motif-based mobility network, motif-wise network, and classic mobility net-
work in characterizing regional importance. House prices are used to evaluate the effectiveness
of station rankings produced by our framework. Comparatively, we show that our motif-wise
framework obtains the best performance.

2 Related work

2.1 Higher-order organization of complex networks

“Network motif” was first defined by [21] to characterize structural patterns of interconnections oc-
curring in complex networks. Hidden mechanisms of higher-order structural dependencies in complex
networks can be understood and explained by specific network motifs. In [19], a variety of network
motifs and the corresponding motif adjacency matrices are defined. A generic framework based on
a selected motif adjacency matrix is developed to extract clusters organized with dense structural
motifs. This motif-based framework has been extended and continuously improved to explore higher-
order clustering structure [22,23], community structure [24,25], core-periphery structure [26]. These
findings help enhance the understanding of complex structural patterns and significantly broadens
the application of complex network analysis [27,28].

Some classic work introduces node centrality indicators to assess the node importance by in-
corporating network motifs. In [18] and [20], induced networks from motif adjacency matrices are
proposed and the PageRank or betweenness centrality is calculated for node importance ranking,
with the proposed methods applied to construct motif-based cooperation networks for ranking scien-
tists. Taking real h-indexes of scientists as the criterion, these models can improve the performance
of ranking under specific motifs. However, little is known about how to select suitable motifs in
different types of networks. Existing studies need to enumerate plenty of network motifs or simple
subgraphs in order to obtain better higher-order expression. In addition, the higher-order connec-
tions of real-world networks may include multiple higher-order structures, rather than just one.

2.2 Human mobility motifs

Human mobility motifs were first proposed in [17] to characterize diverse mobility patterns of people,
which facilitated the exploration of human behaviors. The focus is on various mobility patterns
hidden in the daily trips of people, revealing that most daily trips can be described by a few common
mobility motifs. The daily mobility motifs are classified with four rules and a perturbation-based
model is built to reproduce the generating of individual mobility motifs. Considering both location-
based and activity-based motifs, in [29], the scaling properties of travel distance are investigated,
revealing the relationship between the scaling parameters and the node number of motifs. The
findings indicate that people prefer a mobility motif with the lowest consumption that satisfies
their demand, which is summarized as the least effort principle. In [30, 31], well-labeled human
mobility motif data are used to present the differences between people in different working and
living conditions in terms of the dimensions of motif complexity, travel time, travel purpose, etc.
In [32, 33], the major motif of each region in a city is analyzed, clarifying the relationship between
the functions of these regions and the corresponding major motifs. A motif-preserving individual
travel preference learning method is presented in [34], and the accuracy and robustness of mobility
prediction model is improved. Some classic research conclusions on individual movement patterns
have also been extended at the level of location activity motifs, such as classical exploration and
preferential return model [35]. Current research on human mobility motifs is devoted to exploring
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the variety of individual mobility patterns, but co-analyses with the global mobility network are
rare.

2.3 Human mobility patterns in metro networks and city structures

Motivations for studying human mobility patterns in metro networks can be mainly divided into
two categories: understanding human behaviors and analyzing network properties. Recognition and
analysis of human mobility patterns provide a deep insight into complex human behaviors. Metro is
a fundamental infrastructure associated with city structures, helping explore the latter specifically
and precisely.

Several studies focus on passenger flow prediction and anomaly detection in metro systems.
In [36], three machine learning methods are developed to detect anomalous passenger flows in metro
networks. In [37], an algorithm is proposed for predicting short-term irregular passenger flows during
some special events, such as concerts or football matches. Taking both regional features and trip
intentions into account, a human mobility prediction model is developed in [38] with higher accuracy.
When the function of a region changes, the model can predict fluxes in the new scene in accordance
with the change. In [39], the effects of two travel strategies are compared, respectively with the
shortest path and minimum cost on the congestion in a metro network, where an intervention model
is built, which shows that the congestion would obtain great mitigation as long as a small number
of people switch travel strategies from the shortest path to the minimum cost.

