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Deep Learning has been a critical part of designing inverse design methods that are computationally efficient and
accurate. An example of this is the design of photonic metasurfaces by using their photoluminescent spectrum as the
input data to predict their topology. One fundamental challenge of these systems is their ability to represent nonlinear
relationships between sets of data that have different dimensionalities. Existing design methods often implement a
conditional Generative Adversarial Network in order to solve this problem, but in many cases the solution is unable
to generate structures that provide multiple peaks when validated. It is demonstrated that in response to the target
spectrum, the Bidirectional Adversarial Autoencoder is able to generate structures that provide multiple peaks on several
occasions. As a result the proposed model represents an important advance towards the generation of nonlinear photonic
metasurfaces that can be used in advanced metasurface design.

I. INTRODUCTION

Neural networks have revolutionized various domains,
from image recognition and natural language processing to
autonomous systems and recommendation engines. As the de-
mands on these networks continue to grow, so does the need
for innovative approaches to their design and optimization.
One particular area of interest is the inverse design of pho-
tonic metastructures1–3. These devices are small nanoscale
structures that manipulate light through the use of interference
effects at the sub-wavelength level. The need to efficiently de-
sign metasurfaces that perform operations such as polarization
modulation4,5, filtering, and holography6 is crucial in the de-
sign of emerging optical devices.

Designing metasurfaces is difficult due to the formulation
of Maxwell’s electromagnetic field model that accurately de-
scribes the underlying physics at work. This field model con-
sists of a system of coupled partial differential equations that
rarely allows for an explicit solution.

However, we are able to iteratively solve these equations
forward direction of these equations to approximate the spec-
tral response of a given metasurface structure, and as a result
metasurfaces have been designed using approximations and
best practices in the past.

Performing the reverse direction problem to determine a
particular geometric structure given a spectral response is gen-
erally impossible, this is colloquially referred to as the inverse
design problem. the inverse design problem is impossible to
solve uniquely due to the mismatched solution domain, pri-
marily due to the injective mapping . When constructing the
inverse design problem, we generally have a spectral response
in one dimensional that is trying to map injectively to an out-
put space in two dimensions,resulting in many solutions that

may satisfy the target desired spectrum.

In recent times, there has been significant progress in both
adjoint optimisation methods and deep learning in order to ad-
dress the inverse design problem. While adjoint methods can
create accurate solutions to the inverse design problem, there
are often trade-offs associated with speed of generation, com-
putational cost and lack of scalability due to the exponential
number of outputs7–9. Neural networks have also made sig-
nificant progress in this field; one of the first demonstrated
Neural Network based predictors for photonic metasurfaces
used a conditional Deep Convolutional Generative Adversar-
ial Network (cDCGAN)10,11. The network showed results that
were appropriate for the generation of known shapes with the
possibility of scalability to new unseen shapes. Subsequently,
further research in the field provided additional exploration
into the relationship between latent information in a neural
network and the topology of generated structures12.

Despite the advancements in the field, existing research fo-
cuses only on the quality of the output generation, rather than
considering the impact of the structure of the neural network
on the generated output13–15. The cDCGAN was the primary
network structure used across previous research, as it allowed
for the output to be conditioned on an input spectral response
in order to constrain the output to a desired result. As a conse-
quence, the models learn an explicit relationship between the
shape of the metasurface and the spectral response. This can
cause several issues, the most significant being the unreliabil-
ity of the learned data distribution, and incomplete mapping
of the design space16,17. Due to this issue, application of the
cDCGAN model can lead to overfitting18 in certain instances
and causing issues such as mode collapse19,20 and significant
noise generation. Mode collapse is a significant issue, as it can
cause the same types of metasurface shapes to be predicted
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for different input spectrum, resulting in a poorly perform-
ing model, despite achieving low error metrics. Significant
noise on generated output shapes can make desired shapes in-
distinguishable from noise, making fabrication in downstream
applications impossible.

In this study, we present a new approach using deep learn-
ing for the inverse design of metasurfaces. We implement a
Bidirectional Adversarial Autoencoder (BiAAE), an approach
that combines the advantages of traditional Variational Au-
toencoders in their ability to represent information in a con-
densed form through latent space vectors21,22, while retain-
ing the training approach of Generative Adversarial Networks.
We evaluate the performance of the model by placing our
ground truth data back into the model and ensuring the results
are consistent with our ground truth data. In addition, we also
generate test spectra outside of the ground truth dataset to see
how well the network can generalise to unseen cases with no
further information in regards to material type or thickness,
instead referring to a default value to be used across each
test case. This generalisation procedure is important in cre-
ating a system that can be adapted and scaled in the future.
In addition, it allows for two additional degrees of freedom
in the form of material thickness and material type in future
applications. The evaluation process is completed through
electromagnetic simulations performed in Lumerical FDTD.
Through this process, we show that the network is able to cre-
ate fabricable structures that have good performance across a
variety of unseen data.

