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Abstract. We consider the many-body quantum Gibbs state for the Bose–Hubbard model on
a finite graph at positive temperature. We scale the interaction with the inverse temperature,
corresponding to a mean-field limit where the temperature is of the order of the average particle
number. For this model it is known that the many-body Gibbs state converges, as temperature
goes to infinity, to the Gibbs measure of a discrete nonlinear Schrödinger equation, i.e., a Gibbs
measure defined in terms of a one-body theory. In this article we extend these results by proving
an expansion to any order of the many-body Gibbs state with inverse temperature as a small
parameter. The coefficients in the expansion can be calculated as vacuum expectation values
using a recursive formula, and we compute the first two coefficients explicitly.

1. Introduction and Main Result

The derivation of nonlinear Gibbs measures from many-body quantum mechanics has recently
received a lot of attention in the context of the Bose gas with pair interaction in the continuum.
For example, in [15, 20, 24] convergence for the partition function and reduced density matrices is
proven. In these results the interaction is scaled down with the inverse temperature, analogous
to the limit we consider in this article. Note that for continuous systems in two and three
dimensions, a renormalization of the nonlinear Gibbs measure is necessary (see [14, 16, 19, 21]).
In this article, we avoid technical difficulties associated with continuous systems by considering
the simpler Bose–Hubbard model which is defined on a lattice. We furthermore consider only a
finite graph instead of an infinite system for technical simplicity. The goal of this article is to
prove a much more precise convergence statement, namely an order by order expansion of the
Gibbs state.

One motivation for our work is that such higher order expansions have recently been proven
for the continuous Bose gas in the mean-field limit at zero temperature for low-lying eigenvalues
and the corresponding (excited and ground) eigenstates [5], and for the dynamics [6, 13]; see
also [4, 8] for reviews of these results, and [7, 9] for applications. At zero temperature and in the
mean-field limit, the leading order is described by the Hartree equation (a nonlinear Schrödinger
equation with convolution-type nonlinearity). Note that there are also results concerning the
dynamics of discrete nonlinear Schrödinger (DNLS) equations and their derivation from many-
body quantum theory, e.g., in [23]. The next-to leading order is described by Bogoliubov theory.
The expansion is then proven by using perturbation theory around Bogoliubov theory. In our
main result in this article, the Hartree equation appears as well in the limiting Gibbs measure.
However, in contrast to the zero-temperature case, we do not see Bogoliubov theory clearly
emerging in our high temperature limit.

Another motivation for our work is that recently the Kubo–Martin–Schwinger condition for
the thermal equilibrium of quantum and classical systems has attracted some interest [1, 2, 12, 25]
(see [3, 17, 18] for older results). In particular, one can interpret the Gibbs measure as the KMS
equilibrium state for the discrete nonlinear Schrödinger equation. More generally this concept
extends to Hamiltonian systems governed by PDEs (see [2] and references therein). One of
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the remarkable properties is that the quantum and classical KMS conditions can be linked to
each other rigorously through the same high temperature limit that we are considering here.
Therefore our expansion of the many-body quantum Gibbs state provides information on the
KMS condition as well. We briefly describe here this relation and refer the reader to [1] for
more details. The Bose–Hubbard model defines a dynamical system (αt, ωε) given by a group
of automorphisms over the algebra of bounded operators,

αt(A) = ei
t
ε
Hε Ae−i t

ε
Hε , (1.1)

where Hε is the Bose–Hubbard Hamiltonian defined in (1.13), and by a quantum Gibbs state
defined by

ωε(A) =
Tr(e−βHεA)

Tr(e−βHε)
. (1.2)

It is known that the Gibbs state ωε is the unique KMS state at inverse temperature εβ of the
Bose–Hubbard system satisfying

ωε(A αiεβ(B)) = ωε(BA) , (1.3)

where αiεβ is an analytic extension of the dynamics to complex times. A specific choice of
observables in (1.3) leads to

ωε

(
Wε(f)

αiεβ(Wε(g))−Wε(g)

iε

)
= ωε

(
[Wε(g),Wε(f)]

iε

)
, (1.4)

where Wε(·) are the Weyl operators in (1.17). According to [1], taking the high temperature
limit (ε → 0) in the relation (1.4) yields the classical KMS condition studied by G. Gallavotti
and E. Verboven [17],

β

∫
ℓ2(G)

eiℜe⟨f,u⟩ {eiℜe⟨g,u⟩, h(u)} dµβ(u) =

∫
ℓ2(G)

{eiℜe⟨g,u⟩, eiℜe⟨f,u⟩} dµβ(u) , (1.5)

where f, g ∈ ℓ2(G), h is the Hamiltonian of the DNLS equation in (1.19), µβ is the Gibbs
measure, and {·, ·} is the Poisson bracket. Hence our main Theorem 1.1 provides an optimal
rate of convergence and an expansion of both sides of (1.4) in terms of the inverse temperature
parameter.

Another flavor of this topic is its relationship with entropy and with Berezin quantization on
symplectic manifolds. In fact the Gibbs state and respectively the Gibbs measure are minimizers
of their corresponding von Neumann and Boltzmann entropies, so that we can approach the high
temperature limit in terms of these variational problems (see [20]). On the other hand, the high
temperature limit can be interpreted as a classical limit for Gibbs states in the framework of
deformation quantization (see, e.g., [11, 25]). Such a problem was recently studied in [25] and
a convergence (to the leading order without expansion) similar to our result is proven in [25,
Proposition 3.3]. The argument is based on Berezin–Lieb and Peierls–Bogolyubov inequalities
[22]. It would be interesting to apply our method to these two approaches.