Complex networks provide a powerful tool for analyzing city structures obtained from mobility
data in metro networks. Network indicators and community structures have been widely used to
describe the characteristics of human mobility and city structures [40, 41]. In [9], the smart card
data of Singapore in three years, from 2010 to 2012, are used to introduce structural indicators
that can evaluate node centrality or detect communities for capturing changes in city structures. It
was found that the distributions of the node centrality are becoming more and more flat, indicating
that the urban development is becoming more and more balanced. In [3], a linear combination of
node centrality, clustering coefficient, and closeness centrality is embedded into a basic PageRank
framework for ranking the station importance. In [10], directed weighted human mobility networks
are built based on the three motif patterns identified through non-negative tensor decomposition.
These networks, each constituted by one of the three motif patterns, exhibit distinct characteristics,
shedding light on how different city regions serve diverse populations.

3 Data description and processing

We employ public transportation smart card data from Shanghai, Beijing, and Hangzhou metro in
this study. Shanghai and Beijing are the largest cities with highly developed metro networks in China.
The magnitude of daily metro passenger flows in Beijing and Shanghai was about 5 million during
the studied period. To improve the robustness of our findings in this study, we also use Hangzhou
metro data on a smaller network scale to verify possible variations. Topological structures of the
metro networks in these three cities are visualized in Fig. 1, and the basic information of Metro data
is listed in Table 1. Previous studies have pointed out that people’s travel patterns may different on
weekdays from weekends [35, 42]. Therefore, we separate the raw data of Shanghai and Hangzhou
by weekdays and weekends for study.

Study City Stations Lines Study Date Motifs
Shanghai (weekdays) 289 14 5-9 Sep 2016 11374267
Shanghai (weekends) 289 14 3,4,10,11,24,25 Sep 2016 13547178
Beijing 311 22 1 Mar 2018 2943270
Hangzhou (weekdays) 79 3 7-11,14-18 Jan 2019 6412542
Hangzhou (weekends) 79 3 5,6,12,13,19,20 Jan 2019 3349697

Table 1: Summary of metro data.
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(a) Shanghai

(c) Hangzhou

(b) Beijing

Fig. 1: Topological structures and surrounding house prices of (a) Shanghai, (b) Beijing, and (c)
Hangzhou Metro networks. Each node represents a metro station. The node color reflects the
weighted average house price around a metro station, and the color bar shows the corresponding
price in RMB. Newly built stations that haven’t been color-filled are beyond the scope of this study.
Few areas around metro stations (such as airports and industrial parks) do not have residential
transaction records, which will be considered in the calculations of node importance but excluded
in final ranking comparisons.

In this work, we aim to characterize regional importance in cities by analyzing passengers’ mobil-
ity patterns in the metro networks. We speculate that regional importance can be characterized by
the importance of metro stations in the consideration of human mobility. We expect to build human
mobility networks in metro systems to predict the importance of surrounding areas of metro stations.
As the saying goes, “There are three factors that determine the house price: location, location, and
location.” In first-tier cities in China, house prices are a concentrated manifestation of the level of
importance of regions. The stronger the importance of a place, the more attractive it is for people
to live in, thereby driving up house prices. Therefore, house price is used in the evaluation of our
frameworks. We crawl second-hand house prices around the metro stations during the studied years
from a large real estate agency website1. The weighted average prices of houses around each metro
station (total transaction price divided by total transaction area) are considered as the criterion to
evaluate regional importance, which is shown in Fig. 1. As commonly experienced, house prices are
indeed higher in the downtown area and lower in the suburbs. It is also consistent with our intuitive
cognition of regional importance in these cities.

A human mobility motif is defined as an induced network from a passenger’s daily trips in metro
networks, in which nodes are the visited stations and edges are the trips between visited stations.
From the raw transportation card data, we extract the daily OD pairs of each card. With the
general assumption that each passenger is endowed with a unique Card ID, the trips of individuals
are recorded as a set of temporal OD pairs. Taking stations as nodes and the trips between stations
as directed edges, we obtain a variety of daily mobility motifs of individuals. Fig. 2(a, b) illustrates
the motifs generation process. Passenger 1 (with Card 1) first takes the metro from station A to
station B, and his mobility motif accordingly has a directed edge from A to B. After that, this
passenger returns to A from B, so an edge from B to A is added to his mobility motif. The generation

1https://fang.com/
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Fig. 2: Illustration of three strategies of human mobility network construction. Consider a metro
system with 5 stations (A-E) and 3 passengers (1-3). (a) Table list of nine Origin-Destination (OD)
pairs extracted from raw transportation card data of three passengers in one day. Records with the
same card ID have been sorted by time. Different colors are used to distinguish passengers and their
trips. (b) Visualization of three mobility motifs generated by OD pairs. To clarify the direction
of mobility motifs, the initial station of travel paths is marked in red. (c) Topological structures
and corresponding adjacency matrices of human mobility networks with three different constructing
strategies from mobility motifs: (α) classic mobility network, (β) motif-based mobility network, and
(γ) motif-wise mobility network. The edge color represents the passenger who contributes to the
edge.

