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Abstract—Fuzzy extractors (FE) are cryptographic primitives
that extract reliable cryptographic key from noisy real world
random sources such as biometric sources. The FE generation
algorithm takes a source sample, extracts a key and generates
some helper data that will be used by the reproduction algorithm
to recover the key. Reusability of FE guarantees that security
holds when FE is used multiple times with the same source, and
robustness of FE requires tampering with the helper data be
detectable.

In this paper, we consider information theoretic FEs, define
a strong notion of reusability, and propose strongly robust and
reusable FEs (srrFE) that provides the strongest combined notion
of reusability and robustness for FEs. We give two constructions,
one for reusable FEs and one for srrFE with information theoretic
(IT) security for structured sources. The constructions are
for structured sources and use sample-then-lock approach. We
discuss each construction and show their unique properties in
relation to existing work.

Construction 2 is the first robust and reusable FE with IT-
security without assuming random oracle. The robustness is
achieved by using an IT-secure MAC with security against key-
shift attack, which can be of independent interest.

Index Terms—Cryptography, Information theoretic key estab-
lishment, Fuzzy extractor, Reusable and robust fuzzy extractor

I. INTRODUCTION

Secret key establishment (SKE) is a fundamental problem
in cryptography. A general model of SKE in information
theoretic setting is when Alice, Bob and Eve have random
variables X , Y , and Z, respectively, with a joint probability
distribution PXY Z , where Z summarizes Eve’s information
about X and Y . Maurer [1] proved that in this setting the secret
key entropy is upper-bounded by min[I(X;Y ), I(X;Y |Z)]
(ignoring small constants) and so key establishment is possible
only if X and Y are correlated. There is a large body of
research on general setting when Alice and Bob can commu-
nicate over a public authenticated channel. A special case of
this general setting is called Fuzzy Extractors (FEs) [2] setting,
in which Alice and Bob’s variables are samples of a “noisy"
source, and d(x, y) ≤ t, where d is a distance metric. Eve
does not have any initial information about X and Y , and so
Z is null.

The randomness source in FE (generating Xand Y ) natu-
rally occurs in sampling biometrics and behavioral data [3]–
[5], and so FE has been widely studied for biometric sources
and in particular for biometric based authentication. In this
paper we consider IT-secure FEs.

An FE has a pair of randomized algorithms, (Gen,Rep) that
works as follows: Gen takes Alice’s sample w and generates
a pair (R,P ) where R is the secret key and P is the helper
data that will be sent to Bob, allowing him to use it in the
Rep algorithm together with his sample w′ that is “close" to
w, and reproduce the same secret key R.

Correctness and security are two basic properties of FEs.
Correctness of FE requires that for a pair (R,P ) that is
the output of the Gen algorithm, the Rep algorithm recover
R from w′ and P with a probability at least 1 − ϵ, where
probability is over the randomness of the Gen algorithm.
Security of FE requires that the key R be indistinguishable
from a uniformly random string of the same length, given the
adversary’s view of the communication (that is P ).
Reusability and Robustness. To use FE in practice, two
additional properties are required.

Reusability of FE [6] considers security of FE output
(randomness of R) when the source is used multiple times,
and robustness requires detection of tampering of the helper
data.

Reusability is important when the same source is used
multiple times. For example, biometric scans of a user are
used for enrolments to multiple organizations. Reusability is
defined by a game between a challenger and the adversary
Eve, where Eve can ask (query) the challenger to provide the
output of the Gen algorithm on source samples w1, w2, · · ·wη ,
and receive the output of the Gen algorithm, either the full
(R,P ) or P only, to them. Resuability requires that the value
R for an output of Gen algorithm that is not directly given
to Eve, remains indistinguishable from random. Robustness is
defined by allowing the same type of queries by Eve, however
the goal of the adversary is to tamper with the helper data (e.g.
so that Bob recovers a different key).

Variations of reuseability and robustness definitions capture
different powers of Eve. For a secret sample w, two types of
queries have been considered. In (R1.1), Eve can only choose
a shift value di, and receive the output of Gen on wi = w+di

[6]. (In Boyen et al’s definition of reusability, Eve can choose
an arbitrary distortion function that is applied on w. Known
constructions are only for shift function.) In (R1.2) Eve is
allowed to choose samples that are arbitrarily correlated with
w [7]. In both cases wi must be in “close" distance of w for
Rep to succeed.

Reusability notions also vary by the type of information
that Eve receives in response to their queries. In (R2.1) Eve
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only receives P i (the public output of the Gen on wi), and
in (R2.2) Eve is given the full output of Gen on wi, that is
(P i, Ri)1.

Robustness is also defined using similar variations in Eve’s
queries and received responses. Pre-application robustness and
post-application robustness, respectively, correspond to the
case that Eve has access to P only (R2.1) or sees (P,R)
(R2.2), before modifying P and generating P ′ (̸= P ) that
must be accepted by the Rep algorithm [8].

Robust and reusable FE (rrFE) require that robustness hold
over multiple applications of FE. In η robust and resuable FE,
Eve can query the Gen algorithm on η samples, and succeeds
if it can modify one of the Pi’s without being detected
by the Rep algorithm. Different flavours of reusuability and
robustness that are defined above can be straightforwardly
extended to the case of η samples.

Wen et al. [9]–[11] considered rrFE model when Eve can
only choose samples that are shifts of w (R1.1).
Fuzzy Extractor Constructions. Fuzzy extractors have been
primarily studied for min-entropy sources where the min-
entropy of the source is β.

An established approach to construct an FE is to use a
secure sketch algorithm that generates a helper string that
does not loose “too much" entropy, but allows w to be
recovered by Bob. Alice and Bob both obtain the same key
by applying an extractor (specified by a random seed) to
obtain the same shared key. This approach is referred to
as sketch-and-extract paradigm. Boyen [6] gave two general
constructions of reusable FEs both using this approach and
employing error correcting codes. The first construction uses
a randomly selected hash function from a class of pairwise
independent hash functions to extract randomness from the
sample w. The second construction uses a cryptographic hash
to extract randomness from the sample w, and is modelled as
a random oracle in the proof.

Sketch-and-extract approach however does not work for
low-entropy sources that are too “noisy". That is the ratio
of the min-entropy of a sample to its size is small, and the
distance between w and w′ is large. In this case the Rep
algorithm will fail because the helper data will loose all the
sample’s entropy. Canetti et al. [7, Proposition 1] showed that
(for binary sources) to produce non-zero key length, the min-
entropy of a sample must be at least t log2

n
t where n is the

sample size and t is the upperbound on d(w,w′), the error
in the sample that must be corrected. It was shown that an
example of low entropy sources can be obtained by sampling
iris data [12].

Canetti et al. [7] constructed a computationally secure
reusable FE using a new approach, called Sample-then-Lock,
that works for a class of structured sources that is called
sources with high-entropy samples. The construction uses an
idealized cryptographic primitive that is called digital locker
and in the construction in [7], is instantiated by a hash func-

1In [6], insider security model allows an adversary to obtain R̃i ←
Rep(P̃ i, w + di), where P̃ i and di are chosen by the adversary.

tion. The proof of security is in the random oracle model and
abstract the hash function as a random oracle. The approach
works for structured sources in which random subsamples of
a sample have sufficiently high min-entropy.

A. Our work

We define IT-secure strongly robust and reusable FE (sr-
rFE), and construct first, a reusable FE (Construction 1) and
then extend it to an IT-secure srrFE (Construction 2). We
use the term ‘strongly’ to emphasize that Eve’s queries can
be arbitrarily correlated with w (R1.2), and reusability is in
the sense of R2.2. The srrFE is the first and the only known
construction of an IT secure srrFE in standard model and
without assuming random oracles [7].