1.1. General framework. Let G = (V,E) be a finite (undirected and simple) graph, with V
the set of vertices and E the set of edges. The degree of a vertex x ∈ V is denoted by deg(x).
We consider the one-body (complex) Hilbert space ℓ2(G), endowed with the standard scalar
product and norm

⟨u, v⟩ =
∑
x∈V

u(x)v(x), ∥u∥ =

(∑
x∈V

|u(x)|2
)1/2

. (1.6)

We will sometimes use the orthonormal basis {ex}x∈V of ℓ2(G) defined by

ex(y) = δxy, ∀y ∈ V. (1.7)
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The symmetric Fock space F is defined as

F := Γ(ℓ2(G)) =
⊕
m≥0

ℓ2(G)⊗
m
s ≃

⊕
m≥0

ℓ2s(G
m), (1.8)

where ⊗s denotes the symmetric tensor product, and ℓ2s(G
m) is the symmetric ℓ2 space over

Gm. Let a∗x and ax be the usual creation and annihilation operators satisfying the canonical
commutation relations

[ax, a
∗
y] = δxy, [ax, ay] = 0 = [a∗x, a

∗
y], (1.9)

and set, for any u ∈ ℓ2(G),

a∗(u) =
∑
x∈V

u(x) a∗x, a(u) =
∑
x∈V

u(x) ax. (1.10)

The second quantization of an operator B on ℓ2(G) with matrix elements Bxy = ⟨ex, Bey⟩ is
defined as

dΓ(B) :=
∑

x,y∈V
a∗xBxyay, (1.11)

and we define the number operator as

N := dΓ(1) =
∑
x∈V

a∗xax. (1.12)

For any small parameter ε > 0, coupling constant λ > 0, and chemical potential κ < 0, we
define the Bose–Hubbard Hamiltonian on F as

Hε :=
ε

2

∑
x,y∈V, x∼y

(a∗x − a∗y)(ax − ay)− εκ
∑
x∈V

a∗xax + ε2
λ

2

∑
x∈V

a∗xa
∗
xaxax, (1.13)

where x ∼ y means that x and y are nearest neighbors. Note that by introducing the discrete
Laplacian ∆d as

(∆du)(x) := −deg(x)u(x) +
∑

y∈V, y∼x

u(y), (1.14)

we can rewrite the Bose–Hubbard Hamiltonian as

Hε = εdΓ(−∆d − κ1) + ε2
λ

2

∑
x∈V

a∗xa
∗
xaxax. (1.15)

1.2. Main result. The Gibbs state ωε at inverse temperature β > 0 is defined as

ωε(A) :=
1

Zε
Tr(e−βHεA) (1.16)

for any operator A on F , where Zε := Tr(e−βHε) is the partition function. Note that Zε < ∞
since we chose κ < 0, see, e.g., [10, Proposition 5.2.27]. We will keep the inverse temperature as
a fixed parameter, and instead consider ε as the small parameter, so the limit ε → 0 corresponds
to a limit where the inverse temperature and the coupling constant each go to zero in the same
way. Our goal is to expand ωε in powers of ε. In order to write down such a series expansion
concretely, let us consider a Weyl operator with the right semiclassical structure. For any
f ∈ ℓ2(G) the Weyl operator Wε(f) is defined as

Wε(f) := ei
√
εΦ(f), with Φ(f) :=

1√
2

(
a(f) + a∗(f)

)
. (1.17)

In our main result Theorem 1.1 we prove an expansion for

Zε ωε(Wε(f)) = Tr(e−βHεWε(f)). (1.18)

Note that for f = 0 this implies an expansion for Zε, and both results together can be com-
bined into a single expansion for ωε(Wε(f)), see Remark 1.2. Note, however, that in the limit

ε → 0 both quantities diverge like cε := (επ)−|V |, therefore we write down the expansion for
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c−1
ε Tr(e−βHεWε(f)). The expansion could also be written down, e.g., for reduced one-particle
density matrices, see Remark 1.3.

The leading order in the expansion is a classical Gibbs measure, defined in terms of the
Hamiltonian of the discrete nonlinear Schrödinger equation

h(u) := ⟨u, (−∆d)u⟩ − κ∥u∥2 + λ

2

∑
x∈V

|u(x)|4. (1.19)

We introduce the corresponding nonlinear Hartree operator hH as

hH(u) := −∆du− κu+ λ|u|2u. (1.20)

The Gibbs measure is defined as

dµβ(u) =
1

zβ
e−βh(u) du, (1.21)

where du =
∏
x∈V

dux with dux the Lebesgue measure on C, and zβ =
∫
ℓ2(G) e

−βh(u) du. In our

setting it is known that

lim
ε→0

ωε(Wε(f)) =

∫
ℓ2(G)

e
√
2iℜe⟨f,u⟩ dµβ(u), (1.22)

see, e.g., [1]. Our main result is the following.

Theorem 1.1 (Higher order expansion). For any N ∈ N, f ∈ ℓ2(G), and ε > 0 small enough,
we have

(επ)|V |Tr(e−βHεW (f)) =

N∑
j=0

εj
∫
ℓ2(G)

e
√
2iℜe⟨f,u⟩Cj(u, f)e

−βh(u) du+O(εN+1), (1.23)

where the O(εN+1) term may depend on f and the parameters β, κ, and λ. The coefficients Cj

are ε-independent and given as C0(u, f) ≡ 1, and, for j ≥ 1,

Cj(u, f) =
(−1)j

j! 4j
∥f∥2j +

2j∑
m=1

(−β)m

m!

min(4m−2,2j)∑
ℓ=m

i2j−ℓ

(2j − ℓ)!

〈
A

(m)
ℓ (u)Ω,Φ(f)2j−ℓΩ

〉
, (1.24)

where Ω is the vacuum in F and A
(m)
ℓ (u) are defined by the recursive formula in (2.10). In

particular,

C1(u, f) = −∥f∥2

4
− i

β√
2
⟨hH(u), f⟩+ β2

2
∥hH(u)∥2 (1.25)

and C2(u, f) is given in Appendix A.

The theorem is proven in Section 3.