Fig. 3: Distributions of the 15 most common daily human mobility motifs in Shanghai, Beijing,
and Hangzhou. The statistics of mobility motifs on weekdays and weekends are separated.

of two other mobility motifs is also shown in detail in Fig. 2(a, b). The distributions of the 15 most
common daily human mobility motifs in Shanghai, Beijing, and Hangzhou (in the descending order
of the distributions according to Shanghai weekdays data) are presented in Fig. 3. Moreover, the
total number of all mobility motifs in the studied cities is counted in Table 1.

4 Methodology

4.1 Classic mobility networks

Classic human mobility networks in the metro are generally defined as a directed weighted network
G = (V,W ), where V denotes the set of metro stations and W = {Wij |i, j ∈ V, i ̸= j} denotes
the set of the magnitudes of passenger flows between stations. As such, the network is the additive
aggregation of all first-order trips. Meanwhile, human mobility networks can also be regarded as the
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aggregation of daily mobility motifs of all individuals.
Definition 1 Let M be a human mobility motif. The classic mobility network G = (V,W ) is

defined as the additive aggregation of all such Ms.
Although the networks constructed by Definition 1 and the general definition are the same, these

two aggregation guidelines are hugely different. We no longer take the first-order trips (single OD
pairs) as the fundamental units of a mobility network but take the higher-order mobility motifs as
the fundamental units of a mobility network instead. We emphasize the idea of the higher-order
organization of human mobility networks on the condition of mobility motifs as fundamental units,
as visualized in Fig. 2(c-α). We aggregate three mobility motifs from Fig. 2(b) other than directly
aggregating single OD pairs from Fig. 2(a) to construct the human mobility network.

4.2 Motif-based mobility networks

Previous studies on the higher-order organization of complex networks with network motifs in-
troduced motif-based adjacency matrices [18–20]. According to the definition, each element of a
motif-based adjacency matrix equals the number of a specific motif that two nodes share. Formally,
the motif-based network is defined as G = (V,W), where Wij is the number of a specific motif
containing both node i and node j. From the meso perspective, each network motif is reorganized
as a complete graph in which each pairwise node is connected by the motif. Thus, the motif-based
mobility network is an additive aggregation of all complete graphs induced from network motifs.

Inspired by these studies, we adopt the same reorganization strategy on human mobility motifs.
We generate mobility motifs from OD pair records of each passenger and reorganize them as fully
connected graphs of the same nodes for the aggregation of a human mobility network.

Definition 2 Let M be a human mobility motif, and M be the induced undirected complete
graph of M . The motif-based mobility network G = (V,W) is defined as the additive aggregation of
all such Ms.

Fig. 2(c-β) shows the construction of G by aggregating all reorganized motifs M in Fig. 2(b).
Compared with the classic mobility network, some new connections in the motif-based mobility
network are established to enhance the latent effects between nodes. For example, there is a potential
relevance between station A and station C in the mobility motif M of person 2, so we bridge node A
and node C with a directly connected edge when reorganizing the motif. Therefore, there is an edge
between node A and node C in Fig. 2(c-β) but not in Fig. 2(c-α). This new connection produced
by M of person 2 enhances the inside higher-order structural dependencies due to the transform
from indirect relevance to direct relevance. As a supplement, the motif-based mobility network is
an undirected weighted network, with an adjacency matrix shown in Fig. 2(c-β).

We will see later that the motif-based mobility networks have slightly better performance in
characterizing regional importance than the classic mobility network. However, the accuracy of
characterization still has room for improvement. With the inspiration of resource allocation, we
further propose a novel aggregation framework to address the defects in the motif-based framework.