Both constructions are for structured sources that are called
(α,m,N) conditional entropy sources (Definition 6). In these
sources random sub-samples of length m of a sample w,
conditioned on substrings of length N of w, have at least
α bits of entropy. For N = 0 we obtain the structured source
that was used in [7]. Robustness is achieved in CRS (Common
Randomness String) model. In this model, parties have access
to a public uniformly random string that is independent of the
source sample. CRS model had also been used in all known
rrFEs [9], [11], [13] that are computationally secure, and so
one expects the model when the adversary is more powerful
(information theoretic).

Overview of the construction. We use a strong average case
extractor to extract uniform randomness from subsamples of
the source (that are guaranteed to have sufficient min-entropy)
and use them as the pad in a One-Time-Pad (OTP) to encrypt, a
randomly chosen key R. Alice uses ℓ subsamples and encrypts
R ℓ times. Bob uses the corresponding subsamples of w′

(position bits of subsamples are sent to Bob) to recover R.
Successful Rep requires at least one pair of subsamples in w
and w′ to be identical. The parameter ℓ is selected to guarantee
that this happens with high probability.

Our security proof of FE effectively shows encryption secu-
rity of the composition of multiple OTP of the message (R);
that is using the extracted randomness from the ℓ subsamples
that are correlated, and using them in ℓ times OTP of the same
message R does not leak any information about R to Eve.

Construction 2 is based on Construction 1, and is the
first IT-secure strongly robust and reusable fuzzy extractor
(srrFE) in standard model. The construction uses the CRS
to allow Alice and Bob to share the same bit indexes for
subsamples. Robustness is achieved by using a MAC (Message
Authentication Code) tag that is calculated on the set of ℓ
ciphertexts, and is constructed using an IT-secure one-time
MAC algorithm. The MAC must satisfy key-shift security and
protect against an adversary that can modify both the message
and the key of the MAC. We use the MAC in [14] and for
completeness prove its security in Appendix B. Theorem 2
proves that the composition of our rFE and the MAC is an
srrFE. Comparison of our constructions with existing works
is in Table I.



Communication and computation cost. In Construction 1,
the helper data size is ∼ (ℓ · (α+ 2− 2 log( 2ℓ

σ
) +m⌈log(n)⌉)) bits

for reusable FE, where ℓ is the number of subsamples used
in the construction, σ is the advantage of the adversary in the
reusability game (Definition 4), and m,α and N , are param-
eters of (α,m,N) conditional entropy sources (Definition 6).

In Construction 2, the CRS and the helper data sizes are
∼ (ℓm⌈log(n)⌉+m) and ∼ [(ℓ·(α+2−2 log( 2ℓ

σ
))+(length of MAC tag)]

respectively.
Both constructions are computationally efficient. Construc-

tion 1 requires ∼ ℓ computations of a universal hash function
that is used as a strong average case extractor, and Construc-
tion 2 has the same computation with an additional MAC tag
computation.

The only other reusable FEs with IT security are two general
constructions due to Boyen [6] and the relationship between
m,n and t, the min-entropy, sample size and distance bound,
needs instantiation of the building blocks. There is no other
IT-secure srrFE.

B. Related work
Fuzzy extractors have been extensively studied in informa-

tion theoretic [6], [8], [15], [16] and computational settings
[7], [9]–[11], [17]–[19]. Table I summarizes properties of IT-
secure schemes that are directly related to our work.

FE Scheme Distr ReUse QuCor Rbst Sec
[2] minEnt − − − Std
[6] minEnt R2.1 Shift (R1.1) − Std
[6] minEnt R2.21 Shift (R1.1) − RO
[15] minEnt − − R2.1 RO
[8], [20] minEnt − − R2.2 Std
[7, Constr. 3] lAlph − − − Std

Construction 1 Strct R2.2 Arbitrary (R1.2) − Std
Construction 2 Strct R2.2 Arbitrary (R1.2) R2.2 Std

TABLE I
CONSTRUCTIONS OF INFORMATION THEORETIC FUZZY EXTRACTOR.

COLUMNS ARE DEFINED AS: DISTR: REQUIRED SOURCE DISTRIBUTION;
OF THE SOURCE IN THE SCHEME AND ITS TYPE; REUSE: REUSABILITY

TYPE; QUCOR: QUERY CORRELATION TYPE; RBST: ROBUSTNESS TYPE;
SEC: SECURITY MODEL; MINENT: BOUND ON SOURCE MIN-ENTROPY;

LALPH: LARGE ALPHABET SOURCE; STRCT: STRUCTURED SOURCE; STD:
STANDARD MODEL; RO: RANDOM ORACLE MODEL; “−”: NOT

ACHIEVED; CONSTR. 3 DENOTES CONSTRUCTION 3 IN [7].

Canetti et al. [7, Proposition 1] gave the lower-bound
∼ t log(nt ) on the required sample entropy of FE when the
distance between two samples is bounded by t, when the
Rep algorithm receives the correct helper data. To achieve
robustness in FE however, the min-entropy of a sample of
size n, must be at least n/2 [21, Section 5]. The entropy
requirement of robust FE is inline with known results for key
establishment in PXY Z setting. In [22] it was proved that when
Alice and Bob share an n-bit string, key extraction in presence
of an active adversary is possible if (Rényi) entropy of the
shared string is lower bounded by 2n/3 bit. This result was
later improved to n/2 [8], matching robust FE result in [21].
The bounds are for general sources and do not apply to our
constructions that are for structured sources.

II. BACKGROUND AND DEFINITIONS
Notations. Upper-case letters (e.g., X) refer to random vari-
ables (RVs), and lower-case letters (e.g., x) denote their

realizations. PX denotes the probability distribution of an
RV X . All logarithms are base 2 unless specified. The
min-entropy of an RV X ∈ X with distribution PX is
H∞(X) = − log(maxx(PX(x))), and the average condi-
tional min-entropy [2] of RV X given RV Y ∈ Y is defined
as, H̃∞(X|Y ) = − logEy←Y maxx∈X PX|Y (x|y). The sta-
tistical distance between two RVs X and Y with the same
domain T is given by:

∆(X,Y ) = 1
2

∑
v∈T |Pr[X = v]− Pr[Y = v]|.

We use Uℓ to denote a RV that is uniformly distributed
over {0, 1}ℓ. For an n-bit vector x, we write (x)i···j to denote
the subvector starting at the ith bit and ending at the jth bit,
inclusively. For a sequence of variables W = W1, · · · ,Wn,
and an index set A = {i1, · · · , it}, ij ∈ [1, · · · , n], we use
W [A] to denote the subsequence Wi1 , · · · ,Wit . For a vector
m = (m0, · · · ,mn−1),mi over some field, let m(x) be the
polynomial

∑n−1
i=0 mix

i.

Extractors and hash functions. An extractor distills an
almost uniform random string from a sample of a random
source W that has sufficient entropy, possibly using a truly
random seed.
Definition 1 ( Strong (average case) randomness extrac-
tor [8]). E : {0, 1}n × {0, 1}r → {0, 1}λ is an average
case (n, α, λ, ϵ)-extractor if for any pair of random vari-
ables X,A with X over {0, 1}n and H̃∞(X|A) ≥ α, we
have ∆(E(X,R), A,R;U,A,R) ≤ ϵ, where R and U are
uniformly distributed over {0, 1}r and {0, 1}λ, respectively.
An extractor E is linear if E(X1 + X2, R) = E(X1, R) +
E(X2, R), for any X1, X2 ∈ {0, 1}n and R ∈ {0, 1}r.