Remark 1.2. Note that for f = 0 we have

Cj(u, 0) =

2j∑
m=⌈ 1

2
(j+1)⌉

(−β)m

m!

〈
A

(m)
2j (u)Ω,Ω

〉
, (1.26)

which are the coefficients in the expansion of (επ)|V |Zε. Combining both expansions

(επ)|V |Tr(e−βHεW (f)) =

N∑
j=0

εj C̃j(f) +O(εN+1), (1.27)

(επ)|V |Tr(e−βHε) =

N∑
j=0

εj C̃j(0) +O(εN+1), (1.28)
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where C̃0(0) = zβ, leads to an expansion of the Gibbs state. Denoting by α ∈ Nk a multi-index

with |α| :=
∑k

i=1 αi, we find

ωε(Wε(f)) =
C̃0(f)

zβ
+

N∑
j=1

εj

j−1∑
ℓ=0

C̃ℓ(f)

zβ

j−ℓ∑
k=1

∑
α∈Nk

|α|=j−ℓ

k∏
m=1

(
− C̃αm(0)

zβ

)
+

C̃j(f)

zβ

+O(εN+1)

=

∫
ℓ2(G)

e
√
2iℜe⟨f,u⟩ e

−βh(u) du

zβ

+ ε

∫
ℓ2(G)

e
√
2iℜe⟨f,u⟩

[
− ∥f∥2

4
− i

β√
2
⟨hH(u), f⟩+ β2

2
∥hH(u)∥2

]
e−βh(u)

zβ
du

− ε

[∫
ℓ2(G)

e
√
2iℜe⟨f,u⟩ e

−βh(u)

zβ
du

][∫
ℓ2(G)

β2

2
∥hH(u)∥2 e

−βh(u)

zβ
du

]
+O(ε2).

(1.29)

Remark 1.3. Note that we could also provide an expansion for expectations of other operators
than the Weyl operator Wε(f), e.g., for the reduced one-particle density matrix

Tr(e−βHεεa∗xay). (1.30)

For this example the expansion reads

(επ)|V |Tr(e−βHεεa∗xay) =

∫
ℓ2(G)

ux uy e
−βh(u) du

+ ε

∫
ℓ2(G)

[
β2

2
ux uy∥hH(u)∥2 − βuy ⟨hH(u), ex⟩

]
e−βh(u) du

+O(ε2).

(1.31)

1.3. Notation and summary of proof. In addition to the Weyl operator

Wε(f) = ei
√

ε
2
(a(f)+a∗(f)), (1.32)

from (1.17), let us introduce the rescaled Weyl operator

W̃ε(u) := e
1√
ε
(a∗(u)−a(u))

. (1.33)

With the latter we define the coherent state

|uε⟩ := W̃ε(u)|Ω⟩ = e−
∥u∥2
2ε e

1√
ε
a∗(u)|Ω⟩, (1.34)

where |Ω⟩ is the vacuum in F , and the equality follows from the Baker–Campbell–Hausdorff
formula. Then, by direct computation on the finite graph G, we have the resolution of identity

cε

∫
ℓ2(G)

|uε⟩ ⟨uε|du = 1, (1.35)

where cε := (επ)−|V |. The idea of the proof is to insert the identity (1.35) in the computation

of Tr(e−βHεWε(f)), so that it only contains W̃ε(u)
∗HεW̃ε(u) instead of Hε directly. This Weyl-

transformed Hamiltonian can be written as

W̃ε(u)
∗HεW̃ε(u) = h(u) +

4∑
j=1

εj/2Aj(u), (1.36)

for some ε-independent operators Aj(u), see Section 2.1. It remains to expand the exponential of
(1.36), and Wε(f), in powers of ε. This is done in Section 2.2 where we compute the coefficients
of the expansion and thus define the remainder terms. In Section 3 we prove Theorem 1.1 by
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estimating the remainder terms. Finally, we explicitly compute the first two coefficients of the
expansion in Appendix A.

Notation. In the following sections, we use in our estimates constants C that may depend
on the parameters of our model, and that can be different from line to line.

2. Formal Expansion

2.1. Resolution of identity. First, we insert the resolution of identity (1.35) into the compu-
tation of Tr(e−βHεWε(f)).

Lemma 2.1 (Integral formula). We have

1

cε
Tr(e−βHεWε(f)) =

∫
ℓ2(G)

e
√
2iℜe⟨f,u⟩ ⟨Ω, e−βAε(u)Wε(f)Ω⟩ e−βh(u) du, (2.1)

where Wε(·) is the Weyl operator defined in (1.17), and

Aε(u) :=

4∑
j=1

εj/2Aj(u) (2.2)

with

A1(u) := a∗(hH(u)) + a(hH(u)),

A2(u) := dΓ(−∆d)− κN +
λ

2

∑
x∈V

(a∗xa
∗
xu

2
x + 4a∗xax|ux|2 + axaxū

2
x),

A3(u) :=
λ

2

∑
x∈V

(a∗xa
∗
xaxux + a∗xaxaxūx),

A4(u) :=
λ

2

∑
x∈V

a∗xa
∗
xaxax.