4.3 Motif-wise human mobility networks

According to the main idea of PageRank, each node is endued with an initial stochastic value of
importance and then iteratively allocates the value into its out-neighbors until convergent. When
considering mobility motifs of individuals, the value of nodes would be transferred along directed
edges. However, some cases are out of our expectations. As an example, the significance of re-
organization on a four-node mobility motif is visualized in Fig. 4(a). The person has a trip path
A → B → C → D, thus the mobility motif has four nodes and three directed edges. In such a
case, the value of node B will be taken out and allocated to node C in the mobility motif, and the
value of node C is then allocated to node D. However, nodes B, C, and D are all his destinations
during different time periods, not just roles of transits. We expect that nodes B and C have similar
importance with respect to node D. The contradiction to our expectations and the limitations of
structural properties motivate us to ponder if there is a reasonable reorganization strategy on mobil-
ity motifs to address this problem. In this section, we propose a motif-wise framework to reorganize
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diverse mobility motifs of individuals and aggregate them to construct a human mobility network.
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Fig. 4: The reorganization strategy from human mobility motifs M to M.

Inspired by the idea of PageRank, we adopt a new strategy to reorganize directed edges and
redefine the edge weight. We speculate that a passenger would take his resources from his initial
station to his travel destinations, instead of taking the resources from one destination to another.
Consequently, assume that a passenger travels from the initial station with a value of resource (es-
sentially the same as node importance). Once arriving at another location by metro, a corresponding
value of resources is accordingly allocated to the destination station from the initial station.

Definition 3 Let VM be the node set of a human mobility motif M , s(i) be the weighted in-
degree of node i ∈ VM , and A ∈ VM be the initial node of M . The reorganized motif of M is defined
as an induced graph M = (VM ,W), where WAi = s(i), i ∈ VM\A.

As illustrated by Fig. 4(a), a passenger starts his trip from station A, and travels to B, C and
D each once sequentially. Thus, the passenger allocates resources to these stations equally with the
weight of 1. In Fig. 4(b), another passenger also travels to B, C and D from initial station A. While
this passenger travels to B and C twice, so the directed edge weights wAB = wAC = 2. Meanwhile,
we also try another similar weight allocation method. The total resource of each person is restricted
to be 1, equivalent to the sum of edge weights in a reorganized motif is 1. Each person allocates the
value of resources to each place in proportion to the visiting frequency except the initial place. This
normalizes the WAi in Definition 3 as WAi = s(i)/

∑
j∈VM\A s(j). For example, with this strategy,

in Fig. 4(a), wAB = wAC = wAD = 1/3; and in Fig. 4(b), wAB = wAC = 2/5, wAD = 1/5. We
attach a mark to the former strategy with w = 1 and the latter with w = 1/n.

Definition 4. The motif-wise network G = (V,W) is defined as the additive aggregation of all
such Ms.

Fig. 2(c-γ) shows the construction process of the motif-wise mobility network based on the
proposed framework with w = 1. Passenger 1 only goes to station B after starting from the initial
station A, so he produces an edge with a weight of 1 from A to B. Passenger 2 goes to station B
and C once each after starting from the initial station A, so he produces an edge from A to B and
an edge from A to C with weight of 1, respectively. Passenger 3 goes to C twice, so the weight
of the edge from initial station B to C is 2. He goes to D and E only once, so he produces an
edge from B to D and an edge from B to E with weight of 1, respectively. We then aggregate
all the reorganized motifs as a human mobility network and finally run node importance indicator
calculation. Distinguished from the full connection of motif-based mobility networks, we enhance
the directionality of mobility motifs.

4.4 Measures of node importance

In the proposed framework, one important task is to characterize the regional importance by ranking
nodes in human mobility networks. Node importance can be calculated from four commonly used
measures including PageRank value, eigenvector centrality, current flow closeness centrality, and
clustering coefficient, which are respectively defined as follows.

PageRank The main idea of the weighted network PageRank is that each node assigns its

PageRank value to the nodes it points to according to the edge weights. First,
∑|V |

i=1 PRi(0) = 1.
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Then, the PageRank values are calculated iteratively:

PRi(k) = s

|V |∑
j=1

ŵjiPRj(k − 1) + (1− s)
1

|V |
,

where ŵji = wji/
∑

k∈V wjk, |V | is the number of nodes and s is a dampening factor, usually set as
0.85 [3, 43].

Eigenvector centrality The main idea of eigenvector centrality is that the importance of a
node depends not only on the number of the neighboring nodes, but also on their importance. Let
x be the eigenvector of the largest eigenvalue of the adjacency matrix A. Then, the eigenvector
centrality of node i is the i-th element of x.