II. METHODOLOGY

A. Data Generation

Generative models have gained increasing attention since
the introduction of the Generative Adversarial Networks
(GAN)23. Such a network learns to create synthetic data x′

that mimics real data x by mapping a prior distribution pz to
real data distribution pd(x). This enables the model to gener-
ate new data samples x′ from arbitrary latent vectors z sampled
from pz. To achieve this, they propose an adversarial proce-
dure: let two networks, namely generator (G) and discrimina-
tor (D), contest with each other via a min-max loss23:

min
G

max
D

Ex∼pd log[D(x)]+Ez∼pz [1− log(D(G(z))]

Developing upon GANs, conditional GANs feed extra in-
formation into the generator as conditions to guide the data
generation, so that the model can generate data with specific
requirements. For example, in metasurface design, input spec-
tral responses serve as conditions that direct models to gener-
ate metasurface structures with corresponding optical proper-
ties.

Unlike GANs, Adversarial Autoencoders (AAE)24 conduct
the adversarial procedure on informative, lower-dimensional
variables extracted from the original data, namely latent
codes, rather than operating directly on the initial high-
dimensional input space. It contains an encoder that converts

data distribution pd(x) to the aggregated posterior distribution
q(z):

q(z) =
∫

x
q(z|x)pd(x)dx

where q(z|x) stands for encoding distribution.
Coupled with the encoder, a decoder p(x|z) is trained to

generate new data from arbitrary prior vectors z ∼ pz. To
achieve this, the adversarial training process forces the aggre-
gated posterior q(z) to match the prior pz.

The potential advantages of this model depend on the fact
that it converts adversarial training to latent code so that 1)
it consequently reduces the training cost 2) it increases the
control over the generation by learning disentangled latent
representations that can be manipulated to introduce selective
changes in the generated outputs while preserving other fac-
tors.

B. Inverse Design via GANs

Prior studies used conditional GANs for both inverse and
forward modelling design of photonic structures10–12. These
studies involved training a conditional GAN using datasets
consisting of 2D images of meta-atoms and their correspond-
ing spectral responses. During training, the model will learn
which shapes it should generate given a spectrum. This ex-
plicit way of inserting spectrum into prior vector introduces
strong supervision for image generation and is capable of forc-
ing the model to generate correct shapes that match the given
spectrum. However, this is at odds with the generation of
novel, unseen shapes by the model.

Another issue is the the fact that each input spectrum has
less information compared to each meta-atom unit cell. This
makes it easy to overfit the model to the training data, result-
ing in poor generation of meta-atom units on unseen data. As
shown in Figure 1, we randomly generated 25 shapes with
cDCGAN, 12 of them contain mostly noise, and out of the re-
maining shapes, there are only three distinct shapes, indicating
that the model has overfitted to these training examples.

FIG. 1: A set of randomly generated structures using the
cDCGAN architecture
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FIG. 2: Overview of Bidirectional Adversarial Autoencoder

C. Implicit Relationship Learning

To address the aforementioned problems in Conditional
GANs, we propose using an Autoencoder based model for
both forward and inverse design of photonic structures,
namely BiAAE, which was originally proposed for molecu-
lar generation25.

Figure 2 describes the model consists of two parallel
streams, each stream is a basic Adversarial Autoencoder
(AAE) that: first encodes the representations (latent codes)
of the spectrum zspec and metasurface zimag with spectrum en-
coder Espec(·) and image encoder Eimg(·) respectively. Then,
the discriminator D(·) acts like a regularizer that matches
these latent codes to the prior normal distribution pz =
N (0,1) through adversarial training. Different to original
AAE, we divide the latent codes z into two parts to store
the unique (u) and common (c) features of each stream. The
common features are those features that spectrum cspec and
images cimg have in common, it can be the numbers and lo-
cations of peaks in spectrum and the shapes of the images.
The unique part of the spectrum uspec can be their inherent
noises and those of the images uimg can be the angle or color
of the shapes. These two streams are connected by 1) a mean
squared error function that encourages common parts stay-
ing close to each other, and 2) an extra discriminator that
encourages the independence between different parts. With
these modifications, rather than learning explicit spectrum-
metasurface pairs, the BiAAE is expected to learn the implicit
relationships between the spectrum and the metasurface. Fi-

nally, the decoders Gspec(·),Gimg(·) will learn to reconstruct
the original data from the latent codes during training step.