(2.3)

Proof. We use the resolution of identity (1.35) to expand

1

cε
Tr(e−βHεWε(f)) =

∫
ℓ2(G)

⟨uε, e−βHε Wε(f) uε⟩ du

=

∫
ℓ2(G)

⟨Ω, W̃ε(u)
∗e−βHεW̃ε(u) W̃ε(u)

∗Wε(f)W̃ε(u) Ω⟩ du

=

∫
ℓ2(G)

⟨Ω, e−βW̃ε(u)∗HεW̃ε(u) W̃ε(u)
∗ Wε(f) W̃ε(u)Ω⟩du. (2.4)

To expand the above expression in powers of ε, we use the shifting properties of the Weyl
operator, i.e.,

W̃ε(u)
∗ a∗x W̃ε(u) = a∗x +

1√
ε
u(x), W̃ε(u)

∗ ax W̃ε(u) = ax +
1√
ε
u(x), (2.5)

W̃ε(u)
∗ a∗(f) W̃ε(u) = a∗(f) +

1√
ε
⟨u, f⟩, W̃ε(u)

∗ a(f) W̃ε(u) = a(f) +
1√
ε
⟨f, u⟩. (2.6)

Using (2.5) gives us directly (1.36) with the coefficients (2.3). Furthermore, using (2.6), we get

W̃ε(u)
∗Wε(f) W̃ε(u) = ei

√
ε
2

W̃ε(u)∗
(
a∗(f)+a(f)

)
W̃ε(u) = e

√
2iℜe⟨f,u⟩Wε(f), (2.7)

which proves (2.1). □
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2.2. Taylor expansion. In order to expand the right-hand side of (2.1), let us write down the

Taylor expansions with remainders for e−βAε(u) and Wε(f). For given N ∈ N, we have

e−βAε(u) =
N∑

m=0

(−βAε(u))
m

m!︸ ︷︷ ︸
=:M(N)

A

+(−βAε(u))
N+1

∫ 1

0
e−sβAε(u) (1− s)N

N !
ds︸ ︷︷ ︸

=:R(N)
A

, (2.8a)

Wε(f) =
N∑

n=0

ε
n
2
(iΦ(f))n

n!︸ ︷︷ ︸
=:M(N)

f

+(i
√
εΦ(f))N+1

∫ 1

0
eis

√
εΦ(f) (1− s)N

N !
ds︸ ︷︷ ︸

=:R(N)
f

. (2.8b)

The above formulas make sense by functional calculus. Note that (2.8a) is not an expansion
in powers of

√
ε yet because Aε(u) contains different powers of

√
ε. Furthermore, according to

(2.1), we only need to evaluate (Aε(u))
m acting on the vacuum Ω. Recall that Ω is an analytic

vector of the field operator Φ(f) and it is in the domain of any Wick monomial. Ordering
(Aε(u))

m|Ω⟩ in powers of
√
ε gives, for m > 0,

Aε(u)
m|Ω⟩ =

4m−2∑
ℓ=m

ε
ℓ
2A

(m)
ℓ (u)|Ω⟩, (2.9)

where A
(m)
ℓ (u) is given by

A
(m)
ℓ = A

(1)
1 A

(m−1)
ℓ−1 +A

(1)
2 A

(m−1)
ℓ−2 +A

(1)
3 A

(m−1)
ℓ−3 +A

(1)
4 A

(m−1)
ℓ−4

=
∑

α∈{1,2,3,4}m
|α|=ℓ

m∏
k=1

Aαk
, (2.10)

where the Aαk
(u) ≡ A

(1)
αk (u) for αk ∈ {1, 2, 3, 4} are given in Lemma 2.1. Here, we have used

the multi-index notation, i.e., |α| =
∑m

k=1 αk. Note that in (2.9) the ℓ = 4m − 1 and ℓ = 4m
terms vanish since both A3(u) and A4(u) contain an ax acting on the vacuum |Ω⟩. For later

convenience we define A
(m)
ℓ (u) to be zero outside the range of indices in (2.9). To summarize,

for any ℓ ∈ N,

A
(m)
ℓ (u) :=

{
0 , for ℓ < m or ℓ > 4m− 2,

(2.10) , otherwise.
(2.11)

We can now state the expansion of the term ⟨e−βAε(u)Ω,Wε(f)Ω⟩ from (2.1) in powers of
√
ε.

Lemma 2.2 (Formal expansion). For any N ∈ N we have

⟨e−βAε(u)Ω,Wε(f)Ω⟩ =
N∑
j=0

ε
j
2C j

2
(u, f) +R(N)

ε (u, f), (2.12)

with C0(u, f) ≡ 1 and where, for j ≥ 1,

C j
2
(u, f) :=

ij

j!
⟨Ω,Φ(f)jΩ⟩+

j∑
m=1

(−β)m

m!

min(4m−2,j)∑
ℓ=m

ij−ℓ

(j − ℓ)!

〈
A

(m)
ℓ (u)Ω,Φ(f)j−ℓΩ

〉
, (2.13)

with A
(m)
ℓ (u) as defined in (2.11). The remainder term R

(N)
ε (u, f) is given as

R(N)
ε (u, f) :=

〈
Ω,
(
R(N)

f,A +M(N)
A R(N)

f +R(N)
A M(N)

f +R(N)
A R(N)

f

)
Ω
〉
, (2.14)
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with M(N)
A , R(N)

A , M(N)
f , and R(N)

f from (2.8), and

R(N)
f,A :=

5N−2∑
j=N+1

ε
j
2

j∑
m=1

(−β)m

m!

min(4m−2,j)∑
ℓ=max(m,j−N)

ij−ℓ

(j − ℓ)!

〈
A

(m)
ℓ (u)Ω,Φ(f)j−ℓΩ

〉
. (2.15)

Proof. By using the Taylor expansions (2.8a) and (2.8b) we have

⟨e−βAε(u)Ω,W (f)Ω⟩ =
〈
Ω,M(N)

A M(N)
f Ω

〉
+
〈
Ω,
(
M(N)

A R(N)
f +R(N)

A M(N)
f +R(N)

A R(N)
f

)
Ω
〉
.

It remains to multiply out the first term in the expression above. Defining am = (−β)m/m! and
bn = in/n! we have〈

Ω,M(N)
A M(N)

f Ω
〉
=

N∑
m=0

N∑
n=0

ε
n
2 ambn⟨Aε(u)

mΩ,Φ(f)nΩ⟩

=

N∑
n=0

ε
n
2 bn⟨Ω,Φ(f)nΩ⟩+

N∑
m=1

N∑
n=0

4m−2∑
p=m

ε
p+n
2 ambn⟨A(m)

p (u)Ω,Φ(f)nΩ⟩.