Current flow closeness centrality Current-flow closeness centrality, also referred to as in-
formation centrality, calculates closeness centrality based on effective resistance between nodes in a
network. When G is regarded as an electrical network, the weight of each edge is equivalent to the
conductance. The current flow closeness centrality of node i is defined by

ci =
|V | − 1∑

i ̸=j pst(i)− pst(j)
,

where pst(i)− pst(j) corresponds to the effective resistance.
Clustering coefficient All regions of cities develop in coordination. Due to the existence of

scale effects [44, 45] and network effects [46], the contact strength between neighboring regions of
a region may also affect the development and importance of the region itself. Here, the clustering
coefficient is used to capture the degree to which regions in a city tend to cluster together and treated
as a node importance index. The clustering coefficient of node i in a weighted network is defined as

ci =
1

k(i)(k(i)− 1)max(w)

∑
jk

(wijwikwjk)
1/3,

where k(i) is the degree of node i.
The larger the calculated values of these indicators, the higher the importance of the node.

5 Results

In this section, through real data analysis, we explain the improvement obtained by our frameworks
and discuss some intriguing phenomena observed.

5.1 Motif-base human mobility networks

In this subsection, we calculate and rank the node importance in the two kinds of human mobility
networks that we constructed above (G and G). For equivalent comparison with the undirected
motif-based mobility network G, we also convert G to an undirected network G′. The edge weight of
G′ is adjusted by W ′

ij = W ′
ji = Wij+Wji. As will be discussed later in Section 5.3, since Wij ≈ Wji,

the effect of the adjustment on the network structure is extremely small. The case of the directed
network G will be discussed in the next subsection.

Now we compare the station rankings calculated by the node importance measures with the
weighted average house price around metro stations to evaluate the effectiveness of the ranking
results. Following [18, 20], Normalized Discounted Cumulative Gain (NDCG) is used to evaluate
the effectiveness of the ranking results, which is defined as

NDCGk =
DCGk

IDCGk
,

where DCGk =
∑k

i=1
reli

log2(i+1) is the discounted cumulative gain of the top k stations obtained by a

node importance indicator; house price is regarded as the relevance score reli in our context; IDCGk
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is the DCG of actual top k stations with the highest house prices. This indicator ranges from 0 to
1. The larger the NDCG is, the better the ranking performance is. We also introduce the Pearson
correlation coefficient r to depict the correlations.

We present a comparison of the data from Shanghai (weekdays) in Fig. 5 as an example and also
list data from other cities to verify the robustness of the results in Table 2. We take the ranking of
node importance as the x-axis and house price as the y-axis in the first two columns in Fig. 5. The
trends of the negative correlations show that higher-ranking places have higher house prices, which
is consistent with life experience. From the metrics of four node importance indicators, rankings of
stations in G exhibit a slightly stronger linear correlation with house prices, as indicated by Pearson
correlation coefficient r. Comparisons between the calculated NDCGk of G′ and G are shown in the
right panel of Fig. 5. To make it clearer, we make a difference calculation between NDCGk of G′

and NDCGk of G in the inset. NDCGk of G are larger than those of G′ with respect to most ks,
indicating that motif-based mobility networks can help better characterize the regional importance.
Furthermore, Table 2 shows the comprehensive results of the five studied objects according to the
four metrics of node importance calculation. We highlight better results in bold. It can be seen
that in all cities, the performance of motif-based mobility networks is generally better than that of
classic mobility networks.

Next, we explain how much improvement is made by the motif-based mobility networks in char-
acterizing regional importance ranking. Let rG′(i) and rG(i) be the ranking of station i calculated
by a certain node importance indicator, rhp(i) be the house price ranking around station i. Then,∑

i∈V |rG′(i)− rG(i)| is the sum of differences of the calculated rankings of the same station in the
two mobility networks. This absolute difference of node rankings based on the two networks is the
upper bound of ranking improvement.

∑
i∈V (|rG′(i)−rhp(i)|−|rG(i)−rhp(i)|) is the relative ranking

improvement of rG with respect to rG′ . Fig. 6 shows the upper bounds of ranking improvements
and the relative ranking improvements with different node importance indicators and different data
sets. Except that the ranking improvement of Hangzhou weekdays by current flow closeness is −2,
in all other cases, the motif-based mobility networks have made evident improvements in ranking
compared with the classic mobility networks. Especially, when the eigenvector centrality is used as
the indicator of node importance, the improvements are fairly obvious (this can also be observed
from Fig. 5).