In above, A is the auxiliary variable, and if it is null, we
have a strong (n, α, λ, ϵ)-extractor. A universal hash family
gives a randomness extractor whose parameters are given by
the Leftover Hash Lemma [23].
Definition 2 (Universal hash family). A family of functions
h : X ×S → Y is called a universal hash family if ∀x, y ∈ X
and x ̸= y, we have: Pr[h(x, S) = h(y, S)] ≤ 1

|Y| , where the
probability is over the uniform choices over S.
Lemma 1 (Generalized Leftover Hash Lemma [2]). Let
h : X × S → {0, 1}ℓ be a universal hash family. Then for
any two random variables A ∈ X and B ∈ Y , applying h
on A can extract a uniform random variable with length ℓ

satisfying: ∆(h(A,S), S,B;Uℓ, S,B) ≤ 1
2

√
2−H̃∞(A|B) · 2ℓ,

where S is chosen uniformly from S. In particular, if h is a
universal hash family satisfying ℓ ≤ α+2− 2 log 1

ϵ , then h is
an (n, α, l, ϵ)-extractor, where A is an n-bit string.

Message Authentication Code (MAC) is a tuple of algo-
rithms (gen,mac, vrfy) where gen generates the key k ∈ K,
mac takes a key k ∈ K and a message m ∈M, and produces a
tag t ∈ T that will be appended to the message. vrfy algorithm
takes a key k ∈ K and pair (m′, t′) ∈ M× T and outputs,
accept or reject, indicating the pair is valid or invalid under
the key.

A MAC algorithm is correct if for any m ∈ M, we have,
Pr[k ← gen(λ), vrfy(k,m,mac(k,m)) = accept] = 1.



A MAC algorithm is one-time secure if the success chance
of the adversary in the following two attacks is bounded by δ.
(i) for any message and tag pair m′ ∈ M and t′ ∈ T ,
Pr[vrfy(k,m′, t′) = accept] ≤ δ;
(ii) for any observed message and tag pair m ∈ M and tag
pair t ∈ T , for any m′ ̸= m ∈ M and t′ ∈ T , we have,
Pr[vrfy(k,m′, t′) = accept | m,mac(k,m) = t] ≤ δ.

For a more detailed definition see Appendix A.

A. Fuzzy extractors
Fuzzy extractors (information theoretic) were introduced by

Dodis et al. [2].
Definition 3 (Fuzzy extractor). LetW be a family of probabil-
ity distributions overM. An (M,W, ξ, t, ϵ, σ)-fuzzy extractor
FE is a pair of randomized algorithms (Gen, Rep) as follows.

i. Gen: M→ {0, 1}ξ ×P takes a source sample w ∈M,
and outputs a key r ∈ {0, 1}ξ and a public helper string
p ∈ P .

ii. Rep : M× P → {0, 1}ξ takes a sample w′ ∈ M and
the helper string p ∈ P as input, and outputs a key r.

A fuzzy extractor must satisfy the following properties.
1. ϵ-correctness. An FE is ϵ-correct if for any w′ satisfying
d(w,w′) ≤ t where d() is a distance function, and (r, p) ←
Gen(w), we have Pr[Rep(w′, p) = r] ≥ 1 − ϵ, where the
probability is over the randomness of Gen and Rep.
2. σ-security. For any distribution W ∈ W , the key R is
close to uniform, conditioned on P . That is, for any pair,
(R,P )← Gen(W ), we have, ∆((R,P ); (Uξ, P )) ≤ σ.

Reusability and robustness. The following definition of
reusability of FE is from [7]. The experiment on the LHS
of Figure 1 describes security of Gen as a game between a
challenger and an adversary. The challenger provides η outputs
of the Gen algorithm on correlated samples to the adversary,
after which the adversary must distinguish between a random
string and an output key of Gen that has not been revealed.
The experiment on the RHS of Figure 1 is defined similarly
with the same information provided to the adversary, whose
goal is to modify the helper data on a new sample from the
same source without being detected.
Expreu−b

A,rFE() ExprobsA,srrFE()

1. for i← 1 to η do 1. for i← 1 to η − 1 do
(i) Sample wi ←W i (i) Sample wi ←W i

(ii) (ri, pi)← Gen(wi) (ii) (ri, pi)← Gen(wi)
end end

2. r0 ← rj for given j ∈ {1, · · · , η} 2. Sample wη ←W η

3. r1
$← {0, 1}ξ 3. p̃← AOrep ({ri, pi}η−1

i=1 )

4. b′ ← 4. If (p̃ ̸∈ {p1, · · · pη−1}),
A(rb, {ri}i=1,...,η,i ̸=j , {pi}ηi=1) Return (Rep(wη , p̃) ̸=⊥)

5. Return b′ Else Return 0.

Orep(p̃m): query qd times at most
1. Return (Rep(wη , p̃m))

Fig. 1. Security experiments for reusability (LHS) and robustness (RHS) for
rFE and srrFE, respectively.

Definition 4 (Reusable fuzzy extractors [7]). Let W be a
family of distributions over M, and rFE=(Gen,Rep) denote
an (M,W, ξ, t, ϵ, σ)-fuzzy extractor as given in Definition
3. The FE is (η, σr)-reusable if for any η correlated RVs

(W 1, ...,W η),W j ∈ W,∀j ∈ {1, ..., η}, and any computa-
tionally unbounded adversary A in the experiment ExpreuA,rFE
in Figure 1, the following advantage is bounded by σr:
AdvA(ExpreuA,rFE) = |Pr[Expreu−0

A,rFE() = 1]− Pr[Expreu−1
A,rFE() = 1]| ≤ σr .

. We also consider strongly robust and reusable FE (srrFE
for short) defined as follows.
Definition 5 (Strongly robust of reusable fuzzy extractor).
Consider the setting of Definition 4 and an (η, σr)-reusable FE
as defined above such that d(W i,W η) ≤ t, ∀i ∈ {1, · · · , η − 1}.
We say the FE is a srrFE, that is (qd, δr)-strongly robust,
if the success probability of any computationally unbounded
adversary A in the robustness experiment ExprobsA,srrFE defined
in the the right side of Figure 1 is bounded by δr:

AdvA(ExprobsA,srrFE) = Pr[ExprobsA,srrFE() = 1] ≤ δr

The term “strong" refers to arbitrary correlated queries
(random variables) that can be chosen by the adversary.

III. CONSTRUCTION 1 & 2: IT-SECURE FUZZY
EXTRACTOR FOR STRUCTURED SOURCES

In this section we present the construction of an rFE for
a structured source, and then extend it to an srrFE by using
a MAC. The constructions are for for (α,m,N)-sources that
are defined below.
Definition 6 ((α,m,N)-source). Consider a source W =
W1, · · · ,Wn that consists of strings of length n over an
alphabet Z . For parameters α, m and N , we say W is
an (α,m,N)-source if for any two random subsets A,B ⊆
[1, · · · , n], with cardinality m and N , respectively, we have
H̃∞(W [A] | W [B], A,B) ≥ α, where the probability is over
the randomness of W and index sets A,B.

Intuitively the requirement is that entropy of a random
subsample of size m is high, when any substring of length
N of the sample is seen. The α-entropy k-samples sources
defined in [7], are less restrictive class of (α, k,N)-sources
when N = 0. Our constructions are for binary alphabets,
Z = {0, 1}.