(2.16)

It is now convenient to use the convention (2.11), i.e., A
(m)
ℓ (u) := 0 for ℓ < m or ℓ > 4m − 2,

since then we can rearrange

N∑
m=1

N∑
n=0

4m−2∑
p=m

ε
p+n
2 ambn⟨A(m)

p (u)Ω,Φ(f)nΩ⟩

=

∞∑
p=0

N∑
n=0

N∑
m=1

ε
p+n
2 ambn⟨A(m)

p (u)Ω,Φ(f)nΩ⟩

=

∞∑
j=0

ε
j
2

N∑
ℓ̃=0

N∑
m=1

ambℓ̃ ⟨A
(m)

j−ℓ̃
(u)Ω,Φ(f)ℓ̃Ω⟩

=
5N−2∑
j=1

ε
j
2

j∑
m=1

N∑
ℓ̃=0

ambℓ̃ ⟨A
(m)

j−ℓ̃
(u)Ω,Φ(f)ℓ̃Ω⟩

=

5N−2∑
j=1

ε
j
2

j∑
m=1

min(j,4m−2)∑
ℓ=max(m,j−N)

ambj−ℓ ⟨A
(m)
ℓ (u)Ω,Φ(f)j−ℓΩ⟩, (2.17)

renaming ℓ̃ = j− ℓ in the last step (and using the convention (2.11) again). In total, this implies
the expansion (2.12), noting that max(m, j −N) = m for j ≤ N and m ≥ 1. □

The expansion from Lemma 2.2 can be simplified by noting that the ε
j
2 terms vanish for

j odd.

Lemma 2.3 (Vanishing of odd terms). For all j odd, C j
2
(u, f) = 0.

Proof. Recall from (2.10) that

A
(m)
ℓ =

∑
α∈{1,2,3,4}m

|α|=ℓ

m∏
k=1

Aαk
. (2.18)

Now recall from the definition (2.3) that each term in Aαk
contains exactly αk creation or

annihilation operators (in normal order). Hence, for |α| = ℓ, the products
∏m

k=1Aαk
contain an

even (resp. odd) number of creation/annihilation operators for ℓ even (resp. odd). Note that
the terms in the products

∏m
k=1Aαk

are not necessarily normal ordered, but normal ordering
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does not change the parity of the number of creation/annihilation operators. In the same way,
Φ(f)j−ℓ contains only terms with an even (resp. odd) number of creation/annihilation operators
for 0 ≤ j − ℓ even (resp. odd). Since vacuum expectations of terms with an odd number of
creation/annihilation operators vanish, we have that

⟨Ω,Φ(f)jΩ⟩ = 0 =
〈
A

(m)
ℓ (u)Ω,Φ(f)j−ℓΩ

〉
for j odd (2.19)

and any 0 ≤ ℓ ≤ j, 1 ≤ m ≤ j. Thus, all terms in the definition (2.13) of C j
2
(u, f) vanish for

j odd. □

Lastly, let us compute the first term of C j
2
(u, f) explicitly.

Lemma 2.4. For the first term in (2.13) we find

i2k

(2k)!
⟨Ω,Φ(f)2kΩ⟩ = (−1)k

k! 4k
∥f∥2k (2.20)

for any k ∈ N.

Proof. Such identity is well known and the expression can easily be verified inductively. Alter-
natively, note that by the Baker–Campbell–Hausdorff formula

∑
k≥0

1

(2k)!
⟨Ω, (a(f) + a∗(f))2kΩ⟩ = ⟨Ω, ea(f)+a∗(f)Ω⟩ = e

∥f∥2
2 =

∑
k≥0

∥f∥2k

2k k!
, (2.21)

so comparing coefficients leads to

i2k

(2k)!
⟨Ω,Φ(f)2kΩ⟩ = (−1)k

(2k)!
2−k (2k)!

2k k!
∥f∥2k =

(−1)k

k! 4k
∥f∥2k. (2.22)

□

3. Proof of the Main Result

3.1. Preparatory estimates. The following lemmas will be used to estimate the remainder
terms in the expansion of the right-hand side of (2.1). Recall that in our Hamiltonian (1.13) we
used the chemical potential κ < 0, and recall that we defined the coherent state uε in (1.34).

Lemma 3.1. There is α with 0 < α < −κ such that

⟨uε, e−βHεuε⟩ ≤ e−βα∥u∥2 (3.1)

for all ε small enough.

Proof. Note that we can write the Hamiltonian (1.13) as Hε = H̃ε − κεN , with H̃ε ≥ 0, −κ > 0

and [H̃ε,N ] = 0 in the strong sense. Therefore,

⟨uε, e−βHεuε⟩ = ⟨uε, e−βH̃εe−β(−κ)εNuε⟩ ≤ ⟨uε, e−β(−κ)εNuε⟩. (3.2)
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The right-hand side can be computed directly from (1.34) and yields

⟨uε, e−β(−κ)εNuε⟩ = e−
∥u∥2

ε ⟨e
a∗(u)√

ε Ω, e−β(−κ)εN e
a∗(u)√

ε Ω⟩

= e−
∥u∥2

ε

∑
k≥0

∑
ℓ≥0

1

ℓ!k!

1

εk/2εℓ/2
⟨a∗(u)ℓΩ, e−β(−κ)εNa∗(u)kΩ⟩

= e−
∥u∥2

ε

∑
ℓ≥0

1

(ℓ!)2
1

εℓ
e−εβ(−κ)ℓ ∥a∗(u)ℓΩ∥2︸ ︷︷ ︸

=ℓ!∥u∥2ℓ

= e−
∥u∥2

ε

∑
ℓ≥0

1

ℓ!