To generate new data, we sample the unique parts of spec-
trum u′spec and image u′img, and common shared components
c′ independently from pz, and use the trained decoder as
the generator to produce new data points from these arbitrar-
ily sampled latent codes: Spectrumnew = Gspec(u′spec,c

′) and
Shapesnew = Gimg(u′img,c

′)
The objective function of this model consists of four parts

namely reconstruction loss, adversarial loss, share loss, and
independence loss. Assuming pspec and pimg are data distri-
butions of spectrum and metasurface respectively, x ∼ pspec
and y ∼ pimg are spectrum and metasurface data, zspec =
(uspec,cspec) ∼ Espec(x) and zimg = (uimg,cimg) ∼ Eimg(y) are
latent codes of each data, and pz =N (0,1) is the prior normal
distribution. We define these loss functions below.

The reconstruction loss guides the decoders to build the
original data from latent codes, so that they can produce real-
istic data from arbitrary latent codes during inference. We use
mean squared error as reconstruction loss:

Lrec =Ex(x−Gspec(zspec))
2 +Ey(y−Gimg(zimg))

2

+Ex(x−Gspec(uspec,cimg))
2

+Ey(y−Gimg(uimg,cspec))
2. (1)

Here we add two more reconstruction terms with switched
common parts to further encourage the identical common
parts of both data.

The adversarial loss guides the encoders to encodes the la-
tent codes that follow the prior normal distribution. We mod-
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FIG. 3: Results for the implementation of our system. the red dashed line indicates the predicted spectrum for our
corresponding meta-atom shape, where the black line indicates the input spectrum on which the neural network generated a

structure. (a) The result shows a structure with a nonlinear response characteristic as seen by the multi peak output in response
to a single peak input (b) An example of a nonlinear response characteristic from a generated structure with sharper resonant

peaks (c) An example of a multi peak resonance generation (d) A single peak generation based on an input spectrum (e) Shape
reconstruction using the BiAAE

ify the min-max loss by switching each part from both types of
data to implicitly encourage the independence between unique
and common parts:

Ladv =Ez′∼pz log[D(z′)]+Ex,y[1− log(D(uspec,cspec,uimg)]

+Ex,y[1− log(D(uspec,cimg,uimg)]. (2)

The share loss encourages the identical common parts of
two stream through a mean squared error of L2 norm.

Lshare = Ex,y||cspec − cimg||22 (3)

The independence loss explicitly encourages the indepen-

dence between unique and common parts:

Lind = Ex,y

[log(D(uspec,cspec,uimg))+ log(1−D(uspec,cspec,u′img))]

+Ex,y

[log(D(uspec,cspec,uimg))+ log(1−D(u′spec,cimg,uimg))]

(4)

The final optimization problem now become a min-max
problem over the losses (1) to (4):

min
Gspec,Gimg

max
D

{λ1Lrec +λ2Lshare +λ3Ladv +λ4Lind}.

where λ1,2,3,4 are weights to control the relative importance
of each component in the loss function. We manually set
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λ1 = 3.0,λ2,3,4 = 1.0 to emphasize the reconstruction loss, en-
couraging the model to generate high-quality data that closely
resemble the real data distribution.

During generation stage, we first sample the latent spec-
trum zspec from N (0,1) to get the common part of the spec-
trum cspec and the generated spectrum Gspec(zspec). Then, we
sample the unique part of the image uimg from N (0,1), and
concatenate it with cspec to get the latent image zimg. Finally,
we can generate new image from the latent code: Gimg(zimg).

III. RESULTS

A. Qualitative Results

Using the generated spectrum and images, we can evalu-
ate the BiAAE’s performance qualitatively and quantitatively.
Specifically, it is evaluated by the construction of new meta-
surface structures, the reconstruction of existing shapes by the
network and the variation the new results provide when com-
pared to existing models in literature.

In this research we show a network that can provide multi-
peak representations with a small degree of error. Figure 3
demonstrates some of the results from our research, where fig-
ures a-d show the generative capability of our system, and fig-
ure e represents the reconstruction ability of our system. Fig-
ure 3a shows an input spectrum with multiple clearly defined
peaks, and our predicted result predicts the same number of
peaks indicating nonlinear generative potential of the neural
network. Figure 3b shows a nonlinear response characteristic
with good prediction of one major peak, and reasonable pre-
diction of several smaller peaks. Of particular note in Figure
3b is the unique composite shape design created by the neu-
ral network, indicating its ability to generate novel meta-atom
structures. Figure 3c shows a result with multi peak gener-
ation, with three distinct peaks being generated, which is the
same as the provided input spectral response. Figure 3d shows
a result with a single peak prediction with a shift in the ob-
served wavelength.