Construction 1. (rFE) Let E be an average (m,α, ν, ϵ)-
extractor, and W = W1,W2, ...,Wn be an (α,m,N)-source
with Wi over alphabet {0, 1}. The Gen and Rep algorithms
in Figure 2 describe the fuzzy extractor generation Gen and
reproduction procedures Rep, respectively, for the source.

Gen(W ): Rep(W ′, (p1|A1, · · · , pℓ|Aℓ))

Input W Input W ′ and (p1|A1, · · · , pℓ|Aℓ)
Output R, (p1|A1, · · · , pℓ|Aℓ) Output R or ⊥
1. R $←− {0, 1}ξ 1. for i← 1 to ℓ do
2. for i← 1 to ℓ do (i) di = E(W ′[Ai], Z)

(i) Sample Ai
$←− [n] (ii) if ((di ⊕ pi)1...t = 0t) then

(ii) di = E(W [Ai], Z) Output R = (di ⊕ pi)t+1...ν

(iii) Set pi = (0t|R)⊕ di end
for t = ν − ξ end

end 2. Output ⊥
3. Output key R and
(p1|A1, · · · , pℓ|Aℓ)

Fig. 2. Construction 1. ℓ, t, λ, ξ, n,m,L are public parameters. The ran-
domness Z is shared through an authenticated channel. (ρ)i···j denotes the
substring starting at bit i and ending at bit j of ρ. In line (i) of Gen(W ),

Ai
$←− [n] denotes choosing Ai = {ii, · · · , im}, ij

$←− [n], ∀j ∈ [1,m]..



The construction is inspired by the sample-then-lock ap-
proach of Canetti et al. [7], outlined in section I.

Theorem 1 (Reusable fuzzy extractor). In Gen algorithm in
Figure 2, let E be instantiated by H , a universal hash family.
Let ξ denote the length of the extracted key. For a chosen
value ℓ, and ϵ′, σ that satisfy ξ ≤ α + 2 − 2 · log( 2ℓ

σ
) − t, the

(Gen,Rep) procedures in Figure 2 correspond to an (η, σ)-
reusable (Vn,W, ξ, t′, ϵ′, σ)-fuzzy extractor, where
(1− (1− t′

n−m
)m)ℓ + ℓ · 2−t ≤ ϵ′ and ℓηm < N .

Proof. The following is a proof outline. The complete proof
is in Appendix C.

Correctness. We show that Rep algorithm fails with proba-
bility at most (1− ϵ′). The Rep algorithm fails in two cases.
First, none of the ℓ subsamples of length m in W ′ matches
the corresponding subsample of W . We derive expressions
that bounds and shows how to choose ℓ to have at least one
matched subsample of length m in w and w′ with probability
at least (1− ϵ′).
Second, there is a match in step (ii) of Rep because of
collision in the universal hashing. More specifically, the hash
value of a subsample in W is equal to the hash value of the
corresponding subsample in W ′ in the first t bits (the rest is
padded with random key).

This collision in step (ii) of Rep in figure 2, occurs with
probability ( 1

2t ) when E is a randomly chosen from a universal
hash family. In this case Rep will output a key R′ ̸= R because
Rep algorithm ends as soon as the first decryption succeeds.

Reusability. We first prove for η = 1, and then extend it to
η > 1. η = 1. We need to prove that ∆((R,P ), (Uξ;P )) ≤ σ,
where P is the public strings.

In step (i) of Gen() algorithm in figure 2, Ai is randomly
sampled, and in step (ii), E is implemented by H .

Since W is a (α,m,N)-source, we have H̃∞(W [A] |
W [B], A,B) ≥ α, where A is a random subset of [n],
and B ⊂ [n] of size N and disjoint from A. Since H is
universal hash family with output length ν, from lemma 1,
H is an (m,α, ν, σ

2ℓ )-extractor as long as ν ≤ α + 2 −
2 log(2ℓσ ). Since ν = ξ + t, we obtain an upper bound
on ξ for H to be an (m,α, ν, σ

2ℓ )-extractor, and we have
∆(R,p, Z,A;U,p, Z,A) ≤ σ.

Therefore, (Gen,Rep) is an srrFE with (1−(1− t′

n−m )m)ℓ+
ℓ · 2−t ≤ ϵ′, ℓm < N and V ∈ {0, 1} and the extracted key
length ξ ≤ α+ 2− 2 log(2ℓσ )− t.

Case η > 1. Similar to the case η = 1 and taking into
account property of (α,m,N)-source that ensures the entropy
of the new samples remain the same.

1) A strongly robust and reusable FE: Construction 2 is
an srrFE and is in CRS model which assumes that sender and
receiver share a public random string that is independent of the
source, and is used to specify A1, · · · , Aℓ and Z. Robustness
is obtained by using an information theoretic MAC with a
special property, together with Construction 1. This is the first
IT-secure srrFE without assuming random oracle, and is for
structured sources.

Construction 2. Consider the same source as Construction 1,
and E be an average (m,α, ν, ϵ)-extractor. Figure 3 describes
the Gen and Rep algorithms of our srrFE.
Gen(W ) Rep(W ′, (p1, · · · , pℓ, T ))

Input W Input W ′ and (p1, · · · , pℓ, T )
Output R, (p1, · · · , pℓ, T ) Output R or ⊥
1. R $←− {0, 1}ξ , R1

$←− {0, 1}2λ 1. for i← 1 to ℓ do
2. for i← 1 to ℓ do (i) di = E(W ′[Ai], Z)

(i) Sample a random subset (ii) if ((di ⊕ pi)1...t = 0t) then
Ai = {i1, · · · , im} from (a) Set ρ = (di ⊕ pi)t+1...ν

[n] (b) Set R = (ρ)t+1...t+ξ ,
(ii) di = E(W [Ai], Z) R1 = (ρ)ν−2λ+1...ν ,
(iii) Set pi = ((0t|R|R1)⊕di) (c) T ′ =

for t = ν − ξ − 2λ Eval((p1, · · · , pℓ), R1, L)
end (d) if T ′ = T , output key R;

4. Let L = ⌈ℓν/λ⌉+ 4, and otherwise, continue
p = (p1, · · · , pℓ) end

5. T = Eval(p,R1, L) end
6. Output key R and ciphertext
(p1, · · · , pℓ, T )

2. Output ⊥

Fig. 3. srrFE Gen and Rep algorithms. ℓ, t, λ, ξ, n,m,L are system public
parameters. E is an average (m,α, ν, ϵ)−extractor. The subsets Ai and Z
are obtained from CRS. Eval(·) is defined in Algorithm 1.

Algorithm 1: T ← Eval(p,R1, L)

1. Encode p to vector m of length L− 4 in GF (2λ)
2. Parse R1 = x|y for x, y ∈ {0, 1}λ
3. Compute T = xL + x2m(x) + xy for m(x) =

∑L−5
i=0 mix

i.
4. Return T

Providing robustness. To provide robustness for the rFE, we
use a part of the extracted key to compute an authentication
tag using a one-time IT-secure MAC, and append it to P =
p ∥ tag. We note that if an adversary modifies p to p̂, because
of the linearity of “one-time-pad” the key (R ∥ R1) will be
shifted by a value δ = p + p̂ that is known to the adversary.
We use a MAC construction that provides security against a
known key shift.

For key (x, y), the tag function is, T (x, y,m) = xL +
x2m(x) + xy, where m is a vector over GF (2λ) of length
at most L − 5 (so m(t) is a polynomial of degree at most
L− 5; see notations in Section II). The verification algorithm
for (m′, t′) is by computing the tag function for m′, and
comparing the result with t′.