(
e−εβ(−κ) ∥u∥2

ε

)ℓ

= e−∥u∥2
(

1−e−β(−κ)ε

ε

)
. (3.3)

This directly implies (3.1). □

With the exponential decay from Lemma 3.1 we will be able to absorb any polynomial growth
in ∥u∥ that comes from the following estimates.

Lemma 3.2. For all m,n ∈ N0, s ∈ [0, 1], f ∈ ℓ2(G), and ε > 0 small enough, there exist
C, q > 0 such that for all u ∈ ℓ2(G),

∥Aε(u)
meis

√
εΦ(f)Φ(f)nΩ∥ ≤ Cεm/2 ⟨∥u∥⟩q, (3.4)

where ⟨x⟩ := (1 + |x|2)1/2 refers to the Japanese bracket. In particular, q = 0 for m = 0.

Proof. Let S = N + 2. Then we have∥∥Aε(u)
meis

√
εΦ(f)Φ(f)nΩ

∥∥
=
∥∥Aε(u)S−2S2Aε(u)S−4S4 · · · Aε(u)S−2m

S2mΦ(f)S−(2m+1/2)S2m+1/2 · · · Φ(f)S−(2m+n/2)S2m+n/2eis
√
εΦ(f)Ω

∥∥
≤

m∏
k=1

∥∥S2k−2Aε(u)S−2k
∥∥ n∏

ℓ=1

∥∥S2m+ℓ/2−1/2Φ(f)S−(2m+ℓ/2)
∥∥ ∥∥S2m+n/2eis

√
εΦ(f)Ω

∥∥. (3.5)

Before estimating each term in the above expression, note that for any function F : N → R and
for any f ∈ ℓ2(G) we have

F (N )a∗(f) = a∗(f)F (N + 1), F (N + 1)a(f) = a(f)F (N ). (3.6)

Also recall the standard estimates

∥a(f)ϕ∥ ≤ ∥f∥ ∥(N + 1)1/2ϕ∥, ∥a∗(f)ϕ∥ ≤ ∥f∥ ∥(N + 1)1/2ϕ∥ (3.7)

for any ϕ ∈ D(N 1/2) and f ∈ ℓ2(G). We start with the first product in (3.5). Recalling the
definition of Aε(u) in (2.2) and (2.3) we note that∥∥S2k−2Aε(u)S−2k

∥∥
≤ ε1/2

∥∥S2k−2
[
a(hH(u)) + a∗(hH(u))

]
S−2k

∥∥ (3.8a)

+ ε
∥∥S2k−2

[
dΓ(−∆d)− κN +

λ

2

∑
x∈V

(a∗xa
∗
xu

2
x + 4a∗xax|ux|2 + axaxu

2
x)
]
S−2k

∥∥ (3.8b)

+ ε3/2
∥∥S2k−2

[λ
2

∑
x∈V

(a∗xa
∗
xaxux + a∗xaxaxux)

]
S−2k

∥∥ (3.8c)

+ ε2
∥∥S2k−2

[λ
2

∑
x∈V

a∗xa
∗
xaxax

]
S−2k

∥∥. (3.8d)
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Let us deal with each term separately. Using (3.6) and (3.7) we find

ε−1/2(3.8a) ≤
∥∥a(hH(u)) (N + 1)2k−2 (N + 2)−2k

∥∥+ ∥∥a∗(hH(u)) (N + 3)2k−2 (N + 2)−2k
∥∥

≤ C
(∥∥a(hH(u)) (N + 1)−2

∥∥+ ∥∥a∗(hH(u))(N + 1)−2
∥∥)

≤ C ∥hH(u)∥
≤ C

(
∥u∥+ ∥u∥3

)
. (3.9)

Similarly we have

ε−1(3.8b) ≤
∥∥dΓ(−∆d)S−2

∥∥+ κ
∥∥NS−2

∥∥+ λ

2

∑
x∈V

|ux|2
∥∥a∗xa∗x(N + 4)2k−2(N + 2)−2k

∥∥
+

λ

2

∑
x∈V

4|ux|2
∥∥a∗xaxS−2

∥∥+ λ

2

∑
x∈V

|ux|2
∥∥axaxN 2k−2(N + 2)−2k

∥∥
≤ C

(
1 + ∥u∥2

)
, (3.10)

as well as

ε−3/2(3.8c) ≤ λ

2

∑
x∈V

|ux|
∥∥a∗xa∗xax(N + 3)2k−2(N + 2)−2k

∥∥
+

λ

2

∑
x∈V

|ux|
∥∥a∗xaxax(N + 1)2k−2(N + 2)−2k

∥∥
≤ C

(
1 + ∥u∥

)
, (3.11)

and

ε−2(3.8d) ≤ λ

2

∑
x∈V

∥∥a∗xa∗xaxax(N + 2)2k−2(N + 2)−2k
∥∥ ≤ C. (3.12)

This implies that ∥∥S2k−2Aε(u)S−2k
∥∥ ≤ Cε1/2

(
1 + ∥u∥3

)
. (3.13)

Using the same arguments we find∥∥S2m+ℓ/2−1/2Φ(f)S−2m−ℓ/2
∥∥ =

∥∥∥S2m+ℓ/2−1/2 1√
2

[
a(f) + a∗(f)

]
S−2m−ℓ/2

∥∥∥ ≤ C∥f∥. (3.14)

Combining all estimates into (3.5) and noting that

e−is
√
εΦ(f)N eis

√
εΦ(f) ≤ 2N + 1 + s2ε∥f∥2, (3.15)

we find∥∥Aε(u)
meis

√
εΦ(f)Φ(f)nΩ

∥∥ ≤ C

(
m∏
k=1

ε1/2
(
1 + ∥u∥3

))( n∏
ℓ=1

∥f∥

)
≤ Cεm/2⟨∥u∥⟩q (3.16)

for q = 3m/2, and where the constant C depends on m, n, ∥f∥, κ, and λ. □

3.2. Remainder estimates. In this subsection we first provide an estimate for the remainder

term R
(N)
ε (u, f) from Lemma 2.2. Afterwards. we show that the estimate is good enough such

that the full remainder in the expansion of the Gibbs state, namely

R̃(N)
ε (f) =

∫
ℓ2(G)

e
√
2iℜe⟨f,u⟩R(N)

ε (u, f) e−βh(u) du, (3.17)

is bounded and of order ε
N+1

2 .
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Lemma 3.3 (Control of the remainder). There is α with 0 < α < −κ such that R
(N)
ε (u, f) from

Lemma 2.2 satisfies the bound

|R(N)
ε (u, f)| ≤ ε

N+1
2 C⟨∥u∥⟩q

(
1 + eβ

(
h(u)−α∥u∥2

))
(3.18)

for all ε > 0 small enough, where C depends on N , κ, λ, β and f .