From a network science perspective, we explore the higher-order structure of mobility networks
by analyzing actual mobility motifs instead of exhaustively enumerating network motifs or simple
subgraphs. This approach holds practical significance, and our results validate that employing
higher-order network concepts can indeed yield better results in our scenario. This enhancement is
not a result of selectively choosing favorable outcomes from an exhaustive search of network motifs
or simple subgraphs.

5.2 Motif-wise human mobility networks

It should be noted that people’s travel patterns are directional. Therefore, we propose the motif-wise
framework. We now compare the effectiveness of node importance ranking in motif-wise mobility
networks G against classic mobility networks G by PageRank. As shown in Fig. 7, the accuracy of
characterizing regional importance has increased significantly in all cities for all time periods.

Among the four node importance indicators mentioned above, eigenvector centrality can also be
extended to directed graphs. We thus calculate the importance of nodes by eigenvector centrality and
present the comparison results of our framework with the classic one. Meanwhile, as a comparison, we
also establish 2-dimensional de Bruijn graph Gde of human mobility [15,16], where the memory nodes
−→
ij represent trips in metro and edges

−→
ij →

−→
jk represent connected trips, with weights W (

−→
ij →

−→
jk)

proportional to the passenger volume between stations and conditional on the previously visited
station. The method can capture the second-order Markov process, which is another typical model
useful for exploring the higher-order organization of complex systems.

We list comprehensive results of node importance ranking by PageRank and eigenvector centrality
in human mobility networks in Tables. 3 and 4, respectively. In these two tables, we consider
motif-wise mobility networks with the restriction of both w = 1 and w = 1/n. We highlight
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Fig. 5: Correlation between Shanghai house price and calculated station rankings in G and G.
Different rows show the ranking results by PageRank, eigenvector centrality, current flow closeness
centrality, and clustering coefficient, respectively. The left two columns respectively depict the
correlations of the weighted average house price against a measure of the rankings of metro stations
in G′ and G; 95% confidence intervals are displayed. The Pearson correlation coefficient is shown
in each subgraph. The right column compares NDCGk of G′ and G. In order to present a clearer
comparison, the inset window shows NDCGk of G minus NDCGk of G′. The orange dotted line is
the datum line with y = 0.
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Fig. 7: The correlation between house price and node ranking by PageRank. Data from different
cities and time periods are divided into five columns. The top two rows respectively depict the
correlations of the weighted average house price against a measure of the rankings of metro stations
in G and G(w = 1); 95% confidence intervals are displayed. The Pearson correlation coefficient is
shown in each subgraph. NDCGk of G and G are compared in the bottom row.

the better results in bold. Overall, it is obvious that G modeled by our framework has a significant
improvement in node importance ranking than G and Gde in almost all aspects. From the perspective

13



of node importance indicators, PageRank even performs slightly better than eigenvector centrality
in characterizing regional importance, likely because our framework borrows the idea of PageRank.
To our surprise, the results calculated by Gde based on PageRank show poor performance. There is
almost no correlation between the calculated node ranking and house price. The results on NDCG
are also far worse than all other methods. Only when using eigenvector centrality as the indicator,
the correlation between node importance ranking and house price can be observed, where Gde has
a better performance compared to G in Shanghai and Hangzhou. However, when NDCG is used
for assessment, Gde still performs worse than G. It is probably because all motifs with only one
trip in one day have to be ignored when constructing the de Bruijn graph but these motifs are
non-negligible.

The proposed motif-wise framework has a performance boost compared with the motif-based
framework according to NDCG. Moreover, the computed rankings of node importance display
stronger linear correlations with house prices. The increasing performance is presented with com-
parisons between Table 3 (or Table 4) and Table 2.