In Appendix B, we prove that the MAC provides one-time
security.

Theorem 2 (Robust and reusable FE). Let W be a fam-
ily of (α,m,N)-sources and E be an average (m,α, ν, ϵ)-
randomness linear extractor for source W . Let E be imple-
mented by H , a universal hash family. Fix ℓ and let ξ be
the length of the extracted key. If adversary makes at most
qe generation queries and qd reproduction queries, then for
any δ, ϵ′, σ satisfying ξ ≤ α + 2 − 2 · log( 4ℓσ ) − t − 2λ,
(Gen,Rep) described in Construction 2 is a (qd, δ)-strongly
robust, (qe+1, σ)-reusable (Vn,W, ξ, t′, ϵ′, σ)-fuzzy extractor,
where (1−(1− t′

n−m )m)ℓ+ℓ·2−t·L·2−λ ≤ ϵ′, (qe+1)ℓm < N ,
δ = (qd + qe)ℓϵ + qd2

−λℓ(L + 1), (qe + qd)ℓm < N and
L = ⌈ℓν/λ⌉+ 4.

The proof of this theorem is in Appendix D.

IV. CONCLUDING REMARKS

We proposed an rFE and an srrFE, both with information
theoretic security for a structured source. Both FEs provide



security for strong notion of reusuability. The srrFE is the
only known strongly robust and reusable IT-secure FE that
uses CRS model. Extending our FEs to more general sources
are interesting open questions.
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APPENDIX

A. Message Authentication Code
Definition 7 (one-time MAC). An (M,K, T , δ)-one-time
MAC is a triple of polynomial-time algorithms (gen,mac, vrfy)
where gen(λ) : 1λ → K gives a key k ∈ K on input
security parameter λ, mac : K ×M → T takes the key k
and a message m ∈ M as input and outputs a tag t ∈ T ,
vrfy : K ×M× T → {accept, reject} outputs either accept
or reject on input: the key k, a message m ∈ M and a tag
t ∈ T .

The correctness property requires that: for any choice of
m ∈M, we have

Pr[k ← gen(λ), vrfy(k,m,mac(k,m)) = accept] = 1 (1)

The unforgeability property requires that for any k ← gen(λ),
the following two conditions are satisfied:

(i) for any message and tag pair m′ ∈M and t′ ∈ T ,

Pr[vrfy(k,m′, t′) = accept] ≤ δ, (2)
(ii) for any observed message and tag pair m ∈ M and tag
pair t ∈ T , for any adversary’s choice of m′ ̸= m ∈ M and
t′ ∈ T ,

Pr[vrfy(k,m′, t′) = accept | m,mac(k,m) = t] ≤ δ, (3)

.

B. Security proof of the MAC
The following lemma shows that the tag function has one-time
authentication property.
Lemma 2. Let L = 3 mod 4 and m be an arbitrary but
given vector of length at most L − 5 over GF (2λ). Let x, y
be uniformly random over GF (2λ). Then, given T = xL +
x2m(x) + xy, the following holds

(x+ δ1)
L + (x+ δ1)

2m′(x+ δ1) + (x+ δ1)(y + δ2) = T ′ (4)

with probability at most L2−λ, where T ′, δ1, δ2 ∈ GF (2λ)
and m′ a vector over GF (2λ) of length at most L − 5 with
m′ ̸= m, are arbitrary but all deterministic in T and the
probability is over the choices of (x, y).

Proof. We write (m′, T ) valid to indicate the event that Eq.
(4) is satisfied. Then, given T , the probability that Eq. (4)
holds, is

ET

(
Pxy[(m

′, T ′) valid | T ]
)

≤
∑

a∈GF (2λ)

Pxy[(m
′, T ′) valid, T = a]

≤
∑
a

Pxy[(m
′, T ′) valid, T = a, x = 0]
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+
∑
a

Pxy[(m
′, T ′) valid, T = a, x ̸= 0]

≤2−λ +
∑
a

Pxy[(m
′, T ′) valid, T = a, x ̸= 0] (5)

Next, we bound
∑

a Pxy[(m
′, T ′) valid, T = a, x ̸= 0]. To

bound this, we study two cases: case δ1 = 0 and case
δ1 ̸= 0. In the following, we use the fact that T ′,m′, δ1, δ2
are determined by T . Therefore, given T = a, (T ′,m′, δ1, δ2)
are all fixed.

Case δ1 = 0. In this case, since m′ ̸= m, T ′ − T =
x2(m′(x)−m(x)) + xδ2 is a non-zero polynomial of degree
at most L−3 (when fix T = a). Hence, given T, T ′, there are
at most L − 3 possible x that satisfy this. Moreover, for any
a ∈ GF (2λ) and non-zero x, there exists a unique y such that
(x, y) results in T = a. As a result, given T = a ∧ x ̸= 0, x
is uniformly random over GF (2λ)−{0}. Keeping these facts
in mind, we obtain

Pxy [(m
′, T ′) valid | x ̸= 0, T = a, δ1 = 0] · Pr(x ̸= 0, T = a, δ1 = 0)

≤Pxy
[
(x2(m′(x)−m(x)) + xδ2 = T ′ − a) | x ̸= 0, T = a, δ1 = 0

]
·

Pr(x ̸= 0, T = a, δ1 = 0)

≤Pxy
[
(x2(m′(x)−m(x)) + xδ2 = T ′ − a) | x ̸= 0, T = a

]
·

Pr(x ̸= 0, T = a, δ1 = 0) (6)

≤
L− 3

2λ − 1
Pr(x ̸= 0, T = a, δ1 = 0),

where Eq. (6) follows from the fact that δ1 is determined by
T . Hence,∑

a

Pxy[(m
′, T ′) valid, T = a, x ̸= 0, δ1 = 0]

≤ L− 3

2λ − 1
Pr(x ̸= 0, δ1 = 0). (7)

Case δ1 ̸= 0. In this case, T ′ − T = δ1x
L−1 + δ21x

L−2 +
Q(x)+δ1y, where Q(x) is some polynomial of degree at most
L− 3 (when fix T = a). Here we use the fact: since GF (2λ)
has character is 2 and L = 3 mod 4, it follows that both L
and (L− 1)L/2 are 1 in GF (2λ). Representing y in terms of
x and substituting it into T , we have a = T = δ1x

L−1+µ(x)
for some polynomial µ(x) of degree at most L − 3 (when
fix T = a). There are at most L − 1 possible x to satisfy
this. Further, when T = a and x are fixed with x ̸= 0, there
is a unique y satisfying T = a. Hence, given T = a and
the fact x ̸= 0, we know that x is uniformly random over
GF (2λ) − {0}. Finally, we again remind that T ′,m′, δ1, δ2
are determined by T (hence, given T = a, (T ′,m′, δ1, δ2) are
all fixed). With these facts in mind, we have (similar to Case
δ1 = 0)

Pxy [(m
′, T ′) valid | x ̸= 0, T = a, δ1 ̸= 0] · Pr(x ̸= 0, T = a, δ1 ̸= 0)

≤Pxy
[
δ1x

L−1 + δ21x
L−2 +Q(x) + δ1y = T ′ − a | x ̸= 0, T = a

]
·

Pr(x ̸= 0, T = a, δ1 = 0) (8)

≤
L− 1

2λ − 1
Pr(x ̸= 0, T = a, δ1 ̸= 0),

Hence, ∑
a

Pxy[(m
′, T ′) valid, T = a, x ̸= 0, δ1 = 0]

≤ L− 1

2λ − 1
Pr(x ̸= 0, δ1 ̸= 0). (9)

Combining Eq. (7)(9), we have
∑

a Pxy[(m
′, T ′) valid, T =

a, x ̸= 0] ≤ L−1
2λ−1 Pr(x ̸= 0). Notice Pr(x ̸= 0) = 2λ−1

2λ
.