Proof. By Lemma 2.2, the expression R
(N)
ε (u, f) is composed of four terms which we estimate

separately. We assume ε ≤ 1 in the following estimates. Using first some elementary bounds

and Cauchy–Schwarz, then Lemma 3.2 for s = 0, then W̃ε(u)
∗HεW̃ε(u) = h(u) + Aε(u), and in

the end Lemma 3.1, we find

∣∣∣⟨Ω,R(N)
A M(N)

f Ω⟩
∣∣∣ = ∣∣∣∣∣(−β)N+1

N !

N∑
n=0

ε
n
2
in

n!

∫ 1

0
(1− s)N

〈
Ω, Aε(u)

N+1e−sβAε(u)Φ(f)nΩ
〉
ds

∣∣∣∣∣
≤ βN+1

N !

N∑
n=0

1

n!

∫ 1

0

∣∣∣〈Ω, Aε(u)
N+1e−sβAε(u)Φ(f)nΩ

〉∣∣∣ ds
≤ βN+1

N !

N∑
n=0

1

n!

∫ 1

0

∥∥e−sβAε(u)Ω
∥∥∥∥Aε(u)

N+1Φ(f)nΩ
∥∥ds

≤ ε
N+1

2 C⟨∥u∥⟩q
∫ 1

0

√
⟨Ω, e−2sβAε(u)Ω⟩ds

= ε
N+1

2 C⟨∥u∥⟩q
∫ 1

0
esβh(u)

√
⟨uε, e−2sβHεuε⟩ds

≤ ε
N+1

2 C⟨∥u∥⟩q
∫ 1

0
esβh(u)e−sβα∥u∥2 ds. (3.19)

The other terms can be estimated similarly, using again Lemmas 3.1 and 3.2. We have

∣∣∣⟨Ω,R(N)
A R(N)

f Ω⟩
∣∣∣ = ∣∣∣∣εN+1

2
(−β)N+1

N !

iN+1

N !

∫ 1

0
ds̃ (1− s̃)N

∫ 1

0
ds (1− s)N〈

Ω, Aε(u)
N+1e−sβAε(u)eis̃

√
εΦ(f)Φ(f)N+1Ω

〉∣∣∣∣
≤ ε

N+1
2

βN+1

N !

1

N !

∫ 1

0
ds̃

∫ 1

0
ds ∥e−sβAε(u)Ω∥∥Aε(u)

N+1eis̃
√
εΦ(f)Φ(f)N+1Ω∥

≤ εN+1C⟨∥u∥⟩q
∫ 1

0
esβh(u)e−sβα∥u∥2 ds, (3.20)

as well as

∣∣∣⟨Ω,M(N)
A R(N)

f Ω⟩
∣∣∣ = ∣∣∣∣εN+1

2
iN+1

N !

N∑
m=0

(−β)m

m!

∫ 1

0
(1− s)N

〈
Ω, Aε(u)

meis
√
εΦ(f)Φ(f)N+1Ω

〉
ds

∣∣∣∣
≤ ε

N+1
2

1

N !

N∑
m=0

βm

m!
∥Aε(u)

mΩ∥ ∥Φ(f)N+1Ω∥

≤ ε
N+1

2 C⟨∥u∥⟩q. (3.21)
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Lastly,∣∣∣⟨Ω,R(N)
f,AΩ⟩

∣∣∣ = ∣∣∣∣∣
5N−2∑
j=N+1

ε
j
2

j∑
m=1

(−β)m

m!

min(4m−2,j)∑
ℓ=max(m,j−N)

ij−ℓ

(j − ℓ)!

〈
A

(m)
ℓ (u)Ω,Φ(f)j−ℓΩ

〉∣∣∣∣∣
≤

5N−2∑
j=N+1

ε
j
2

j∑
m=1

βm

m!

min(4m−2,j)∑
ℓ=max(m,j−N)

1

(j − ℓ)!

∥∥A(m)
ℓ (u)Ω

∥∥∥∥Φ(f)j−ℓΩ
∥∥

≤ ε
N+1

2 C⟨∥u∥⟩q, (3.22)

since
∥∥A(m)

ℓ (u)Ω
∥∥ ≤ C⟨∥u∥⟩q by repeatedly applying the standard estimates (3.7). To conclude

the bound (3.18) recall that α from Lemma 3.1 satisfies 0 < α < −κ, and that h(u) ≥ −κ∥u∥2
(with κ < 0), hence h(u)− α∥u∥2 > 0 and∫ 1

0
esβ
(
h(u)−α∥u∥2

)
ds ≤ eβ

(
h(u)−α∥u∥2

)
. (3.23)

□

From Lemma 3.3 we know that the full remainder R̃
(N)
ε (f) from (3.17) is of order ε

N+1
2 . It

remains to prove the integrability in u.