Network r NDCG5 NDCG10 NDCG30 NDCG∞

Shanghai
(weekdays)

G -0.47437 0.80752 0.79219 0.80156 0.95463
Gde 0.10465 0.58126 0.58793 0.61406 0.90752
G(w = 1) -0.64992 0.80837 0.81415 0.84586 0.9654
G(w = 1/n) -0.63137 0.81346 0.81752 0.8363 0.96452

Shanghai
(weekends)

G -0.40172 0.76455 0.76598 0.78683 0.94858
Gde 0.00895 0.65538 0.6451 0.65953 0.91909
G(w = 1) -0.54842 0.76689 0.795 0.83449 0.959
G(w = 1/n) -0.51458 0.76689 0.79202 0.81929 0.95598

Beijing

G -0.30581 0.56548 0.60876 0.65616 0.91549
Gde 0.22892 0.46547 0.46941 0.50496 0.87686
G(w = 1) -0.54999 0.65213 0.64326 0.73026 0.9366
G(w = 1/n) -0.5167 0.58032 0.63962 0.72527 0.93266

Hangzhou
(weekdays)

G -0.38125 0.70932 0.77438 0.837 0.93179
Gde 0.07817 0.51221 0.62363 0.72975 0.89179
G(w = 1) -0.50266 0.70932 0.78535 0.85382 0.93772
G(w = 1/n) -0.49589 0.70421 0.78128 0.85182 0.93635

Hangzhou
(weekends)

G -0.29324 0.74616 0.74803 0.81195 0.92645
Gde 0.02113 0.67452 0.68211 0.75897 0.90957
G(w = 1) -0.41012 0.74616 0.76545 0.84227 0.9328
G(w = 1/n) -0.39366 0.72139 0.75495 0.83956 0.93092

Table 3: PageRank ranking results of the classic mobility network and the motif-wise mobility
network.

To further illustrate the superiority of our framework, we evaluate the characterization results
with an official report. Yicai, an official financial news arm of Shanghai Media Group2, released the
Shanghai Big Data Activity Report in 2017. The report conducted a comprehensive analysis of the
regional functions, consumer profiles, and business development in the vicinity of Shanghai metro
stations. These factors serve as criteria for assessing regional importance. Top 100 metro stations
are listed3. Among these 100 stations, there are 5 newly built stations not shown in our data. We
take the rankings of the remaining 95 stations as the criterion and use NDCG again to compare the
ranking results of our framework and the classic one. In this context, the relevance score reli = 1
if the i-th important station calculated by the algorithm is also in the top-k list of the criterion,
otherwise reli = 0. As shown in Fig. 8, NDCGk calculated by our framework (solid lines) are in the
majority greater than those of traditional one (dashed lines), indicating that our framework again
achieves significantly better performance.

2https://www.yicaiglobal.com/
3https://metrocity.dtcj.com/shanghai
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Network r NDCG5 NDCG10 NDCG30 NDCG∞

Shanghai
(weekdays)

G -0.44611 0.81049 0.77046 0.79702 0.95287
Gde -0.44683 0.74952 0.71908 0.76939 0.94828
G(w = 1) -0.63712 0.81784 0.81262 0.84221 0.96538
G(w = 1/n) -0.61425 0.81915 0.81244 0.8314 0.96378

Shanghai
(weekends)

G -0.38124 0.77995 0.78544 0.80291 0.94907
Gde -0.40532 0.72745 0.72244 0.76807 0.94611
G(w = 1) -0.52934 0.76455 0.79377 0.8283 0.95801
G(w = 1/n) -0.49215 0.76675 0.79417 0.82718 0.95562

Beijing

G -0.28222 0.56665 0.5684 0.61997 0.91154
Gde -0.20309 0.55528 0.55611 0.58689 0.90424
G(w = 1) -0.51886 0.59871 0.63777 0.72506 0.93369
G(w = 1/n) -0.48905 0.56548 0.61076 0.70807 0.92774

Hangzhou
(weekdays)

G -0.40051 0.72803 0.75131 0.8254 0.9294
Gde -0.42487 0.71044 0.73556 0.82667 0.92903
G(w = 1) -0.45648 0.72803 0.77936 0.83635 0.9334
G(w = 1/n) -0.4363 0.70421 0.77485 0.83165 0.93036

Hangzhou
(weekends)

G -0.32708 0.74616 0.75471 0.81699 0.92723
Gde -0.40993 0.72916 0.75701 0.8362 0.93062
G(w = 1) -0.39722 0.7978 0.78793 0.84913 0.94149
G(w = 1/n) -0.38363 0.72139 0.75121 0.82658 0.92811

Table 4: Eigenvector centrality ranking results of the classic mobility network and motif-wise mobility
network.
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Fig. 8: Comparisons between G and G(w = 1) critera on Shanghai Big Data Activity Report in
2017.