We know that
∑

a Pxy[(m
′, T ′) valid, T = a, x ̸= 0] ≤ L−1

2λ
.

Plugging in Eq. (5), we obtain our result.

C. Proof of Theorem 1
Let us start the security analysis with some preparation

results. Claim 1 and Lemmas 3-4 are based on quite stan-
dard techniques of probabilistic distances. We give proofs in
Appendix F for completeness.

The following claim is a well-known fact.

Claim 1. Let X and Y be random variables over Z .
Assume that F : Z → V is a deterministic function. Then
∆(F (X);F (Y )) ≤ ∆(X;Y ).

This claim is correct if F is randomized as it holds for
each fixed randomness. The following lemma can be proven
by triangle inequality and induction on µ.

Lemma 3. Let W be a (α,m,N)-source of length n over
{0, 1}. Let E : {0, 1}m × {0, 1}r → {0, 1}ν be an average
(m,α, ν, ϵ)-randomness extractor. Let Z be a uniform r-bit
string and Ai be uniformly random subset of [n] of size m for
i = 1, · · · , µ. Let di = E(W [Ai], Z) for i = 1, · · · , µ. Assume
E(Ũ , Z) = U , where Ũ is uniformly random over {0, 1}m and
U is the uniformly distributed over {0, 1}ν . If µm < N, then,
∆(d, Z,A;Uµ, Z,A) ≤ µϵ, where A = (A1, · · · , Aµ) and
d = (d1, · · · , dµ).

Lemma 4. Let W = W1, · · · ,Wn be an (α,m,N)-source
of length n over alphabet {0, 1}. Let E : {0, 1}m ×
{0, 1}r → {0, 1}ν be an average (m,α, ν, ϵ)-randomness
extractor. Let Ai be uniformly random subset of [n] of
size m for i = 1, · · · , ℓ and Z is a uniform r-bit string.
Let pi = E(W [Ai], Z) ⊕ 0t|S for S ← {0, 1}ν−t, i =
1, · · · , ℓ. Then, ∆(S,p, Z,A;U,p, Z,A) ≤ 2ℓϵ, where p =
(p1, p2, · · · , pℓ),A = (A1, · · · , Aℓ), ℓm < N and U ←
{0, 1}ν−t.

We now prove the construction 1 is a reusable fuzzy
extractor satisfying definition 4.

To prove that the construction is a reusable FE, we need
to prove the ϵ′-correctness according to Definition 3 and then
reusability satisfying Definition 4.

Correctness. We first consider correctness error. That is,
when there is no attack, the ciphertext will be accepted with
high probability. Note that the maximum Hamming distance
between W and W ′ is t′ i.e. d(W,W ′) ≤ t′. Observe that for
any i,
Pr[(W ′ji,1 ,W

′
ji,2

, · · · ,W ′ji,m) = (Wji,1 ,Wji,2 , · · · ,Wji,m)]
≥ (1 − t′/(n − m))m, where Ai = {i1, · · · , im} =
{ji,1, ji,2, · · · , ji,m} and 1 ≤ ji,1, ji,2, · · · , ji,m ≤ n. This
holds true since Pr[W ′ji,1 = Wji,1 ] ≥ (1 − t′/n) as ji,1
is uniform. Next, given W ′ji,1 = Wji,1 , the probability that
W ′ji,2 = Wji,2 is at least 1− t′/(n− 1). We thus have
Pr[(W ′ji,1 ,W

′
ji,2

, · · · ,W ′ji,m) = (Wji,1 ,Wji,2 , · · · ,Wji,m)]
≥ (1− t′/n)(1− t′/(n− 1)) · · · (1− t′/(n−m))
≥ (1− t′/(n−m))m. Consequently, the probability that none
of the vi’s matches at the receiver is at most (1−(1− t′

n−m )m)ℓ,
where vi = (W ′ji,1 ,W

′
ji,2

, · · · ,W ′ji,m), and i ∈ {1, 2, · · · , ℓ}.



In addition, Rep in figure 2 may return an incorrect ex-
tracted key due to an error in step (ii). This error might occur
due to a collision that we now explain in detail. A collision
at step (ii) may occur with probability ( 1

2t ), assuming E
is implemented as a function from a universal hash family.
Moreover, Rep may return an incorrect extracted key if there
is at least one collision at step (ii). This may happen with any
of the ℓ executions of step (ii) and hence with probability at
most ℓ · 2−t.

Since the fuzzy extractor’s allowable error parameter is ϵ′,
we need to choose ℓ so that

(1− (1− t′

n−m
)m)ℓ + ℓ · 2−t ≤ ϵ′. (10)

Reusability. We first prove the case when η = 1, and then
extend it to the case when η > 1.

Case η = 1. We need to prove that ∆((R,P ), (Uξ;P )) ≤ σ,
where P is the public strings.

In step (i) of Gen() algorithm described in figure 2, we
sample a random subset Ai = {i1, · · · , im} from [n]. In step
(ii), E is implemented by H .

Since W is a (α,m,N)-sample source, we have
H̃∞(W [A] |W [B], A,B) ≥ α, where A (resp. B) is a purely
random subset of [n] of size m (resp. N ).

Since H : X ×S → {0, 1}ν is a universal hash family, from
lemma 1, if ν ≤ α + 2 − 2 log(2ℓσ ), H is an (m,α, ν, σ

2ℓ )-
extractor. Now, ν = ξ+ t. Thus, if ξ ≤ α+2− 2 log(2ℓσ )− t,
H is an (m,α, ν, σ

2ℓ )-extractor.
Since H is an (m,α, ν, σ

2ℓ )-extractor, from lemma 3, 4, if
ξ ≤ α + 2 − 2 log(2ℓσ ) − t and ℓm < N , considering S = R
in lemma 4, we have

∆(R,p, Z,A;U,p, Z,A) ≤ σ. (11)

Therefore, (Gen,Rep) is a (Vn,W, ξ, t′, ϵ′, σ)-fuzzy ex-
tractor, where (1− (1− t′

n−m )m)ℓ+ ℓ ·2−t ≤ ϵ′, ℓm < N and
V ∈ {0, 1}. Furthermore, the length of the extracted key will
be ξ ≤ α+ 2− 2 log(2ℓσ )− t.

Case η > 1. In response to a query to Gen oracle
(i.e. generation oracle query), the oracle returns a pair of
key ri and ciphertext ci to the adversary, where ri = Ri

and ci = (p1|A1, · · · , pℓ|Aℓ)
i according to the Gen(W i)

procedure described in figure 2. Now since W is a source
with (α,m,N)-samples, in each query to generation oracle,
Gen(W i) procedure runs with new samples with conditional
entropy α. Hence, the uncertainty about the new samples
remains the same before and after η queries to the generation
oracle from adversary’s perspective. Therefore, the entropy of
the new samples remains same. Now proceeding in similar
manner as the proof for the case η = 1, we can prove that, if
ξ ≤ α+2− 2 · log( 2ℓσ )− t, then the (Gen,Rep) described in
figure 2 is (η, σ)-reusable (Vn,W, ξ, t′, ϵ′, σ)-fuzzy extractor,
where
(1− (1− t′

n−m )m)ℓ + ℓ · 2−t ≤ ϵ′ and ℓηm < N .