Lemma 3.4 (Integrability of the remainder). For all N ∈ N we have∣∣R̃(N)
ε (f)

∣∣ ≤ Cε
N+1

2 . (3.24)

Proof. Applying Lemma 3.3 leads to∣∣∣∣ ∫
ℓ2(G)

e
√
2iℜe⟨f,u⟩R(N)

ε (u, f)e−βh(u) du

∣∣∣∣ ≤ Cε
N+1

2

∫
ℓ2(G)

⟨∥u∥⟩q
(
1 + eβh(u)−βα∥u∥2

)
e−βh(u) du

≤ Cε
N+1

2

∫
ℓ2(G)

⟨∥u∥⟩q
(
e−βh(u) + e−βα∥u∥2

)
du

≤ Cε
N+1

2 (3.25)

since β > 0 and α > 0. □

We can now put everything together to prove our main theorem.

Proof of Theorem 1.1. Combining Lemmas 2.1 and 2.2 we find, for any M ∈ N,

(επ)|V |Tr(e−βHεW (f))−
M∑
j=0

ε
j
2

∫
ℓ2(G)

e
√
2iℜe⟨f,u⟩C j

2
(u, f)e−βh(u) du = R̃(M)

ε (f), (3.26)

where the first summand in the definition of C j
2
(u, f) from (2.13) is given by Lemma 2.4, and with

remainder R̃
(M)
ε (f) defined in (3.17). In Lemma 3.4 we have proven that |R̃(M)

ε (f)| ≤ Cε
M+1

2 .
All coefficients C j

2
(u, f) with odd j vanish by Lemma 2.3. Thus, for M =: 2N + 1 odd we have

|R̃(2N+1)
ε (f)| ≤ CεN+1, and for M =: 2N + 2 even we have |R̃(2N+1)

ε (f)| ≤ CεN+ 3
2 ≤ CεN+1 as

well. □

Appendix A. Computation of the first two coefficients

Here, we compute the coefficients C1(u, f) and C2(u, f) from Theorem 1.1 explicitly. Recall
that

Cj(u, f) =
(−1)j

j! 4j
∥f∥2j +

2j∑
m=1

(−β)m

m!

min(4m−2,2j)∑
ℓ=m

i2j−ℓ

(2j − ℓ)!

〈
A

(m)
ℓ (u)Ω,Φ(f)2j−ℓΩ

〉
. (A.1)
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We then find

C1(u, f) = −1

4
∥f∥2 − β

2∑
ℓ=1

i2−ℓ

(2− ℓ)!

〈
A

(1)
ℓ (u)Ω,Φ(f)2−ℓΩ

〉
+

β2

2!

〈
A

(2)
2 (u)Ω,Ω

〉
= −1

4
∥f∥2 − βi

〈
A

(1)
1 (u)Ω,Φ(f)Ω

〉
− β

〈
A

(1)
2 (u)Ω,Ω

〉
+

β2

2!

〈
A

(2)
2 (u)Ω,Ω

〉
, (A.2)

where, by the definition (2.10), A
(1)
1 = A1, A

(1)
2 = A2, and A

(2)
2 = A1A1. Now, recalling the

definition (2.3) and using that a(g)Ω = 0 for any g ∈ ℓ2(G), we have〈
A

(1)
1 (u)Ω,Φ(f)Ω

〉
=

1√
2
⟨a∗(hH(u))Ω, a∗(f)Ω⟩ = 1√

2
⟨hH(u), f⟩, (A.3a)〈

A
(1)
2 (u)Ω,Ω

〉
= 0, (A.3b)〈

A
(2)
2 (u)Ω,Ω

〉
=
〈
a∗(hH(u))Ω, a∗(hH(u))Ω

〉
= ∥hH(u)∥2. (A.3c)

To summarize,

C1(u, f) = −∥f∥2

4
− i

β√
2
⟨hH(u), f⟩+ β2

2
∥hH(u)∥2. (A.4)

The second coefficient is given by

C2(u, f) =
1

32
∥f∥4 +

4∑
m=1

(−β)m

m!

min(4m−2,4)∑
ℓ=m

i4−ℓ

(4− ℓ)!
⟨A(m)

ℓ (u)Ω,Φ(f)4−ℓΩ⟩

=
1

32
∥f∥4 − β

(
− i

6
⟨A(1)

1 (u)Ω,Φ(f)3Ω⟩ − 1

2
⟨A(1)

2 (u)Ω,Φ(f)2Ω⟩
)

+
β2

2

(
− 1

2
⟨A(2)

2 (u)Ω,Φ(f)2Ω⟩+ i⟨A(2)
3 (u)Ω,Φ(f)Ω⟩+ ⟨A(2)

4 (u)Ω,Ω⟩
)

− β3

6

(
i⟨A(3)

3 (u)Ω,Φ(f)Ω⟩+ ⟨A(3)
4 (u)Ω,Ω⟩

)
+

β4

24
⟨A(4)

4 (u)Ω,Ω⟩.

(A.5)

Using again the definitions (2.3) and (2.10) we find explicitly

C2(u, f) =
1

32
∥f∥4

− β

(
− i

4
√
2
∥f∥2⟨hH(u), f⟩ − λ

8
⟨u2, f2⟩

)
+ β2

(
− 1

8
∥hH(u)∥2∥f∥2 − 1

4
⟨hH(u), f⟩2 + λi

2
√
2
⟨u2, hH(u)f⟩

+
i

2
√
2

〈
hH(u),−∆df

〉
− κi

2
√
2
⟨hH(u), f⟩+ λi√

2
⟨uhH(u), uf⟩+ λ2

4

∑
x∈V

|ux|4
)

− β3

(
i

2
√
2
⟨hH(u), f⟩∥hH(u)∥2 + λ

6
⟨u2, hH(u)2⟩+ 1

6
⟨hH(u),−∆dh

H(u)⟩ − κ

6
∥hH(u)∥2

+
λ

3
∥uhH(u)∥2 + λ

6
⟨hH(u)2, u2⟩

)
+

β4

8
∥hH(u)∥4.

(A.6)
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