We show the upper bounds of the ranking improvements and the relative ranking improvements in
Fig. 9. With our motif-wise framework, the upper bounds of the ranking improvements are over three
times higher than that of the motif-based network. Moreover, the relative ranking improvements
are much closer to the upper bounds of the ranking improvements in all cities. Overall, after
the construction of the motif-wise mobility network, the node importance ranking performance is
significantly improved.
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Fig. 10: Relationship between in-strength and out-strength and the correlation matrix of node
indicators of Shanghai (weekdays) data. (Left) The correlation between Wij and Wji of G. The
colors indicate the numbers of the corresponding edges. (Right) Pearson correlation coefficients
between node strength (the magnitude of passenger flows at stations) and four calculated node
importance indicators in G′. ST: strength; PR: PageRank; EC: eigenvector centrality; CC: current
flow closeness centrality; CL: clustering coefficient.

5.3 Discussion

We attempt to discuss the reasons for the differences in the results under the two network construc-
tion methods from the perspective of real urban scenarios.

In China, there exist some areas in large cities called “bedroom communities”. Many citizens live
in these communities far from the city center just to sleep. Their working and entertainment places
are probably far away from their living places, resulting in huge passenger flows at the metro stations
around these communities. Since in human mobility network G, Wij ≈ Wji, node importance is
strongly associated with the strength of the node (the magnitude of passenger flow) according to
the calculation of node importance indicators in the undirected weighted network (see Fig. 10).
However, the magnitude of passenger flows may not accurately represent the regional importance
in the city. To further clarify this, we identify the top 10 stations with the largest declines in
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ranking obtained from the comparison of the classic framework and the proposed framework. We
observe that these stations are primarily located in large residential communities in suburban areas.
Taking Beijing as an example, as shown in Table 5, the surrounding regions of such stations are
mostly famous super-sized communities located in the suburbs. These areas experience super large
passenger flows, leading to their high rankings in G. Yet, from a public perspective, these areas
are not that comprehensively important. Our motif-wise framework addresses real human travel
purposes and establishes a new directed weight allocation method, making the ranking results closer
to reality by a large margin.

Station Name
PageRank
ranking in G

PageRank
ranking in G

Actual
ranking

Changyang 108 181 234
Tiantongyuan North 21 94 261
Longze 47 124 207
Lishuiqiao 35 115 176
Wuzi Xueyuan Lu 66 146 237
Tiantongyuan 13 96 256
Jin’an Qiao 44 128 228
Huilong Guan 41 136 220
Huilong Guan Dongdajie 59 179 227
Huoying 28 153 202

Table 5: The top 10 stations with the largest declines in ranking resulted from the two network
construction methods.

6 Conclusion

In the existing literature, significant strides have been made in the analysis of individual-level statis-
tics and modeling, as well as in the exploration of population-level mobility patterns. Recent years
have witnessed a growing emphasis on bridging the gap between meso-level individual travel patterns
and macro-level population mobility, enriching our comprehension of the intricate dynamics of cities.
This paper represents the inaugural endeavor to employ human mobility motifs in investigating urban
mobility networks and assessing regional importance.

We first propose a bottom-up framework to model a motif-based mobility network that aggregates
the reorganized individual mobility motifs by addition. Under this framework, the performance of
characterizing the importance of regions is indeed improved. Comparing it to the previous top-down
approach in exploring the higher-order organization of networks, our method eliminates the need
for manual specification of motifs or subgraphs. The human mobility motifs that are aggregated
to construct the whole network are all generated by real trips of passengers. This opens up a new
direction for studying the higher-order properties of complex networks.

We then propose a weight allocation method by establishing a motif-wise framework, where in-
dividuals carry weights from their initial station to each destination station during trips. Under
this framework, we aggregate the reorganized human mobility motifs to construct motif-wise net-
works. Compared with the classic mobility network, the performance of the motif-wise network in
characterizing the importance of regions is greatly improved.

In summary, mobility motifs, also known as higher-order mobility structures, are considered as
fundamental units of human mobility networks instead of first-order trips. Two motif reorganization
methods are proposed under two frameworks, which enable the modeling of human mobility networks
at the level of mobility motifs. The significance lies in that these cannot be achieved when only first-
order single trips are considered. This underlines the potency of higher-order mobility motifs as a
powerful tool for unraveling the higher-order organization within human mobility networks.
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