D. Proof of Theorem 2

Lemma 5 is based on quite standard techniques of prob-
abilistic distances. We give its proof in Appendix F for
completeness.

Lemma 5. ∆(R,p, Z,A, T ;U,p, Z,A, T ) ≤ 4ℓϵ.

We now prove the construction 2 is a strongly robust and
reusable fuzzy extractor satisfying definition 5.

We need to prove the ϵ′-correctness according to Defini-
tion 3 and then reusability satisfying Definition 4 and finally
prove robustness.

Correctness. We first consider correctness error. Proceeding
in the same way as the proof of Theorem 1, we can prove that
the probability that no vi matches at the receiver is at most
(1 − (1 − t′

n−m )m)ℓ, where vi = (W ′ji,1 ,W
′
ji,2

, · · · ,W ′ji,m),
and i ∈ {1, 2, · · · , ℓ}.

In addition, Rep may be incorrect due to an error in step
(ii) and verification of T ′ = T . These errors might occur
due to collision. A collision at step (ii) might occur with
probability ( 1

2t ), assuming E is implemented as a function
from a universal hash family. In addition, similar to lemma 2
(except δ1|δ2 = (di ⊕ d′i)ν−2λ+1···ν with di from W and d′i
from W ′), a collision T ′ = T occurs with probability L2−λ.
Now, Rep may be incorrect if there is at least one collision at
step (ii) together with a collision T ′ = T . This may happen
with any of the ℓ iterations and hence with probability at most
ℓ · 2−t · L · 2−λ.

Since the fuzzy extractor’s allowable error parameter is ϵ′,
we need to choose ℓ so that

(1− (1− t′

n−m
)m)ℓ + ℓ · 2−t · L · 2−λ ≤ ϵ′. (12)

Reusability. Let η = qe + 1. We first prove the case when
η = 1, and then extend it to the case when η > 1.

Case η = 1. We need to show that
∆((R,P ), (Uξ;P )) ≤ σ, where P is the public strings. In
step (i) of Gen algorithm of Figure 3 , a random subset
Ai = {i1, · · · , im} is sampled from [n], and in step (ii),
E is implemented by H . Note that W is a (α,m,N)-sample
source. Hence, we have H̃∞(W [A] |W [B], A,B) ≥ α, where
A (resp. B) is a purely random subset of [n] of size m (resp.
N ).

Since H : X × S → {0, 1}ν is a universal hash family,
from lemma 1, if ν ≤ α+2−2 log( 4ℓσ ), H is an (m,α, ν, σ

4ℓ )-
extractor. Now, ν = 2λ+ξ+t. Thus, if ξ ≤ α+2−2 log(4ℓσ )−
t− 2λ, H is an (m,α, ν, σ

2ℓ )-extractor.
Since H is an (m,α, ν, σ

4ℓ -extractor, from lemma 3, 4 and
5, if ξ ≤ α+ 2− 2 log(4ℓσ )− t− 2λ and ℓm < N , we have

∆(R,p, Z,A, T ;U,p, Z,A, T ) ≤ σ. (13)

Therefore, (Gen,Rep) is a (Vn,W, ξ, t′, ϵ′, σ)-fuzzy ex-
tractor, where
(1 − (1 − t′

n−m )m)ℓ + ℓ · 2−t · L · 2−λ ≤ ϵ′, ℓm < N and
V ∈ {0, 1}. Furthermore, the length of the extracted key will
be ξ ≤ α+ 2− 2 log(4ℓσ )− t− 2λ.



Case η > 1. The proof follows similar arguments of
reusability part of the proof of Theorem 1 and the security
arguments described above. In response to a query to Gen
oracle, the oracle returns a pair of key ri and ciphertext ci

to the adversary, where ri = Ri and c = (p1, · · · , pℓ, T )
according to the Gen(W i) procedure described in Figure 3.
As W is a source with (α,m,N)-samples, in each Gen
oracle query, Gen(W i) procedure runs with new samples with
conditional entropy α. Hence, the uncertainty about the new
samples remains the same before and after η Gen oracle (or
generation oracle) queries from the adversary’s perspective.
Therefore, the entropy of each new samples remains same.
Now proceeding in similar manner as the proof for the ‘case
η = 1’, we can prove that, if ξ ≤ α+2−2 · log( 4·ℓσ )− t−2λ,
then the (Gen,Rep) described in Figure 3 is (η, σ)-reusable
(Vn,W, ξ, t′, ϵ′, σ)-fuzzy extractor, where
(1− (1− t′

n−m )m)ℓ + ℓ · 2−t · L · 2−λ ≤ ϵ′ and ℓηm < N .
Robustness. Robustness proof is given in Appendix E

E. Robustness Proof for Theorem 2

We need to prove our scheme satisfies Definition 5. We
show that through qe generation queries and qd reproduction
queries, the robustness is broken negligibly. Assume A is
the robustness attacker. Upon generation and reproduction
queries, challenger acts normally. Denote this game Γ0. We
now revise Γ0 to Γ1 so that di = E(W [Ai], Z) is replaced by
di ← {0, 1}ν in generation query or reproduction query (for
some Ai that does not appear in a previous query; otherwise,
use the existing di). Let Succ(Γ) be the success event of
A in game Γ. Let di be taken from di = E(W [Ai], Z) or
di ← {0, 1}ν , for all i. Then, we consider a distinguisher
that distinguishes Γ0 and Γ1. Upon receiving di that is either
di = E(W [Ai], Z) or uniformly random, challenger prepares
the public sampling randomness r that results in sampling Ai’s
for all i’s in the challenge. Now challenger simulates Γ0 with
A against it by providing A with Z and public randomness
r, except all di’s are from his challenge tuple. Finally, if A
succeeds, output 0; otherwise, output 1. The simulated game is
a randomized function with input d1, · · · ,dqd+qe and a binary
output 0 or 1, where di is the vector of (d1, · · · , dℓ) in the
generation or a reproduction query (with new Ai’s). Denote
this function by G(d). Since A1, · · · , Aℓ by challenger or
adversary is from public random string, W [Ai] follows the
distribution of (α,m,N)-source W . By claim 1 and Lemma
3, we immediately have the following.

Lemma 6. |P (Succ(Γ0))− P (Succ(Γ1))| ≤ (qd + qe)ℓϵ.

Now we consider the success event Succ(Γ1). We assume
A will not query the output of generation query to the
reproduction oracle as A already knows the answer. Consider
the ith reproduction query {Ai|pi}ℓi=1|T . Let bit Ei be the
decision bit for the reproduction query (0 for reject and
1 for success). We modify Γ1 to Γ2 such that if upon
the first Ei = 1, then stop the security game. Obviously,
P (Succ(Γ1)) = P (Succ(Γ2)). Let E∗i be the event Ei = 1

while Ej = 0 for j < i. So P (Succ(Γ2)) ≤
∑qd

i=1 P (E∗i ).
We first bound P (E∗1 ).