To ensure the consistency of generated mapping, known
shape classes were also reconstructed through the network by
placing a known spectrum shape pair into a network and ob-
serving the reconstructed shape. This resulted in very strong
reproductions for each shape class indicating that the network
has learned a wide range of information in the target shape
space. The result for a variety of shapes structures present in
the dataset can be observed in Figure 3e.

Results presented in Figure 3 show nonlinear relationships
between the generated shape structure and the output spec-
trum when simulated in Lumerical. More specifically, we ob-
serve that in each test case with an unseen spectrum, the net-
work is able to generate a structure that corresponds to the
correct amount of peaks that is present in the ground truth
data. Our results also show that the network is capable of
both reproducing existing ground truth results, while also cre-
ating new structures that are structurally different from ground
truth data. This is shown through the networks combination of
several different shape structures in order to mimic requested

spectrum.

B. Quantitative Results

To quantitatively evaluate if the model can generate valid
shapes given unseen spectrum, Mean Squared Error (MSE)
was calculated across a test sample range of 10, 20, 50 and 100
respectively. This metric calculates the difference between
the input spectrum used to generate the shapes and the actual
spectrum of these generated shapes (produced by Lumerical).
Each test batch was independently generated and compared,
and the representative error is presented in Figure 4.

FIG. 4: Mean Squared Error (↓) with varying sample size.

FIG. 5: Kernel Density Estimation of FID Score (↓)

To validate the overall quality of the generation results, the
Fréchet Inception Distance (FID) score was used as an evalua-
tion metric26. A lower FID score represents the distribution of
synthetic data is close to the real one, which can be regarded
as high quality generation. We sample 50000 synthetic data
with both models and divide them into 100 batches. For each
batch, we randomly select equal number (500) of original data
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and calculate the FID between them. Figure 5 displays the
Kernel Density Estimation (KDE) of two models’ FID score.
The KDE plot of BiAAE is located at the left-hand-side, in-
dicating a lower FID score. This positioning suggests a better
performance achieved by the proposed BiAAE comparing to
the baseline model cDCGAN. Furthermore, we found that the
mean FID score obtained by BiAAE improved that of cDC-
GAN by around 30%. In addition to this result, this also im-
proves on recent research in the field utilising CycleGANs by
at least 10%, while also obtaining a significantly better mean
squared error, especially across large sample sizes27 This im-
provement indicates that BiAAE is able to generate more var-
ied images which represent true variation rather than artifi-
cially generated noise. In addition to this, since the scores
have some separation, it indicates that the algorithm is not re-
producing results from the source dataset.

Previous approaches in this field have mentioned the diffi-
culty of generating results which are able to model non-linear
relationships. The model presented here is able to generate
several non-linear relationships as shown in Figure 3. This
achievement will allow for more complex metasurface design
in the future that utilises nonlinearity such as imaging and
sensing applications.

IV. CONCLUSION

In summary, we present a new architecture for deep learn-
ing based inverse design that creates a pathway to the predic-
tion of non-linear metasurfaces. Our framework is centered on
the use of a Bidirectional Adversarial Autoencoder (BiAAE)
that utilises the strengths of a Generative Adversarial Network
and a Variational Autoencoder in order to create a better la-
tent representation of the relationship between a spectrum and
a shape. Evaluation of the model performance shows a mis-
match in peak location in many occasions, but allows for the
neural network to respond to multiple peaks, which is unique
to this work and has been a challenge in the past due to the un-
balanced relationship between higher dimensional structures
and lower dimensional structures. While the mean squared er-
ror was shown to be high in quite a few cases, the results are
promising with regards to developing nonlinear relationships
between a spectrum and its corresponding shape structure.

We believe that the results here validate the feasibility of
deep learning being used as an alternative to other optimi-
sation methods. Alternative data representations with higher
complexity, such as including edge information in the network
as a boundary condition, or models that exploit physical rela-
tionships between a spectrum and a shape could show promis-
ing results to improve deep learning efforts in inverse design
further. We believe introducing further optical properties into
the simulation, and relaxing the constraints on existing prop-
erties such as thickness could result in further improvements
to accuracy. Our proposed network also opens possibilities in
other design problems requiring iterative algorithms to solve.
We believe the method is especially well suited to problems
requiring a transformation from a lower dimensionality to a
higher dimensionality such as the spectrum to shape pair pre-

sented in this work.

DATA AVAILABILITY

The code and data are available at https://github.com/
Lysarthas/Inverse_design_BiAAE.
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