Let this first reproduction query be C1 =
(A′1, p

′
1, · · · , A′ℓ, p′ℓ, T ′), where A′1, · · · , A′ℓ are from

public randomness r (note: they could be previously sampled
in the generation query processing). Hence, d1, · · · , dℓ for
this query are uniformly random (as we consider Γ2). For
simplicity, some generation query has generated ciphertext
C ′1 using the same sample set A′1, · · · , A′ℓ (otherwise, the
proof will be similar and simpler). Assume d1, · · · , dℓ
generated p1, · · · , pℓ, T for that generation query. We bound
the probability that T ′ generated by A is valid. Notice that
each generation query uses independent di’s and hence can
be simulated by A. So we can assume that A only issue
one generation query (which uses A′1, · · · , A′ℓ). Denote this
by Γ1

2. Let the hash output be T for the generation query.
Since the reproduction query can not use the same ciphertext,
assume p′i ̸= pi. Hence, let x|y = R1 in pi and let δ1|δ2 be
the last 2λ bits in pi⊕ p′i⊕E(o[Ai], A), where o = W ′−W
is assumed to be known to A (this will only increase the
success probability of A). Then, the decrypted tag key from
C1 using W ′ at verifier will be
(x + δ1)|(y + δ2). Hence, if T ′ is valid, we
know that T = xL + x2m(x) + xy and
T ′ = (x + δ1)

L + (x + δ1)
2m′(x + δ1) + (x + δ1)(y + δ2),

with L = ⌈νℓ/λ⌉ + 4. Since now x, y are uniformly random
λ bits and are independent of (A1|p1| · · · |pℓ|Aℓ) due to the
one-time pads d1, · · · , dℓ) (hence idependent of the encoded
vector m), by Lemma 2, conditional on T, the probability
that T ′ is valid is at most 2−λ(L + 1). Further, there are at
most ℓ possible i. Thus, P (E∗1 ) ≤ 2−λℓ(L+ 1).

Now we consider P (E∗k). To evaluate this, we consider a
variant Γ3

2 of Γ2 where the tth reprodution query for t < k is
decided as reject (without verifying the tag T in its query). Let
Σ be the randomness of Γ2. Then, if Σ leads to reject for all
previous k− 1 reproduction query, then adversary view in Γ3

2

and Γ2 is identical; otherwise, some reject of some tth repro-
duction query is wrong. But in this case, E∗k will not occur. It
follows P (E∗k(Γ2)) = P (E∗k(Γ

3
2)). On the other hand, since

the previous k−1 reproduction query always results in reject, it
can be simulated by A himself. Hence, P (E∗k(Γ

3
2)) = P (E∗1 ).

It follows that P (Succ(Γ2)) ≤ qdP (E∗1 ) ≤ qd2
−λℓ(L + 1).

From Lemma 6 and P (Succ(Γ1)) = P (Succ(Γ2)), it follows
that P (Succ(Γ0)) ≤ (qd + qe)ℓϵ+ qd2

−λℓ(L+ 1). □

F. Proofs of Basic Results in Section III

Proof of Claim 1. By calculation, we have
∆(F (X);F (Y ))

= 1
2

∑
v∈V |Pr[F (X) = v]− Pr[F (Y ) = v]|

= 1
2

∑
v∈V |

∑
u:F (u)=v(Pr[X = u]− Pr[Y = u])|

≤ 1
2

∑
v∈V

∑
u:F (u)=v |Pr[X = u]− Pr[Y = u]|

= ∆(X;Y ). □

Proof of Lemma 3. Use induction. When µ = 1, it holds
from assumption and Claim 1. If it holds for µ = k − 1,



consider case µ = k. By assumption, E(Ũ , Z) = U. Note that
di = E(W [Ai], Z). We have

∆(d, Z,A;Uk, Z,A)

≤∆(dk,d
k−1, Z,A;U,dk−1, Z,A)+

∆(U,dk−1, Z,A;U,Uk−1, Z,A)

≤∆(dk, {W [Ai]}k−1
1 , Z,A;U, {W [Ai]}k−1

1 , Z,A)+

∆(dk−1, Z,A;Uk−1, Z,A)

≤ϵ+ (k − 1)ϵ = kϵ,

where the 2nd inequality follows from Claim 1; the first part
of the last inequality follows from the definition of E and
H̃∞(W [Ak] | {W [Ai]}k−11 ,A) ≥ α (from definition of W );
the second part follows from the induction assumption with the
fact that Ak is independent of the remaining random variable.
□

Proof of Lemma 4. Let di = E(W [Ai], Z). Denote di =
Xi|Yi with Xi the first t bits and Yi the remaining bits of
di. Let U1, U2 be uniformly random variables in the domain
of X1, Y1 respectively. Let U1,U2 be ℓ iid copies of U1, U2

respectively. For vector v and variable α, v⊕α denotes (v1⊕
α, · · · , vℓ ⊕ α). For simplicity, let C = (Z,A).

∆(S,p, C;U,p, C)

= ∆(S,d, C;U,d′, C), where d′ = d⊕ 0t|S ⊕ 0t|U
= ∆(PSdC ;PUPd′C)

= ∆(PdC ;Pd′C), (as S is independent of (d, C) and
distributed as U )

= ∆(PXYC ;PX,Y⊕V,C), (let V
def
= U ⊕ S))

≤ ∆(PXYC ;PU1U2C) + ∆(PU1U2C ;PX,Y⊕V,C)

≤ ℓϵ+∆(PU1U2C ;PX,Y⊕V,C), (Lemma 3)
≤ ℓϵ+∆(PU1U2CV ;PX,Y⊕V,C,V )

= ℓϵ+∆(PU1,U2−V,C,V ;PX,Y,C,V )

= ℓϵ+∆(PU1U2CV ;PXYCV )

(U2 and U2 − V are identical, independent of the
remaining variables)

= ℓϵ+∆(PU1U2C ;PXYC), (V is independent of the
remaining variables)

≤ 2ℓϵ, (Lemma 3) □

Proof of Lemma 5. In Lemma 4, S = R|R1 in our scheme.
Thus,

∆(R|R1,p, Z,A;U |U1,p, Z,A) ≤ 2ℓϵ,

where U (resp. U1) is uniform ξ-bit (resp. 2λ-bit). Let C =
(p, Z,A). By claim 1, let F (R|R1, C) = (R,C, T ). Then,
∆(R,C, T ;U,C,U ′) ≤ 2ℓϵ, where U ′ = tag(U1, C) and
tag(·) is the tag algorithm in our scheme used to compute
T . Notice that

∆(R,C, T ;U,C, T )

≤∆(R,C, T ;U,C,U ′) + ∆(U,C,U ′;U,C, T )

≤∆(R|R1, C;U |U1, C) + ∆(U,C,U ′;U,C, T ), (Claim 1)

≤2ℓϵ+∆(C,U ′;C, T ), (Lemma 4; U is ind of p and T,U ′)

≤2ℓϵ+∆(U1, C;R1, C), (Claim 1)
≤4ℓϵ, (Claim 1 and Lemma 4)

This completes our proof. □

G. Figure for construction 2

Figure 4 depicts pictorial representation of construction 2.

(a)

(b)

(c)

(d)

Fig. 4. High level diagram of fuzzy extractor construction 2. Both Gen(W )
and Rep(W ′) procedure are split into two parts. 4(a): The first part of
Gen(W ). This part iterates ℓ times. 4(b): The second part of Gen(W ). This
step is executed after completion of ℓ iterations of 4(a). 4(c): The First part of
Rep(W ′). This step is executed at most ℓ times until one match (T ′

i == 0t)
is found. 4(d): The second part of Rep(W ′). This part is executed after one
match in 4(c). If verification of (T ′ == T ) fails, the algorithm continues
from the part 4(c) again. The upper line of each extractor represents higher
order ξ + 2λ bits of its output i.e. (E(.))t+1...ν . The lower line of each
extractor represents lower order t bits of its output i.e. (E(.))1...t. Extracted
key is R. Randomness Z is public
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